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The sensitivity of turbulent dynamics in spatially evolving mixing layers to small skew
angles θ is investigated via direct numerical simulation. Angle θ is a measure of the
lack of parallelism between the two asymptotic flows, whose interaction creates the
turbulent mixing region. The analysis is performed considering a large range of values
of the shear intensity parameter α. This two-dimensional parameter space is explored
using the results of a database of 18 direct numerical simulations. Instantaneous
fields as well as time-averaged quantities are investigated, highlighting important
mechanisms in the emergence of turbulence and its characteristics for this class of
flows. In addition, a stochastic approach is used in which θ and α are considered as
random variables with a given probability distribution. The response surfaces of flow
statistics in the parameter space are built through non-intrusive generalized polynomial
chaos. It is found that variations of the parameter α have a primary effect on the
growth of the mixing region. A secondary effect associated with θ is observed as
well. Higher values for the skew angle are responsible for a rapid increase in growth
of the inlet structures, enhancing the development of the mixing region. The impact
on the turbulence features and, in particular, on the Reynolds stress tensor is also
significant. A modification of the normalized diagonal components of the Reynolds
stress tensor due to θ is observed. In addition, the interaction between the parameters
θ and α is here the governing element.

Key words: turbulence simulation, shear layers

1. Introduction
The mixing layer emerging from the interaction of two parallel streams characterized

by different velocities U1 and U2 is a classical paradigm case for free-shear turbulent
flows. This case has been widely investigated via numerical simulation in time
evolution, see e.g. Sandham & Reynolds (1991), Rogers & Moser (1994), Balaras,
Piomelli & Wallace (2001) and Delport, Baelmans & Meyers (2011), or in space
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evolution, as in e.g. Yee, Sandham & Djomehri (1999), McMullan, Gao & Coats
(2007), Wang, Tanahashi & Miyauchi (2007), Meldi, Salvetti & Sagaut (2012), Meldi
& Poux (2017) and Hug & McMullan (2019). The investigations reported in the
literature indicate that the emergence and evolution of turbulent features for this flow
configuration exhibit high sensitivity to the parametric set-up of the test case. Among
these parameters, the shear intensity α = (U1 − U2)/(U1 + U2), which measures the
intensity of the shear effect versus the average advection, plays a dominant role in
the mixing-layer evolution (Rogers & Moser 1994; Pope 2000). However, numerous
other features of the inlet flow, which might not be exactly estimated or controllable
in practical applications or even experiments, can affect the features of the turbulent
mixing region. In particular, one assumption for classical analysis of mixing layers
is that U1 and U2 are perfectly aligned. Real cases usually involve effects leading to
the emergence of a three-dimensional behaviour of the flow, such as variations of the
velocity of the streams in the spanwise direction (see e.g. Fiedler et al. 1998).

Many practical applications, such as those involving three-dimensional flow
separations, are characterized by a skew angle between the two streams. Complex
test cases of industrial interest include the flow around blades in compressors and
turbines, three-dimensional boundary layer separation over wings as well as the flow
around vehicles operating with lateral wind gust conditions. When compared with the
comprehensive literature references of the classical test case, mixing layers exhibiting
skew angles have been addressed much more rarely. Experimental studies can be
found in Hackett & Cox (1970), Fiedler et al. (1998) and Naughton, Cattafesta &
Settles (1997). The first two studies consider large skew angles, while the work by
Naughton et al. (1997) investigates several values of the normalized swirl parameter
for the turbulent round jet case. The values investigated roughly correspond to a skew
angle θ ∈ [π/12, π/3]. Stability studies for skewed mixing layers were reported in
Lu & Lele (1993, 1999a,b). In particular, Lu & Lele (1993) explored configurations
for θ ∈ [0,π/2] and they found that the amplification rate of disturbances grows with
the skew angle. This effect becomes more significant as α decreases.

In the present study, we focus on small skew angles and on how parametric
variations applied at the inlet affect the evolution of the flow. The motivation for
this choice is threefold. Small skew angles can be a consequence of the epistemic
uncertainties affecting experiments, and, thus, a description of their effect can be
important for the comparison between numerical and experimental results. Also, a
non-trivial question is how such perturbations may affect the evolution of the flow.
Thus, uncontrolled perturbations in the alignment of the co-flows may be responsible
for difficulties in reliable comparison between experimental and numerical results. In
particular, effects may emerge due to the interactions of θ and α over the evolution
of the mixing layer and on the flow features in both the initial transitional region
and the turbulent region downstream. Moreover, the impact of skew angles on the
turbulence features, as e.g. the components of the Reynolds stress tensor, may give
useful indications for the development of turbulence or subgrid-scale models for
shear flows in which skew effects are present. As previously said, this kind of flow
is relevant to many applications of practical interest. Finally, the last question is
how these three-dimensional features, due to a small skew angle, can be exploited to
control the flow configuration optimizing some key features, such as the mixing-layer
growth rate or the related mixing. In addition, a second objective is the determination
of what degree of accuracy in the prescribed value of the skew angle is required
to exploit such control techniques. These strategies are envisioned in the framework
of parametric variation, which can only be applied at a specific location in space,
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such as for actuators. In the present study, the parametric variation is applied at the
inlet, and the emergence of associated features of the flow is investigated.

To address these aims, a comprehensive sensitivity analysis of the statistical features
of spatially evolving mixing layers to three-dimensional effects due to a small skew
angle between the streams is performed. The sensitivity analysis includes a second
parameter of investigation, the shear intensity parameter α. This parameter is analysed
over an extended range, which includes the values used in previous studies in the
literature on classical mixing layers (Mehta 1991; Slessor, Bond & Dimotakis 1998;
Wang et al. 2007; McMullan, Gao & Coats 2009; Attili & Bisetti 2012) and which
are relevant to practical application. As previously discussed, this parameter has a
remarkable impact on the development of classical mixing layers, in particular in the
fully developed turbulence region, downstream from the inlet. In the present study,
the focus is on the features of the flow in this region, although the initial transitional
region is also analysed. The research work is developed using instantaneous and
time-averaged results obtained from a database of 18 direct numerical simulations
(DNS). Each simulation is run for prescribed, fixed values for θ and α. In addition,
a stochastic methodology relying on tools from uncertainty quantification (UQ) is
adopted.

Stochastic approaches have been increasingly used in the past few years for
uncertainty quantification and sensitivity analysis in numerical simulation of turbulent
flows (see e.g. Lucor, Meyers & Sagaut 2007; Ko, Lucor & Sagaut 2008; Meldi
et al. 2012; Gorle & Iaccarino 2013; Edeling et al. 2014; Margheri et al. 2014;
Mariotti et al. 2016; Wu, Wang & Xiao 2016; Mariotti, Siconolfi & Salvetti 2017;
Edeling, Iaccarino & Cinnella 2018; Xiao & Cinnella 2019). In this framework, the
two input parameters investigated are considered as random variables with a given
probability distribution over the range of investigation prescribed. The uncertainty is
then propagated through the computational model to statistically quantify their effect
on the results. In order to reduce the computational costs, a surrogate model is used
to build a continuous response surface in the parameter space starting from the DNS
available in the database. The stochastic tools then provide the complete response
surface from the database of DNS performed. This non-intrusive approach is based
on the tool known as generalized polynomial chaos (Xiu & Karniadakis 2002; Lucor
& Karniadakis 2004; Le Maître & Knio 2011). This tool relies on the representation
of the quantities of interest in the uncertainty space using an orthonormal polynomial
basis for the uncertain random parameters.

The paper is organized as follows. In § 2 the numerical solver used to perform
the DNS is presented together with the simulation set-up. In § 3 details about
the gPC approach and the stochastic investigation strategy are provided. In § 4 a
parametric analysis of the flow sensitivity to the considered parameters is carried out
by considering time-averaged and instantaneous features of the velocity field. In § 5 a
comprehensive stochastic analysis of a number of statistics is performed. Discussion
bridging instantaneous structural organization of the flow and stochastic analysis is
developed. Finally, in § 6 the concluding remarks are drawn.

2. Numerical methodology and simulation set-up

The DNS are performed by numerical discretization of the Navier–Stokes equations
for incompressible flow through the open-source C++ library OpenFOAM (OpenCFD
2004). This is a well-known tool used in recent years in computational fluid dynamics
and based on a face-centred finite-volume method. More precisely, the numerical
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FIGURE 1. Sketch of the mixing layer.

fluxes are here computed using second-order centred schemes, while the time
derivative is discretized using an explicit second-order backward scheme. Finally,
a PISO (pressure implicit with splitting of operators) algorithm is adopted to solve
the system formed by the discretized Navier–Stokes equation and the Poisson equation
that implements the solenoidal field incompressibility condition (Issa 1986; Ferziger
& Peric 2001).

As previously discussed, the turbulent spatially evolving mixing layer is character-
ized by the interaction of two homogeneous co-flows having different asymptotic
velocities, U1 and U2. In classical analyses, the frame of reference is usually
defined so that x is the streamwise direction of the two asymptotic streams, y is
the normal (or cross-wise) direction in which asymptotic velocity gradients are
observed and z is the spanwise direction. In this work, the lack of perfect alignment
between the two asymptotic velocities is measured by the skew angle θ , which is
constant and measured on the x–z planes. The frame of reference has been chosen
so that the higher asymptotic velocity, U1, is aligned with the streamwise direction
x and U1 = [Ux

1, Uy
1, Uz

1] = [U1, 0, 0]. A sketch is shown in figure 1. Therefore,
the lower asymptotic velocity, U2, can be represented in this frame of reference as
U2 = [Ux

2,Uy
2,Uz

2] = [U2 cos θ, 0,U2 sin θ ]. As a consequence, the mean flow velocity
and the velocity gradient must be determined using vector norms, which are here
reported for the sake of clarity:

‖Uj‖ =

√
(Ux

j )
2 + (Uy

j )
2 + (Uz

j )
2, (2.1)

‖U1 +U2‖ =
√
(U1 +U2 cos θ)2 + (U2 sin θ)2, (2.2)

‖U1 −U2‖ =
√
(U1 −U2 cos θ)2 + (U2 sin θ)2. (2.3)

For every simulation, the Reynolds number is Reδ = δ‖U1 − U2‖/ν = 200, where
δ is the value of the vorticity thickness imposed at the inlet and ν is the kinematic
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viscosity of the flow. These two physical parameters are the same for every simulation,
which implies as well that ‖U1 − U2‖ is a constant. The flow is investigated in a
physical domain of size [x] × [y] × [z] ∈ [0, 24Λ] × [−9Λ, 6Λ] × [−3Λ, 3Λ]. Here
Λ = cinstδ = 15.4δ is the characteristic primary instability length for the Reynolds
number investigated (McMullan et al. 2009; Delport et al. 2011). The parameters
mainly affecting the value of the coefficient cinst are the Reynolds number and the
perturbations imposed at the inlet. As will be discussed in the following, these
parameters are fixed in the present analysis for each simulation. Thus, we can expect
that Λ, which is a measure of the characteristic length of organization of the coherent
structures, should be weakly affected by the parameters θ and α (if at all). Such a
large domain, in particular in the normal direction y, has been chosen in order to
minimize the effect of boundary conditions over the flow evolution.

Furthermore, a traction-free condition is imposed at both normal boundaries, while
periodic boundary conditions are used in the spanwise z direction. At the inlet, a
hyperbolic tangent mean velocity profile is specified:

ui(x= 0, y, z)=
Ui

1 +Ui
2

2
+

Ui
1 −Ui

2

2
tanh

(
2y
δ

)
. (2.4)

This steady velocity distribution is perturbed in both space and time to trigger
the transition to turbulence. As for the perturbation in space, we adopted three-
dimensional perturbations related to the position in the spanwise direction (see
Colonius & Lele 1997) as follows:

Ps(z)=
∑

g

2 cos(g f z), g= 1, 2, 3, f = 2π/Λ, z ∈ [0, 6Λ], (2.5)

ui
s(x= 0, y, z)= 0.005

‖U1 +U2‖

2
Ps(z) exp(−0.5

√
y/δ), (2.6)

where ui
s is the spatial perturbation in the direction i, applied to the mean velocity

profile in (2.4). The perturbation is the same in each spatial direction i.
Finally, the resulting velocity profile has been perturbed at each time step by a

white noise signal of maximum magnitude 2 % at the centreline. The resulting time
perturbation ui

t is the following:

ui
t(x= 0, y, z)= 0.02(2(rand(t)− 0.5))(ui

+ ui
s) exp(−0.5

√
y/δ0), (2.7)

where rand(t) is a random variable with uniform probability density function (p.d.f.)
included in the range [0, 1]. This time perturbation is filtered out outside y=[−Λ,Λ].
Thus, the total velocity imposed at the inlet for each velocity component is ui

inlet =

ui
+ ui

s + ui
t.

Analyses using the stability theory for the mixing layer have traditionally
investigated the sensitivity of the evolution of the flow to variations in the parametric
description of the inlet. In particular, it is well known that the shape of the
perturbation has a significant impact on the initial growth of the mixing layer
(Ho & Huerre 1984; Lu & Lele 1993; Ko et al. 2008). Thus, this could be an
additional aspect worthy of investigation in combination with θ and α. However, this
would significantly increase the number of parameters to be investigated. Keeping in
mind that each DNS requires large computational costs, including these additional
parameters is presently unaffordable. We therefore use the previously specified
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perturbation shape for every simulation. Although the sensitivity to θ and α observed
in the initial mixing-layer evolution may be specific to the adopted perturbation, the
flow behaviour in the fully turbulent region downstream may reasonably be assumed
to be almost independent of it. Finally, an advective velocity condition is used at the
outlet, in order to reduce as much as possible reflective waves in the physical domain
(Salvetti, Orlandi & Verzicco 1996; Meldi & Poux 2017).

Each simulation of the database is run for the same Reynolds number Reδ = 100.
Also, as previously mentioned, the vorticity thickness δ imposed at the inlet is the
same for every simulation of the database. This choice for normalization, which is
less common than using the asymptotic high-speed velocity, has been adopted in
order to use the same mesh for every calculation. This choice precludes uncontrolled
numerical effects due to differences in the discretization of the domain. The kinematic
viscosity ν is also the same for each simulation and, in particular, the values
for the two quantities δ and ν are set so that δ/ν = 20 s m−1. This implies that
‖U1−U2‖= 10 m s−1 is also a constant. The values of the asymptotic velocities Ux

1,
Ux

2 and Uz
2 to be imposed at the inlet are then determined, once the values of θ

and α are fixed for each simulation. More precisely, the velocity components are
obtained resolving this system of three equations, where θ , α and ‖U1 − U2‖ are
known and Ux

1, Ux
2 and Uz

2 are the unknown variables:

α =
‖U1 −U2‖

‖U1 +U2‖
, (2.8)

θ = acos
(

Uz
2

‖U2‖

)
, (2.9)

‖U1 −U2‖ =
νReδ
δ
= 10 m s−1. (2.10)

The computed values for the parameters are reported in table 1 for reference.
The structured grid for the simulations is made by hexahedral elements. Extensive

discussion about the mesh resolution and validation of the DNS results is reported in
appendix A. A constant time step has been fixed choosing the value 1t = 0.01tA =

0.01× 2Λ/(U1+U2). Here tA is the average advection characteristic time. This choice
has been performed to ensure that the condition CFL < 0.35 is respected at every
time step (CFL is the Courant–Friedrichs–Lewy number). Numerical simulations are
initialized in the whole physical domain using an unperturbed hyperbolic tangent
profile for the velocity equal to the value of ui imposed at the inlet, without time or
space perturbations. The total simulation time is equal to 250 characteristic times tA

(equivalent to 25 000 time steps) and statistical quantities are computed starting from
t= 50tA over a time of 200tA.

3. Stochastic sensitivity analysis: methodology and set-up

The generalized polynomial chaos (gPC) method is herein briefly introduced. More
detailed discussion can be found in the comprehensive works by Ghanem & Spanos
(1991), Xiu & Karniadakis (2002) and Le Maître & Knio (2011).

The sensitivity of physical quantities of the flow to the parameters θ and α is
cast into a probabilistic framework. Let one consider a random process R which is
a function of an M-dimensional random vector ξ = [ξ1, ξ2, . . . , ξM] contained in the
parameter space Ω ⊂RM. The non-intrusive gPC approach is a spectral method used
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Simulation no. θ (rad) α Ux
1 Ux

2 Uz
2

1 0.244 0.666 12.499 2.519 0.626
2 0.244 0.535 14.301 4.36 1.084
3 0.244 0.365 18.535 8.775 2.181
4 0.244 0.235 25.753 16.65 4.138
5 0.175 0.666 12.507 2.517 0.446
6 0.175 0.535 14.323 4.353 0.771
7 0.175 0.365 18.616 8.737 1.548
8 0.175 0.235 26.035 16.47 2.919
9 0.086 0.666 12.514 2.516 0.218

10 0.086 0.535 14.34 4.348 0.377
11 0.086 0.365 18.679 8.708 0.754
12 0.086 0.235 26.24 16.341 1.415
13 0.018 0.666 12.515 2.516 0.046
14 0.018 0.535 14.346 4.346 0.079
15 0.018 0.365 18.698 8.699 0.158
16 0.018 0.235 26.3 16.304 0.296

17 0 0.666 12.516 2.516 0
18 0 0.235 26.302 16.302 0

TABLE 1. Database of DNS simulations used in the present analysis. Results from
simulations 1–16 are used to reconstruct the response surfaces of the stochastic quantities
analysed, by the use of a non-intrusive gPC approach. Simulations 17 and 18 are DNS
simulations of the classical mixing-layer configuration.

to perform a projection of R over a known orthogonal polynomial base Ψ . The gPC
representation can be written using a term-based notation as follows:

R=
+∞∑
j=0

βjΨj(ξ), (3.1)

where Ψj(ξ) is the gPC multivariate polynomial of generic index j (which involves
products of the one-dimensional polynomials) and βj is the related Galerkin projection
coefficient. In practice, the polynomial expansion is truncated to a finite limit, T:

R=
T∑

j=0

βjΨj(ξ), (3.2)

where T is a function of the number of considered parameters M and of the maximum
degree P of the retained polynomials. The integrals involved in the computation of the
gPC expansion coefficients βj can be computed numerically. A key issue is the choice
of the polynomial family used in the gPC expansion. A suitable polynomial family, i.e.
able to give an accurate response surface in the parameter space using a few terms in
the gPC expansion, depends on the shape of the p.d.f. of the uncertain parameters.

In the framework of the present work, the determination of a suitable p.d.f. for
θ and α is challenging. In fact, this description is intimately connected with the
physical mechanism generating the mixing layer. Thus, p.d.f.s for α would exhibit
important differences for practical applications or changing operative conditions.
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On the other hand, since θ is thought herein to represent an uncontrolled misalignment
in experiments or an unknown perturbation of flow control, for this quantity there is
no a priori knowledge of the p.d.f. For these reasons, it is here chosen to employ
the most simple and general p.d.f. to describe the distribution of the parameters
under investigation. More precisely, the p.d.f.s have been considered herein as
uniform. Owing to the choice to use uniform p.d.f.s for both parameters, the
Legendre polynomial family is employed for the spectral projection in (3.2). This is a
well-suited choice since the inner product weighting function is directly proportional
to the set p.d.f.

As previously introduced, the skew angle θ and the shear parameter α are
considered as random uncertain parameters. The uniform p.d.f. describing them
is defined over the following ranges.

(i) θ ∈ [0, π/12] rad: As discussed in the introduction, this choice has been
performed in order to investigate the effect of a rather small angle between
the two streams, which may be interpreted as a controlled or uncontrolled
perturbation of the classical mixing-layer configuration.

(ii) α ∈ [0.2, 0.7]: The size of the range of investigation has been determined
after a comprehensive review of the configurations reported in the literature.
Experimental analyses are usually performed for low α values, which correspond
to velocity ratios close to unity. For example, Mehta (1991) performed
investigations in the range α ∈ [0.05, 0.33], Abdul Azim & Sadrul Islam (2003)
in the range α ∈ [0.05, 0.18] and Slessor et al. (1998) for α = 0.43. Conversely,
values investigated in numerical simulation are noticeably higher, in order to
avoid issues in triggering three-dimensional instabilities observed for similar
velocities of the co-flows. Wang et al. (2007) and McMullan et al. (2009)
employ a value of α = 0.33, Attili & Bisetti (2012) chose α = 0.5, Yang et al.
(2004) α = 0.53 and Hug & McMullan (2019) investigated configurations in the
range α ∈ [0.33, 0.66]. The present range of investigation includes values used in
numerical applications as well as a large part of the configurations studied via
experiments.

One could argue that the range of investigation for the parameter α is much
larger than for the parameter θ . This is consistent with the motivation of the present
investigation, in which the effect of perturbation in the alignment of two co-flows is
studied over a range of operative configurations. At the same time, one can expect
that the parameter α will be responsible for larger variations of the physical quantities
investigated.

In the present work, P= 3 for both the random variables investigated (i.e. a third-
order expansion is employed). The analysis of the projection coefficients βj reveals
that the contribution of third-order polynomials is very small, as shown in appendix A
via the comparison of the results obtained using P= 2 and P= 3. This implies that
convergence of the reconstruction of the response surface is well achieved for P= 3,
assessing the choice performed in the analysis. The non-intrusive strategy relies on
the usage of data from a database of DNS simulations. Each run is performed for
fixed values of θ and α. A Gaussian quadrature formula is employed here, defining
mi = P+ 1 quadrature points per parameter. Owing to this choice, input information
is needed in four quadrature points for each parameter. This sums up to a total of
42
= 16 discrete points in the uncertainty space. For each of these points, a DNS with

fixed values for θ and α has been performed. Results have then been reconstructed on
the continuous two-dimensional uncertainty space via gPC. In addition, two classical
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(θ = 0) numerical simulations have been performed for comparison. The value chosen
for α corresponds to the higher/lower value resulting from the Gaussian quadrature,
respectively. These values are used to determine the features of the velocity field as
reported in (2.8), (2.9) and (2.10).

4. Mixing-layer evolution and features for varying θ and α

A qualitative analysis of the main instantaneous and time-averaged flow features
as obtained in DNS simulations for varying α and θ is now developed. Here the
reader should be reminded that the variation of the parameters is imposed at the
inlet. Thus, the uncertainty in the parametric description affects the whole structural
organization of the flow moving downstream. The first physical quantity investigated
is the momentum thickness Θ , which is by definition

Θ(x)=
1

6Λ
1

(‖U1 −U2‖)2

∫ 3Λ

−3Λ

∫ 6Λ

−9Λ
(Ûx

1(x)− ux(x, y, z)) (ux(x, y, z)− Ûx
2(x)) dy dz.

(4.1)
The quantities indicated with a ̂ denote the value of the velocity outside the mixing
layer; the second mesh element far from the boundary, the first that is not directly
affected by the boundary traction-free condition, has been used. As is well known,
the momentum thickness provides a measure of the growth rate of the mixing layer.

In figure 2 results are shown for the simulations 1, 4, 13, 16, 17 and 18 of the
database, i.e. the two classical DNS and the four simulations carried out for the
extreme values of α and θ in the database. The results in the whole physical domain
reported in figure 2(a) indicate that α is the main parameter driving the evolution
of Θ . As expected, low-α simulations exhibit a slower increase of Θ . However, for
both α = 0.235 and α = 0.666 the results from the simulation for Θ = 0.244 exhibit
remarkable differences when compared with the corresponding classical mixing-layer
evolution. The differences are larger for α = 0.235 and for x/Λ > 7.5. On the other
hand, the evolution of Θ in the inlet region for x/Λ < 4 is mostly independent of
the parameters of investigation, as shown in figure 2(b). This confirms that the initial
development of the mixing layer Θ is governed by the perturbations prescribed at the
inlet, which are the same for each simulation. In addition, θ and α have a secondary
effect on the mixing-layer growth in this region.

The analysis of the near-inlet dynamics is now extended to the statistical behaviour
of the velocity fluctuations. The integral normalized cross-wise component of the
velocity fluctuation energy is defined as

V =
1

‖U1 −U2‖
2Θ

∫∫
yz

u′yu′y dy dz, (4.2)

where u′ represents the fluctuating field and the overbar is the time average. For fully
turbulent flows, u′yu′y is the cross-wise component of the Reynolds stress tensor.

The evolution of V for x/Λ < 4 is reported in figure 3. The behaviour of V is
governed by the parameter α. The simulations for α= 0.235 exhibit a faster increase
of the velocity fluctuating energy when compared with the other DNS investigated.
This seems to be related to the perturbations imposed at the inlet, whose energy is
proportional to the magnitude of the flow ‖U1+U2‖ and, thus, inversely proportional
to α (as ‖U1 − U2‖ is constant). More interestingly, important differences are again
observed for the simulations for θ = 0.244. For these simulations, the total cross-wise
velocity fluctuation energy is significantly increased, in particular for α = 0.235.
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FIGURE 2. Evolution of the momentum thickness Θ normalized over the initial vorticity
thickness δ. Results are reported for six simulations of the DNS database for (a) x/Λ6 20
and (b) a zoom for x/Λ6 3.75.
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FIGURE 3. Evolution in space of the integral normalized cross-wise component of the
velocity fluctuation energy V for x/Λ6 3.5.

This aspect is further investigated via the analysis of u′yu′y, which is now sampled
over two-dimensional y–z planes for x/Λ=3. This streamwise station has been chosen
because V is here close to its peak for low-α configurations and it is ramping up
for high-α simulations. The isocontours are shown in figure 4. Results from the three
simulations for α= 0.666 are reported in the right column while those for α= 0.254
are shown in the left column. One can see that the spatial organization of u′yu′y is
mainly the same for fixed α and it once again reflects the signature of the shape of
the inlet spanwise perturbation. The principal difference is the higher magnitude that
is exhibited by the case for θ = 0.244 in figure 4(e, f ). Results for α = 0.235 in the
left column of figure 4 exhibit a more complex behaviour. It is thus confirmed that
the larger the skew angle, the faster the amplification of the inlet disturbances, and
that this effect is more important for low α values. For the particular perturbation
considered in the present work, this is consistent with the findings of Lu & Lele
(1993).
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FIGURE 5. Isosurfaces of the vortex indicator λ2 coloured by vorticity magnitude: (a) θ =
0 and α = 0.235, (b) θ = 0 and α = 0.666, (c) θ = 0.018 and α = 0.235, (d) θ = 0.018
and α = 0.666, (e) θ = 0.244 and α = 0.235, and ( f ) θ = 0.244 and α = 0.666.

The mixing is now investigated via the analysis of instantaneous vorticity and
velocity fields. Figure 5 shows the instantaneous isosurfaces of the vortex indicator λ2
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FIGURE 6. Vorticity magnitude for (a,c,e,g,i) θ = 0 and α = 0.235 and (b,d, f,h,j) θ = 0
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(Jeong & Hussain 1995), coloured by the intensity of vorticity. Figure 5(a,b) reports
the results obtained for the classical mixing-layer configuration (θ = 0) and for the
extreme values of α. The comparison of the two panels highlights that, for larger
values of α, the streamwise coherent structures originated by the inlet spanwise
perturbations tend to lose organization more rapidly. This phenomenon comes along
with the emergence of progressively smaller three-dimensional structures moving
downstream and with a faster growth of the mixing layer, in agreement with the
previous analysis of the behaviour of the momentum thickness. These conclusions
are reinforced via observation of figures 6 and 7. Vorticity magnitude isocontours
are reported in figure 6. The isocontours are shown for y–z planes for several values
of x/Λ. A faster growth of the mixing region for larger α values is clearly visible.
Similar conclusions can be drawn analysing the instantaneous streamwise velocity
fields (x–y plane for z= 0) in figure 7(a,b).

Figures 5 and 7 confirm the previous observations on the momentum thickness, i.e.
that the presence of a skew angle enhances the mixing-layer growth, in particular
for low values of α. However, in this case the increased mixing-layer growth is not
associated with a loss of coherence of the inlet vortical structures, as it conversely
happens when increasing α, but rather to a faster growth of these structures themselves
(see figure 8 showing the same quantities as in figure 6 but for θ = 0.244). This
is consistent with the previous analysis of the normal contribution to the fluctuating
velocity energy.
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In conclusion, the analysis of the DNS of the database indicates that, as expected,
variations of the parameter α ∈ [0.2, 0.7] have a primary effect on the growth of the
mixing region. This primary effect is associated with bulk shear effects, which are
responsible for Kelvin–Helmholtz instabilities and transition to turbulence. However,
a secondary effect associated with θ is observed. Higher values for the skew angle
magnify the growth of inlet structures, which results in a faster increase of the
mixing region. This effect is progressively less visible for higher α values, due to the
more rapid transition to turbulence, which then dominates the mixing-layer growth.
These results are in agreement with the experimental findings by Naughton et al.
(1997). The analysis of the turbulent round jet indicated that the initial evolution
of the mixing layers, which was performed for low values of α ∈ [0.21, 0.4],
does not show any apparent difference between the swirling mixing layer and the
classical non-swirling case. However, moving downstream, both the spatial extent
and amplitude of the largest turbulent fluctuations were found to be increased. So,
the entrainment associated with an additional source of turbulence production is
responsible for a larger mixing layer growth rate.

5. Stochastic analysis of time-averaged flow quantities

The stochastic analysis of some relevant statistical quantities of the flow is used
herein to quantify the effects associated with the variability of α and θ , whose effects
were qualitatively described in § 4. The analysis here is performed relying on the use
of the gPC to reconstruct multiple response surfaces, considering a uniform p.d.f. for
the input parameters θ and α. Despite the level of approximation associated with this
choice, these results are complementary to the findings obtained in § 4. In particular,
they are useful to provide a quantification of the expected variance of the physical
quantities over the parametric space investigated, as well as to highlight effects due
to interactions of θ and α. One should keep in mind that these statistical measures
describe the history of the flow when the perturbation is applied upstream at the inlet.
Thus, while these measures describe the effects of the uncertainty over the evolution
of the flow, they should not be considered as a statistical feature for a localized
perturbation.

To this aim, the physical quantities calculated via DNS (such as the time-averaged
velocity field) have been sampled on 161 planes normal to the streamwise section x
in the range x ∈ [4Λ, 20Λ]. The distance between planes is constant and it is equal
to 0.1Λ. Here we excluded the region x/Λ< 4 in order to focus the analysis on the
region exhibiting turbulent features.

The first quantity investigated is the momentum thickness Θ . The two-dimensional
p.d.f. obtained for Θ is shown in figure 9. What we refer to as two-dimensional p.d.f.s
is actually an ensemble of one-dimensional p.d.f.s that are plotted together. For each
of the streamwise sections previously introduced, a gPC analysis is performed and
3× 106 Monte Carlo samples are generated. From these samples, a smoothed p.d.f. is
generated via a kernel smoothing function and all data are normalized over the peak of
this distribution. The choice to perform such a normalization for each p.d.f. highlights
the most probable configurations as a function of x in the surface plot. However,
considering that in this case x does not have a probabilistic interpretation but is just
a plot variable, some waviness of the p.d.f.s moving away from the most probable
value can be observed. The gPC results are compared with those of the simulations
of classical mixing-layer configurations (skew angle θ = 0, α = 0.66 (round markers)
and α = 0.23 (square markers)). Figure 9 clearly shows that, upstream of x ≈ 5Λ,

.
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FIGURE 9. Normalized two-dimensional p.d.f. of the momentum thickness Θ , obtained
via gPC. Circle/square markers indicate results from the classical DNS for high/low α
value, respectively.

occurrences of Θ tend to cluster around values that are higher than the two classical
simulations. As seen in § 4, this region is characterized by the presence and the
evolution of coherent vortical structures generated at the inlet. In agreement with
the analysis in § 4, lack of parallelism between the two asymptotic flows leads to
a faster growth of these structures, and thus enhances mixing between the streams.
These results are in agreement with stability analyses reported in the literature (Lu &
Lele 1993, 1999a,b). However, the upstream region is characterized by a rather small
variability of the momentum thickness (see also § 4).

Similar conclusions can be drawn via analysis of the coefficient of variance
cv = |Θ ′/Θ|, which is reported in figure 10(a). Here Θ ′ is the standard deviation
of Θ . Thus, cv provides an indication of the variance of the phenomenon investigated
with respect to its mean value in the parameter space. For the quantities investigated,
the mean value is usually very close to the most probable value shown in the
two-dimensional p.d.f. in figure 9. The cv increases almost linearly from approximately
6 % to 18 % in the interval x = 5Λ to x = 19Λ. The Sobol indices in figure 10(b),
which provide a measure of the sensitivity of Θ to each of the uncertainty parameters,
confirm that the momentum thickness evolution in the upstream part of the mixing
layer is mostly sensitive to θ , even if the normalized variance indicated by cv is
lower than towards the end of the investigation window. Moving downstream, the
p.d.f. progressively shows a smoothed behaviour which encompasses the two classical
simulations while the variance of Θ increases almost linearly with x/Λ, as shown by
the coefficient of variance in figure 10(a). Moreover, consistent with the observations
in § 4, the effect of θ is progressively less intense as the flow transitions to fully
developed turbulence. Inlet vortical structures lose coherence and the vorticity field
exhibits a chaotic behaviour as the shear intensity α becomes the dominant parameter.
Finally, the interaction between the two parameters appears to be also minimal in
this zone (sθα ≈ 0), indicating a clear separation of the dynamic effects.

Classical mixing layers are characterized by a so-called ‘self-similar’ region, in
which the mean streamwise velocity profile in the normal direction, if properly
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FIGURE 10. Statistical properties of the momentum thickness Θ , derived via stochastic
analysis: (a) the coefficient of variance cv and (b) the Sobol indices.

rescaled, becomes invariant with x (see e.g. Pope 2000). More precisely, the quantity

Ũ =
ux −

1
2‖U1 +U2‖

‖U1 −U2‖

becomes independent of x if plotted as a function of the rescaled coordinate ξ =

(y− δUx(x))/x, where δUx(x) is the value of y at which ux= 1/2‖U1+U2‖ (McMullan
et al. 2007). The distance from the inlet in the streamwise direction at which the
self-similar region is completely established is mildly sensitive to the mixing-layer
dynamics (parameter α). One could argue that, for higher α values, intermittency and
non-equilibrium of the flow should be more important, delaying the establishment of
a complete self-similar state. The rate of convergence to a self-similar velocity profile
is measured here using the following quantity:

SSx(x)=

(∫∫
yz
(Ũ(x, ξ)− Ũ(20Λ, ξ))2 dξ

)0.5

(∫∫
yz

Ũ(20Λ, ξ)2 dξ
)0.5 , (5.1)

which is the L2 norm of the difference with respect to the Ũ profile at the streamwise
section x= 20Λ, taken as a reference.

Figure 11 shows the p.d.f. of SSx as a function of the x coordinate. It can be seen
that most of the occurrences tend to cluster around the behaviour of the classical
simulation, which has the lowest convergence rate, i.e. for higher α value. However,
the coefficient of variance shown in figure 12(a) is almost constant and very close to
20 % moving downstream, which indicates a non-negligible sensitivity of this quantity
to the considered parameters. The analysis of the Sobol indices in figure 12(b)
indicates that the sensitivity to the two parameters is similar and that there is a
strong coupling between the effects of α and θ , resulting in a non-trivial response of
this quantity in the parameter space.

Classical mixing layers are characterized by an asymmetric growth with respect to
the x axis due to the imbalance between the momentum of the two asymptotic flows,
which pushes the mixing layer towards the lower-momentum region (Pope 2000).
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FIGURE 12. Statistical properties of the self-similarity indicator SSx, derived via stochastic
analysis: (a) the coefficient of variance cv and (b) the Sobol indices.

A measure of this asymmetry is given by δUx(x), previously defined. Figure 13
shows the p.d.f. of δUx as a function of x, together with the behaviour obtained
for classical mixing layers (θ = 0) for low and high values of α. As expected, for
classical mixing layers, δUx is significantly larger in magnitude for high α, due to
the larger velocity difference between the streams (see table 1). The p.d.f. shows
that in the upstream region most of the occurrences tend to cluster in proximity of
the results for the high-α classical simulation. This indicates that the presence of
a skew angle enhances not only the growth of the mixing-layer thickness in this
region, as previously observed in § 4 and from the momentum thickness behaviour,
but also its displacement in the normal direction towards the slower stream, as can
be qualitatively appreciated also from figure 7.

The Sobol indices in figure 14(b) confirm that in the upstream region, although α
is the dominant parameter, there is a non-negligible influence of θ , especially between
x≈ 7Λ and 11Λ. In this region the impact of α over the variance of δUx is not even
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FIGURE 14. Statistical properties of the characteristic length δUx , derived via stochastic
analysis: (a) the coefficient of variance cv and (b) the Sobol indices.

60 %, while the interaction between the two parameters accounts for up to 25 % of
the total variation. One should consider that in this region the cv exhibits a minimum
of approximately 17 % (see figure 14a). Moving downstream, the variance of δUx
increases to cv ≈ 28 %, as the p.d.f. of δUx is more spread and encompasses the values
obtained for classical mixing layers for high and low α. As expected, the sensitivity
to θ becomes negligible. Once again these results are consistent with the low impact
of θ observed in the more downstream region for the mixing-layer growth (see § 4
and figure 10b).

5.1. Reynolds stress tensor
The stochastic analysis via gPC is now extended to the behaviour of the Reynolds
stress tensor u′iu′j and to the turbulent kinetic energy K = 0.5(u′xu′x + u′yu′y + u′zu′z).
Analysis of the simulations of the database indicates that the turbulence intensity in
the mixing region (i.e. K/‖U1 − U2‖

2) is approximately 3 %–10 %. The Reynolds
stress tensor is an important indicator of the statistical properties of turbulence, and its
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sensitivity to parametric uncertainty can highlight the emergence of different physical
mechanisms. The following quantities are investigated:

(i) K(x)=
∫∫

yz
K dy dz, (v) UV(x)=

∫∫
yz

u′xu′y dy dz,

(ii) UU(x)=
∫∫

yz
u′xu′x dy dz, (vi) UW(x)=

∫∫
yz

u′xu′z dy dz,

(iii) VV(x)=
∫∫

yz
u′yu′y dy dz, (vii) VW(x)=

∫∫
yz

u′yu′z dy dz.

(iv) WW(x)=
∫∫

yz
u′zu′z dy dz,

The evolution of the turbulent kinetic energy K is investigated in figure 15. It
is possible to observe that, for x ≈ 8Λ, the total turbulent kinetic energy tends to
cluster around the high-α classical configuration, i.e. the effects of the skew angle
θ enhance the production of turbulent kinetic energy in the transition region. This
feature becomes progressively less intense moving downstream, as turbulence forgets
the initial instability mechanism and the interaction of the two asymptotic flows
becomes more important. It is also interesting to observe similarities between this
p.d.f. and the one in figure 13 for the wake displacement in the normal direction.
Similar conclusions were drawn for that quantity. The analysis of the coefficient of
variance cv and the Sobol indices in figure 16(b) confirms that, as for the quantity
δUx , the parameter α is governing before and after the transition, but that for x≈ 10Λ
the importance of α and θ and in particular of their interaction is similar. In this case
the influence of the interaction between the two parameters is even more relevant, as
cv (shown in figure 16a) does not exhibit significant variations moving downstream.
This observation reinforces the idea that small skew angles can actually be used to
influence the physics of the transition to turbulence, which can provide new insights
for the control of this class of flows.

19

https://doi.org/10.1017/jfm.2020.407
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


(a) (b)

0

0.1

0.2

0.3

0

0.2

0.4

0.6

0.8

1,0

So
bo

l i
nd

ic
es

 fo
r K

c √
 fo

r K Sœ
Så
Sœå

x/Ò x/Ò
5 7 9 11 13 15 17 19 5 7 9 11 13 15 17 19

FIGURE 16. Statistical properties of the turbulent kinetic energy K, derived via stochastic
analysis: (a) the coefficient of variance cv and (b) the Sobol indices.

When normalized over the total turbulent kinetic energy K, the Reynolds stress
tensor exhibits peculiar features. Two-dimensional p.d.f.s for UU, VV and WW are
shown in figure 17, along with the corresponding Sobol indices. One must keep
in mind that, due to the normalization over K, UU + VV + WW = 2 for each
streamwise section of each simulation. In this case, most of the occurrences for the
three quantities cluster around the high-α classical configuration. So, while the angle
θ appears to have a localized effect over the distribution of K and δUx , a global
modification of the structure of the Reynolds stress tensor is observed. In particular,
occurrences for VV and WW cluster around the θ = 0, high-α behaviour and the
mixing exhibits more isotropic features. However, it is also surprising to see that the
contribution of θ and α is much more similar for the components of the Reynolds
stress tensor, and the way they interact is possibly the real governing element. The
analysis of the coefficient cv shows that a peak for cv ≈ 6 %–8 % for x ≈ 8Λ is
observed for all three components. One can see that in this region sθα is important
for UU/K and WW/K and it is the dominant index for VV/K, where sαθ ≈ 0.8. This
last component of the Reynolds stress tensor is an indicator of the transition towards
fully developed turbulence (Attili & Bisetti 2012) and it was also analysed in § 4 in
the region x/Λ< 4.

Important information can be deduced by the analysis of UV in figure 18(a).
This parameter is the true signature of turbulent shear effects for this test case.
Considering that the shear-based Reynolds number is the same for every simulation
of the database, one would expect to observe approximately the same value of this
normalized quantity. This is true sufficiently downstream for x > 13Λ. However,
once again, most of the occurrences cluster around the high-α classical configuration,
showing that the presence of a skew angle can influence the nature of the turbulent
state emerging by the interaction of the two asymptotic flows. However, the analysis
of the Sobol indices in figure 18(b) indicates that the parameter α is here more
governing than in the other cases.

Finally, the two quantities UW and VW are investigated. Normalized two-
dimensional p.d.f.s are shown in figure 18(c,e). The simulations for θ = 0 exhibit
almost zero values for these two quantities, indicating that production effects and
pressure–strain interactions should be minimal for these cases. Small but non-zero
values can be observed relatively upstream, which are associated with the complex
inlet conditions applied (including non-zero average spanwise velocity). However,
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FIGURE 17. Statistical analysis of the diagonal elements of the Reynolds stress tensor,
normalized over K: (a,c,e) normalized two-dimensional p.d.f. and (b,d, f ) Sobol indices,
respectively. The quantities investigated are (a,b) UU/K, (c,d) VV/K and (e, f ) WW/K.
Circle/square markers indicate results from the classical DNS for high/low α value,
respectively.

one can clearly see that the two components tend to zero sufficiently downstream.
While most of the occurrences of the database tend to cluster around the classical
configurations, a non-negligible part exhibits negative values for UW and positive
values for VW. Arguably, the analysis of these components of the tensor could more
clearly highlight the presence of a bias in the direction of the co-flows, if parallelism
is imposed or expected.

Also, the analysis of the Sobol indices in figure 18(d, f ) indicates that, for these
physical quantities, θ is the governing parameter, consistent with previous discussion.
Similar conclusions are drawn in the stability analysis by Lu & Lele (1999a) and in
a numerical study for the backward-facing step flow by Kaltenbach (2003). In both
analyses, it is stressed that turbulence production associated with the spanwise shear
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FIGURE 18. Statistical analysis of the diagonal elements of the Reynolds stress tensor,
normalized over K: (a,c,e) normalized two-dimensional p.d.f. and (b,d, f ) Sobol indices,
respectively. The quantities investigated are (a,b) UU/K, (c,d) VV/K and (d, f ) WW/K.
Circle/square markers indicate results from the classical DNS for high/low α value,
respectively.

effect provides a significant amount of disturbance energy, which is responsible for
the increase in the amplification rate for the growth of the mixing layer.

A qualitative discussion about the parameter UV/
(√

UU
√

VV
)

is now provided.
This parameter is widely used in the analysis of turbulent sheared flows and
its value is approximately −0.5 (Champagne, Harris & Corrsin 1970). The two-
dimensional p.d.f. of this parameter is provided in figure 19. One can see that for
x> 7Λ (i.e. after the initial stages of transition towards turbulence) the parameter is
included in the range [−0.5, −0.4] for every simulation of the database. However,
the classical DNS for lower α exhibits a significantly slower convergence towards
the asymptotic limit, due to the less intense mixing effect. On the other hand, most
of the occurrences calculated via gPC cluster around the red circles for x < 13Λ,
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via uncertainty propagation using a gPC–DNS tool.

proving again that the lack of parallelism between the two flows enhances mixing
capacities. For x > 15Λ the gPC prediction becomes more homogeneous in the
range [−0.5,−0.42], which are the asymptotic values exhibited by the two classical
configurations investigated.

At last, the anisotropy of the Reynolds stress tensor is investigated (Tennekes
& Lumley 1972; Hamilton & Bayoan Cal 2015). This quantity is obtained via
manipulation of the matrix:

aij =
u′iu′j
2K
−

1
3
δij. (5.2)

The calculation of the eigenvalues λi of the matrix aij provides the value of the
anisotropy η as

η2
=

1
3(λ

2
1 + λ1λ2 + λ

2
2). (5.3)

For isotropic turbulence, η = 0 and larger values indicate a higher anisotropy of
the Reynolds stress tensor. In this test case, the value of η is expected to tend to
zero moving downstream, as turbulence exhibits a progressive return to isotropy. For
each simulation, the anisotropy is calculated at the centre of the mixing layer, i.e. at
the distance −δUx(x) from the centreline y= 0. The response surface reconstructed via
gPC is shown in figure 20(a). The coefficient of variance cv for this quantity shows an
almost constant value cv ≈ 0.13 in the range 76 x/Λ6 13 before a linear decrease to
a value of cv= 0.05 for x/Λ= 20. In agreement with the analyses previously reported,
most of the occurrences generated via gPC tend to cluster around the predicted η for
the classical DNS for higher α. This behaviour is a result of the enhanced mixing due
to the skew angle θ . Similar information is deduced from the analysis of the Sobol
indices in figure 20(b). The shear intensity parameter α is a governing parameter only
for x/Λ< 8, while sθ + sθα > 0.8 in the rest of the physical domain.

6. Conclusions

A sensitivity analysis of DNS of the turbulent spatially evolving mixing layer has
been performed. The effects of the shear parameter α and the skew angle θ measuring

23

https://doi.org/10.1017/jfm.2020.407
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Sœ
Så
Sœå

x/Ò x/Ò

˙

5 7 9 11 13 15 17 19 190

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

So
bo

l’ 
in

di
ce

s f
or

 ˙

0.06

0.08

0.10

0.12

0.14

0.16

0.18
(a) (b)

5 7 9 11 13 15 17

FIGURE 20. Anisotropy of the Reynolds stress tensor η, obtained via uncertainty
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respectively.

the lack of parallelism between the two flows over the physical features of the flow
have been investigated. The choice of the parameters for the present investigation is
performed with the objective to enhance the physical understanding of the considered
flow features. This opens perspectives of application towards flow control, and reliable
comparison between experiments, simulations and turbulence modelling. A database
of 18 DNS has been used to perform the analysis, which encompassed observation
of structural features as well as stochastic characterization of time-averaged quantities.
The latter has been developed via response surface reconstruction using gPC.

The analysis of instantaneous and time-averaged flow features of the DNS of the
database indicates that variations of the parameter α ∈ [0.2, 0.7] has a primary effect
on the growth of the mixing region. This is associated with shear effects due to
the interaction of the co-flows, following the known mechanisms of classical mixing
layers. A secondary effect associated with θ is observed as well. Higher values for
the skew angle are responsible for a rapid increase of the growth of inlet structures,
enhancing the development of the mixing region. This effect is associated with an
increase of the cross-wise velocity fluctuation energy. However, this effect is hidden
by bulk shear interactions for higher α values.

The analysis of statistical features of the time-averaged velocity field, such as the
momentum thickness Θ , provides consistent results with the previous investigation.
Additionally, the response surface reconstruction allows for a precise quantification of
the effects of each parameter, as well as of the total variation rate in the parametric
range investigated. Again, the parameter α completely governs dynamics associated
with the time-averaged velocity field in the fully developed turbulence region, while
the effects of the parameter θ are not negligible in the inlet/transition region. In
addition, the effects of the two parameters are mainly independent for these physical
quantities.

Interesting results are observed via stochastic analysis of the Reynolds stress
tensor, which describes the features of the turbulent field. While the behaviour of
the integrated turbulent kinetic energy K is similar to the time-averaged quantity δUx

(i.e. governing effects of α downstream), a global modification of the normalized
diagonal components of the Reynolds stress tensor due to θ is observed. In particular,
occurrences for VV and WW cluster around the θ = 0, high-α behaviour and the
mixing exhibits more isotropic features. In addition, the interaction between the
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parameters θ and α is here the governing element. Similar conclusions can be
deduced for the behaviour of the normalized component of the Reynolds stress tensor
UV and the anisotropy η. These two quantities are indicators of the turbulent shear
effect and of the mixing efficiency for this test case.

Future work envisions the investigation of the effects of the skew angle in
combination with different inlet perturbations, in particular for the initial development
of the mixing layer. The impact of variations of the Reynolds number could also be
addressed.
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Appendix A. Validation of the DNS results and of the gPC strategy
In this section the validation of the numerical techniques employed in this work

is provided. First, DNS results are investigated. The mesh resolution employed is the
same as that proposed by Delport et al. (2011) for the same inlet Reynolds number.
Considering the size of the physical domain investigated (24Λ × 15Λ × 6Λ), this
results in 384× 163× 160 mesh elements in the streamwise direction x, in the normal
direction y and in the spanwise direction z, respectively. The size of the mesh elements
is homogeneous in the directions x and z. More precisely, one characteristic length
Λ is discretized into 384/24= 16 mesh elements in the streamwise direction and in
160/6= 26.67 elements in the spanwise direction. In the normal direction y, elements
are refined at the centreline and their resolution is coarsened moving towards the upper
and lower traction-free boundary conditions. The rate of coarsening increases moving
away from the centreline, while the size of the elements is almost constant in the
range −Λ< y<Λ.

The accuracy in the representation of turbulent features is assessed calculating
the one-dimensional energy spectra for the streamwise fluctuating velocity E11. The
spectra are shown in figure 21 for sensors positioned at the stations [x, y, z] = [5, 0, 0]
and [x, y, z] = [15, 0, 0] in Λ units. Results for the simulation θ = 0, α = 0.666

10-2

x = 5Ò
x = 15Ò

10-1 100

100

10-2

E
* 11

10-4

k∂
101

FIGURE 21. Normalized one-dimensional energy spectra E?11 = E11/(‖U1 − U2‖
2δ). The

spectra have been sampled for y= 0, z= 0 at the streamwise stations x= 5Λ and x= 15Λ.
Results shown are taken from the simulation for θ = 0, α = 0.666.
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FIGURE 22. Two-dimensional p.d.f. of the response surfaces calculated for the
self-similarity parameter SSx. The response surfaces have been obtained using the gPC
method truncating the polynomial expansion to (a) second order and (b) third order.

are presented. The spectra show convincing results for the accurate representation of
physical features such as a well-developed dissipative range as well as an increase
of the Kolmogorov scale ηK moving downstream. For the spectrum sampled at the
streamwise station x = 15Λ, one can clearly observe a scaling range of almost one
decade proportional to k−5/3. This result is consistent with the Reynolds number and
the boundary conditions imposed at the inlet.

The strategy used in the present work to reconstruct the response surfaces via
gPC is now assessed. The validation is performed comparing results obtained via a
second-order (P= 2) and third-order (P= 3) truncation of the polynomial expansion.
This implies that the response surfaces for the investigated quantities are reconstructed
using six and 10 polynomials, respectively. As an example, results for the quantity
SSx are reported in figure 22, whereas similar results are found for the other quantities
of interest (not shown herein for the sake of brevity). No significant difference can
be observed when comparing the gPC response surface for P = 2 and P = 3. This
implies that convergence has been reached for P= 3, which is the order of truncation
of the polynomial expansion used in the present work.
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