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Abstract

In view of training increasingly complex learning architectures, we establish a non-
smooth implicit function theorem with an operational calculus. Our result applies
to most practical problems (i.e., definable problems) provided that a nonsmooth
form of the classical invertibility condition is fulfilled. This approach allows for
formal subdifferentiation: for instance, replacing derivatives by Clarke Jacobians
in the usual differentiation formulas is fully justified for a wide class of nons-
mooth problems. Moreover this calculus is entirely compatible with algorithmic
differentiation (e.g., backpropagation). We provide several applications such as
training deep equilibrium networks, training neural nets with conic optimization
layers, or hyperparameter-tuning for nonsmooth Lasso-type models. To show
the sharpness of our assumptions, we present numerical experiments showcasing
the extremely pathological gradient dynamics one can encounter when applying
implicit algorithmic differentiation without any hypothesis.

1 Introduction

Differentiable programming. The recent introduction of deep equilibrium networks [7], the in-
creasing importance of bilevel programming (e.g., hyperparameter optimization) [41] and the ubiquity
of differentiable programming (e.g., TensorFlow [1], PyTorch [40], JAX [16]) in modern optimization
call for the development of a versatile theory of nonsmooth differentiation. Our focus is on nonsmooth
implicit differentiation. There are currently two practices lying at the crossroads of mathematics
and computer science: on the one hand the use of the standard smooth implicit function theorem
“almost everywhere” [29, 28] and on the other hand the development of algorithmic differentiation
tools [2, 3, 51]. The empirical use of the latter in the nonsmooth world has shown surprisingly
efficient results [51], but the current theories cannot explain this success. We bridge this gap by
providing nonsmooth implicit differentiation results and illustrating their impact on the training of
neural networks and hyperparameter optimization.

Backpropagation: a formal differentiation approach. Let us consider z implicitly defined
through F (z(x)) = h(x) where F and h have full domain and adequate dimensions. How does
autograd apply to evaluating the “derivative” of the implicitly defined function z? Regardless of
differentiability or nonsmoothness, and provided that inversion is possible, one commonly uses (or
dynamically approximates) this derivative by

(backpropF (z(x)))
−1

backprophx,
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where backprop outputs the result of formal backpropagation, see e.g., [43]. This identity1 is
used to provide efficient training despite the fact that the rules of classical nonsmooth calculus
are transgressed [7, 51]. Note that spurious outputs may be created by this approach, but on a
negligible set. Consider for example the simple implicit problem x = f(z(x)) where f(z) :=
tanh(z) + relu(−z) + z − relu(z), whose solution is z(x) = tanhx. Yet

applying the implicit differentiation framework of [7] using JAX library, as presented in [51], provides
inconsistency of the derivative at the origin, see Figure 1. As mentioned above, despite these
unpredictable outputs, propagating derivatives leads to an undeniable efficiency. But can we parallel
these propagation ideas with a simple mathematical counterpart? Is there a rigorous theory backing
up formal (sub)differentiation or formal propagation? The answer is positive and was initiated in
[14, 15] through conservative Jacobians (see also [35, 23]).

A mathematical model for propagating derivatives. Conservative calculus models nonsmooth
algorithmic differentiation faithfully and allows for a sharp study of training methods in Deep
Learning [14, 15]. It involves a new class of derivatives, generalizing Clarke Jacobians [19]. A
distinctive feature of conservative calculus is that it is preserved by Jacobian multiplication. Consider
for example a feed forward network combining analytic or relu activations and max pooling. A
conservative Jacobian for this network can be obtained by using Clarke Jacobians formally as
classical Jacobians, regardless of qualification conditions. For instance, Figure 1 depicts a selection
in a conservative Jacobian. This approach is general enough to handle spurious points such as in
Figure 1 while keeping the essence of the properties one expects from a derivative. It was proved
in [14] that backprop, applied to any reasonable program of a function, is a conservative Jacobian
for this function; in contrast, backprop cannot be modelled by some subdifferential operator. For
instance for the fixed point problem above, given conservative Jacobians JF and Jh (e.g., Clarke
Jacobians) for F and h one obtains a new conservative Jacobian Jz implicitly defined through

JF (z(x))Jz(x) = Jh(x).

This property exactly parallels the idea of “propagating derivatives” in practice. It gives a strong
meaning to the formal use of Jacobians proposed in [7], and many empirical approaches [30, 2, 29, 28].

Main contributions:
— We establish a nonsmooth conservative implicit function theorem that comes with an implicit
calculus which is the central focus of this paper. Our calculus amounts somehow to formal subdiffer-
entiation with Clarke Jacobians. This approach cannot rely on classical tools like the inverse of a
Clarke Jacobian or a composition of Clarke Jacobians, which are not in general Clarke Jacobians.
Indeed, a surprising example (Example 1) shows that an “inverse function theorem with Clarke
calculus” is not possible.

— We study a wide range of applications of our implicit differentiation theorem, covering deep
equilibrium problems [7], conic optimization layers [2], and hyperparameter optimization for the
Lasso [9]. Each case is detailed and its specificities are discussed.

— As a consequence, we obtain convergence guarantees for mini-batched stochastic algorithms with
vanishing step size for training wide classes of Neural Nets, or for Lasso hyperparameter selection.
The assumptions needed for our results are mild and fulfilled by most losses occurring in ML in
the spirit of [15, 34]: elementary log-exp functions [15], semialgebraic functions [12], all being
subclasses of definable functions [22, 47]. The use of such structural classes has become standard in
nonsmooth optimization and is more and more common in ML (see, e.g., [18, 15, 34, 32]).

— As in the smooth implicit function theorem, the invertibility condition is not avoidable in general.
We provide various examples for which the assumption is not satisfied; this results in severe failures
for the corresponding gradient methods. In Figure 1, one sees how lack of invertibility on an otherwise
ordinary problem may provide totally unpredictable behavior for smooth quadratic optimization.

Definitions and Notations. A function F : Rn → Rm is locally Lipschitz if, for each x ∈ Rn,
there exists a neighborhood U of x such that F is Lipschitz on U . Given matrices A ∈ Rn×m and
B ∈ Rn×p, [A B] ∈ Rn×(m+p) denotes their concatenation; Idn denotes the n× n identity matrix.

1The notation backpropz instead of backprop(z) is indicative of the fact that backprop is an operator that
does not act on functions themselves but rather on the program used to represent them, see [15].
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Figure 1: Left: Inconsistencies due to combination of implicit differentiation and algorithmic
differentiation. Right: A gradient trajectory of an implicitly defined quadratic function.

For q ∈ Rn, diag (q) ∈ Rn×n denotes the diagonal matrix whose diagonal entries are given by
the qi; sign (q) ∈ {−1, 0, 1}n denotes the componentwise sign function. The convex hull of U is
denoted conv U . The projection onto a closed convex set C ∈ Rn is given, for each x ∈ Rn, by
PC (x) := argmin{ 1

2 ‖u− x‖
2

: u ∈ C}. Given a convex proper lower semicontinuous function
f : Rn → R∪{+∞}, we define its proximal operator through x ∈ Rn, proxf (x) := argmin{f (u)+
1
2 ‖u− x‖

2
u ∈ Rn}. Set-valued maps are denoted by ⇒, for example the subgradient ∂f : Rn ⇒

Rn. Additional details and notations are provided in Appendix A.

2 Implicit Differentiation with Conservative Jacobians

Definitions and conservativity. Conservative Jacobians are generalized forms of Jacobians well
suited for automatic differentiation, introduced in [14]. Given a locally Lipschitz continuous function
F : Rn → Rm, we say that JF : Rn ⇒ Rn×m is a conservative mapping or a conservative Jacobian
for F if JF has a closed graph, is locally bounded, and is nonempty with

d

dt
F (γ(t)) = JF (γ(t))γ̇(t) a.e. (1)

whenever γ is an absolutely continuous curve in Rn. When m = 1, the corresponding vectors are
called conservative gradient fields. Note that when JF is conservative, so is its pointwise convexified
extension conv JF .

A locally Lipschitz function is called path differentiable if it has a conservative Jacobian. Recall that
the Clarke Jacobian is defined as

Jacc F (x) = conv

{
lim

k→+∞
JacF (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
where diffF is the full measure set of points where F is differentiable and JacF is the standard
Jacobian of F . Path differentiability is equivalent to having a chain rule as in (1) for the Clarke
subdifferential, see [14, 24].

Examples of path differentiable functions and conservative Jacobians. (a) Convex functions
and concave functions are path differentiable, see [14]. This implies that their subdifferential in the
sense of convex analysis is a conservative field.
(b) The vast class of definable functions are path differentiable [24, 14]. As a result, the Clarke
Jacobian of a Lipschitz definable mapping is a conservative Jacobian. Definable functions (see
[5, 24, 18, 14] for an optimization context and [22] for a foundational work) encompass semialge-
braic functions [12], elementary log-exp selection [14], PAP [34] (restricted to analytic functions
with full domain), and many others, see [47] and references therein. This includes networks with
common nonlinearities: for example analytic with full domain (e.g., square, exponential, logistic loss,
hyperbolic tangent, sigmoid), relu, max pooling, sort, (see Appendix A.2 for more detail).
(c) The backpropagation can be seen as an oracle (in the optimization sense) for a conservative Jaco-
bian. Let PF be a numerical program for a function F , aggregating elementary functions, for instance,
relu, max pooling, affine mappings, polynomials (in general, any definable function). Then the back-
propagation algorithm applied to PF , which we denote (abusively) by backpropPF := backpropF ,
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outputs an element of a conservative Jacobian [14, Theorem 8] which depends on PF and can be
constructed by a closure procedure [15, definition 5]. As described in [15], due to spurious behaviors,
backpropF is not in general an element of the Clarke Jacobian of F .

The structure of conservative Jacobians. As established in [35] in a semialgebraic context, the
discrepancy between conservative gradients and Clarke subdifferentials is somehow negligible. Let
us provide a version of that result matching our concerns. We call conservative mappings of the null
function residual or residual conservative. Such a mapping R has the property that R(x+ tv)v = 0
for almost all t in R and all x, v in Rn × Rn. The following theorem and proposition (partially)
extend results from [14] and [35], their proof is given in Appendix B.

Theorem 1 (The Clarke Jacobian is a minimal conservative Jacobian) Given a nonempty open
subset U of Rn and F : U ⊂ Rn → Rm locally Lipschitz, let JF be a convex-valued conservative
Jacobian for F . Then for almost all x ∈ U , JF (x) = {JacF} and, for all x ∈ U , Jac cF (x) ⊂
JF (x).

Proposition 1 (Decomposition of conservative fields) Let JF be a conservative Jacobian for F ,
then there is a residual R such that

JF ⊂ Jac cF +R.

Note that the above may not hold with equality. Consider F (x) = |x| and JF (0) = [−1, 1] ∪ [2, 3],
JF (x) = sign (x) otherwise. One cannot write JF = Jac cF +R with a residual operator R.

Formal subdifferentiation in a nonsmooth setting. Propagating derivatives within a nonsmooth
function finds its justification in the following:

Proposition 2 (Stability by composition, [14]) Let F : Rn → Rm and G : Rm → Rl be two
locally path differentiable functions having respective conservative Jacobians JF and JG. Then
F ◦G is path differentiable and the point-to-set matrix-valued x⇒ JF (G(x))JG(x) is conservative.

A conservative Implicit Function Theorem. There is already a long tradition of nonsmooth
implicit function theorems, e.g., [19, 6, 42, 25]. What makes the following theorem useful is that it
comes with a qualification-free calculus. The proofs are given in Appendix B.

Theorem 2 (Implicit differentiation) Let F : Rn × Rm → Rm be path differentiable on U × V ⊂
Rn × Rm an open set and G : U → V a locally Lipschitz function such that, for each x ∈ U ,

F (x,G(x)) = 0. (2)

Furthermore, assume that for each x ∈ U , for each [A B] ∈ JF (x,G(x)), the matrix B is invertible
where JF is a conservative Jacobian for F . Then, G : U → V is path differentiable with conservative
Jacobian given, for each x ∈ U , by

JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
.

Corollary 1 (Path differentiable implicit function theorem) Let F : Rn × Rm → Rm be path
differentiable with conservative Jacobian JF . Let (x̂, ŷ) ∈ Rn × Rm be such that F (x̂, ŷ) = 0.
Assume that JF (x̂, ŷ) is convex and that, for each [A B] ∈ JF (x̂, ŷ), the matrix B is invertible. Then,
there exists an open neighborhood U × V ⊂ Rn × Rm of (x̂, ŷ) and a path differentiable function
G : U → V such that the conclusion of Theorem 2 holds.

Corollary 2 (Path differentiable inverse function theorem) Let U and V be open neighborhoods
of 0 in Rn and Φ : U → V path differentiable with Φ(0) = 0. Assume that Φ has a conservative Jaco-
bian JΦ such that JΦ(0) contains only invertible matrices. Then, locally, Φ has a path differentiable
inverse Ψ with a conservative Jacobian given by

JΨ(y) =
{
A−1 : A ∈ JΦ(Ψ(y))

}
.

Remark 1 (a) (On the necessity of conservativity) Example 1 in Appendix B shows that one
cannot hope for the formulas in Corollaries 1 & 2 to provide Clarke Jacobians in general, even if the
input(s) are Clarke Jacobians themselves.
(b) (Lipschitz definable implicit and inverse function theorems) See Theorem 4 and 5 in the
appendix
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3 Nonsmooth implicit differentiation in Machine Learning

Detailed proof arguments for all considered models are given in Appendix C.

Monotone deep equilibrium networks. Deep Equilibrium Networks (DEQs) [7] are specific
neural network architectures including layers whose input-output relation is implicitly defined
through a fixed point equation of the form

z = f(z, x) (3)

where x ∈ Rp is a given input and z ∈ Rm is the corresponding output. We may consider
that the variable x represents both the input layer and layer parameters. Assuming that, for each
x ∈ Rp, there is a unique z ∈ Rm satisfying the relation (3), this defines an input-output relation
z : Rp → Rm. Furthermore, if f is path differentiable with convex-valued conservative Jacobian
Jf : Rm × Rp ⇒ Rm×(m+p) whose projection on the first m columns are all invertible, then the
function z itself admits a conservative Jacobian which can be computed from Theorem 2.

We now focus on monotone operator implicit layers [50] for which assumptions are easily stated. Our
method applies to other similar architectures, e.g., DEQs [7] or implicit graph neural networks [30].
Let σ : Rm → Rm be the proximal operator of a convex function and assume σ is path differentiable
with conservative Jacobian Jσ : Rm ⇒ Rm×m, assumed to be convex-valued. This encompasses
the majority of activation functions used in practice [20]. Let W ∈ Rm×m be a matrix such that
W +WT � 2θI with θ > 0. Under these assumptions the implicit equation

z = σ(Wz + b) (4)

has a unique output z(W, b) [50, Theorem 2]. The transformation (W, b) 7→ z(W, b) is a monotone
implicit layer.

The set-valued mapping obtained from Theorem 2 provides a conservative Jacobian for (W, z) 7→
z(W, z). A similar expression was described in [50, Theorem 2], without using conservativity and
using the Clarke Jacobian formally as a classical Jacobian. The proposition below provides a full
justification of this heuristic and ensures convergence of algorithmic differentiation based training.

Proposition 3 (Path differentiation through monotone layers) Assume that Jσ is convex-valued
and that, for all J ∈ Jσ(Wz(W, b) + b), the matrix (Idm − JW ) is invertible. Consider a loss-like
function ` : Rm → R with conservative gradient D` : Rm ⇒ Rm, then g : (W, z) 7→ `(z(W, b)) is
path differentiable and has a conservative gradient Dg defined through

Dg : (W, b) ⇒
{
JT (Idm − JW )−T vzT , JT (Idm − JW )−T v) : J ∈ Jσ(Wz + b), v ∈ D`(z)

}
.

Remark 2 Convexity and invertibility assumptions are satisfied when Jσ is the Clarke Jacobian [50].

Optimization layers: the conic program case. Optimization layers in deep learning may take
many forms; we consider here those based on conic programming [17, 3, 2, 4]. We follow [3],
simplifying the analysis by ignoring infeasability certificates, which correspond to the absence of a
primal-dual solution [17], in line with the implementation described in [2, Appendix B]. Consider a
conic problem (P) and its dual (D):

(P) inf cTx
subject to Ax+ s = b

s ∈ K

(D) inf bT y
subject to AT y + c = 0

y ∈ K∗,
(5)

with primal variable x ∈ Rn, dual variable y ∈ Rm, and primal slack variable s ∈ Rm. The set
K ⊂ Rm is a nonempty closed convex cone and K∗ ⊂ Rm is its dual cone. The problem parameters
are the matrix A ∈ Rm×n and the vectors b ∈ Rm and c ∈ Rn; the cone K is fixed. Under the
assumption that there is a unique primal-dual solution (x, y, s), we study the path differentiability of
the solution mapping as a function of its parameters:

(A, b, c) 7→ sol(A, b, c) = (x, y, s).

5



For this, let us interpret the solution mapping as a composition mapping involving equation-like
implicit formulations. Set N = n+m, given A, b, c ∈ Rm×n × Rm × Rn, define

Q(A, b, c) =

[
0 AT

−A 0

]
∈ RN×N V (b, c) =

[
c
b

]
∈ RN .

Consider a vector z = (u, v) ∈ Rn × Rm, denote by Π the projection onto Rn ×K∗ and define the
residual map N : RN × Rm×n × Rm × Rn → RN as

N (z,A, b, c) = (Q(A, b, c)− IdN )Πz + V (b, c) + z.

The mapping N is a synthetic form of optimality measure for (P) and (D), capturing KKT conditions.
To simplify the presentation, we ignore the extreme cases of infeasibility and unboundedness which
correspond to an absence of solution in [17].

Define the function φ : RN → Rn × Rm × Rm through φ(u, v) := (u, PK∗(v), PK∗(v) − v). As
shown in Appendix C.2, φ(u, v) provides a primal-dual KKT solution of problems (P) and (D) if and
only ifN (z,A, b, c) = 0. When we assume that, for fixed A, b, and c, there is a unique z ∈ RN such
that N (z,A, b, c) = 0, we have an implicitly defined a function z = ν(A, b, c), such that

sol(A, b, c) = [φ ◦ ν] (A, b, c). (6)

The following result extends the discussion in [17, 3], limited to situations where Π is differentiable
at the proposed solution z, to a fully nonsmooth setting; its proof is postponed to Appendix C.2.

Proposition 4 (Path differentiation through cone programming layers) Assume that PK∗ , N
are path differentiable, denote respectively by JPK∗ , JN corresponding convex-valued conservative
Jacobians. Assume that, for allA, b, c ∈ Rm×n×Rm×Rn, z = ν(A, b, c) ∈ Rn×Rm is the unique
solution to N (z,A, b, c) = 0 and that all matrices formed from the N first columns of JN (z,A, b, c)
are invertible. Then, φ, ν, and sol are path differentiable functions with conservative Jacobians:

Jν(A, b, c) :=
{
−U−1V : [U V ] ∈ JN (ν(A, b, c), A, b, c)

}
,

Jφ(z) :=

[
Idn 0
0 JPK∗ (v)
0 (JPK∗ (v)− Idm)

]
,

Jsol(A, b, c) := Jφ(ν(A, b, c))Jν(A, b, c).

In practice, the path differentiability of conic projections is pervasive since they are generally
semialgebraic (orthant, second-order cone, PSD cone). See [31, 37, 33, 37] for the computations of
the corresponding Clarke Jacobians (which are conservative). Note that a conservative Jacobian for
N may be obtained from JPK∗ using Proposition 2.

Hyperparameter selection for Lasso type problems. Implicit differentiation can be used to tune
hyperparameters via first-order methods optimizing some measure of task performance, see [10]
and references therein. In a nonsmooth context, we recall the formulation in [9] of the general
hyperparameter optimization problem as a bi-level optimization problem:

min
λ∈Rm

C(β̂(λ)) such that β̂(λ) ∈ argmin
β∈Rp

ψ(β, λ)

where C : Rp → R is continuously differentiable (e.g., test loss) and ψ : Rp ×Rm → R is a possibly
nonsmooth training loss, convex in β, with hyperparameter λ ∈ Rm. We seek a subgradient type
method for this problem with convergence guaranties; our nonsmooth implicit differentiation results
can be used for this purpose. We demonstrate this approach on the Lasso problem [45]

β̂ (λ) ∈ argmin

{
1

2
‖y −Xβ‖22 + eλ ‖β‖1 : β ∈ Rp

}
(7)

where y ∈ Rn is the vector of observations, X = [X1, . . . , Xp] ∈ Rn×p is the design matrix with
columns Xj ∈ Rn, j ∈ {1, . . . p}, and λ ∈ R is the hyperparameter. Define F : R× Rp → Rp to be

F (λ, β) := β − proxeλ‖·‖1

(
β −XT (Xβ − y)

)
6



and recall that, for each i ∈ {1, . . . , p}, [proxeλ‖·‖1(β)]i = sign(βi) max{|βi|−eλ, 0}. The function

F (λ, β) is thus nonsmooth but locally Lipschitz on R× Rp. An optimal β̂(λ) for (7) must satisfy
F (λ, β̂(λ)) = 0 [21, Prop. 3.1]. For a given solution β̂(λ), we introduce the equicorrelation set by
E := {j ∈ {1, . . . , p} : |XT

j (y −Xβ̂(λ))| = eλ} which contains the support set supp β̂ := {i ∈
{1, . . . , p} : β̂i 6= 0}. In fact, E does not depend on the choice of the solution β̂, see [46, Lemma 1].
The proof of the following result is given in Appendix C.3.

Proposition 5 (Conservative Jacobian for the solution mapping) For all λ ∈ R, assume XT
E XE

is invertible where XE is the submatrix of X formed by taking the columns indexed by E . Then β̂(λ)
is single-valued, path differentiable with conservative Jacobian, Jβ̂ (λ), given for all λ as{[
−eλ

(
Idp − diag (q)

(
Idp −XTX

))−1
diag (q) sign

(
β̂ −XT

(
Xβ̂ − y

))]
: q ∈M(λ)

}
where M(λ) ⊂ Rp is the set of vectors q such that qi = 1 if i ∈ supp β̂, qi = 0 if i 6∈ E and
qi ∈ [0, 1] if i ∈ E \ supp β̂.

Taking, in Proposition 5, qi = 1 for all i ∈ E corresponds to the directional derivative given by LARS
algorithm [27], see also [36]. Alternatively, taking qi = 0 for i 6∈ supp β̂ gives the weak derivative
described by [9]. Both are particular selections in Jβ̂ , which is the underlying conservative field.

4 Optimizing implicit problems with gradient descent

We establish the convergence of gradient descent algorithms for compositional learning problems
involving implicitly defined functions. The result follows from the previous section and the general
convergence results of [15].

The minimization problem. The applications considered in the previous section all yield mini-
mization problems of the type

min
w∈Rp

`(w) :=
1

N

N∑
i=1

`i(w) with `i = gi,L ◦ gi,L−1 ◦ . . . ◦ gi,1 (8)

where, for each i ∈ {1, . . . , N}, `i : Rp → R is a composition of functions having appropriate input
and output dimensions. The indices i correspond in practice to learning samples while the loss `
embodies an empirical expectation, as for instance in deep learning. We will enforce the following
structural condition.

Assumption 1 For i ∈ {1, . . . , N} and j ∈ {1, . . . , L}, the function gi,j is locally Lipschitz with
conservative Jacobian Ji,j and one of the following holds

• gi,j and Ji,j are semialgebraic (or, more generally, definable).

• gi,j is defined as G in Theorem 2, with F and JF semialgebraic (or, more generally, definable).

Actually, in Assumption 1 the second point implies the first point; we list both for clarity. More
details on semialgebraicity and definability are given in Appendix A.2. Let us stress that virtually all
elements entering the definition of neural networks are semialgebraic or, more generally, definable,
see for example [15] for a constructive model. In particular, beyond classical networks with usual
nonlinearities (e.g., relu, sigmoid, max pooling . . . ), this setting encompasses (through Corollary 1):

(a) Deep equilibrium networks: each gi,j may correspond to usual explicit layers or an implicit layer
involving a fixed point mapping and a learning sample i as in (4) or (3).

(b) Training with optimization layers: similarly, the inner maps gi,j may also be solution mapping to
convex conic programs and related to the sol function (6) of conic problems.

(c) One may assume that N = 1, L = 2 and retrieve the hyperparameter tuning for Lasso in its
implicit formulation.

7



SGD with backpropagation. Algorithmic differentiation (AD) is an automated application of the
chain rule of differential calculus. When applied to `i, it amounts to computing one element of the
product Ji :=

∏L
j=1 Ji,j by choosing one element in each Ji,j with appropriate inputs given by

intermediate results kept in memory during a forward computation of the composition.

In this context AD stochastic gradient descent requires an initial w0 ∈ Rp and a sequence of i.i.d.
random indices uniform in {1, . . . , N}, (Ik)k∈N. It gives:

wk+1 = wk − sαkvk (9)
vk ∈ JIk(wk), (given by backprop), (10)

where (αk)k∈N is a sequence of positive step sizes and s ∈ (smin, smax) is a scaling factor where
smax > smin > 0. A simpler choice could be vk ∈ ∂c`Ik(wk), however, the chain rule used within
algorithmic differentiation routines does not produce subgradients (see, e.g., Figure 1). In contrast,
conservative Jacobians are faithful models of AD outputs. The asymptotic behavior of the above
algorithm depends on the variational properties of the conservative Jacobian J := 1

N

∑N
i=1 Ji.

Theorem 3 (Convergence result) Consider minimizing ` given in (8) using algorithm (10) under
Assumption 1. Assume furthermore the following

• Step size:
∑+∞
k=1 αk = +∞ and αk = o(1/ log(k)).

• Boundedness: there exists M > 0, and K ⊂ Rp open and bounded, such that, for all
s ∈ (smin, smax) and w0 ∈ cl K, ‖wk‖ ≤M almost surely.

For almost all w0 ∈ K and s ∈ (smin, smax), the objective value `(wk) converges and all accumula-
tion points w̄ of wk are Clarke-critical in the sense that 0 ∈ ∂c`(w̄).

This result shows that AD SGD may be applied successfully to all problems described in Section 3,
combining algorithmic differentiation with implicit differentiation. Its proof may be adapted directly
from [14, 11]; details are given in Appendix D.

5 Numerical experiments

Using implicit differentiation when the invertibility condition in Theorem 2 does not hold can result
in absurd training dynamics.

A cyclic gradient dynamics via fixed-point/optimization layer. Consider the bilevel problem:

min
x,y,s

`(x, y, s) := (x− s1)2 + 4(y − s2)2 (11)

s.t. s ∈ s(x, y) := arg max {(a+ b)(−3x+ y + 2) : a ∈ [0, 3], b ∈ [0, 5]} .
Problem (11) has an equivalent fixed-point formulation using projected gradient descent on the inner
problem (Appendix E.1.1). Backpropagation applied to (11) associates to (x, y) the following:

∇(x,y)`(x, y, s(x)) + J̃s(x, y)T∇s`(x, y, s(x)) (12)

where J̃s is piecewise derivative.

We implement gradient descent for (11), evaluating (12) either using cvxpylayers [2] or the JAX
tutorial [51] for fixed-point layers. In both cases, the invertibility condition in Theorem 2 fails when
−3x + y + 2 = 0, resulting in discontinuity of s, affecting the dynamics globally: the gradient
trajectory converges to a limit cycle of non critical points (Figure 2a); see Appendix E.1 for details.

Persistence under small perturbations: The limit cycle remains (Figure 2b) when running the same
experiment on a slightly perturbed version of Problem (11) with perturbed initializations as well
(Appendix E.1.2).

A Lorenz-like dynamics via implicit differentiation. The Lorenz Ordinary Differential Equation
(ODE) writes:

ẋ = σ(y − x), ẏ = x(ρ− z)− y, and ż = xy − βz. (13)

8



(a) (b)

Figure 2: (a) Gradient flow for all implementations. (b) Gradient flows for 20 perturbed experiments.

It is well-known that taking (σ, ρ, β) = (10, 28, 8/3), and (x(0), y(0), z(0)) = (0, 1, 1.05) gives a
chaotic trajectory, displayed in Figure 3a. Denoting F : (x, y, z) 7→ (σ(y−x), x(ρ−z)−y, xy−βz)
the vector field of the Lorenz system (13), consider the optimization problem:

max
u∈R3

uT z s.t. z ∈ arg min
s∈R3

‖s− F (u)‖4 (14)

which is obviously equivalent to
max
u∈R3

uTF (u). (15)

(a) (b) (c)

Figure 3: Implicit gradient ascent (b) outputs a pathological curve with some qualitative aspects of
the Lorenz dynamics (a) and really different from a classical gradient (c).

The function g : u 7→ uTF (u) is a nondegenerate quadratic function whose expression can be found
in Appendix E.2.1. The function g has for unique critical point (0, 0, 0) which is a strict saddle-
point. We perform gradient ascent with implicit differentiation using cvxpylayers on (14), and the
classical gradient ascent on the equivalent problem (15). The path obtained by implicit differentiation
(Figure 3b) resembles the Lorenz attractor (Figure 3a), in stark contrast to the conventional method
(Figure 3c). The chaotic dynamics are a consequence of the lack of invertibility, due to the power 4
in (14), and various numerical approximations related to optimization and implicit differentiation.

6 Conclusion and future work

This article provides a rigorous framework and calculus rules for nonsmooth implicit differentiation
using the theory of conservative Jacobians. In particular, it describes precise conditions under which
implicit differentiation can be used, in a way that is compatible with backpropagation and first-order
algorithms.

9



We show the applicability of our results on practical machine learning problems including training of
neural networks involving layers with implicitly defined outputs (deep equilibrium nets, networks
with optimization layers) and nonsmooth hyperparameter optimization (Lasso-type models).

Finally, we demonstrate the necessity of a rigorous theory of nonsmooth implicit differentiation
through multiple numerical experiments. These illustrate the range of extremely pathological gradient
dynamics that can occur when algorithmic differentiation is combined with nonsmooth implicit
differentiation outside the scope of our theorem, i.e., without satisfying the invertibility condition we
specify.
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A Lexicon

A.1 Conservative fields

We first collect the necessary definitions to define a conservative set-valued field, introduced in [14],
and by extension conservative Jacobians. Recall from multivariable calculus that the Jacobian of a
differentiable function f : Rn → Rm is given by

Jac f :=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 .
Definition 1 (Absolutely continuous curve) A continuous function γ : R → Rn is an absolutely
continuous curve if it has a derivative γ̇(t), for almost all t ∈ R, which furthermore satisfies

γ(t)− γ(0) =

t∫
0

γ̇(τ)dτ

for all t ∈ R.

The graph of a set-valued mapping D : Rn ⇒ Rm is the set graphD := {(x, z) : x ∈ Rn, z ∈
D(x)}.

Definition 2 (Closed graph) A set-valued mapping D : Rn ⇒ Rm has closed graph or is graph
closed if graphD is a closed subset of Rn+m or, equivalently, if, for any convergent sequences
(xk)k∈N and (zk)k∈N with zk ∈ D(xk) for all k ∈ N, it holds

lim
k→∞

zk ∈ D
(

lim
k→∞

xk

)
.

Definition 3 (Locally bounded) A set-valued mapping D : Rn ⇒ Rm is locally bounded if for all
x ∈ Rn, there exists a neighborhood U of x and M > 0 such that, for all u ∈ U , for all y ∈ D(u),
‖y‖ < M .

Definition 4 (Conservative set-valued field) A set-valued mapping D : Rn ⇒ Rm is a conserva-
tive field if the following conditions hold:

1. For all x ∈ Rn, D(x) is nonempty.

2. D has a closed graph and is locally bounded.

3. For any absolutely continuous curve γ : [0, 1]→ Rn with γ(0) = γ(1),
1∫

0

max
z∈D(γ(t))

〈γ̇(t), z〉dt = 0.
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Although conservative fields are not assumed to be locally bounded in [14], we add this restriction
here to ensure they are upper semicontinuous. This will allow us to use a nonsmooth Lyapunov
method [8] to prove convergence of first-order algorithms.

Definition 5 (Monotone operator) A set-valued mapping D : Rn ⇒ Rm is called a monotone
operator if, for all x, y ∈ Rn, u ∈ D(x), and v ∈ D(y),

〈x− y, u− v〉 ≥ 0.

A.2 A simpler and more operational view on definability

We recall basic definitions and results on definable sets and functions used in this work. More details
on this theory can be found in [47, 22].

We make a specific attempt to provide a new simple view on this subject by using dictionaries, in the
hope that machine learning users consider utilizing these wonderful tools.

The archetypal o-minimal structure is the collection of semialgebraic sets. Recall that a set A ⊂ Rn
is semialgebraic if it can be written as

A =

I⋃
i=1

J⋂
j=1

{x ∈ Rn : Pij(x) < 0, Qij(x) = 0}

where, for i ∈ {1, ..., I} and j ∈ {1, ..., J}, Pij and Qij are polynomials. The stability properties of
semialgebraic sets may be axiomatized [44, 47] to give rise to the general notion of an o-minimal
structure:

Definition 6 (o-minimal structure) Let O = (Op)p∈N be a collection of sets such that, for all
p ∈ N, Op is a set of subsets of Rp. O is an o-minimal structure on (R,+, ·) if it satisfies the
following axioms:

1. For all p ∈ N, Op is stable by finite intersection and union, complementation, and contains
Rp.

2. If A ∈ Op then A× R and R×A belong to Op+1.

3. Denoting by π the projection on the p first coordinates, if A ∈ Op+1 then π(A) ∈ Op.

4. For all p ∈ N, Op contains the algebraic subsets of Rp, i.e., sets of the form
{x ∈ Rp : P (x) = 0}, where P : Rp → R is a polynomial function.

5. The elements of O1 are exactly the finite unions of intervals.

A subset A ⊂ Rn is said to be definable in an o-minimal structure O = (Op)p∈N if On contains A.
A function f : Rn → Rm is said to be definable if its graph, a subset of Rn+m, is definable.

Note that the collection of semialgebraic sets verifies 3 in Definition 6 according to the Tarski-
Seidenberg theorem.

There are several major structures which have been explored [49, 47, 26]. But rather than relying on
traditional description of these structures, we provide instead classes of functions that are contained
in an o-minimal structure. The goals achieved are twofold:

• The classes we provide are o-minimal and thus all the results provided in the main text apply
to functions in these classes.

• It is very easy to verify that a function belongs to one of the classes. Everything boils down
to checking that the problem under consideration can be expressed in one of the dictionaries
we provide.

Note however that we do not aim at providing neither a comprehensive nor a sharp picture of what
could be done with o-minimal structures.

We consider first a collection of functions which will serve to establish dictionaries:
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(a) Analytic functions restricted to semialgebraic compact domains (contained in their natural
open domain), examples are cos and sin restricted to compact intervals.

(b) “Globally subanalytic functions”: arctan, tan|]−π/2,π/2[ or any functions in (a) (see [26]
for a precise definition of global subanalyticity).

(c) The log and exp functions.
(d) Functions of the form x 7→ xr with r a real constant and x a positive real number. These

can be represented as x 7→ exp(r log(x)) which is definable in (R, exp).
(e) Implicitly defined semialgebraic functions. That is, functions G : Ω→ Rm, with Ω open,

which are maximal solutions (i.e., the domain Ω cannot be chosen to be bigger) to nonlinear
equations of the type

F (x,G(x)) = 0

where F is a semialgebraic function.

With this collection of functions we may build elementary dictionaries. To demonstrate, we consider
the following dictionaries

Dic(a) = {functions satisfying (a)}
Dic(d, e)={functions satisfying (d) or (e)}
Dic(a, b, c, d, e) = {functions satisfying (a) or (b) or (c) or (d) or (e)}

The last dictionary describes a larger class of functions, we shall come back on this later on.

Consider the dictionary D = Dic(·) based on the properties (a)-(e) described above.

Then, in the spirit of [15], we can extend the idea of piecewise selection functions with the following
three definitions.

Definition 7 (Elementary D-function) An elementary D-function is a C2 function described by a
finite compositional expression involving the basic operations ×,+, /, multiplication by a constant,
and the functions of D inside their domain of definition.

Any elementaryD-function is definable in Ran,exp by stability of definable functions by composition.
We shall denote SD the set of elementary D-functions. For instance, the following functions belong
to SD:

– x 7→ 1
1+exp(−x) .

– x 7→ log(1 + exp(x)).

– (β, λ) 7→ ‖Xβ − Y ‖2 + eλ‖β‖1.

Definition 8 (Elementary D-index) Consider r ∈ N∗, and s : Rn → {1, . . . , r}. Then s is said to
be an elementary D-index if, for i ∈ {1, . . . , r}, each of the pre-images s−1(i) (i.e., the points in Rn
such that s selects the index i) can be written as

I⋃
i=1

J⋂
j=1

{x ∈ Rn : gij(x) < 0, hij(x) = 0}

where, for i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, the gij and hij are elementary D-functions.

Definition 9 (Piecewise D-function) A function f : Rn → Rm is a piecewise D-function if there
exist r ∈ N∗, elementary D-functions f1, . . . , fr, and an elementary D-index s : Rn → {1, . . . , r}
such that for all x ∈ Rn,

f(x) = fs(x)(x).

We denote PD the set of piecewise D-functions. With the assumptions we have on the dictionary
D, the piecewise selections we consider are all definable (it ’s not always the case in general).
Notice that piecewise log-exp functions [15] are a specific case of D-functions with the dictionary
D = Dic(c) = {log, exp}. It is easy to see that the following functions are in PD and thus definable:

– x 7→ max(0, x) (relu).
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– x 7→ max(x1, ..., xn).
– sort function.

– x 7→
{

1
2x

2 for |x| ≤ δ,
δ(|x| − 1

2δ), otherwise,
with δ > 0 (Huber loss).

Moreover, composition of functions from PD are definable. This allows to say that if ρ(w, x) is the
output of a neural network built with usual elementary blocks (for instance Dense, Max Pooling or
Conv layers), or even implicit layers involving functions in PD, with input x and weights w, then the
empirical risk 1

N

∑N
i=1 `(ρ(w, xi), yi) is definable with respect to w provided that ` is also in PD.

Remark 3 (a) (Small and big dictionaries) It may be puzzling for the reader to see that there is a
dictionary that contains all the others. A major comment is in order: bigger is not always better.
The bigger the dictionary is, the weaker some properties are. For instance, any piecewise selection
f : Rn → R built upon Dic(a, b) satisfies ‖f(x)‖ ≤ c‖x‖N for some c > 0, N > 0, which may
have consequences in terms of convergence rates, see e.g., [5]. Thus in practice using the smallest
dictionary possible may lead to sharper results. On top of this, there are no universal dictionaries
[26].
(b) (PAP functions and definability) Recently PAP functions were introduced in order to deal with
automatic differentiation matters [34]. To deal with such types of functions in our framework and have
guarantees in terms of automatic differentiation, implicit differentiation or convergence properties,
we need to view them through the dictionary paradigm. For this we consider the dictionary of analytic
functions defined on Rp for some p. In that case, piecewise functions are not necessarily definable
but their restrictions to any ball (or any compact semialgebraic subset) are definable.

B Results from Section 2

Theorem 1 (The Clarke Jacobian is a minimal conservative Jacobian) Given a nonempty open
subset U of Rn and F : U ⊂ Rn → Rm locally Lipschitz, let JF be a convex-valued conservative
Jacobian for F . Then for almost all x ∈ U , JF (x) = {JacF} and for all x ∈ U , Jac cF (x) ⊂
JF (x).

Proof: Using [14, Lemma 4] for i ∈ {1, . . . ,m}, [JF ]i is a conservative map for Fi on U and it is
equal to ∇Fi on a set of full measure Si ⊂ U . Hence for all x ∈ S :=

⋂m
i=1 Si, which is of full

measure in U , JF (x) = JacF (x). Since S has full measure within U , [48] gives the representation

Jac cF (x) = conv

{
lim

k→+∞
JacF (xk) : xk ∈ S, xk −→

k→+∞
x

}
, for any x ∈ U .

But since JF coincides with JacF throughout S, we have

Jac cF (x) = conv

{
lim

k→+∞
JF (xk) : xk ∈ S, xk −→

k→+∞
x

}
for each x ∈ U . Finally, by graph closedness and convexity of JF we get, for each x ∈ U ,

Jac cF (x) ⊂ conv

{
JF

(
lim

k→+∞
xk

)
: xk ∈ S, xk −→

k→+∞
x

}
= JF (x).

�

Proposition 1 (Decomposition of conservative fields) Let JF be a conservative Jacobian for F ,
then there is a residual R such that

JF ⊂ Jac cF +R.

Proof: We have obviously the inclusion

JF ⊂ Jac cF + (JF − Jac cF ),

so it suffices to remark that (JF − Jac cF ) is residual due to the conservativity properties of both JF
and Jac cF . �
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Theorem 2 (Implicit differentiation) Let F : Rn × Rm → Rm be path differentiable on U × V ⊂
Rn × Rm an open set and G : U → V a locally Lipschitz function such that, for each x ∈ U ,

F (x,G(x)) = 0. (16)

Furthermore, assume that for each x ∈ U , for each [A B] ∈ JF (x,G(x)), the matrix B is invertible
where JF is a conservative Jacobian for F . Then, G : U → V is path differentiable with conservative
Jacobian given, for each x ∈ U , by

JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
.

Proof: Let γ : [0, 1] → U be absolutely continuous, then the composition G ◦ γ is also absolutely
continuous since G is locally Lipschitz. By (16) we have, for all t ∈ [0, 1],

F (γ(t), G(t))) = 0

which we can differentiate almost everywhere; for almost every t ∈ [0, 1], for any [A B] ∈
JF (γ(t), G(γ(t))),

[A B]

[
γ̇(t)

d
dtG(γ(t))

]
= 0 =⇒ −Aγ̇(t) = B

d

dt
G(γ(t)).

Since B is assumed to be invertible, we have, for almost every t ∈ [0, 1],

−B−1Aγ̇(t) =
d

dt
G(γ(t)).

The set-valued mapping JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
is nonempty, locally bounded,

and has a closed graph for each x ∈ U since JF (x,G(x)) is a conservative Jacobian and B is
invertible . We conclude that G is path differentiable on U with conservative Jacobian JG. �

Corollary 1 (Path differentiable implicit function theorem) Let F : Rn × Rm → Rm be path
differentiable with conservative Jacobian JF . Let (x̂, ŷ) ∈ Rn × Rm be such that F (x̂, ŷ) = 0.
Assume that JF (x̂, ŷ) is convex and that, for each [A B] ∈ JF (x̂, ŷ), the matrix B is invertible. Then,
there exists an open neighborhood U × V ⊂ Rn × Rm of (x̂, ŷ) and a path differentiable function
G : U → V such that the conclusion of Theorem 2 holds.

Proof: Since JF (x̂, ŷ) is convex, it follows from Theorem 1 that Jacc F (x̂, ŷ) ⊂ JF (x̂, ŷ) and thus,
for any [A B] ∈ Jacc F (x̂, ŷ), B is invertible, i.e., the conditions to apply [19, 7.1 Corollary] to F
are satisfied. Therefore there exists an open neighborhood U1 × V1 ⊂ Rn × Rm of (x̂, ŷ) and a
locally Lipschitz function G : U1 → V1 such that, for all x ∈ U1,

F (x,G(x)) = 0.

By the continuity of the determinant and the fact that JF has a closed graph, there exists an open
neighborhood U2 × V2 ⊂ Rn × Rm of (x̂, ŷ) such that, for all (x, y) ∈ U2 × V2, for all [A B] ∈
JF (x, y), the matrix B is invertible. Let U × V := (U1 ∩ U2) × (V1 ∩ V2), which is an open
neighborhood of (x̂, ŷ). Then the requirements of Theorem 2 are met for F , JF , and G on U × V
and the desired claims follow. �

Corollary 2 (Path differentiable inverse function theorem) Let U and V be open neighborhoods
of 0 in Rn and Φ : U → V path differentiable with Φ(0) = 0. Assume that Φ has a conservative Jaco-
bian JΦ such that JΦ(0) contains only invertible matrices. Then, locally, Φ has a path differentiable
inverse Ψ with a conservative Jacobian given by

JΨ(y) =
{
A−1 : A ∈ JΦ(Ψ(y))

}
.

Proof: Consider the function F (x, y) = x − Φ(y) and observe that it satisfies the assumptions of
Corollary 1, so that we obtain a function G which is exactly the desired inverse. �

It is tempting to think that Corollary 2 should come with a formula of the type
Jacc Ψ(z) = [Jacc Φ(Ψ(z))]−1,

for all z in a neighborhood of 0. This happens to be false, making the use of the notion of conservativity
necessary to catpure the artifacts resulting from application of ordinary calculus rules to nonsmooth
inverse functions. Note that since the inverse function theorem is a special case of the implicit
function theorem, this also rules out a Clarke calculus for implicit functions.
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Figure 4: Illustration of the four different sets in the explicit piecewise affine representation of Ψ = Φ−1.

Example 1 (Counterexample to a potential “Clarke implicit differential calculus”) We follow
the example given by Clarke [19, Remark 7.1.2]. Consider the mapping Φ : R2 → R2 given
by

Φ(x, y) = (|x|+ y, 2x+ |y|) .
It is locally Lipschitz and semialgebraic and thus path differentiable with its Clarke Jacobian a
conservative Jacobian. We have the following explicit piecewise linear representation

Φ(x, y) =


(x+ y, 2x+ y) if x ≥ 0 and y ≥ 0,

(x+ y, 2x− y) if x ≥ 0 and y ≤ 0,

(−x+ y, 2x− y) if x ≤ 0 and y ≤ 0,

(−x+ y, 2x+ y) if x ≤ 0 and y ≥ 0

from which we deduce that the Clarke Jacobian of Φ has the following structure

Jacc Φ(0) = conv

{[
1 1
2 1

]
,

[
1 1
2 −1

]
,

[
−1 1
2 −1

]
,

[
−1 1
2 1

]}
where the matrices correspond to linear maps in the explicit definition of Φ. Therefore Jacc Φ(0)
is an affine set whose dimension is 2. In addition, it contains only invertible matrices [19, Remark
7.1.2]. We will use the following explicit matrix inverses:[

1 1
2 1

]−1

=

[
−1 1
2 −1

]
,

[
1 1
2 −1

]−1

=
1

3

[
1 1
2 −1

]
,

[
−1 1
2 1

]−1

=
1

3

[
−1 1
2 1

]
.

Using the above, one can verify that Φ is a homeomorphism whose inverse is also piecewise linear.
We set Ψ = Φ−1; it is given by

Ψ(u, v) = (v − u, 2u− v) for (u, v) ∈ A,

Ψ(u, v) =
1

3
(u+ v, 2u− v) for (u, v) ∈ B,

Ψ(u, v) = (u+ v, 2u+ v) for (u, v) ∈ C,

Ψ(u, v) =
1

3
(v − u, 2u+ v) for (u, v) ∈ D,

where the subsets A,B,C,D form a “partition”2 of R2

A =
{

(u, v) ∈ R2 : v − u ≥ 0, 2u− v ≥ 0
}

(corresponding to x ≥ 0, y ≥ 0),

B =
{

(u, v) ∈ R2 : u+ v ≥ 0, 2u− v ≤ 0
}

(corresponding to x ≥ 0, y ≤ 0),

C =
{

(u, v) ∈ R2 : u+ v ≤ 0, 2u+ v ≤ 0
}

(corresponding to x ≤ 0, y ≤ 0),

D =
{

(u, v) ∈ R2 : v − u ≤ 0, 2u+ v ≥ 0
}

(corresponding to x ≤ 0, y ≥ 0).

2Each piece having two half lines in common with other pieces.
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A graphical representation of these sets is given in Figure 4.

From this explicit piecewise linear representation of Ψ, we deduce that its Clarke Jacobian at 0 is the
following

Jacc Ψ(0) = conv

{[
1 1
2 1

]
,

[
−1 1
2 −1

]
,

1

3

[
−1 1
2 1

]
,

1

3

[
1 1
2 −1

]}
.

For a given subset of linear space we denote by aff F the affine span of F . It is easy to see
that dim aff[ Jacc Φ(0)] = 2 while dim aff [Jacc Ψ(0)] = 3. More concretely, vectorialize the set

Jacc Ψ(0) at M = 1
3

[
1 1
2 −1

]
by considering the matrices given by[

1 1
2 1

]
−M,

[
−1 1
2 −1

]
−M,

1

3

[
−1 1
2 1

]
−M

that is
1

3

[
2 2
4 4

]
,

1

3

[
−4 2
4 −2

]
,

1

3

[
−2 0
0 2

]
.

These matrices are independent so that Jacc Ψ(0) is an affine set whose dimension is 3.

Matrix inversion is a semialgebraic diffeomorphism (when restricted to invertible matrices) so
it preserves dimension. For this reason the set [Jacc Ψ(0)]−1 = {M−1,M ∈ Jacc Ψ(0)} is a
semialgebraic set of dimension 3, and we have

[Jacc Ψ(0)]−1 6⊂ [Jacc Φ(0)]. (17)

However, we have shown that z 7→ [Jacc Ψ(Φ(z))]−1 is a conservative Jacobian. This example
excludes the possibility of a simple inverse (implicit) function theorem with a “Clarke Jacobian
calculus” and illustrates the requirement for a more flexible notion (conservativity) when using
calculus rules in an implicit function (or inverse function) context.

The Lipschitz definable implicit and inverse function theorems. In the definable (e.g. semial-
gebraic case) our results have a remarkably simple expression that we give below.

Theorem 4 (Lipschitz definable inverse function theorem) Let U and V be two open neighbor-
hoods of 0 in Rn and Φ : U → V a locally Lipschitz definable mapping with Φ(0) = 0. Assume that
Φ has a conservative Jacobian JΦ such that JΦ(0) contains only invertible matrices. Then, locally, Φ
has locally Lipschitz definable inverse Ψ with a conservative Jacobian given by

JΨ(y) =
{
A−1 : A ∈ JΦ(Ψ(y))

}
.

Proof: It suffices to use the fact that definable mappings are path differentiable, see [14], and that the
the graph of Ψ is given by a first-order formula. �

The same type of arguments gives:

Theorem 5 (Lipschitz definable implicit function theorem) Let F : Rn × Rm → Rm be locally
Lipchitz and definable with conservative Jacobian JF . Let (x̂, ŷ) ∈ Rn×Rm be such that F (x̂, ŷ) =
0. Assume that JF (x̂, ŷ) is convex and that, for each [A B] ∈ JF (x̂, ŷ), the matrix B is invertible.
Then, there exists an open neighborhood U×V ⊂ Rn×Rm of (x̂, ŷ) and a locally Lipschitz definable
function G : U → V such that, for all x ∈ U ,

F (x,G(x)) = 0.

Moreover, for each x ∈ U , the mapping JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
is conservative

for G.

C Results from Section 3

C.1 Monotone operator deep equilibrium networks

Proposition 3 (Path differentiation through monotone layers) Assume that Jσ is convex-valued
and that, for all J ∈ Jσ(Wz(W, b) + b), the matrix (Idm − JW ) is invertible. Consider a loss-like
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function ` : Rm → R with conservative gradient D` : Rm ⇒ Rm, then g : (W, z) 7→ `(z(W, b)) is
path differentiable and has a conservative gradient Dg defined through

Dg : (W, b) ⇒
{
JT (Idm − JW )−T vzT , JT (Idm − JW )−T v) : J ∈ Jσ(Wz + b), v ∈ D`(z)

}
.

Proof: The quantity z(W, b) is defined implicitly by the relation

z(W, b)− σ(Wz(W, b) + b) = 0. (18)

We set M = m+m+m×m and represent the pair (W, b) ∈ Rm×m × Rm as (w1, . . . , wm, b) ∈
RM−m where wi ∈ Rm is the i-th row of W for i ∈ {1, . . . ,m}. We denote by B : RM → Rm the
bilinear map defined as

B(w1, . . . , wm, b, z) := Wz + b

so that B is infinitely differentiable. Equation (18) is then equivalent to

z − (σ ◦ B)(w1, . . . , wm, b, z) = 0.

We denote by F the mapping

F : (w1, . . . , wm, b, z) 7→ z − (σ ◦ B)(w1, . . . , wm, b, z).

For i ∈ {1 . . .m}, denote by Zi ∈ Rm×m the matrix whose i-th row is z, and remaining rows are
null. The Jacobian of B, JacB : RM → Rm×M is as follows:

JacB(w1, . . . , wm, b, z) = [Z1 . . . Zm Idm W ]

where [AB] is used to denote the columnwise concatenation of matrices A and B. By hypothesis, we
have a conservative Jacobian for σ, Jσ . Conservative Jacobians may be composed as usual Jacobians
[14, Lemma 5]. As B is continuously differentiable, JacB is also a conservative Jacobian for B.
Therefore, we have the following conservative Jacobian for F ,

JF (w1, . . . , wm, b, z) ⇒ {[−JZ1 . . . − JZm − J Idm − JW ] , J ∈ Jσ(Wz + b)} .

Finally, by hypothesis, for any W, b, and z such that F (W, b, z) = 0 and any J ∈ Jσ(Wz + b), the
matrix Idm−JW is invertible. Therefore, Theorem 2 applies and, setting M̃ = m×m+m = M−m,
the set-valued mapping

Jz : RM̃ ⇒ Rm×M̃

(w1, . . . , wm, b) ⇒
{

(Idm − JW )−1J [Z1 . . . Zm Idm] , J ∈ Jσ(Wz + b)
}

is conservative for (W, b) 7→ z(W, b) as defined in (18). We denote by Z ∈ Rm×M̃ the matrix
[Z1 . . . Zm Idm] appearing in the definition of Jz . Given the loss function `, the mapping J` : z 7→
{vT , v ∈ D`(z)} is a conservative Jacobian for ` [14, Lemma 3] and therefore, the set-valued
mapping

Jg : RM̃ ⇒ R1×M̃

(w1, . . . , wm, b) ⇒
{
vT (Idm − JW )−1JZ, J ∈ Jσ(Wz + b), v ∈ D`(z(W, b))

}
is a conservative Jacobian for g : (W, b) 7→ `(z(W, b)). Using [14, Lemma 4], we obtain a conserva-
tive gradient field for g by a simple transposition as follows

Dg : (w1, . . . , wm, b) ⇒
{
ZTJT (Idm − JW )−T v, J ∈ Jσ(Wz + b), v ∈ D`(z(W, b))

}
.

We now identify the terms by block computation; recall that Z = [Z1 . . . Zm Idm] and that Zi ∈
Rm×m is the matrix whose i-th row is z with remaining rows null for each i ∈ {1, . . . ,m}. The term
associated to b corresponds to the lastm×m block in Z, it is indeed of the form JT (Idm−JW )−T v.
Similarly, for each i ∈ {1, . . . ,m}, the term associated to wi is of the form ZTi J

T (Idm − JW )−T v.
For any a ∈ Rm and i ∈ {1, . . . ,m}, we have ZTi a = aiz where ai is the i-th coordinate of a
and z corresponds to the i-th row of ZTi . So the component associated to wi in Dg is of the form
[JT (Idm − JW )−T v]iz, where [·]i denotes the i-th coordinate. Since wi denotes the i-th row of W ,
rearranging this expression in matrix format provides a term of the form JT (Idm − JW )−T vzT for
the W component. This concludes the proof. �
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C.2 Optimization layers: the conic program case

Let us first expand on the link between zeros of the residual map and KKT solutions. We provide
a simplified view of [17, 3], ignoring cases of infeasibility and unboundedness. Note that this
corresponds to enforcing w = 1 as done in [2, 3].

The following is due to Moreau [38]. Recall that the polar of a closed convex cone K ⊂ Rm is
given by K◦ =

{
x ∈ Rm, yTx ≤ 0, ∀y ∈ K

}
, in which case (K◦)◦ = K and the dual cone satisfies

K∗ = −K◦.

Proposition 6 Let s, y, v ∈ Rm; the following are equivalent

• v = s+ y, s ∈ K, y ∈ K◦, sT y = 0.

• s = PK(v), y = PK◦(v).

We may reformulate this equivalence as follows, using changes of signs on y and v, noticing that
−PK◦(−·) = PK∗(·) since K∗ = −K◦,

(i) v = y − s, s ∈ K, y ∈ K∗, sT y = 0.
(ii) s = PK∗(v)− v, y = PK∗(v).

Now the KKT system in (x, y, s) for problem (P) and (D) can be written as follows (see, for example,
[17]),

AT y + c = 0, y ∈ K∗

−Ax+ b = s, s ∈ K
sT y = 0

which is equivalent, by setting v = y − s and u = x, to

ATPK∗(v) + c = 0

−Au+ b = PK∗(v)− v
(19)

The system (19) is equivalent to N (z,A, b, c) = 0 with z = (u, v). We have shown that (x, y, s)
is a KKT solution to the system if and only if (x, y, s) = (u, PK∗(v), PK∗(v) − v) = φ(z) for
z = (x, y − s) such that N (z,A, b, c) = 0.

Proposition 4 (Path differentiation through cone programming layers) Assume that PK∗ , N
are path differentiable, denote respectively by JPK∗ , JN corresponding convex-valued conservative
Jacobians. Assume that for all A, b, c ∈ Rm×n×Rm×Rn, z = ν(A, b, c) ∈ Rn×Rm is the unique
solution toN (z,A, b, c) = 0, and that all matrices formed from the N first columns of JN (z,A, b, c)
are invertible. Then, φ, ν, and sol are path differentiable functions with conservative Jacobians:

Jν(A, b, c) :=
{
−U−1V : [U V ] ∈ JN (ν(A, b, c), A, b, c)

}
,

Jφ(z) :=

[
Idn 0
0 JPK∗ (v)
0 (JPK∗ (v)− Idm)

]
,

Jsol(A, b, c) := Jφ(ν(A, b, c))Jν(A, b, c).

Proof: First, the assumptions clearly ensure that ν and sol are single-valued and can be interpreted as
functions such that sol = φ ◦ ν. By assumption, φ is differentiable. We will first use Corollary 1 to
obtain a conservative Jacobian for ν and then justify the expression for φ. The composition obtained
for Jsol results from Proposition 2.

LetA, b, c ∈ Rm×n×Rm×Rn, z := (u, v) ∈ Rn×Rm such thatN (z,A, b, c) = 0. By assumption,
the submatrices formed from the first N columns of JN (z,A, b, c) are invertible. Then applying
Corollary 1, there exist open neighborhoods U ⊂ Rm×n × Rm × Rn and V ⊂ RN and a locally
Lipschitz function G : U → V satisfying, for all s ∈ U N (G(s), s) = 0 with G is path differentiable.
Since, by assumption, the solution ν(A, b, c) toN (ν(A, b, c), A, b, c) = 0 is unique, ν coincides with
G on U . Thus, ν is path differentiable and a conservative Jacobian for ν is given by:

Jν(A, b, c) =
{
−U−1V : [U V ] ∈ JN (ν(A, b, c), A, b, c)

}
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Let us now turn to φ. Since PK∗ has for conservative Jacobian JPK∗ , we may construct a conservative
Jacobian for the function φ as follows using [14, Lemmas 3, 4, and 5]:

Jφ(z) =

[
Idn 0
0 JPK∗ (v)
0 (JPK∗ (v)− Idm)

]
.

It follows from Proposition 2 that the composition sol = φ ◦ ν is also path differentiable with
conservative Jacobian

Jsol(A, b, c) = Jφ(ν(A, b, c))Jν(A, b, c).

�

C.3 Hyperparameter selection for nonsmooth Lasso-type model

Proposition 5 (Conservative Jacobian for the solution mapping) For all λ ∈ R, assume XT
E XE

is invertible where XE is the submatrix of X formed by taking the columns indexed by E . Then β̂(λ)
is single-valued, path differentiable with conservative Jacobian, Jβ̂ (λ), given for all λ as{[
−eλ

(
Idp − diag (q)

(
Idp −XTX

))−1
diag (q) sign

(
β̂ −XT

(
Xβ̂ − y

))]
: q ∈M(λ)

}

whereM(λ) ⊂ Rp is the set of vectors q such that qi ∈


{1} i ∈ supp β̂

[0, 1] i ∈ E \ supp β̂

{0} i 6∈ E
.

Proof: Our goal is to apply Corollary 1 to the path differentiable “optimality gap” function F :
R× Rp → Rp defined in (3). For each λ ∈ R, the invertibility of XT

E XE guarantees the uniqueness
of β̂ (λ) (see [39], [36, Lemma 1]), i.e., β̂ : R → Rp is a function. Because ‖·‖1 is separable, the
components of the prox can be written, for any (λ, u) ∈ R× Rp, for all i ∈ {1, . . . , p}, as

[proxeλ‖·‖1 (u)]i = proxeλ|·| (ui)

which have Clarke subdifferentials

∂cproxeλ|·| : ui ⇒ 1ui,eλ ×
[

1
−sign(ui)

]
where 1eλ (ui) :=


0 |ui| < eλ

[0, 1] |ui| = eλ

1 |ui| > eλ
.

Thus a conservative Jacobian for F at (λ, β) is given by

JF : (λ, β) ⇒ {[eλdiag(q)sign(β −XT (Xβ − y))︸ ︷︷ ︸
A

Idp − diag(q)
(
Idp −XTX

)︸ ︷︷ ︸
B

] : q ∈ C}

(20)

with C := {q : qi ∈ 1eλ
(
βi −XT

i (Xβ − y)
)
}. Let us estimate the factors qi above in terms of

the equicorrelation set E . Recall the KKT conditions [46] for the Lasso problem; a solution β̂ must
satisfy

XT
(
y −Xβ̂

)
= eλδ where δi ∈

{{
sign

(
β̂i

)}
i ∈ supp β̂

[−1, 1] i 6∈ supp β̂
. (21)

For i ∈ supp β̂, (21) gives

XT
i

(
y −Xβ̂

)
= eλsign

(
β̂i

)
=⇒ sign

(
XT
i

(
y −Xβ̂

))
= sign

(
β̂i

)
=⇒ sign

(
β̂i

)
= sign

(
β̂i −XT

i

(
Xβ̂ − y

))
= sign

(
XT
i

(
y −Xβ̂

))
.
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Noting that
∣∣∣β̂i∣∣∣ > 0 and

∣∣∣XT
i

(
y −Xβ̂

)∣∣∣ = eλ since i ∈ supp β̂ ⊂ E ,∣∣∣β̂i −XT
i

(
Xβ̂ − y

)∣∣∣ = sign
(
β̂i −XT

i

(
Xβ̂ − y

))(
β̂i −XT

i

(
Xβ̂ − y

))
= sign

(
β̂i

)
β̂i + sign

(
XT
i

(
y −Xβ̂

))
XT
i

(
y −Xβ̂

)
=
∣∣∣β̂i∣∣∣︸︷︷︸
>0

+
∣∣∣XT

i

(
y −Xβ̂

)∣∣∣︸ ︷︷ ︸
=eλ

=⇒ qi = 1.

For i 6∈ E , β̂i = 0 since supp β̂ ⊂ E . By (21), we have
∣∣∣XT

i

(
y −Xβ̂

)∣∣∣ ≤ eλ. However, since
i 6∈ E , the inequality is strict ∣∣∣XT

i

(
y −Xβ̂

)∣∣∣ < eλ

and can be used to solve for qi∣∣∣β̂i −XT
i

(
Xβ̂ − y

)∣∣∣ =
∣∣∣XT

i

(
y −Xβ̂

)∣∣∣ < eλ =⇒ qi = 0.

Finally, for i ∈ E \ supp β̂, β̂i = 0 and
∣∣∣XT

i

(
Xβ̂ − y

)∣∣∣ = eλ which gives∣∣∣β̂i −XT
i

(
Xβ̂ − y

)∣∣∣ =
∣∣∣XT

i

(
Xβ̂ − y

)∣∣∣ = eλ

and thus qi ∈ [0, 1]. Putting everything together we get an expression for qi in terms of E and supp β̂

qi ∈


{1} i ∈ supp β̂

[0, 1] i ∈ E \ supp β̂

{0} i 6∈ E
, (22)

i.e., q ∈M. We proceed to show that B is invertible for all λ ∈ R. Denote Q := diag (q) for brevity;
using the same argument of [50, Theorem 2] involving similarity transformations and continuity, the
matrix B is invertible if and only if

B̃ := Idp −Q1/2
(
Idp −XTX

)
Q1/2 = Idp −Q+Q1/2XTXQ1/2

is invertible. Since B̃ � Idp −Q, it follows that ker
(
B̃
)
⊂ ker (Idp −Q), however ker (Idp −Q)

is a subspace of WE := span {ej : j ∈ E} corresponding to qj = 1. Since qj = 1 =⇒ j ∈ E
by (22), the restriction of B̃ to ker (Idp −Q) is a principal submatrix of (possibly equal to) XT

E XE
which is invertible by assumption. Thus B is invertible and applying Corollary 1 then yields the final
result. �

Remark 4 Taking qi = 1 for all i ∈ E gives a selection of the conservative Jacobian for β̂ in
Proposition 5, for all j ∈ {1, . . . , p},

[Jβ̂ (λ)]j = −eλ
[(
XT
E XE

)−1
sign

(
XT
E

(
y −Xβ̂

))]
j

if j ∈ E , and [Jβ̂ (λ)]j = 0 otherwise.

This corresponds to the directional derivative given by LARS algorithm [27], see also [36]. Alterna-
tively, taking qi = 0 for i 6∈ supp β̂ gives, for all j ∈ {1, . . . , p},

[Jβ̂(λ)]j = −eλ
[
(XT

supp β̂
X−1

supp β̂
)sign(XT

supp β̂
(y −Xβ̂))

]
j
, if j ∈ supp β̂

and [Jβ̂(λ)]j = 0 otherwise. This is the weak derivative given by [9]. Both of these expressions are

particular selections in Jβ̂ , which is the underlying conservative field. They agree if E = supp β̂,
which holds under qualification assumptions, see for example [10] and references therein.
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D Results from Section 4

Theorem 3 (Convergence result) Consider minimizing ` given in (8) using algorithm (10) under
Assumption 1. Assume furthermore the following

• Step size:
∑+∞
k=1 αk = +∞ and αk = o(1/ log(k)).

• Boundedness: there exists M > 0, and K ⊂ Rp open and bounded, such that, for all
s ∈ (smin, smax) and w0 ∈ cl K, ‖wk‖ ≤M almost surely.

For almost all w0 ∈ K and s ∈ (smin, smax), the objective value `(wk) converges and all accumula-
tion points w̄ of wk are Clarke-critical in the sense that 0 ∈ ∂c`(w̄).

Proof: We first show that if w0 is taken uniformly at random on K then, almost surely, all iterates
(wk)k∈N are random variables which are absolutely continuous with respect to the Lebesgue measure.
This is essentially a repeating of the arguments developed in [11] for constant step sizes. Assume
from now on that w0 is random, uniformly on K.

For i ∈ {1, . . . , N}, denoting by φ(·, i) : Rp → Rp the output of backpropagation applied to
`i = gi,L ◦ gi,L−1 ◦ . . . ◦ gi,1, we have that x 7→ φ(x, i) is a selection in the conservative Jacobian
(actually conservative gradient) Ji. Therefore, using [11, Proposition 1] the sequence (wk)k∈N is an
SGD sequence in the sense of [11, Definition 2].

Compositions of definable functions and functions implicitly defined based on definable functions
are definable. Therefore by Assumption 1, for each i ∈ {1, . . . , N}, `i is locally Lipschitz and
definable and thus so is `. Definable functions are twice differentiable almost everywhere so that [11,
Proposition 3] applies. Following the recursion argument in [11, Proposition 2], there exists a set
Γ ⊂ (0,∞) of full Lebesgue measure such that, if sαk ∈ Γ for all k ∈ N, each iterate (wk)k∈N is a
random variable which is absolutely continuous with respect to the Lebesgue measure. We have that

{s ∈ (smin, smax) : ∃k ∈ N, sαk ∈ (0,∞)\Γ} =

∞⋃
k=1

{s ∈ (smin, smax) : sαk ∈ (0,∞)\Γ}

is a countable union of null sets and thus a null set, i.e., for almost all s ∈ (smin, smax), for all k ∈ N,
sαk ∈ Γ. As a result, for almost all s, wk has a density with respect to the Lebesgue measure for all
k ∈ N.

Conservative gradients are gradients almost everywhere and so there is a full measure set S such that,
for all w ∈ S and all i ∈ {1, . . . , N}, Ji(w) = {∇`i(w)} [14, Theorem 1]. Combining this with the
fact that each element of the sequence is absolutely continuous with respect to the Lebesgue measure,
the same argument as in [11, Theorem 1] gives, for almost all s ∈ (smin, smax), for every k ∈ N,
almost surely

wk+1 = wk − sαk∇`Ik(wk)

and

E(wk+1|w0, . . . , wk) = wk − sαk∇`(wk) = wk − sαk∂c`(wk).

Therefore, the sequence is actually a Clarke stochastic subgradient sequence almost surely (see, for
example, [24]) and thus can be analyzed using the method developed in [8]. Indeed, conservativity
ensures that ` is a Lyapunov function for the differential inclusion ẇ ∈ −∂c`(w), that is decreasing
along solutions, strictly outside of crit` := {w ∈ Rp, 0 ∈ ∂c`(w)}. Since ` is definable, the set
of its critical values, `(crit`) is finite [13] and thus has empty interior. By [8, Theorem 3.6] and
[8, Proposition 3.27], it is then guaranteed that `(w̄) is constant for all accumulation points w̄ of
(wk)k∈N and that 0 ∈ ∂c`(w̄). This occurs almost surely with respect to the randomness induced by
w0 and (Ik)k∈N and therefore it is true with probability one for almost all w0. �
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E Results from Section 5

E.1 Cyclic gradient descent

E.1.1 Fixed-point formulation

Consider the optimization problem

(s1, s2) ∈ arg max
(a,b)∈[0,3]×[0,5]

(a+ b)(−3x+ y + 2). (23)

The optimality condition for this problem can be expressed using the fixed-point equation of the
projected gradient descent algorithm. Denote for x, y ∈ R2, qx,y : (a, b) 7→ (a+ b)(−3x+ y + 2);
we can verify (s1, s2) is solution to (11) if and only if it satisfies the equality

[
s1

s2

]
= PU

([
s1

s2

]
+∇qx,y(s1, s2)

)
= PU

([
s1

s2

]
+

[
−3x+ y + 2
−3x+ y + 2

])
.

Where PU is the projection on the set U := [0, 3]× [0, 5] which can be implemented as a difference
of relu functions

PU (x, y) = relu(x, y)− relu(x− 3, y − 5).

Let h : R2 × R× R→ R2 be the function

h : (s, x, y) 7→ PU

([
s1

s2

]
+

[
−3x+ y + 2
−3x+ y + 2

])
.

Then the original problem (23) is equivalent to the fixed point equation s = h(x, y, s). Indeed, we
can easily verify the solutions s : R2 → R2 to (23) are

s(x, y) =

{ {(0, 0)} if −3x+ y + 2 < 0
{(3, 5)} if −3x+ y + 2 > 0

[0, 3]× [0, 5] if −3x+ y + 2 = 0

which creates a discontinuity for the function `(·, s(·)), now expressed as

`(x, y, s(x, y)) =

{
x2 + 4y2 if −3x+ y + 2 < 0

(x− 3)2 + 4(y − 5)2 if −3x+ y + 2 > 0
.

E.1.2 Perturbed experiments

Perturbed experiments are done on the following perturbed loss function

`ε(x, y, s) =

(
1

4
+ ε1

)
(x− s1)2 + (1 + ε2)(y − s2)2

s ∈ sε(x, y) := arg max {(a+ b)(−(3 + ε3)x+ y + 2 + ε4) : a ∈ [0, 3− ε5], b ∈ [0, 5− ε6]}
with ε1, . . . , ε6 the perturbations. In Figure 2b, we consider several realizations of independent
Gaussian variables ε1, . . . , ε6 ∼ N (0, σ2) with σ2 = 0.05; despite this added noise, the unwanted
dynamics persist.

E.1.3 Conic canonicalization

Let c ∈ R2 be a parameter vector and consider the problem

max
x∈[0,3]×[0,5]

cTx.

It can be formulated as a cone program (P) and its dual (D):
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(P) inf cTx
subject to Ax+ s = b

s ∈ K
(D) inf bT y

subject to AT y + c = 0
y ∈ K∗,

(24)

where

A =

[
Id2

−Id2

]
and b =

3
5
0
0

 .
Let (x, y, s) be a solution to the cone program (24) where x is the primal variable, y is the dual
variable, and s the primal slack variable. Then it follows from (6) that a solution z to N (z, c) = 0
is obtained by z = (x, y − s). For c = (0, 0), the solutions are x ∈ [0, 3]× [0, 5], s = b−Ax, and
y = (0, 0, 0, 0), hence the uniqueness assumption for Proposition 4 is not satisfied.

E.1.4 A chaotic dynamics in R4

We combine two cycles of the previous example into a gradient dynamics in R4. To perform this, we
consider a block-separable sum of the same function where we add a scaling parameter η > 0:

g : (x, y, z, w) 7→ f(x, y) + ηf(z, w).

This will combine the two cycles but the parameter η will make one cycle “faster” than the other.
Projecting the path of the gradient descent on the variables (y, z) we obtain a chaotic dynamics filling
the space as the number of iterations increases.

(a) (b) (c)

Figure 5: Gradient path after (a) 500, (b) 1000 and (c) 5000 iterations.

E.2 Lorenz-like attractor

E.2.1 Objective function is a quadratic form

Set u = (x, y, z), then

uTF (u) = σx(y − x) + xy(ρ− z)− y2 + xyz − βz2

= −σx2 − y2 − βz2 + (σ + ρ)xy

=
1

2
uTHu

where H =

[−2σ σ + ρ 0
σ + ρ −2 0

0 0 −2β

]
.

For (σ, ρ, β) = (10, 28, 8
3 ), g has for unique critical point (0, 0, 0) which is a strict saddle-point.

26



E.3 License of assets used

All assets used: cvxpy, cvxpylayers, and JAX were released under the Apache License, Version 2.0,
January 2004, http://www.apache.org/licenses/.

27


	Introduction
	Implicit Differentiation with Conservative Jacobians
	Nonsmooth implicit differentiation in Machine Learning
	Optimizing implicit problems with gradient descent
	Numerical experiments
	Conclusion and future work
	Lexicon
	Conservative fields
	A simpler and more operational view on definability

	Results from Section 2
	Results from Section 3
	Monotone operator deep equilibrium networks
	Optimization layers: the conic program case
	Hyperparameter selection for nonsmooth Lasso-type model

	Results from Section 4
	Results from Section 5
	Cyclic gradient descent
	Fixed-point formulation
	Perturbed experiments
	Conic canonicalization
	A chaotic dynamics in R^4

	Lorenz-like attractor
	Objective function is a quadratic form

	License of assets used


