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Abstract. Multi-robot task allocation (MRTA) problems require that
robots make complex choices based on their understanding of a dy-
namic and uncertain environment. As a distributed computing system,
the Multi-Robot System (MRS) must handle and distribute processing
tasks (MRpTA). Each robot must contribute to the overall e�ciency
of the system based solely on a limited knowledge of its environment.
Market-based methods are a natural candidate to deal processing tasks
over a MRS but recent and numerous developments in reinforcement
learning and especially Deep Q-Networks (DQN) provide new opportu-
nities to solve the problem. In this paper we propose a new DQN-based
method so that robots can learn directly from experience, and compare it
with Market-based approaches as well with centralized and purely local
solutions. Our study shows the relevancy of learning-based methods and
also highlight research challenges to solve the processing load-balancing
problem in MRS.

Keywords: MRTA; distributed system; reinforcement learning; deep Q-learning

1 Introduction

The robust and flexible nature of multi-robot systems (MRS) makes them par-
ticularly suitable for critical tasks such as security or rescue missions. However,
e↵ectively coordinating the robots requires to accurately distribute the work
within the system which leads to the multi-robot task allocation (MRTA) prob-
lem. This problem has been extensively studied and many approaches have been
proposed to solve it [2].

But autonomy, safety and accuracy requirements come with a high comput-
ing cost due to a significant increase of sensor infrastructure and of algorithm
complexity developed to sense, analyse and decide. A direct consequence is that



2 P. Gautier et al.

processing tasks, within the MRS, become a major impediment to their devel-
opment. In fact, despite the improvement of embedded-systems processing and
storage capacities, computing resources are intrinsically limited. Cloud-robotics
[7], [15] have been introduced as an alternative solution, but it is applicable
only when reliable and high bandwidth connections are available and when the
processing latency, namely the response time, is not critical.

The concept of Robotic Cluster has also been introduced to speed up compu-
tationally hard tasks such as SLAM, which is detailed in [10] and [3]. This work
demonstrates the possibility to get benefit from multiple processing resources
distributed over a cluster of interconnected robots to execute a parallel version
(e.g. multithreaded) of a complex application task. If we extend this work to
multiple independent tasks, then sharing resources allows to improve the pro-
cessing capacity of each single robot with multi-tasking capabilities. Considering
a set of processing tasks to be executed by the MRS, the new question to solve
becomes a task allocation problem with constraints such as execution time and
priorities. This question is a variant of the MRTA problem focused on processing
tasks (MRpTA).

Considering the MRS context, di↵erent options are possible. Firstly, the
method can be centralized or decentralized. On the one hand, a centralized
approach solves most of the di�culties by allowing a decision making based on
a perfect knowledge of the state of each processing resource. But on the other
hand, it brings two major drawbacks. The first one is the unreliability since the
central agent introduces a single point of failure. The second one is the inherent
communication overhead due to the aggregation of the all system knowledge in a
single robot. This communication cost strongly limits the system scalability and
makes it unpractical for MRS. Therefore, we only focus on distributed systems.
Regardless the architecture the system uses, the problem may take many forms
from travelling salesman problem (TSP) to job scheduling. The latter is more
frequently studied in the field of multiprocessors or computer clusters than in
robotics. It also raises new challenges related to the rapid development of au-
tonomous systems. Indeed, the last few years have seen the emergence of new
heavy processing methods in several areas such as computer vision, sensor fusion
and especially machine (deep) learning.

In this paper, we investigate the task allocation problem within a MRS ac-
cording to their computational and memory costs, with the joint objectives of
task completion and fair load balancing.

A market-based approach is a quite straightforward possible candidate, which
has been used in conventional MRTA problem in robotics and that can be
adapted to the specificity of processing tasks as detailed in Sec. 2. But a MRS
is also composed of increasingly complex embedded systems, including multi-
ple sensors, multi-core architecture with GPU, which are almost impossible to
accurately model. Moreover the robots evolve within an uncertain environment
and execute applications accordingly. The dynamic nature of the whole system
requires a high degree of adaptability to cope with the lack of information (data
availability, communication errors) and rapid changes (failure, object detection).
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Based on these observations we consider the opportunity to use machine
learning approaches and more specifically Reinforcement Learning (RL), which
has been successfully applied in many fields, such as energy management, com-
munication optimisation, job scheduling, etc. In RL, the agent progressively
learns to improve the quality of its decisions according to the experience it ac-
quires by means of a reward that reflects the e�ciency of the chosen actions.
Recently, the combination of deep neural networks and RL has been introduced
(Deep Q-Learning) to deal with the scalability issue of RL. Thus, instead of
storing values in tables that grow with the environment dimensions, a neural
network is used to approximate the policy function and find the best action
according to the environment. This method has become very popular with the
success of the Deep Q-Learning on Atari games [12].

In this article, we explore the viability of Deep Q-Learning to solve the
MRpTA problem and compare it with a multi-robot task allocation problem
with the following questions:

– Can robots of a fully decentralized system learn to e�ciently manage task
allocation on their own?

– What is the performance of a method based on Deep Q-Learning compared
to a more traditional approach like the market-based one?

– What does the use of learning imply for real-life applications?

The rest of this paper is organized as follows: Sec. 2 discusses relevant works
on the MRTA problem and RL. Sec. 3 explains the modelling of our problem
and Sec. 4 the approach used to solve it. Sec. 5 describes our experimentation
set-up. Experimental results are discussed in Sec. 6. Finally, we conclude and
introduce future work based on this study.

2 Related work

2.1 Multi-robot tasks allocation

We briefly introduce the key points of our MRTA problem, the reader can refer
to cited references for detailed surveys and complete formulations.

MRTA architecture The literature provides various instances of the MRTA prob-
lem, in order to o↵er a broader and more theoretical view, Gerkey and Mataric
[2] have proposed a taxonomy for those problems. Based on their definition,
our architecture is a multi-task type, single robot and instantaneous assignment
(MT-SR-IA). In this decentralized context, we compare the e�ciency of two
methods: a market-based approach and an approach using reinforcement learn-
ing.

Market-based systems A market-based approach enhances the e�ciency of the
overall system by maximizing individual profits. Several surveys address this
subject [2] and [6]. In our comparison cases, overloaded robots sell tasks to others
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in order to maximize the system’s task completion rate. The sale is made by
auction where an auctioneer (the seller) o↵ers a task for sale. Each participating
robot submits an auction whose valuation depends on its ability to perform the
task. The best bidder wins the task and runs it. The model used for auctions
is sequential single item mechanism, which is both e�cient and inexpensive [9].
Further details on the auctions can be found in [14] and [16].

Although it is inexpensive in processing, this process raises the question of
bid estimation. It is indeed di�cult to correctly estimate a bid when several
parameters are involved and especially, when their value depends on the envi-
ronment’s state. Moreover Market-based approaches require multiple exchanges
including a unique auctioneer that introduce an additional delay. To overcome
these issues, we propose to explore another approach based on reinforcement
learning.

2.2 Reinforcement learning

One of the main goals of our RL approach is to remove the auction system.
Agents must then be able to correctly estimate the relevance of a transfer without
exchanging information about their status.

Principles

In RL, the agent observes at each time step, the environment’s state st and
chooses an action at. This action modifies the environment, which then proceeds
to the next state st+1. Then, the agent receives a reward rt according to the
quality of its choice. The learning aim of the agent is to maximize the cumu-
lative value of future rewards. To operate, this method requires that the state
transitions are stochastic and have the properties of a Markov Decision Process
(MDP). It means that the rewards rt and states’ transitions st+1 must depend
only on the environment st and the action at. Fig 1 illustrates the principle of
reinforcement learning

One of the most popular reinforcement learning methods is Q-Learning,
which chooses its actions based on Q-values. Q-Learning uses a table to store all
Q-values of all possible {state, action} pairs. This Q-table is updated using the
Bellman equation (eq. 1). The action selection is usually done with an ✏-greedy
policy. The Q value can be calculated using the following formula and definitions:

Q(s, a) = Q(s, a) + ↵[y �Q(s, a)] (1)

where y denotes the temporal di↵erence target:

y = r(s, a) + �max
a0

Q(s0, a0) (2)

– r(s, a) returns the reward of action a in the state s
– � 2 [0, 1], the discount factor witch control the value of future rewards.
– ↵, the learning rate.
– maxa0 Q⇡(s0, a0) returns the optimal possible Q-value of the next state.
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Agent Environment

Reward

Action

Observed state

1Fig. 1. Reinforcement Learning Diagram

Although e↵ective, the Q-Learning method has some limitations. Indeed, it
does not scale with the number of states since the number of pairs {state,action}
increases exponentially leading to a very large Q-table and so requiring a large
amount of memory. To overcome this problem, the Deep Q Network (DQN)
method has been introduced [12].

Deep Q-Network

A DQN uses a deep neural network (DNN) as a function approximator to
predict Q-values. An approximation is possible since an agent must take similar
actions for ’close-by’ states. Fig.2 shows a Deep Q Network who uses parameter
fitting to construct a function able to predict Q-values.

State Environment

Agent Q⇡(s, a; ✓)

Reward

Action

Observed state

1Fig. 2. DQN diagram

First, we construct a loss function using the mean square deviation to define
the target function (eq. 3). Then we update weights using the Adam optimiser
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[8], which is computationally e�cient.

Li(✓i) = E[(yi �Q⇡(s, a, ; ✓i))
2] (3)

with:
yi = r + �max

a0
Q(s0, a0; ✓i�1) (4)

DQN improvements

However, replacing the function of estimating values Q by a DNN, leads to
the instability of the algorithm. Indeed, the target is calculated using a network
updated every each iteration leading the target to be non-stationary [13]. This
problem can be overcome by using a second network of parameters ✓�, called
the target network, to calculate the target (eq. 5). This network is a frozen copy
of the first network updated every c the iterations by copying ✓ parameters.

yi = r + �max
a0

Q(s0, a0; ✓�) (5)

Another problem arise from strong correlation between continuous states and
action inputs. Each small update of a Q-value of an action causes the modifi-
cation of the set of network weights, which a↵ects the Q-value of each action
in the other states. This strongly impacts the distribution of sampling data. To
avoid instability we use experience replay developed by [13]. With this mecha-
nism, each experiment {state, action, reward} is stored in a memory. The agent
learns from samples selected randomly and consistently in its memory. Thus, all
correlations are broken, and learning is accelerated since an experience can be
used multiple times.

Both Q-learning and DQN su↵er from a problem of overestimation of action
values resulting from using the same network/parameters for the selection and
evaluation of an action [5]. Double DQN (DDQN) solves this problem by using
another network (the target network is a natural candidate) when evaluating [4]
leading to :

yi = r + �Q(s0, argmax
a0

Q(s0, a0; ✓i); ✓
�) (6)

Distributed reinforcement learning

Our approach being decentralized, each robot has its own learning system.
Many distributed approaches take advantage of the multiplicity of local learning
to accelerate the learning of the system [17]. Indeed, it is possible to exchange
experiences between agents. Thus, each agent learns from others which allows
it to converge more quickly towards an optimal solution as shown by [11]. We
do not consider this mechanism that requires a large data exchange which is
incompatible with a real deployment of mobile robots.

Hereafter we describe the method used to compare the Market and DQN
approaches.
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3 Problem Definition

The compared approaches share the same definition of the environment. They
di↵er by their decision making process, in particular for the load balancing mech-
anism.

3.1 MRS definition

The MRS pursues a dual objective: the completion of a maximum of the tasks
assigned to it while promoting high priority tasks. To do this, the system must
distribute the load using the transfer mechanism. However, the constraints im-
posed by the environment make it impossible to meet both objectives. The sys-
tem has to make a choice.

These choices are made in a decentralized context, thus each robot acts with a
limited understanding of the situation based solely on local knowledge. Robots
only communicate during a transfer, no further information exchange takes place.
In order to get closer to real conditions, an area system is defined. The latter
limits transfers to robots in the same area. During the course of the mission, the
robots move between areas, but not of their own will. Changing area is not part
of the actions they can take. These only a↵ect tasks and are the following:

1. Run: the robot performs the task. For this, it must possesses enough available
computing resources.

2. Postpone: the robot postpones the task. If the task has not yet reached its
laxity value, it will be present in the robot’s task queue at the next iteration.
Otherwise, it is considered failed (and will disappear from the task queue).

3. Transfer: The robot tries to transfer the task to another robot in its area.
In case of failure, the task is automatically postponed. Transferring a task
involves generating an overhead.

The prerequisites of each action depend on the task characteristics on which
the robot acts.

3.2 Task definition

In our model, tasks are independent (tasks with dependencies are grouped into
a single task) and have a fixed priority (but no task is imperative). Furthermore,
there is no task preemption except case given 4.1. Similarly to prior work [3], we
assume that task characteristics is known upon its arrival in the robot queue.
The main task features are the following:

Since pending tasks are stored in a queue and decision are made sequentially,
agents cannot choose which task to deal with. To solve this problem, the tasks in
the queue are automatically sorted by priority (1 to 3) and by earliest deadline.
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Table 1. Main characteristics of a task

Characteristics Definition Value

CPU
Amount of CPU resources required

to perform the task
Integer
0! 100

Memory
Amount of memory required

to perform the task
Integer
0! 100

Execution time
Number of iterations required

to complete the task
Integer
1! n

Priority
Upon creation, each task receives

selected fixed priority value

1 : High
2 : Medium
3 : Low

Laxity
Maximum possible delay (in iterations)

before the task starts
Integer
1! l

3.3 Time definition

Time modelling is key parameter for a simulator. In our study, the simulation
of the system behavior requires to discretize the temporality into iterations of
equivalent durations as illustrated in Fig. 3. However, the discretization granu-
larity should not be too fine to minimize the number of unnecessary time steps
(without changes) which considerably slow down the simulation. We manage this
tradeo↵ with the following assumptions:

1. Robots receive simultaneously their new tasks and process them in parallel.
2. Several tasks start or end at exactly the same time.
3. The transfers resolution occurs after the local allocations, but in the same

iteration.

Task 1

Task 2

Task 3

Task 4

Temporality

Task 1

Task 2

Task 3

Task 4

i i+ 1 i+ 2 i+ 3 i+ 4
Iterations

Continuous temporality Discrete temporality

1Fig. 3. Temporality: the figure on the left represents a continuous temporality and the
one on the right a discrete temporality. Unlike continuous temporality, the discrete
case includes tasks with identical execution times (3 cycles) and tasks no.1, 2 and 3
start and end at the same time. Discretization implies a standardization of execution
times and simultaneity .
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The new tasks generated are stored in a queue (a sorting by decreasing prior-
ity then by the closest deadline is carried out at each iteration) and processed
sequentially. The decision-making process used depends on the solution.

4 Method definition

4.1 Market-based approaches

For this method, we consider two approaches: one with and one without pre-
emption. They share the same decision making process, only the scope of the
transfer mechanism di↵ers.

Decision process

First, each agent tries to run their tasks locally as long as their resources allow
it. Then, it tries to transfer the non-executed tasks to other robots. And finally, it
postpones the remaining tasks that have not found a buyer. A complete diagram
of the decision process of the di↵erent algorithms used in this article can be found
in Fig. 5. The transfer action uses an auction system to select the best receiver.

The auction system

When an agent wants to transfer a job, it uses the auction system mechanism.
It then becomes an auctioneer and proposes selling a task to all other agents in
its area. Any agent receiving the o↵er submits a bid whose evaluation process is
described in Algo. 1. The preemptive method allows agents to stop the execu-
tion of certain tasks to accept a transfer. Preemption can only be done to the
detriment of lower priority tasks. Stopped tasks can be restarted by the agent
but will start from scratch (as penalty) and must respect their initial deadline.
In the preemptive method the auctioneer can participate to its own auction,
which consequently allows local preemption. It is worth mentioning that the
centralized nature of auctions does not contradict the decentralized nature of
the system. Indeed, this centralization is temporary and any agent can become
an auctioneer. Therefore, there is not introduction of a single point of failure
(SPOF).

4.2 DQN approaches

Decision process

Unlike market-based approaches, the system has complete freedom over it de-
cision process. The only limit being the validity of the action taken. Indeed,
the system cannot perform an impossible action like allocating more resources
than owning. The decision process depends on the Q-values calculated during
the learning. Moreover, no preemption is allowed for this approach so the system
must learn to refrain from performing low priority tasks to ensure high-priority
task execution.
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Algorithm 1: Bid valuation algorithm
(In red, steps specific to the pre-emptive approach)

Data: T , the auctioned task
A, the list of active tasks on the robot
Ai, the list of active tasks with a priority i
Rcpu, the amount of free CPU on the robot
Rmem, the amount of free memory on the robot
Function : cpu(i), returns the CPU required by task i
mem(i), returns the memory required by task i
Result: Bid, The bid valuation
if Rcpu > cpu(T ) and Rmem > mem(T ) then

Bid Rcpu +Rmem ;

else if priority(T ) = 1 and Rcpu +
X

i2A\A1

cpu(i) > cpu(T ) and

Rmem +
X

i2A\A1

mem(i) > mem(T ) then

Bid Rcpu +Rmem �
X

i2A1

(cpu(i) +mem(i))

else if priority(T ) = 2 and Rcpu +
X

i2A3

cpu(i) > cpu(T ) and

Rmem +
X

i2A3

mem(i) > mem(T ) then

Bid Rcpu +Rmem �
X

i2A\A3

(cpu(i) +mem(i))

else

Bid �⇢ ;
end

As mentioned earlier, our RL method relies on a DQN to predict Q-values.
These Q-values determine which of the three actions (run, transfer or postpone)
to choose in the current state. The architecture of our network comprises an
input layer of 11 neurons, three hidden layers of 32 neurons each and an output
layer of 3 neurons as described by Fig. 4. The input layer brings two types of
information. The first one is the state of the agent and consists of six neurons and
carry information such as the robot load, area, etc. The second one, composed
of five neurons, delivers information relative to the task to allocate such as its
computing requirement, priority, deadline, etc.

In this approach, there is no explicit system for selecting the receiver robot for
the transferred task. As a result, the process di↵ers from the auction approach.

DQN and transfer

The transfer action causes the release of a transfer proposal to other agents in
the area. Each concerned agent uses its DQN to choose whether to accept the
task or not. If only one agent responds favourably, it will execute the task at the
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...
...

... ... ......

Hidden layers (3x32)

Robot
state (x6)

Task
state (x5)

Run

Transfer

Postpone

1Fig. 4. Schematic view of our DQN architecture: the DQN is composed of an input
layer of 11 neurons, three hidden layers of 32 neurons each and an output layer of 3
neurons

next cycle with the penalties due to the transfer. If several favourable answers
exist, the agent is randomly selected regardless of the relevance of this choice.
Agents must learn to properly evaluate the appropriate response to a transfer
request. Finally, the task is postponed if no favourable response is sent to the
auctioneer.

Another key factor of a DQNmethod is its reward system, which fully conditions
the learning quality and its relevance.

The reward system

Our system has two objectives: the completion of a maximum of tasks and
the respect of priorities. Moreover, the total freedom of this approach implies
a third objective: the limitation of the use of the transfer in order to limit
communication between the agents. Our system rewards di↵erently if the action
leads to performing a task (action 0 or action 1 successfully) or not.

r(s, a) =

8
<

:
Vi, if performed.
�Vi ⇥ p

L
, otherwise.

(7)

with:

– i, p, L : the priority, the number of postponements and the laxity of the task,
respectively. These values are obtained from s.

– V = [↵1,↵2,↵3] : reward based on priority
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The values of ↵1, ↵2, ↵3, � have been determined by intensive successive
simulations and are 1, 0.3, 0.05, �0.2 , respectively. We will now present the
other parameters of our experiments.

5 Experimental conditions

5.1 Experimentation set up

The simulator is designed to explore the parameters and test the relevancy of
our solutions before a deployment on real mobile robots.

Emulator set up

Our emulator is coded in python 3.7.3. The learning and deployment part of
DNN rely on the widely used Tensorflow (with Keras), open source ML frame-
work. Learning methods based on DNN require intensive computing. To attest
our method viability viability in real conditions, we tested the inference and
learning times on an embedded architecture adapted to mobile robots. The Jet-
son TX2 is a power-e�cient (< 15W ) computing device suitable for Embedded
AI. Since it is very popular on mobile robot, it will serve as a reference. As
shown in Table 2, results attest our reinforcement approach is fully compatible
with the computing power available on a robotic architecture.

Table 2. Inference and learning time by architecture

Configuration Emulator Nvidia Jetson TX2

Components
Intel Xeon Silver 4114 (x2)

Nvidia GTX 1080 TI

ARM Cortex-A57
Nvidia Denver 2
GPU Pascal

Hardware

20 cores at 2.2 GHz
64 GB of DDR4
3584 cores CUDA
11 GB of GDDR5X

4 cores at 2 GHz+
2 cores at 2Ghz

8 GB of LPDDR4
256 cores CUDA

Inference 2.3ms 4.8ms

Experience replay
(batch of 24)

215ms 673ms

Reference performances

We introduce lower and upper bounds in order to get comparison points for
our three methods: DQN, market based (’Auction’) and market-based with pre-
emption (’P-Auction’).
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– The lower bound: a purely decentralized and local approach acts as a lower
bound (’L-Bound’). There is no communication between the agents. Each
robot acts independently of the others. All other approaches must be superior
because otherwise they are counter-productive.

– The upper bound: As an upper bound (’U-Bound’), we logically chose a cen-
tralized approach with preemption. Indeed, because of its overall knowledge
of the state of the system, the centralized vision o↵ers optimal performance.
All decentralized systems must aim to achieve such performances. Since our
system is spread over multiple areas, our centralization is done by area. Each
of them has a central agent independent of the MRS and equivalent to a local
cloud. At each iteration, the new tasks to be assigned to the area agents are,
instead, assigned to the central agent of the corresponding area. Then, the
central agent distributes the tasks by favouring the load balancing among
all available agents.

All the decision-making processes are illustrated in Fig. 5. The terms ”DQN”,
”Market”, ”Market-P,” L-Bound ”and” U-Bound ” refer to the solutions: DQN,
market without preemption, market with preemption, lower bound and upper
bound respectively.

Postpone the task Postpone the task Postpone the task

Validate
the action

Task failed

Run
the task

Transfer
the task

Postpone
the task

Lower
bound

Market DQN Upper
bound

Each agent
receive tasks

Each agent
receive tasks

Each agent
receive tasks

Each cen-
tral agent

receive tasks

Add them
to the queue
and then sort

Add them
to the queue
and then sorte

Add them
to the queue
and then sort

Add them
to the queue
and then sort

Try to allo-
cate locally

Try to allo-
cate locally Take an action

Allocate to
the best agent

Auction
Validate
the action

Postpone the task Postpone the task Postpone the task

Success Failure

1Fig. 5. Decision process diagram for the di↵erent methods
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Experimentation configurations

The large number of possible configurations led us to restrict our study to a
set of configurations where some parameters are fixed. These parameters were
determined by intensive successive tests and are described in Tab. 3:

Table 3. DQN and environment settings: values in orange are those by default but are
subject to change.

DQN

settings
Value

Environment

settings
Value

� 0.5 Robots number 7
" decay 0.995 Areas number 3

↵ 10 Maximum postpone 4
c 40 Execution time 4

Memory size 256 Number of priorities 3
batch size 24 Weighting (priorities choice) (1, 1, 1)

V = [↵1,↵2,↵3] [1, 0.35, 0.05]

The results presented for the DQN solution are those obtained after pre-training
on a di↵erent mission lasting 300 iterations. No learning takes place during our
tests to considerably accelerate the simulations (allowing to average the results).

5.2 Tasks configuration

Tasks assignment

Tasks appear over time and are randomly assigned to a robot. We used three
distribution shown in Fig. 6 systems (repeated every 20 iterations) to define the
task number by iteration :

1. Distribution 1: a serrated distribution with a minimum of 3 tasks and a
maximum of 13 tasks. This is the default configuration and its close to the
one used in [1].

2. Distribution 2 : a tiered distribution with a low tier having 5 tasks and a
high tier with 11 tasks.

3. Distribution 3: a more complex distribution where each robot receives a
task every two iterations and where some robots receive additional tasks.
The distribution of additional tasks is as follows:

– A robot (chosen randomly at each iteration) receives three more tasks
in iterations 1 to 5 and 11 to 15.

– Two robots (chosen randomly at each iteration) receives three more tasks
in iterations 6 to 10 and 16 to 20.
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1Fig. 6. Number of tasks allocated at each iteration based on the distribution used. The
distributions are periodic and therefore repeated every 20 iterations until the end of
the simulation.

The average number of assigned tasks per iteration is eight, which according to
experiences and configurations seems to be the sweet spots between overload and
complete system saturation. During the experiments, the approaches evolve in
parallel in a strictly identical environment (the assignment of tasks is identical).

Data set

Upon its creation, a task receives a type defining the prerequisites necessary
for its execution. This type is randomly and uniformly selected among those of
the task set used. We use three sets of tasks :

1. The first task set is a condensed version of the one used in [1]. The sum of
the prerequisites is always equal to 40 % 4

2. The second is the one used in [1] where large disparities exist between types
5.

3. the third is a imbalance version of the second set where types requiring more
memory than CPU have been removed to incorporate some imbalance 6.

Area assignment

Our experiment includes an area system. In order to evaluate its impact on the
system and more particularly on the transfer mechanism, we have defined three
area configurations:
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Table 4. Data set no.1

Tasks

Type CPU (%) RAM (%) Type CPU (%) RAM (%) Type CPU (%) RAM (%)

1 20 20 2 25 15 3 15 25
4 35 05 5 30 10 6 10 30
7 05 35

Table 5. Data set no.2

Tasks

Type CPU (%) RAM (%) Type CPU (%) RAM (%) Type CPU (%) RAM (%)

1 5 5 9 15 10 16 10 15
2 10 10 10 25 15 17 15 25
3 15 15 11 30 5 18 5 30
4 20 20 12 30 20 19 20 30
5 25 25 13 35 20 20 20 35
6 30 30 14 35 25 21 25 35
7 35 35 15 40 10 22 10 40
8 40 40

Table 6. Data set no.3

Tasks

Type CPU (%) RAM (%) Type CPU (%) RAM (%) Type CPU (%) RAM (%)

1 5 5 6 30 30 11 30 5
2 10 10 7 35 35 12 30 20
3 15 15 8 40 40 13 35 20
4 20 20 9 15 10 14 35 25
5 25 25 10 25 15 15 40 10

1. a single area

2. two areas with a probabilities of 0.5 for each

3. three areas with the probabilities 1
2 ,

1
3 and 1

6 for area 1, 2 and 3 respectively.
This is the default configuration.

All robots start the mission in the first area. Every twenty iterations, each of
robot is assigned to an area according to the configuration probabilities.

We now present the results of our experiments obtained with data-set de-
scribed in Table 4 (unless otherwise stated).
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6 Results

The results presented in this section are an average of the results obtained on
100 simulations of 1000 iterations each.

6.1 Overall performances

These simulations are intended to answer questions raised by the use of these
approaches. The first question is:

⇤ How do these strategies a↵ect the system’s capacity to complete its tasks?
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Fig. 7. Completion rate for each solution in the default configuration. The orange, blue
and cyan parts represent the tasks of priority 1, 2 and 3, respectively.

Completion rate

Fig. 7, 8 show the number of tasks completed and missed respectively, according
to their priorities for each approach. We can already see a strong di↵erence
between the two market approaches with a non-preemptive approach o↵ering the
best completion rate and the preemptive the worst. In the middle, we find the
other approaches o↵ering similar completion rate with the DQN being slightly
better).

With an upper bound completing fewer tasks than the lower bound and market-
p showing the worst results, the high cost of the preemption mechanism is obvi-
ous.

⇤ Are preemptive solutions able to show better performance with respect of
critical tasks?
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Fig. 8. Failure rate for each solution in the default configuration. The orange, blue and
cyan parts represent the tasks of priority 1, 2 and 3, respectively.

Criticality management

Preemptive approaches are e↵ective in fulfilling criticality with a zero failure
rates for 1-priority tasks, as shown in Fig. 8. The DQN approach is likely to
provide better results than non-preemptive approaches for high priority task. It
even outperforms the market-P approach for medium priority tasks This shows
that this solution refrains from allocating as soon as possible and retains some
scope for higher priority tasks. However, it fails to ensure all 1-priority tasks.

We see a need for a trade-o↵. The system cannot both complete a maximum
number of tasks and e↵ectively maximize the completion of high priority tasks.
The relevance of an approach therefore depends on the weighting given to the
two objectives.

⇤ Can these results be explained by the load distribution ?

Load balancing

The ability of a solution to maximize the use of available resources is a good
performance indicator. Fig. 9 shows the average load distribution of a robot
during 1000 iterations. The cyan amount represents the resources spent on pro-
cessing the transfer overhead. Distributed approaches show a strong disparity
in the resources spent in overhead. The market-P uses the transfer mechanism
the most allowing it to achieve its perfect 1-priority task completion rate, but at
the expense of the resources spent on tasks(resulting on a weak overall comple-
tion rate). The market approach also spends an important part of resources in
overhead allowing it to perform more tasks than the L-bound approach leading
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to o↵er a much better overall completion rate. Compared to the market and
market-P approaches, the DQN approach is the most moderate with limited
transfer use. The latter is only used for high priority tasks and therefore does
not result in a significant improvement in the overall completion rate.
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Fig. 9. Caption

Distributed systems manage to distribute the load by using the transfer mech-
anism.

⇤ How often and e↵ectively do market-based and DQN approaches use the
transfer mechanism?

6.2 Quality of the distribution

Transfer and communication

Fig. 10 shows shows the average number of transfer requests depending on the
solution and the area configuration. It appears that the DQN-type approach
has more control over the transfer mechanism. Indeed, the success/failure rate is
clearly more advantageous than for market-based approaches. As expected, more
advantageous zone configurations (with fewer zones) o↵er better transfer success
rates. An important observation is that the DQN solution seems to perceive this
better success chances. As a result, it tries to transfer more often since it is
less likely to be penalized. On the one hand, we manage to limit the number
of transfers via our reward model as desired. On the other hand, we fail to
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eliminate unsuccessful transfer requests. This is explained by the fact that the
success of the transfer action does not depend solely on the transmitting agent.
Although unable to prevent unsuccessful transfers, the DQN approach remains
significantly more communication e�cient than the market solutions, especially
if we take into account the DQN solution’s transfer mechanism minimalism .
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Fig. 10. Transfer mechanism success and failure rate in the default configuration: the
orange, blue and cyan parts represent are configurations 3, 2 and 1 respectively.

The transfer’s e�ciency depends directly on the number of potential recipients.

⇤ What happens to the performances if we change the area configuration to
make transfer easier?

Impact of areas Tab. 7 compiles the performance of the di↵erent solutions
according to the used zone configuration. As observed previously, reducing the
area number allows agents to find new sales opportunities. This results in an
increase in the number of successful transfers as well as a decrease in failures for
the distributed approaches. This increase in the number of successful transfers
leads to a higher overall success rate for the concerned solutions. The U-bound
also benefits from these changes since it is centralized by area.

So far, the results attest the great adaptability of the DQN approach which
remains moderate in order to perform a maximum of high and medium priority
tasks, limit overhead and maintain an good overall completion rate

⇤ What happens if we change the method to distributing the new tasks?
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Table 7. Performance of the di↵erent solutions on the default configuration depending
on the area configuration: the slight di↵erences completed tasks totals can be explained
by the presence of postponed or running tasks

Solution Area
Completed Failed Load (%) Overhead

P-1 P-2 P-3 P-1 P-2 P-3 CPU MEM CPU MEM

L-bound NC 2591 2129.5 1598.1 66.7 533.7 1068.5 72.3 72.3 NC NC
3 2589.6 2234.4 1842 74.4 416 820 76.3 76.3 4.8 4.8

Market 2 2586.7 2263.8 1869.8 69.8 395.2 790.8 77 77 5.8 5.8
1 2601.1 2325.8 1910.3 46.9 329 762.9 78.3 78.3 7.5 7.6
3 2260.8 2195.6 930.7 0.1 455.5 1731.2 71.5 71.4 7.6 7.6

Market-P 2 2657.8 2251.7 940.5 0 407.5 1720.6 71.8 71.9 8.8 8.8
1 2655.1 2379.5 990 0 276.2 1682.8 73.1 73.1 10.8 10.8
3 2624.9 2332.1 1413.2 35.3 321.1 1245.6 73.1 73.1 2.4 2.4

DQN 2 2635.7 2333.7 1430.4 18.7 242.4 1230.6 74.1 74.1 3 3
1 2648.4 2349.3 1488 6.9 197.1 1182.2 75.4 75.4 4.1 4.1
3 2665.4 2439.4 1120.5 0 214 1140.7 77.7 77.7 NC NC

U-bound 2 2659 2523.3 1282.1 0 137.4 1378.2 78.9 78.9 NC NC
1 2654.4 2632.2 1470.1 0 25.6 1201.5 81.1 81.1 NC NC

6.3 Distribution impact

Distribution by tier

The distribution by tier consists of two tiers of five and eleven tasks respectively
and should lead to less disparity. The results obtained, for this configuration dis-
tribution, by the di↵erent configurations according to the area configuration are
listed in Tab.8. We can see that this distribution is easier since the L-bound
shows better performance with a better load (74.2 instead of 72.3) and a better
completion rate of high priority tasks (51.6 vs 66.7). And indeed, the more con-
centrated nature of this distribution also allows other solutions to display better
performance. If the DQN approach is no exception and o↵ers better results, this
increase is comparatively less than the other solutions. This is explained by its
reluctance to use the transfer mechanism leading to its inability to take full ad-
vantage of the situation.

More complex distribution

The results obtained by the di↵erent solutions when the tasks generations is car-
ried out with the distribution configuration no.3 are presented in Tab 9. Unlike
the previous distribution, this one is slightly harder as the results obtained by
L-bound attest. We should logically expect lower results also for the other solu-
tions, but this is absolutely not the case and the results presented are even better.
Indeed, the periodic and staggered nature of this distribution gives enough time
to overloaded robots in order to transfer their tasks as attested by the significant
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Table 8. Performance of the di↵erent solutions on the distribution configuration no.2
and depending on the area configuration

Solution Area
Completed Failed Load (%) Overhead

P-1 P-2 P-3 P-1 P-2 P-3 CPU MEM CPU MEM

L-bound NC 2595.5 2199.4 1680.3 51.6 446.8 987.8 74.2 74.2 NC NC
3 2595 2346.2 1942.7 55 313.6 708.2 78.9 78.9 5.4 5.4

Market 2 2601.5 2357.3 2007.2 46.2 288.5 660 79.7 79.7 6.4 6.4
1 2626.8 2436.9 2054.4 24.7 218.8 598.1 81.5 81.5 8.6 8.6
3 2650.2 2364.6 928.2 0 295.7 1723.1 74 74 8.2 8.2

Market-P 2 2647.1 2398.2 954.8 0 247.9 1713.2 74.4 74.4 9.5 9.5
1 2651.6 2524.5 1017.5 0 131.4 1635.8 75.9 75.9 11.9 11.9
3 2626.8 2321.3 1694.1 28.7 248.2 991.7 76.9 76.9 2.7 2.7

DQN 2 2639.7 2336.6 1692 12.3 160.4 1026.8 77.3 77.3 3.5 3.5
1 2643.7 2470.5 1615.9 8.9 114 1041.3 77.9 77.9 5.1 5.1
3 2651.9 2531.6 1398.8 0 130 1252.4 81 81 NC NC

U-bound 2 2648.8 2575.2 1523.6 0 72.9 1144.9 82.5 82.5 NC NC
1 2653.7 2648.2 1856.8 0 9.8 802.1 85.9 85.9 NC NC

amount of overhead. As seen with the previous distribution, the DQN reluctance
to transfer prevents it from showing significantly better performance.

Table 9. Performance of the di↵erent solutions on the distribution configuration no.3
and depending on the area configuration

Solution Area
Completed Failed Load Overhead

P-1 P-2 P-3 P-1 P-2 P-3 CPU MEM CPU MEM

L-bound NC 2587.4 2152.2 1534.9 62.34 519.4 1118.6 71.9 71.9 NC NC
3 2611.9 2347.3 1924.9 45.8 311.8 726.1 78.7 78.7 5.6 5.6

Market 2 2617.5 2379.7 1987.5 38 279 665.9 79.9 79.9 6.7 6.7
1 2631.2 2477.4 2080.9 14 186.6 576.4 82.3 82.3 9.1 9.1
3 2657.5 2377.8 939.5 0.7 281.8 1711.8 74 74 8.4 8.4

Market-P 2 2655.4 2446 937 0 212.7 1717 74.7 74.7 9.9 9.9
1 2645.3 2585.8 995.1 0 78.1 1662.3 76.6 76.6 12.7 12.7
3 2632.4 2429.4 1381.4 27 234.3 1270.5 73.8 73.8 2.7 2.7

DQN 2 2639.1 2499.6 1395.8 9.7 162 1256 74.7 74.7 3.5 3.5
1 2638.3 2578.7 1622.4 10.1 93.7 1036.5 77.9 77.9 6.3 6.3
3 2659.2 2529 1447.7 0 131.9 1204 81.2 81.2 NC NC

U-bound 2 2657.4 2598.8 1598.9 0 62.2 1064.4 83 83 NC NC
1 2658.9 2578.7 1622.4 0 2.2 557.3 87.4 87.4 NC NC

The DQN approach struggles to take advantage of a stable situation.
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⇤ What happens if we introduce some imbalance to challenge the di↵erent
solutions?
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6.4 Impact of the task set and imbalance

Disparity

Fig. 11 and 12 show the completion and failure rates obtained with task set no.2
on the distribution no.1 with the area configuration no.3. All solutions except
DQN show lower results. No more approach can manage to execute all high
priority tasks since U-bound and market-P failed 2.4 and 3.7 high priority tasks
respectively.
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Fig. 11. Completion rate for each solution with the task set no.2. The orange, blue
and cyan parts represent the tasks of priority 1, 2 and 3, respectively.

The Fig. 13 shows the average load of each solution with task set no.2. First,
we can observe an overall increase in the computing load. This increase comes
from the task set which (on average) requires more computing resources, which
explains the performance decrease. Second, the DQN solution manages to take
advantage of the task set disparity by showing a significantly better load leading
to its good performance.

These results can be explained by the presence, in the task set, of tasks requir-
ing little or a lot of resources (unlike the previous game). As a task is valued
only according to its completion or / and its priority, but not according to its
computational cost, the DQN approach can set up a strategy. It refrains from
performing tasks requiring too many resources in order to maximize the over-
all number of tasks performed. This explains the slightly lower performance for
high priority tasks. The result is an e�cient system that has taken advantage of
the situation. Of course, during a real deployment, it is impossible to skip the
tasks requiring high computational resources. But this attests of the adaptive
character of RL approaches which can adapt unlike classical approaches.
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Fig. 12. Failure rate for each solution with the task set no.2. The orange, blue and
cyan parts represent the tasks of priority 1, 2 and 3, respectively.
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Fig. 13. Average load of the di↵erent solutions obtained with the tasks set no.2: the
orange, blue and cyan parts represent the cpu load, memory load and the resources
spent in overhead respectively.

Imbalance

In order to model an imbalance, we use the task set no.3 that favours one of
the metrics, the CPU (of course, the results are identical if we choose to favour
the memory). Fig. 14 and 15 show the completion and failure rates obtained
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with task set no.3. As expected, the strong imbalance causes poor performance
for all solutions. The preemptive solutions are particularly a↵ected since the
execution of a strongly unbalanced task can lead to the eviction of balanced
tasks increasing the imbalance. Once again (but in a more moderate way), we
notice that the DQN approach is able to adapt to the situation by o↵ering a
very good completion rate while maintaining a respect for priorities.
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Fig. 14. Completion rate for each solution with the task set no.3. The orange, blue
and cyan parts represent the tasks of priority 1, 2 and 3, respectively

Fig. 16 shows the average robots load for the di↵erent solutions when task
set no.3 is used. . The great disparity in between resources type explains the
poor performance since the system capacities cannot be fully mobilized. We can
observe a better load balancing for the DQN solution. This attest of the presence
of a strategy favoring balanced tasks

The DQN approach seems to be more relevant when the environment requires
adaptability.

⇤ What happens if we introduce some imbalance into the priorities distribu-
tion?

6.5 Priority

In order to incorporate some imbalance in the priorities distribution, we have
modified the weights assigned to them. The distribution used keep a weight of
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Fig. 15. Failure rate for each solution with the task set no.3. The orange, blue and
cyan parts represent the tasks of priority 1, 2 and 3, respectively
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1Fig. 16. Average load of the di↵erent solutions obtained with the tasks set no.3: the
orange, blue and cyan parts represent the cpu load, memory load and the resources
spent in overhead respectively.
1 for high and low priorities but give a weight of 0.5 for medium priority. As
a result, robots are assigned twice as many high and low priority tasks than
medium priority.

Fig. 17 and 18 show the completion and failure rates obtained with the new
priorities distribution. On the one hand, there is not much change to be observed
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in the classical approaches compared to the results observed with the uniform
distribution. Except for non-preemptive approaches which see their high priority
failure rate slightly increased, but the one for medium priority task decreased
(logical consequence of the new distribution). On the other hand, the approach
of the DQN solution seems di↵erent with a much better respect for priority at
the cost of a significantly lower overall completion rate.
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Fig. 17. Completion rate for each solution with with a non uniform priorities distri-
bution. The orange, blue and cyan parts represent the tasks of priority 1, 2 and 3,
respectively

Fig. 19 shows the average robots load for the di↵erent solutions when the prior-
ities distribution is not uniform. As for the completion rates, the classic solutions
load rates appear identical to those observed in the default configuration.

The DQN approach sets up a resource management strategy that is profoundly
di↵erent from the one observed previously. On the one hand, this solution is even
more restrictive of allocating its resources, which explains a lower payload rate
than other approaches. On the other hand, it makes more use of the transfer
mechanism resulting in an increase in the amount of overhead generated. These
two changes describe the new strategy of this approach which focuses on high
priority tasks taking advantage of their large number. Indeed, the transfer mech-
anisme becomes more interesting since high priority tasks brings more reward.
In addition, restraining from allocating to execute a high priority task becomes
more profitable since it will probably be done to the detriment of low priority
tasks which bring little penalized in case of failures.
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Fig. 18. Failure rate for each solution with a non uniform priorities distribution. The
orange, blue and cyan parts represent the tasks of priority 1, 2 and 3, respectively
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Fig. 19. Average load of the di↵erent solutions obtained with a non uniform priorities
distribution: the orange, blue and cyan parts represent the cpu load, memory load and
the resources spent in overhead respectively.

This choice to favor priority may seem extreme, but it results directly from
the reward system designed. Without a proper score metric making the link
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between the priority and the completion rate, we had to make an arbitrary
choice concerning the values of the di↵erent priorities.

7 Conclusion and future work

In this article, we propose a comparative analysis of two types of approaches
to solve the MRpTA problem that emerge to take advantage of shared com-
puting resources within a MRS. In a distributed context, agents must spread
the computational load through the transfer mechanism to compensate for lo-
cal overheads. To complicate the problem, the transfer has a range limit and
generates a penalty (20%).

As the complexity of the system is increasing, we have imposed a simple auction
valuation algorithm to represent the impossibility of correctly valuing the bids
of a real system. As far as RL is concerned, we have limited the size of the
neural network architecture to make it compatible with mobile robot computing
capabilities. In addition, we impose a simple reward scheme for the same reasons
as auction valuation.

Despite these restrictions, the use of learning is relevant. Indeed, the tested
solution is able to schedule tasks e�ciently as evidenced by the good completion
rates obtained while respecting a priority system. This solution manages to en-
sure a higher completion rate for medium priority tasks than other distributed
approaches while o↵ering performance close to the preemptive approach for high
priority tasks. In addition, the transfer mechanism is controlled with a small
failure rate and use adapted to the zone configuration limiting the MRS com-
munications. In general, this approach o↵ers excellent adaptability as its is able
to define a strategy according to the environment in which it operates.

There are however some expected limitations. Indeed, while most of the objec-
tives have been achieved, some have not been completely fulfilled. First, although
respecting the priority system, the DQN approach has proved to be unable to
ensure the execution of all high priority tasks. Second, despite a controlled trans-
fer mechanism, it has not been used su�ciently with stable distributions. In
addition, transfer failures remain present which can be explained by the totally
distributed nature. Indeed, the success of the transfer action does not depend
solely on the transferring robot.

Overall our conclusion to this study is that DQN appears as very relevant
alternative. This first comparative approach to this MRpTA problem paves the
way for the two following future works.The first one is to allow simultaneous
/ parallel decision-making on all tasks present in the robot’s queue in order to
overcome the limits of sequential decision-making and to o↵er a global vision to
the learning agent. However, this raises many challenges related to state space
and action space. The second one is to introduce a more accurate model for
heterogeneous MPSOC (multi-core processors, GPU), a concrete simulation of
robot movements and the use of real task sets.
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