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A continuous-time particle system on the real line satisfying the branching property and an exponential integra-
bility condition is called a branching Lévy process, and its law is characterized by a triplet (σ2, a,Λ). We obtain
a necessary and sufficient condition for the convergence of the derivative martingale of such a process to a non-
trivial limit in terms of (σ2, a,Λ). This extends previously known results on branching Brownian motions and
branching random walks. To obtain this result, we rely on the spinal decomposition and establish a novel zero-one
law on the perpetual integrals of centred Lévy processes conditioned to stay positive.
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1. Introduction

A branching random walk is a discrete-time particle system on the real line, which can be constructed
as follows. It starts with an initial individual at position 0. This individual gives birth at time 1 to
children, that are positioned according to a certain point process. Then each child gives birth at time 2
to offspring positioned around their parent according to an i.i.d. copy of that point process. The process
continues, each generation of individuals giving birth independently to children positioned around their
parent, according to a shifted copy of the same point process.

To describe this process, we introduce some notation. We denote by

P =
{
x = (x1, x2, . . .) ∈ (−∞,∞]N : x1 ≤ x2 ≤ · · · and lim

n→∞
xn =∞

}
the space of non-decreasing sequences x on (−∞,∞] that converge to ∞. Equivalently, these se-
quences can be identified with Radon point measures µ on R with finite mass on (−∞,0] through the
identification

µ=
∑
n≥1

1{xn<∞}δxn ⇐⇒ x =
(

inf {y ∈R : µ((−∞, y])≥ n} , n≥ 1
)
.

In particular, if µ=
∑n
j=1 xj , it is identified with the element x = (x1, . . . xn,∞,∞, · · · ) ∈ P . In other

words, with this notation the point∞ is taken as a cemetery state, and the Dirac mass δ∞ is identified
to 0. For y ∈R, we denote by τyx = (xn + y,n≥ 1) the translation operator on P .
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Then, we can describe the branching random walk as a P-valued Markov process (Xn, n ≥ 0)
satisfying the branching property: for all 0≤ k ≤ n, setting x = Xk, we have

Xn =

∞∑
j=1

τxjX
(j)
n−k in law, where X

(j)
n−k are i.i.d. copies of Xn−k. (1.1)

Observe that if there exists θ ≥ 0 such that c= E
(∫

e−θxX1(dx)
)
<∞, then we have Xk ∈ P for all

k ∈N a.s.; indeed, by the branching property we then have E
(∫

e−θxXk(dx)
)

= ck.
Branching Lévy processes are the continuous-time counterparts of branching random walks. A

branching Lévy process (with possibly infinite birth intensity) is a continuous-time particle system
on the real line, in which particles move according to i.i.d. Lévy processes, and reproduce in a Poisson
fashion, possibly on an everywhere dense countable set of times. Branching Lévy processes were in-
troduced in [8], as an intermediate tool to study homogeneous growth-fragmentation processes. They
can be constructed as increasing limits of Uchiyama-type continuous-time branching random walks,
introduced in [42].

In [10], it is proved that branching Lévy processes are the unique càdlàg (for the topology of vague
convergence) P-valued processes Z that satisfy the following two properties.

Branching property: for all 0≤ s≤ t, setting z = Zs,

Zt =

∞∑
j=1

τzjZ
(j)
t−s in law, where Z

(j)
t−s are i.i.d. copies of Zt−s. (1.2)

Exponential integrability: there exists θ > 0 such that for all t≥ 0,

E
(∫

e−θxZt(dx)

)
<∞. (1.3)

The class of branching Lévy processes generalizes several classical models, including the branching
Brownian motion, continuous-type branching random walks [42], branching Lévy processes with finite
birth intensity [31], and, up to an exponential transform, homogeneous fragmentations [7] and com-
pensated growth-fragmentations [8]. Observe that the branching property implies that for all t > 0, the
process (Znt, n≥ 0) is a branching random walk.

The law of a branching Lévy process is characterized by a triplet (σ2, a,Λ), with σ2 ≥ 0, a ∈R and
Λ a sigma-finite measure on P with the following integrability conditions. We assume that∫

P
1∧ x21Λ(dx)<∞, (1.4)

and that there exists θ ≥ 0 satisfying∫
P

(
e−θx11{x1<−1} +

∑
j≥2

e−θxj1{xj>−∞}
)

Λ(dx)<∞. (1.5)

Informally, the branching Lévy process can be described as follows: each particle moves independently
according to a Lévy process with diffusion coefficient σ, drift a, and Lévy jump measure the image
of Λ by the application x 7→ x1. Simultaneously, the particle gives birth to children in a Poissonian
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fashion, in such a way that at rate Λ(dx), a particle makes a jump of x1 while simultaneously giving
birth to offspring positioned at distances x2, x3, . . . from the pre-jump position of the parent.

The set of individuals in a branching Lévy process can be indexed by using a generalization of
the Ulam–Harris notation, introduced by Shi and Watson in [40, Section 2] for the study of growth-
fragmentation processes. This enumeration allows the description of the genealogy of particles in a
branching Lévy process. For each t≥ 0, we denote by Nt the set of individuals alive at time t, and for
all s≤ t, by Xs(u) the position at time s of a particle u ∈Nt or its ancestor, if the particle is not born
yet at time s.

Condition (1.4) ensures that the trajectories of particles are well-defined Lévy processes. Condition
(1.5) implies (1.3) (see [10, Theorem 1.2(ii)]), which ensures that for all t≥0 the random measure∑
u∈Nt δXt(u) almost surely belongs to P .

Remark 1.1. The definition we give here of a branching Lévy process differs from the ones in [10, 9].
In those articles, the branching Lévy processes were constructed in such a way that they have finite
mass on [0,∞) a.s., instead of (−∞,0]. We choose to change this convention in order to be consistent
with the corresponding results for branching random walks in the boundary case, described in e.g. [14].

Under assumption (1.5), for all z ∈C with R(z) = θ and t≥ 0, we have by [10, Theorem 1.2(ii)]

E
( ∑
u∈Nt

e−zXt(u)
)

= exp(tκ(z)), (1.6)

where

κ(z) :=
σ2z2

2
− az +

∫
P

∑
j≥1

e−zxj − 1 + zx11{|x1|<1}Λ(dx) (1.7)

is called the cumulant generating function of the branching Lévy process. Equation (1.6) and the
branching property imply that

Wt(θ) :=
∑
u∈Nt

e−θXt−tκ(θ), t≥ 0

is a non-negative martingale. As such, its limit W∞ := limt→∞Wt exists a.s. and is finite. Whether
the terminal value is degenerate (i.e. W∞(θ) = 0 a.s.) or not has fundamental importance in the study
of branching processes, and has been investigated by a considerable amount of literature.

Under the condition that κ′(θ) := 1
i
d
dξκ(θ+ iξ)|ξ=0 exists and is finite, it is now well-known that

θκ′(θ)< κ(θ) (1.8)

is a necessary condition for the non-degeneracy of W∞(θ), and that, up to an additional integrability
assumption on Λ, this condition is also sufficient. This result was first proved by Bigggins [13] in the
context of branching random walks, by McKean [36] (see also Neveu [37]) for the branching Brownian
motion (which is the only branching Lévy process with continuous trajectories).

Lyons [33] then gave an elementary proof of this statement, by introducing the spinal decomposition,
a critical tool in the study of branching processes. Bertoin and Mallein [9] then adapted the proof of
Lyons to the settings of branching Lévy processes. A necessary and sufficient condition for the non-
degeneracy of W∞ regardless of the existence of κ′(θ) was obtained by Alsmeyer and Iksanov [1]
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for branching random walks, and by Iksanov and Mallein [26] for branching Lévy processes, by using
result on the finiteness of perpetual integrals.

In the boundary case, when (1.8) fails to hold, the role of the additive martingale is replaced by a
different martingale, which is not uniformly integrable. More precisely, if there exists θ∗ > 0 such that

θ∗κ′(θ∗) = κ(θ∗), (1.9)

then the martingale Wt(θ
∗) converges to 0 almost surely, as stated above. However, the process

Zt :=
∑
u∈Nt

(θ∗Xt(u) + tκ(θ∗))e−θ
∗Xt(u)−tκ(θ∗), t≥ 0 (1.10)

is a signed martingale, often called the derivative martingale. The almost sure limit Z∞ = limt→∞Zt,
if existing, is non-negative.

Assuming in addition that

κ′′(θ∗) := E
( ∑
u∈N1

(
X1(u) + κ′(θ∗)

)2
e−θ

∗X1(u)−κ(θ∗)
)
∈ (0,∞), (1.11)

Aïdékon [2] obtained sufficient integrability conditions for the non-degeneracy of Z∞ for branching
random walks. These conditions were shown to be necessary by Chen [20], who proved that if they do
not hold, the derivative martingale converges almost surely to 0. For the branching Brownian motion,
the optimal condition for the non-degeneracy of the limit of the derivative martingale was previously
obtained by Yang and Ren [43]. It is worth noting that with a proper rescaling, the critical martingale
Wt will converge to Z∞ (see e.g. [3] for a proof in the context of branching random walks and [16] for
a continuous-time extension).

When Zt converges to a non-degenerate limit Z∞, the random variable Z∞ is related to the maximal
displacement of the branching process. Lalley and Sellke [32] showed a deep connection between the
derivative martingale and the asymptotic behaviour of the maximal displacement of particles for the
branching Brownian motion. More precisely, they showed that for all y ∈R,

lim
t→∞

P
(

max
u∈Nt

Xt(u)≤
√

2t− 3

2
√

2
log t+ y

)
= E

(
exp

(
−CZ∞e−

√
2y
))

,

famously correcting an error in [36], who used the critical additive instead of the derivative martingale
(see the survey of Biggins and Kyprianou [15] on that subject). The convergence in law of the maxi-
mum of a branching random walk was proved by Aïdékon [2], which is again related to the derivative
martingale. This result was then extrapolated to branching Lévy processes by Dadoun [21]. To sum
up, obtaining necessary and sufficient conditions for the derivative martingale limit to be non-trivial is
relevant to understand the asymptotic properties of extremal particles in branching processes.

For branching Lévy processes with one-sided jumps, Shi and Watson [40] obtained sufficient con-
ditions for the convergence of the derivative martingale, by adapting spinal decomposition arguments
dating back to [34, 14]. The aim of this work is to obtain optimal integrability conditions for general
branching Lévy processes, which is, however, a much harder question. Note that since (Zn, n≥ 0) is
a branching random walk, the optimal integrability conditions of Aïdékon and Chen allow us to im-
mediately obtain a necessary and sufficient condition for the non-degeneracy of Z∞ in terms of the
law of Z1. However, this condition does not translate easily in terms of conditions on (σ2, a,Λ), as the
connection between the two quantities is intricate.

As a result, we instead refine the spinal decomposition method in [40] to prove the non-degeneracy
of Z∞, for which we still have to overcome some substantial challenges. The problem relies on the
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analysis of a Lévy process ξ conditioned to stay positive, in particular, a necessary and sufficient
condition for the finiteness of

∫∞
0 f(ξt)dt (a so-called perpetual integral), which is, to our knowledge,

not available in the literature. We build in the forthcoming Proposition 3.3 a novel zero-one law for the
finiteness of such perpetuities of Lévy processes conditioned to be positive, by using new techniques
from [30, 4]. This is another main contribution of this work and might be of independent interest.

2. Main results

The aim of this article is to obtain necessary and sufficient conditions for the non-degeneracy of Z∞,
the limit of the derivative martingale in a branching Lévy process. We first observe that up to a space-
time linear transform, the branching Lévy process can be assumed to be in the so-called boundary case,
which will simplify computations and notation later on.

More precisely, assuming (1.9) and (1.11), set for all t≥ 0, u ∈Nt and s≤ t

Ys(u) = θ∗Xs(u) + sκ(θ∗),

with θ∗ the unique positive solution of the equation θκ′(θ)−κ(θ) = 0. One immediately obtains that Y
is a branching Lévy process with characteristic triplet (σ2θ∗ , aθ∗ ,Λθ∗) which can be expressed explicitly
in terms of (σ2, a,Λ) and θ∗. Moreover, Λθ∗ satisfies (1.4) and (1.5) with θ = 1, and we have

logE
( ∑
u∈N1

e−Y1(u)
)

= logE
( ∑
u∈N1

e−θ
∗X1(u)

)
− κ(θ∗) = 0,

E
( ∑
u∈N1

Y1(u)e−Y1(u)
)

= E
( ∑
u∈N1

(θ∗X1(u) + κ(θ∗))e−θ
∗X1(u)−κ(θ∗)

)
= θ∗κ′(θ∗)− κ(θ∗) = 0,

and E
( ∑
u∈N1

Y1(u)2e−Y1(u)
)

= E
( ∑
u∈N1

(θ∗X1(u) + κ(θ∗))2e−θ
∗X1(u)−κ(θ∗)

)
= (θ∗)2κ′′(θ∗) ∈ (0,∞).

Therefore, up to a linear transformation, we can assume without loss of generality that the branching
Lévy process X satisfies

E
( ∑
u∈N1

e−X1(u)
)

= 1, E
( ∑
u∈N1

X1(u)e−X1(u)
)

= 0. (2.1)

Then we say that X is in the boundary case, in the language of [15]. The assumption (2.1) is classical
when studying spatial branching processes around their critical parameter. A classification of branching
random walks that can be assumed to be in the boundary case is given in the appendix of the arXiv
version of [28], or in [5]. Moreover, we also assume that

E
( ∑
u∈N1

X1(u)2e−X1(u)
)
∈ (0,∞), (2.2)

which is a second moment integrability condition, equivalent to (1.11).
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Note that a branching Lévy process X with characteristic triplet (σ2, a,Λ) satisfies (2.1), i.e. is in
the boundary case, if and only if (σ2, a,Λ) satisfies

σ2

2
=

∫
P

((∑
j≥1

(1 + xj)e
−xj
)
− 1

)
Λ(dx)

a=
σ2

2
+

∫
P

((∑
j≥1

e−xj
)
− 1 + x11{|x1|<1}

)
Λ(dx),

(2.3)

or equivalently κ(1) = κ′(1) = 0, in terms of the cumulant generating function κ defined in (1.7).
Similarly, (2.2) can be rewritten as∫

P

∑
i≥1

x2i e
−xiΛ(dx)<∞ ⇐⇒ κ′′(1) ∈ (0,∞). (2.4)

We now state our main result.

Theorem 2.1. Let (Xt(u), u ∈ Nt)t≥0 be a branching Lévy process satisfying (2.1) and (2.2), and
Zt =

∑
u∈NtXt(u)e−Xt(u) for t ≥ 0. The derivative martingale (Zt)t≥0 converges a.s. to a non-

negative non-trivial limit Z∞ if and only if∫
P

(
Y (x) log+(Y (x)− 1)2 + Ỹ (x) log+(Ỹ (x)− 1)

)
Λ(dx)<∞, (H)

where log+ : x ∈ [0,∞) 7→max(0, log(x)) and for any x ∈ P , we have set

Y (x) :=

∞∑
i=1

e−xi and Ỹ (x) :=

∞∑
i=1

1{xi≥0}xie
−xi .

Remark 2.2. By the branching property of a branching Lévy process, if Z∞ exists, then the event
{Z∞=0} is an inherited property of the underlying Galton-Watson tree (see [41, Discussion 5.4] for
a related argument for the discrete-time branching random walk). As a result, either Z∞ = 0 a.s. or
Z∞ > 0 a.s. on the survival set {Nt 6= ∅,∀t≥ 0} of the branching Lévy process.

As observed above, the convergence of the derivative martingale in a generic branching Lévy process
can be obtained from Theorem 2.1. We state here the result for a general branching Lévy process,
without assuming the boundary condition.

Theorem 2.3. Let (Xt(u), u ∈Nt)t≥0 be a branching Lévy process satisfying (1.9) and (1.11), and
Zt =

∑
u∈Nt(θ

∗Xt(u) + tκ(θ∗))e−θ
∗Xt(u)−tκ(θ∗) for t≥ 0. The derivative martingale (Zt)t≥0 con-

verges a.s. to a non-negative non-trivial limit Z∞ if and only if∫
P

(
Y (x) log+(Y (x)− 1)2 + Ỹ (x) log+(Ỹ (x)− 1)

)
Λ(dx)<∞, (H*)

where log+ : x ∈ [0,∞) 7→max(0, log(x)) and for any x ∈ P , we have set

Y (x) :=

∞∑
i=1

e−θ
∗xi and Ỹ (x) :=

∞∑
i=1

1{xi≥0}θ
∗xie

−θ∗xi .
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Proof. Consider the branching Lévy process (X ′s(u) := θ∗Xs(u) + sκ(θ∗), t ≥ 0, u ∈ Nt, s ≤ t). In
particular, X ′ satisfies the boundary condition and its Lévy measure Λ′ is the pushforward of Λ via
the function x 7→ θ∗x. By Theorem 2.1, the derivative martingale of X ′, which is identical to that of
X , converges a.s. to a non-negative non-trivial limit if and only if (H) holds for Λ′. Rewriting this
condition in terms of Λ leads to the result.

As we consider a general class of branching Lévy processes, Theorem 2.1 generalizes a few suf-
ficient conditions previously obtained in the literature: [11] for fragmentations, [40] for growth-
fragmentations, and [18] for branching Lévy processes with finite birth rate. It also generalizes the
necessary and sufficient condition obtained by [43] for branching Brownian motion.

The rest of the article is organised as follows. We introduce some well-known fact on Lévy processes
conditioned to stay positive in the next section, and establish a necessary and sufficient condition for
finiteness of associated perpetual integrals. In Section 4, we introduce the spinal decomposition of the
branching Lévy process associated to the additive and the derivative martingales. In Section 5.2, we
prove that under assumptions (2.1) and (2.2), (H) implies that the derivative martingale converges to
a non-degenerate limit using the same classical argument as in [33]. Finally, we prove the “necessary
part” of Theorem 2.1 in Section 5.3.

3. The many-to-one lemma and Lévy processes conditioned to stay
positive

We present in this section the many-to-one lemma, that links first moments of additive functionals of a
branching Lévy process with the law of an associated Lévy process. Then, we introduce some estimates
on Lévy processes, in particular defining the law of the Lévy process conditioned to stay positive.
We end this section by establishing a novel necessary and sufficient condition for the finiteness of a
perpetual integral of the Lévy process conditioned to stay positive.

3.1. The many-to-one lemma

One can observe that for all r ∈R, the function Ψ : r ∈R 7→ κ(1 + ir) can be rewritten as

Ψ(r) =−σ
2

2
r2 + iâr+

∫
R
eirx − 1 + rx1{|x|<1}π(dx), (3.1)

where

â= a− σ2 +

∫
P

∑
j≥1

xje
−xj1{|xj |<1} − x11{|x1|<1}Λ(dx), (3.2)

and π is the sigma-finite measure on R satisfying for all measurable non-negative functions f :∫
R
f(x)π(dx) =

∫
P

∑
j≥1

f(xj)e
−xjΛ(dx).

In other words, the function Ψ can be seen as the Lévy-Khinchine exponent of a Lévy process ξ with
diffusion term σ2, drift â and jump measure π. This fact can be related to the celebrated many-to-one
lemma in the context of branching random walks, which can be tracked back at least to the work of
Kahane and Peyrière [38, 29]: roughly speaking, the many-to-one lemma links additive moments of a
branching random walk with random walk estimates.



8

Lemma 3.1 (Many-to-one lemma). Let (Xt(u), u ∈ Nt)t≥0 be a branching Lévy process satisfying
(2.1) and ξ a Lévy process with Lévy-Khinchine exponent Ψ. For any non-negative measurable function
f and t≥ 0, we have

E
( ∑
u∈Nt

f(Xs(u), s≤ t)
)

= E
(
eξtf(ξs, s≤ t)

)
.

We refer to [10, Lemma 2.2] for a proof in branching Lévy processes settings, and to the proof of
[9, Lemma 2.2] for the computation of Ψ. The many-to-one lemma can be thought of as a preliminary
version of the spinal decomposition, that we describe in Section 4.2.

3.2. Lévy processes conditioned to stay positive

In this section, we denote by ξ a Lévy process with Lévy-Khinchine exponent Ψ given by (3.1). By
(2.1), (2.2) and the many-to-one lemma, this Lévy process is centred with finite variance. In particular,
it is oscillating, i.e.

lim sup
t→∞

ξt = lim sup
t→∞

−ξt =∞ a.s..

We recall in this section the definition of the law of ξ conditioned to stay above a given level. We refer
to [17, Section 2] for a self-contained construction of this law.

For all x ∈ R, we denote by τx := inf{t≥ 0 : ξt < x} the first passage time below level x of ξ, and
Px the law of (x + ξt, t ≥ 0), a Lévy process with Lévy-Khinchine exponent Ψ starting from x. To
simplify notation, we also write τ := τ0 and P := P0. We introduce the renewal function associated to
this process, defined for all x≥ 0 by

R(x) = E
(∫ ∞

0
1{τ−x>t}dLt

)
, (3.3)

where L is the local time at zero of the reflected process (ξt − infs≤t ξs, t ≥ 0). We extend this def-
inition by setting R(x) = 0 for all x < 0. Since ξ does not drift to −∞ (i.e. it is not the case that
limt→∞ ξt =−∞ a.s.), we know from [17, Lemma 1] that the function R satisfies for all x ∈ R and
t≥ 0

R(x) = E
(
R(ξt + x)1{τ−x>t}

)
= Ex(R(ξt)1{τ>t}). (3.4)

Let us recall some additional properties of R. If 0 is a regular point for the Lévy process ξ (i.e.
inf{t > 0: ξt = 0}= 0 a.s.), then R(0) = 0, otherwise we normalize L such that R(0) = 1. Moreover,
the function R is finite, continuous, increasing, and x 7→R(x)−R(0) is sub-additive on [0,∞). As ξ
has zero mean and finite variance, there exist 0< c1 < c? < c2 <∞ such that

c1x≤R(x)≤ c2(x+ 1) and lim
x→∞

R(x)

x
= c?. (3.5)

See [6, Theorem I.21] and [22, Theorem 7].
By (3.4), the process

(R(ξt+x)
R(x)

1{τ−x>t}, t ≥ 0
)

is a non-negative P-martingale. Let (Ft) be the

filtration associated to ξ. For all x > 0, we denote by P↑x the law defined for all t≥ 0 by

P↑x
∣∣∣
Ft

=
R(ξt)

R(x)
1{τ>t} · Px|Ft . (3.6)
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The probability P↑x is, in the sense of Doob’s h-transform, the law of the Lévy process ξ started from
x conditioned to stay positive.

Lévy processes conditioned to stay positive have been the subject of a large literature. We simply
recall from [17, Proposition 1] that, for all x > 0, the process ξ is transient under P↑x. Moreover, [17,
Theorem 1] gives the following path-decomposition at the last passage time of the overall minimum.

Lemma 3.2 ([17, Theorem 1]). We set ξ = infs≥0 ξs andm= sup{t≥ 0 : min(ξt, ξt−) = ξ}. For all
x > 0 and 0≤ y ≤ x, we have

P↑x(ξ ≥ y) =
R(x− y)

R(x)
1{y≤x}.

Moreover, the process (ξs+m − ξ, s≥ 0) is independent of (ξs, s≤m); the law of the former process,
that we write P↑, does not depend on x.

3.3. Perpetual integrals of a Lévy process conditioned to stay positive

Given ξ a càdlàg process on R+ and f a measurable function R+→ R+ a perpetual integral of ξ is
a variable defined as

∫∞
0 f(ξs)ds. The main result of this section is an integral criterion on f for the

finiteness of perpetual integrals of the Lévy process conditioned to stay positive.

Proposition 3.3. Let ξ be a centred Lévy process with finite variance starting from x > 0. We denote
by P↑x the law of this process conditioned to stay positive, as defined in (3.6). For every eventually
non-increasing non-negative bounded function f : [0,∞)→ [0,∞), we have∫ ∞

0
f(ξs)ds <∞ P↑x-a.s. ⇐⇒

∫ ∞
0

yf(y)dy <∞∫ ∞
0

f(ξs)ds=∞ P↑x-a.s. ⇐⇒
∫ ∞
0

yf(y)dy =∞.
(3.7)

We mention that the assumptions on f could be relaxed by adding requirements on the law of ξ,
such as requiring the law of ξ1 to be absolutely continuous with respect to the Lebesgue measure. We
also observe that ∫ ∞

0
f(ξs)1{ξs≤C}ds <∞, P↑x-a.s for all C > 0, (3.8)

by [17, Proposition 1] and boundedness of f , and that
∫ C
0 yf(y)dy <∞ by boundedness of f . As a

result, without loss of generality, we can assume the function f in Proposition 3.3 to be non-increasing.
If ξ is a Brownian motion under law P, then ξ under P↑x is a 3-dimensional Bessel process. In that

case, a similar result is known [39, Exercise XI 2.5]. For a random walk conditioned to stay positive, the
corresponding result is given by [20, Proposition 2.1]. For unconditioned Lévy processes, the perpetual
integrals have been studied in [23, 30]. Recent development of Baguley, Döring and Kyprianou [4]
gives a new characterization for transient strong Markov processes. However, to directly apply their
criterion would require characterizing all so-called supportive sets of a Markov process X , i.e. all sets
A such that P({Xt, t≥ 0} ⊆A)> 0. It is unclear how to do this for conditioned Lévy processes. For
this reason, Proposition 3.3 is not an immediate consequence of [4] but we will develop a proof based
on an intermediate result developed there (Lemma 3.5 below).
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We decompose the proof of Proposition 3.3 into three lemmas. In Lemma 3.4, we show that∫
f(ξs)ds is finite P↑x-a.s. if and only if its mean is finite, using Lemma 3.5. We then show in

Lemma 3.6 the equivalence between the finiteness of the mean and the integral test of the proposi-
tion. Finally, we show that

∫∞
0 f(ξs)ds <∞ has a 0-1 law, which yields the equivalence between the

two statements in (3.7).

Lemma 3.4. For any bounded non-increasing measurable function f ≥ 0 and x≥ 0, we have

P↑x
(∫ ∞

0
f(ξs)ds <∞

)
= 1 ⇐⇒ ∃C > 0,

∫ ∞
0

E↑x(f(ξs)1{ξs≥C})ds <∞.

The proof of Lemma 3.4 is based on the following observation that we take from [4]. For uncondi-
tioned Lévy processes, an analogous result is given in [30, Lemma 4.5].

Lemma 3.5 ([4, Proposition 2.7]). Let ζ be a transient strong Markov process on R+ and denote by
Px the law of ζ starting from ζ0 = x. For any non-negative measurable function f and N,p > 0, let

MN,p :=

{
y ∈R+ : Py

(∫ ∞
0

f(ζs)ds <N

)
> p

}
.

Suppose that x ∈MN,p, then ∫ ∞
0

Ex(f(ζs)1{ζs∈MN,p})ds < 2N/p2.

Proof of Lemma 3.4. We first observe that if there exists C > 0 such that∫ ∞
0

E↑x(f(ξs)1{ξs≥C})ds= E↑x
(∫ ∞

0
f(ξs)1{ξs≥C}ds

)
<∞,

then
∫∞
0 f(ξs)1{ξs≥C}ds <∞ P↑x-a.s.. Combining this and (3.8) completes the proof of the reverse

part of the lemma.
We now turn to the direct part and assume that there exists x≥ 0 such that

∫∞
0 f(ξs)ds <∞ P↑x-a.s..

Then, given p ∈ (0,1), we can choose N large enough such that

P↑x
(∫ ∞

0
f(ξs)ds≥N

)
< 1− p,

i.e., with MN,p defined as in Lemma 3.5, we have x ∈MN,p. it remains to prove that there exists
C <∞ such that [C,∞)⊂MN,p. Then the desired statement follows from Lemma 3.5.

Set

TN = inf

{
t :

∫ t

0
f(ξs)ds≥N

}
.

We first show that P↑y(TN <∞) is comparable to inf0≤z≤δy P
↑
y−z(TN <∞) for large values of y.

Setting ξ = infs≥0 ξs, we observe that, for all y, z ≥ 0,

P↑y+z(TN <∞)≤ P↑y+z(TN <∞, ξ ≥ z) + P↑y+z(ξ < z)≤ P↑y+z
(
TN <∞

∣∣ ξ ≥ z)+ P↑y+z(ξ < z).
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Moreover, the law of ξ under P↑y+z( · | ξ ≥ z) is the same as the law of ξ+ z under P↑y( · | ξ ≥ 0) = P↑y .
It follows that

P↑y+z
(
TN <∞

∣∣ ξ ≥ z)= P↑y
(∫ ∞

0
f(ξs + z)ds <N

)
≤ P↑y(TN <∞),

as f is non-increasing. Therefore, we have

P↑y(TN <∞)≥ P↑y+z(TN <∞)− P↑y+z(ξ < z),

where P↑y+z(ξ < z) = 1− R(y)
R(y+z)

by Lemma 3.2.
Let ε ∈ (0,1) and δ < ε/2. By (3.5), there existsC1(ε)> 0 such that for all y > C1(ε) and z ∈ [0, δy]

we have R(y)
R(y+z)

= P↑y+z(ξ ≥ z)> 1− ε. As a result, for all y ≥C1(ε), we have

inf
0≤z≤δy

P↑y−z(TN <∞)≥ P↑y(TN <∞)− ε. (3.9)

We now set T̂y,δ = inf{s ≥ 0 : ξs ∈ [y(1 − δ), y]}. As ξ is a Lévy process with finite variance

under law P, it is well-known that the overshoot distribution of ξ is tight under law P↑x. Indeed, by
[12, Lemma 3] this holds under P. Therefore, it also holds under P↑x due to the duality property [12,
Corollary 2]. Therefore, we have

P↑x(T̂y,δ <∞)≥ P↑x
(
ξinf{t>0:ξt>y(1−δ)} − y(1− δ)≤ δy

)
−→
y→∞

1.

Then we set C2(ε) such that P↑x(T̂y,δ =∞)< ε for all y ≥C2(ε).
Recall that x ∈MN,p. For all y ≥ C(ε) := max(C1(ε),C2(ε)), using the strong Markov property

and (3.9), we deduce that

P↑x
(∫ ∞

0
f(ξs)ds≥N

)
≥ E↑x

(
1{

T̂y,δ<∞
}P↑ξ

T̂y,δ

(∫ ∞
0

f(ξs)ds≥N
))

≥ E↑x
(
1{

T̂y,δ<∞
}P↑y

(∫ ∞
0

f(ξs)ds≥N
))
− ε

≥ P↑y
(∫ ∞

0
f(ξs)ds≥N

)
(1− ε)− ε.

By choosing ε ∈ (0,1) small enough, we have

P↑y
(∫ ∞

0
f(ξs)ds≥N

)
<

P↑x
(∫∞

0 f(ξs)ds≥N
)

+ ε

1− ε
< 1− p.

So we have [C(ε),∞)⊂MN,p, completing the proof.

Lemma 3.6. Under the same assumptions as in Proposition 3.3, for any x≥ 0, there exists 0< c1 <
c2 <∞ such that

c1

∫ ∞
x

yf(y)dy ≤
∫ ∞
0

E↑x(f(ξs))ds≤ c2
∫ ∞
0

yf(y)dy.
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Note that, by applying Lemma 3.6 with f(x) = f(x)1{x≥C} and using the boundedness of f , we
deduce that, under the same assumptions,

∃C > 0,

∫ ∞
0

E↑x
(
f(ξs)1{ξs≥C}

)
ds <∞ ⇐⇒

∫ ∞
0

yf(y)dy <∞.

Proof. We first assume that ξ is not a compound Poisson process. It then follows from the change of
measure (3.6) and [6, Theorem VI.20] that∫ ∞

0
E↑x (f(ξt)) dt=

1

R(x)

∫ ∞
0

Ex
(
R(ξt)f(ξt)1{t<τ}

)
dt

=C ′
∫
[0,∞)

dR(r)

∫
[0,x]

dR(z)R(x+ r− z)f(x+ r− z),

where C ′ > 0 is a certain constant, τ = inf{s ≥ 0: ξs < 0} and R stands for the renewal function
of −ξ. Additionally, since the unconditioned Lévy process ξ is centred with finite variance, by [22,
Theorem 7] and [6, Theorem I.21], the measures dR(·+ z) and dR(·+ z) converge vaguely toward
multiples of the Lebesgue measures, as z→∞. Using (3.5) as well, we deduce that there exist two
constants 0< c <C <∞ such that

c

∫
[0,x]

dz

∫
[x−z,∞)

yf(y)dy ≤
∫
[0,∞)

dR(r)

∫
[0,x]

dR(z)R(x+ r− z)f(x+ r− z)

≤C
∫
[0,x]

dz

∫
[x−z,∞)

yf(y)dy.

As the function f is bounded, this leads to the desired statement.
If ξ is a compound Poisson process, then the corresponding result on random walks leads to the

conclusion. We recall that the span of the Lévy process ξ is defined as r := sup{s > 0 : P(ξ1 6∈ sZ) =
0} ≥ 0, with the convention that sup∅= 0. Assuming that ξ is non-lattice (i.e. the span is r = 0), it is a
consequence of [20, Equation (2.9)] and estimates on the renewal functions of random walks that can
be found in [25, Chapter XII]. If ξ is lattice with span r > 0, a similar argument leads to∫ ∞

0
E↑x (f(ξt)) dt <∞ ⇐⇒

∞∑
k=0

kf(kr+ x)<∞.

As f is eventually non-increasing, there exists 0< c <C <∞ such that

c

∫ ∞
x

yf(y)dy ≤
∞∑
k=0

kf(kr+ x)≤C
∫ ∞
0

yf(y)dy,

completing the proof.

We now prove that the finiteness of a perpetual integral of a Lévy process conditioned to stay positive
satisfies a zero-one law.

Lemma 3.7. Under the assumptions of Proposition 3.3, for all x≥ 0 we have

P↑x
(∫ ∞

0
f(ξs)ds <∞

)
∈ {0,1}.
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Proof. Since ξ is transient under P↑x and f is bounded, we may assume without loss of generality that
f is non-increasing on the entire half-line [0,∞).

We introduce the function

ψ : x ∈R+ 7→ P↑x
(∫ ∞

0
f(ξs)ds <∞

)
.

Note that ψ is measurable, non-negative and bounded, by standard properties of Markov processes.
We first claim that (ψ(ξt), t≥ 0) is a closed martingale. Indeed, for all x, t≥ 0, as

∫ t
0 f(ξs)ds <∞

P↑x-a.s., we have

P↑x
(∫ ∞

0
f(ξs)ds <∞

∣∣∣∣Ft)= P↑x
(∫ ∞

0
f(ξt+s)ds <∞

∣∣∣∣Ft)
= P↑ξt

(∫ ∞
0

f(ξs)ds <∞
)

= ψ(ξt), P↑x-a.s..

Therefore, (ψ(ξt), t≥ 0) is a closed martingale. In particular, this yields

lim
t→∞

ψ(ξt) = 1{∫∞0 f(ξs)ds<∞}, P↑x − a.s.. (3.10)

We next prove that ψ is non-increasing in x, using Lemma 3.2. With notation therein, we observe
that, for all x > 0,

∫m
0 f(ξs)ds<∞ P↑x-a.s.. It follows that

ψ(x) = P↑x
(∫ ∞

m
f(ξs)ds <∞

)
= P↑x

(∫ ∞
0

f(ξs+m − ξ + ξ)ds <∞
)

= P↑
(∫ ∞

0
f(ξs + vx)ds <∞

)
,

where vx is, under law P↑, an independent variable of ξ with the same law as the variable ξ under law

P↑x. For all x < y, vx is stochastically dominated by vy . Hence, as f is non-increasing,
∫∞
0 f(ξs+vx)ds

is stochastically larger than
∫∞
0 f(ξs+vy)ds. It follows that ψ is non-increasing and non-negative, and

hence limx→∞ψ(x) = λ exists.
Since ξt→∞ P↑x-a.s. by transience, we deduce by (3.10) that

λ= lim
t→∞

ψ(ξt) = 1{∫∞0 f(ξs)ds<∞}, P↑x-a.s..

This implies that λ ∈ {0,1} and that
∫∞
0 f(ξs)ds <∞ holds with probability 0 or 1, depending on the

value of λ. This completes the proof.

Proof of Proposition 3.3. By Lemmas 3.4 and 3.6, we first observe that∫ ∞
0

f(ξs)ds <∞ P↑x-a.s. ⇐⇒
∫ ∞
0

yf(y)dy <∞.

Then, as P↑x
(∫∞

0 f(ξs)ds <∞
)
∈ {0,1} by Lemma 3.7, we deduce by contraposition that∫ ∞

0
yf(y)dy =∞ ⇐⇒ P↑x

(∫ ∞
0

f(ξs)ds <∞
)
< 1 ⇐⇒ P↑x

(∫ ∞
0

f(ξs)ds <∞
)

= 0,

completing the proof.
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4. Truncated derivative martingales and the spinal decomposition

In this section, we use the renewal function of a Lévy process to introduce the truncated versions of
a derivative martingale. We show that the non-degeneracy of the limit of the derivative martingale is
equivalent to the uniform integrability of the truncated derivative martingales. We then give the spinal
decomposition, describing the law of a branching Lévy process biased by the truncated martingales.

4.1. Truncated derivative martingales

Lemma 4.1. Let b > 0. We set for t≥ 0:

Zbt =
∑
u∈Nt

R(Xu(t) + b)1{infs≤tXu(s)≥−b}e
−Xu(t). (4.1)

The process Zb := (Zbt , t≥ 0) is a non-negative martingale, called the truncated derivative martingale,
that converges a.s. to a limit Zb∞ ≥ 0 as t→∞.

Proof. The fact that Zb is a non-negative martingale is a straightforward consequence of the branching
property of the branching Lévy process, the many-to-one lemma and equation (3.4).

The family (Zb, b≥ 0) approaches the derivative martingale Z in the following sense.

Lemma 4.2. Under assumptions (2.1) and (2.2), Zt converges P-a.s. to a non-negative limit Z∞ ≥ 0
as t→∞. Moreover, with c? > 0 the constant given in (3.5), there is the identity

c?Z∞ = lim
b→∞

Zb∞, P-a.s..

Proof. By (3.5), the function R satisfies R(x) ∼ c?x as x→∞. Hence, for all ε > 0, there exists
Aε > 0 such that x ∈ [R(x)/(c? + ε),R(x)/(c? − ε)] for all x≥Aε. In particular, for every t≥ 0,

1

c? + ε
Zbt ≤ Zt + bWt ≤

1

c? − ε
Zbt , on the event

{
inf
s≤t

Ms ≥Aε − b
}
,

where Wt =
∑
u∈Nt e

−Xt(u) is the additive martingale and Ms = infu∈NsXs(u).
By [9, Theorem 1.1], under assumption (2.1) we have limt→∞Wt = 0 a.s.. Since e−Mt ≤Wt→ 0,

it follows that inft≥0Mt >−∞ a.s.. Therefore, letting t→∞, we have

1

c? + ε
Zb∞ ≤ lim inf

t→∞
Zt ≤ lim sup

t→∞
Zt ≤

1

c? − ε
Zb∞ on the event

{
inf
t≥0

Mt ≥Aε − b
}
.

Observe that b 7→ Zbt is non-decreasing for all t ≥ 0, so b 7→ Zb∞ is a.s. non-decreasing. Therefore,
limb→∞Zb∞ exists a.s.. Then letting b→∞, as limb→∞ P(inft≥0Mt ≥Aε − b) = 1, we deduce that

lim
b→∞

1

c? + ε
Zb∞ ≤ lim inf

t→∞
Zt ≤ lim sup

t→∞
Zt ≤

1

c? − ε
lim
b→∞

Zb∞, P-a.s..

Finally, letting ε→ 0 leads to the desired statement.
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The previous lemma allows us to study the non-degeneracy of the limit of the derivative martingale
Z via the uniform integrability of the truncated martingales Zb.

Corollary 4.3. If there exists b > 0 such that Zb is uniformly integrable, then Z∞ is non-degenerate.
On the other hand, if Zb∞ = 0 a.s. for all b > 0, then Z∞ = 0 a.s..

Proof. Assume first there exists b > 0 such that Zb is uniformly integrable, then P(Zb∞ > 0)> 0. As
b 7→ Zb∞ is non-decreasing, we deduce by Lemma 4.2 that P(Z∞ > 0)> 0.

If Zb∞ = 0 a.s. for every b > 0, then Z∞ = 0 a.s. by Lemma 4.2.

Remark 4.4. In proving Theorem 2.1, we will also show that the following three facts are equivalent:

1. Z∞ > 0 a.s. on the survival set of the branching Lévy process;
2. there exists b > 0 such that Zb is uniformly integrable;
3. for every b > 0, Zb is uniformly integrable.

4.2. Spinal decompositions of the branching Lévy process

The spinal decomposition consists in an alternative description of the law of a branching process biased
by a non-negative martingale as a branching process with a special individual called the spine. This
alternative description in turns allows us to study whether the martingale is uniformly integrable or not,
thanks to the following classical argument.

Fact 4.5. Let (M,F) be a non-negative P-martingale with E(M0) = 1 and set Q :=M · P to be the
law P biased by the martingale M , which means that, for each t≥ 0, dQ

dP

∣∣∣
Ft

=Mt a.s.. We have

(Mt, t≥ 0) is uniformly integrable ⇐⇒ lim inf
t→∞

Mt <∞ Q-a.s..

M∞ = 0 P-a.s. ⇐⇒ lim sup
t→∞

Mt =∞ Q-a.s..

Fact 4.5 is a consequence of [24, Theorem 5.3.3], and the fact that (1/Mt, t≥ 0) is a non-negative
Q-supermartingale, thus having a finite limit Q-a.s.. In view of Fact 4.5, we will study the spinal
decomposition associated with a truncated martingale Zb and explore its asymptotic behaviour.

To this end, we begin by introducing the spinal decomposition associated to the critical additive
martingale (Wt =

∑
u∈Nt e

−Xt(u), t≥ 0). Let P be the law of the branching Lévy process and F its
natural filtration. Using the P-martingale (W,F), we define the measure P by

P :=W · P. (4.2)

This change of measure was considered in [9, 26] to study the asymptotic behaviour of additive mar-
tingales, and is the counterpart of results of Lyons [33] for branching random walks.

To obtain an alternative representation of P, we construct a new branching process, with a distin-
guished individual called the spine. Specifically, define a sigma-finite measure Λ̂ on P ×N by

Λ̂(dx,dk) :=
∑
j≥1

e−xjΛ(dx)δj(dk). (4.3)
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Let β be a Brownian motion and N̂(dt,dx,dk) an independent Poisson random measure on R+×P×N
with intensity dt⊗ Λ̂(dx,dk). Define a Lévy process ξ̂ by the following compensated Poisson integral

ξ̂t = σβt + ât+

∫
[0,t]×P×N

xk1{|xk|<1}N̂
c(dt,dx,dk)

+

∫
[0,t]×P×N

xk1{|xk|≥1}N̂(dt,dx,dk), (4.4)

with â the quantity defined in (3.2). The process ξ̂ is well-defined and finite, thanks to equations (1.4)
and (1.5) (see [9] for more details on this construction). Moreover, ξ̂ is a Lévy process with Lévy-
Khinchine exponent Ψ defined in (3.1).

The branching Lévy process with spine is then constructed as follows. The spine particle follows the
trajectory of ξ̂, while making offspring according to the point process N̂ . More precisely, for all atoms
(t,x, k) of N̂ , the spine particle jumps at time t from position ξ̂t− to ξ̂t = ξ̂t−+xk, while for all j 6= k,
it creates a new particle at position ξ̂t− + xj . Each newborn particle then starts from its current birth
time and location a new independent branching Lévy process with law P. The set of particles alive at
time t is again denoted byNt. For u ∈Nt, let (Xs(u), s≤ t) be the trajectory of this particle. The label
of the spine particle at time t is written as wt ∈Nt. The law of the branching Lévy process with spine
(X,N ,w) thus defined is denoted by P̂. The spinal decomposition is the following result.

Lemma 4.6. The law of (X,N ) is the same under laws P and P̂. Moreover, one has

P̂(wt = u | Ft) = e−Xt(u)/Wt, ∀t≥ 0. (4.5)

We refer to [40, Theorem 5.2] for the proof of the spinal decomposition for branching Lévy pro-
cesses, and to [9, Lemma 2.3] for a simple argument based on the spinal decomposition of branching
random walks which could be adapted to our settings. The spinal decomposition was introduced by
Lyons, Pemantle and Peres in [34] for Galton-Watson processes. The result was then refined by Lyons
[33] to study additive martingales in a branching random walk, and was further extended to general
martingales based on additive functionals of a branching random walk in [14].

We now discuss a similar extension in the settings of branching Lévy processes. Consider for every
b > 0 the law Qb defined by

Qb =
Zb

R(b)
· P.

Thanks to Lemma 4.6, one straightforwardly obtains a spinal decomposition result for the law Qb.

Lemma 4.7. Let b > 0, we define a measure Q̂b by setting for all t≥ 0

dQ̂b

dP̂

∣∣∣∣∣
Ft

=
R(Xt(wt) + b)

R(b)
1{infs≤tXs(wt)>−b}. (4.6)

Then the law of (X,N ) is the same under laws Qb and Q̂b.
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Proof. Let V be an Ft-measurable random variable. We observe that

EQ̂b (V ) = Ê
(
V
R(Xt(wt) + b)

R(b)
1{infs≤tXs(wt)>−b}

)
= Ê

(
V

Wt

∑
u∈Nt

e−Xt(u)
R(Xt(u) + b)

R(b)
1{infs≤tXs(u)>−b}

)
,

by conditioning on (X,N ) and using Lemma 4.6. Then, as {Wt = 0} ⊂ {Zbt = 0}, one has

EQ̂b (V ) = E
(

Zbt
R(b)Wt

V

)
= EQb(V ).

In light of Lemma 4.7 and the spinal construction of P̂, we can still describe Q̂b as the law of the
particle system in which the spine particle follows the trajectory ξ̂, while making offspring according
to the point process N̂ . However, we stress that under law Q̂b, ξ̂ is a Lévy process with characteristic
exponent Ψ conditioned to stay above level −b, in the sense of Section 3.2; in other words,

ξ̂ under Q̂b has the same distribution as (ξ − b) under P↑b . (4.7)

In the rest of the article, we apply the results of Section 3.2 to the process ξ̂ + b under law Q̂b, which
is a Lévy process conditioned to stay positive.

Under Q̂b, N̂ is also no longer a Poisson random measure with intensity dt⊗ Λ̂(dx,dk). We can
nevertheless compute its compensator in the following sense.

Lemma 4.8. For any non-negative predictable function W on R+ ×P ×N, we have

EQ̂b

(∫
R+×P×N

W (t,x, k)dN̂(dt,dx,dk)

)

= EQ̂b

(∫
R+×P×N

W (t,x, k)1{
b+ξ̂t−+xk>0

}R(b+ ξ̂t− + xk)

R(b+ ξ̂t−)
dt⊗ Λ̂(dx,dk)

)
.

Proof. Write Zt :=
R(ξ̂t+b)
R(b)

1{
infs≤tξ̂s>−b

}, which is the density process for the change of measure

in Lemma 4.7. It is well-known the predictable compensator (see e.g. [27, Section II.1]) of the Poisson
random measure of N̂ under P̂ is given by its intensity dt⊗ Λ̂(dx,dk). Since we have that, for any
non-negative predictable function W on R+ ×P ×N,

Ê

(∫
R+×P×N

ZtW (t,x, k)N̂(dt,dx,dk)

)

= Ê

(∫
R+×P×N

Zt−1{b+ξ̂t−+xk>0
}R(b+ ξ̂t− + xk)

R(b+ ξ̂t−)
W (t,x, k)N̂(dt,dx,dk)

)
,

and that (t,x, k) 7→ 1{
b+ξ̂t−+xk>0

}R(b+ξ̂t−+xk)

R(b+ξ̂t−)
is predictable, the result follows from Girsanov’s

theorem for random measures (see e.g. [27, Theorem III.3.17(b)]).
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5. Proof of the main result
Using Fact 4.5, Lemma 4.7 and Corollary 4.3, we now prove Theorem 2.1. We begin by giving al-
ternative expressions of the condition (H) that will help us use Proposition 3.3. We then show that
(H) implies the non-degeneracy of the limit of the derivative martingale and finally that the derivative
martingale converges to 0 if (H) does not hold.

5.1. Equivalent integral tests for (H)

We give here some equivalent formulas for (H). Recall that, for all x ∈ P , Y (x) =
∑
k≥1 e

−xk and

Ỹ (x) =
∑
k≥1 xk1{xk≥0}e

−xk . Introduce the quantity

Y (x) =
∑
k≥1

(1 + xk1{xk≥0})e
−xk = Y (x) + Ỹ (x).

We first rewrite (H) in terms of the variable Y (x).

Lemma 5.1. Under (2.1) and (2.2), (H) is equivalent to∫
P
Y (x) log+(Y (x)− 1)2Λ(dx)<∞.

Proof. Let B = {x ∈ P : Y (x)≥2}. Since {x ∈ P : Y (x)≥2 or Ỹ (x)≥2} ⊂B, we have

0 =

∫
Bc
Y (x) log+(Y (x)− 1)2Λ(dx) =

∫
Bc
Ỹ (x) log+(Ỹ (x)− 1)Λ(dx).

So it suffices to prove that∫
B
Y (x) log+(Y (x)− 1)2Λ(dx)<∞

⇐⇒
∫
B
Y (x) log+(Y (x)− 1)2 + Ỹ (x) log+(Ỹ (x)− 1)Λ(dx)<∞.

Additionally, we have

Λ(B) = Λ
(
x ∈ P : Y (x)≥2

)
<∞. (5.1)

Indeed, as supx∈R xe
−x1{x≥0} ≤ e−1, we deduce that Y (x)≤ Y 2(x) + 1 + e−1 for all x ∈ P , where

we have set Y 2(x) :=
∑
k≥2(1 + xk1{xk≥0})e

−xk . So we have {Y (x)≥2} ⊂
{
Y 2(x)≥ 1− e−1

}
.

We also note that ∫
P
Y 2(x)Λ(dx)≤

∫
P

∑
k≥2

(2 + x2k)e−xkΛ(dx)<∞, (5.2)

where the finiteness of the last integral follows from (2.4). As a result, we have∫
P
Y (x)1{Y (x)≥2}Λ(dx)≤

∫
P

(Y 2(x) + 1 + e−1)1{Y 2(x)≥1−e−1}Λ(dx)

≤C
∫
P
Y 2(x)Λ(dx)<∞. (5.3)
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This implies (5.1). Therefore, we may assume, without loss of generality, that Λ is a probability dis-
tribution on P . But in that case, the equivalence is a direct consequence of [2, Lemma B.1] (for the
reverse part) and [35, Lemma A.1] (for the direct part).

Using Lemma 5.1, we also write (H) as the following integral test, which will be used later on to
apply Proposition 3.3.

Lemma 5.2. For all r ≥ 0, we set P (r) =
{
x ∈ P : Y (x)≤ er/3 + 1

}
. We have

(H) =⇒
∫ ∞
0

∫
P (r)c

rY (x) + Ỹ (x) Λ(dx)dr <∞.

Proof. We observe that, by the Fubini-Tonelli theorem∫ ∞
0

∫
P (r)c

rY (x) + Ỹ (x)Λ(dx)dr

=

∫
P

∫ 3 log+(Y (x)−1)

0
rY (x) + Ỹ (x)drΛ(dx)

=9
2

∫
P
Y (x) log+(Y (x)− 1)2Λ(dx) + 3

∫
P
Ỹ (x) log+(Y (x)− 1)Λ(dx).

By Lemma 5.1, the finiteness of the first integral is equivalent to (H).
It remains to prove that the second term is finite under (H). By the same arguments as in the proof

of Lemma 5.1, we may assume that Λ is a probability measure. Then the finiteness of the second term
follows from [2, Lemma B.1].

5.2. The sufficient part

LetX be a branching Lévy process satisfying (2.1) and (2.2) and Zb its truncated derivative martingale
defined in (4.1). In this section, we assume that (H) holds and prove that Zb is uniformly integrable for
all b > 0, which by Corollary 4.3 is enough to deduce the sufficient part of Theorem 2.1.

Lemma 5.3. Under assumption (H), Zb is uniformly integrable for all b > 0.

Proof. By Fact 4.5, to prove that (Zbt , t ≥ 0) is uniformly integrable, it is enough to prove that
Qb(lim inft→∞Zbt <∞) = 1. By Lemma 4.7, we can equally prove that Q̂b(lim inft→∞Zbt <∞)=1.
We write G = σ(ξ̂, N̂) for the sigma-algebra generated by the spine ξ̂ and the birth times and places of
its children. By the conditional Fatou lemma, we have

EQ̂b

(
lim inf
t→∞

Zbt

∣∣∣∣G)≤ lim inf
t→∞

EQ̂b
(
Zbt

∣∣∣G) , Q̂b-a.s..

To conclude the proof, it is therefore enough to show that

lim inf
t→∞

EQ̂b
(
Zbt

∣∣∣G)<∞ Q̂b-a.s.. (5.4)
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By the spinal decomposition of Q̂b and Lemma 4.1, we have the following Q̂b-a.s. identity:

EQ̂b
(
Zbt

∣∣∣G) = R(b + ξ̂t)e
−ξ̂t +

∫
[0,t]×P×N

∑
i 6=k

R(b + ξ̂s− + xi)e
−(ξ̂s−+xi)N̂(ds,dx,dk).

As ξ̂ under Q̂b is a centred Lévy process conditioned to stay above −b, it is transient, i.e. limt→∞ ξ̂t =
∞ Q̂b-a.s.. Therefore, letting t→∞, Q̂b-a.s. we have:

lim inf
t→∞

EQ̂b
(
Zbt

∣∣∣G)=

∫
[0,∞)×P×N

∑
i 6=k

R(b+ξ̂s−+xi)e
−(ξ̂s−+xi)N̂(ds,dx,dk). (5.5)

We divide the above integral into two parts, depending on the relative values of x and ξ̂t− at the atom
(t,x, k) of N̂ . More precisely, recalling that

Y (x) =
∑
j≥1

(
1 + xj1{xj>0}

)
e−xj and P (r) =

{
x ∈ P : Y (x)≤ er/3 + 1

}
,

we set

A(1) :=

∫
[0,∞)×P×N

1{
x∈P (ξ̂s−+b)

}∑
i 6=k

R(b+ ξ̂s− + xi)e
−(ξ̂s−+xi)N̂(ds,dx,dk),

A(2) :=

∫
[0,∞)×P×N

1{
x 6∈P (ξ̂s−+b)

}∑
i 6=k

R(b+ ξ̂s− + xi)e
−(ξ̂s−+xi)N̂(ds,dx,dk),

so that (5.5) can be rewritten as lim inft→∞EQ̂b
(
Zbt

∣∣∣G)= A(1)+A(2) Q̂b-a.s.. We now prove that

A(1) and A(2) are both Q̂b-a.s. finite.
An direct application of Lemma 4.8 leads to

EQ̂b
(
A(1)

)
=

∫
[0,∞)

EQ̂b
(
e−ξ̂s h(1)(ξ̂s+b)

)
ds,

where we set

h(1)(y) =
1

R(y)

∫
P (y)

(∑
k≥1

∑
j 6=k

R(y+ xk)R(y+ xj)e
−xk−xj

)
Λ(dx).

By (3.5) and the subadditivity of x 7→ x1{x>0}, for all x ∈ R and y ≥ 0 we have R(x+ y)≤ c2(1 +

y)(1 + x1{x>0}). Therefore,

h(1)(y)≤C (1 + y)2

R(y)

∫
P (y)

∑
k≥1

∑
j 6=k

(1 + xk1{xk>0})(1 + xj1{xj>0})e
−xk−xjΛ(dx)

≤C (1 + y)2

y

∫
P (y)

((
1 + x11{x1>0}

)
e−x1Y 2(x) + Y 2(x)Y (x)

)
Λ(dx),
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where Y 2(x) =
∑
k≥2

(
1 + xk1{xk>0}

)
e−xk . As a result, we have

h(1)(y)≤C (1 + y)2

y

∫
P (y)

(Y (x) +C)Y 2(x)Λ(dx)≤C (1 + y)2

y
(ey/3 + 1)

∫
P
Y 2(x)Λ(dx).

Since
∫
P Y 2(x)Λ(dx)<∞ by (5.2), we have h(1)(y) ≤ Cy−1(1 + y)2(ey/3 +1) and hence y 7→

ye−yh(1)(y) is integrable on [0,∞). Combining this fact, Lemma 3.6 and (4.7), we conclude that

EQ̂b(A
(1))≤C

∫ ∞
0

EQ̂b
(
e−ξ̂sh(1)(ξ̂s + b)

)
ds≤Ceb

∫ ∞
0

E↑b
(
e−ξsh(1)(ξs)

)
ds <∞,

which implies that A(1) <∞ Q̂b-a.s..
We now turn to A(2). Observe that A(2) is the integral of a random point measure, whose total mass

is given by

M (2) =

∫
[0,∞)×P×N

1{
x 6∈P (ξ̂s−+b)

}N̂(ds,dx,dk).

As for all z ≥ 0,
∑
i 6=kR(z + xi)e

−(z+xi) is finite for Λ̂-almost all x, the finiteness of A(2) is a

consequence of the finiteness of M (2). Using first Lemma 4.8 and (3.5) and then (4.7), we have

EQ̂b
(
M (2)

)
=

∫ ∞
0

EQ̂b

(∫
P
(
ξ̂s+b

)c∑
k≥1

R(b+ ξ̂s + xk)

R(b+ ξ̂s)
e−xkΛ(dx)

)
ds

≤C
∫ ∞
0

EQ̂b

(
1

R(b+ξ̂s)

∫
P
(
ξ̂s+b

)c ((b+ξ̂s)Y (x) + Ỹ (x)
)

Λ(dx)

)
ds

≤C
∫ ∞
0

E↑b

(
1

ξs

∫
P (ξs)

c

(
ξsY (x) + Ỹ (x)

)
Λ(dx)

)
ds.

By Lemma 5.2, under assumption (H) we have∫ ∞
0

∫
P (r)c

(
rY (x) + Ỹ (x)

)
Λ(dx)dr <∞.

Since the function r 7→
∫
P (r)c

1
r

(
rY (x) + Ỹ (x)

)
Λ(dx) is bounded by (5.3) and clearly decreasing,

Lemma 3.6 shows that M (2) and hence A(2) are Q̂b-a.s. finite.
We conclude that A(1) +A(2) <∞ Q̂b-a.s., from which we deduce by (5.5) that (5.4) holds, com-

pleting the proof.

Proof of the sufficient part of Theorem 2.1. We assume that (H) holds. Using Lemma 5.3, (Zbt ) is
uniformly integrable for all b > 0. Therefore, by Corollary 4.3, we obtain that Z∞ is non-degenerate,
which completes the proof.
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5.3. The necessary part

In this section, we prove that if (H) does not hold, then Z∞= 0 P-a.s.. Taking Corollary 4.3 into
account, it suffices to prove that Zb∞ = 0 P-a.s. for all b > 0. By Fact 4.5 and Lemma 4.7, the problem
boils down to proving the following lemma.

Lemma 5.4. If (H) does not hold, then for every b > 0,

lim sup
t→∞

Zbt =∞, Q̂b-a.s..

Its proof relies crucially on a conditional version of the Borel-Cantelli lemma, obtained by [19], for
a sum of non-negative random variables. A simplified version of this result can be stated as follows.

Lemma 5.5 ([19]). Let (Vn, n ≥ 1) be a sequence of non-negative random variables defined on a
probability space (Ω,H,P) and (Hn, n≥ 0) a filtration. Let Un = E(Vn | Hn−1), n≥ 1.

1.
∑
n≥1 Vn <∞ a.s. on {

∑
n≥1Un <∞}.

2. If (Vn) is bounded and (Hn)-adapted, then
∑
n≥1Un <∞ a.s. on

{∑
n≥1Vn<∞

}
.

Proof of Lemma 5.4. Fix b > 0. We prove this lemma by contraposition, showing that

Q̂b
(

lim sup
t→∞

Zbt <∞
)
> 0 ⇒ (H).

Recall from Lemmas 4.6 and 4.7 the construction of Q̂b from P̂ via a change of probabilities and the
spinal decomposition for both. With notation therein, for each atom (t,x, k) of N̂ , by (3.5) we have

Zbt ≥
∑
j≥1

R(b+ ξ̂t− + xj)e
−(ξ̂t−+xj) ≥ c1e−ξ̂t−

∑
j≥1

(
b+ ξ̂t− + xj

)
+
e−xj .

The assumption Q̂b(lim supt→∞Zbt <∞)> 0 implies that there exist T,A > 0 such that

Q̂b
(
∀(t,x, k) atom of N̂ : t≤T or

∑
j≥1

(
b+ξ̂t−+xj

)
+
e−xj≤Aeξ̂t−

)
> 0. (5.6)

Write F̂ for the natural filtration of the branching Lévy process with spine. Let

G :=

{
(t,x, k) atoms of N̂ :

∑
j≥1

(
b+ ξ̂t− + xj

)
+
e−xj >Aeξ̂t−+b

}
.

Since
∑
j≥1

(
b+ y+ xj

)
+ e
−xj ≤max(b+ y,1)Y (x), we may assume that A is large enough such

that G⊂ {(t,x, k) atoms of N̂ : Y (x)> 2}. By (5.3), we have Λ̂(Y (x)> 2)<∞, where Λ̂ is defined
by (4.3). So the first coordinates of the atoms in G cannot accumulate in finite time P̂-a.s.. As Q̂b

|F̂t
is

absolutely continuous with respect to P̂|F̂t for any fixed time t > 0, they cannot accumulate in finite

time Q̂b-a.s. either. Therefore, (5.6) implies that

Q̂b(#G<∞)> 0. (5.7)
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We now prove that condition (5.7) implies (H). To use Lemma 5.5, we need a time-discretization
argument. Specifically, enumerate the atoms of N̂ such that Y (x) > 2 in increasing order of time by
{(τn,xn, kn), n≥ 1}. Then (τn) are F̂-stopping times that do not accumulate Q̂b-a.s.. Set τ0 = 0 and

Bn =
∑

(t,x,k) atom of N̂

1{t∈[τn,τn+1)}1
{∑

j≥1

(
b+ξ̂t−+xj

)
+
e−xj>Aeξ̂t−+b

}, n≥ 0.

Then we have #G=
∑
n≥1Bn. Note that each Bn is F̂τn -measurable and takes values in {0,1}.

As the family (Bn) is bounded, it follows from the second part of Lemma 5.5 that

Q̂b
(∑
n≥1

Bn <∞
)

= Q̂b
(∑
n≥1

EQ̂b
(
Bn

∣∣∣ F̂τn−1

)
<∞

)
. (5.8)

We use the Markov property and Lemma 4.8 to obtain

EQ̂b
(
Bn
∣∣ F̂τn−1

)
= EQ̂b

(∫ τn

τn−1

h(ξ̂r)dr

∣∣∣∣ F̂τn−1

)
, Q̂b-a.s., (5.9)

where the function h : R→R is defined by

h(y) :=

∫
P
1{∑

j≥1(b+y+xj)+e
−xj>Aey+b

}∑
k≥1

e−xk
R(b+ y+ xk)

R(b+ y)
Λ(dx).

We deduce by (5.7), (5.8) and (5.9) that

Q̂b
(∑
n≥1

EQ̂b

(∫ τn

τn−1

h(ξ̂r)dr

∣∣∣∣ F̂τn−1

)
<∞

)
> 0.

Then, using the first part of Lemma 5.5, which does not require the boundedness, we deduce that

Q̂b
(∫ ∞

0
h(ξ̂r)dr <∞

)
> 0. (5.10)

Define a function f : R→R by

f(y) :=

∫
P
1{y>0}1

{∑
j≥1(y+xj)+e

−xj>Aey
}∑
k≥1

e−xk
(y+ xk)+
y+ 1

Λ(dx).

By (3.5), there exists c > 0 such that h( · )≥ cf( · + b). Therefore, (5.10) leads to:

Q̂b
(∫ ∞

0
f(ξ̂r + b)dr <∞

)
> 0, which is equivalent to P↑b

(∫ ∞
0

f(ξr)dr <∞
)
> 0, (5.11)

in view of (4.7). To directly apply Proposition 3.3 to the perpetual integral, we would need f to be
eventually non-increasing, which is not necessarily the case. Instead, we use various non-increasing
lower bounds of f to show that the right-hand side of (5.11) successively implies the three following
integral tests: ∫

P
Ỹ (x) log+(Ỹ (x)− 1)Λ(dx)<∞, (5.12)
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P
Y (x) log+(Y (x)− 1)Λ(dx)<∞, (5.13)∫

P
Y (x) log+(Y (x)− 1)2Λ(dx)<∞. (5.14)

Note that (5.12) and (5.14) immediately imply (H), which will complete the proof. Equation (5.13) is
needed as a first step to prove (5.14).

We first prove (5.12). For y ≥ 0, we have (y+ xj)+ ≥ (xj)+. Therefore for all y ≥ 0,

f(y)≥ f1(y) :=

∫
P
1{y>0}1

{∑
j≥1(xj)+e

−xj>Aey
}∑
k≥1

e−xk
(xk)+
y+ 1

Λ(dx).

As f1 is non-increasing and (5.11) implies P↑b
(∫∞

0 f1(ξr)dr <∞
)
> 0, using Proposition 3.3 and

Fubini’s theorem, we deduce that

∞>

∫ ∞
0

(y+ 1)f1(y)dy =

∫ ∞
0

dy

∫
P
1{∑

j≥1(xj)+e
−xj>Aey

}∑
k≥1

e−xk(xk)+Λ(dx)

=

∫
P
Ỹ (x) log+(Ỹ (x)/A)Λ(dx).

This yields (5.12), since we have

∣∣∣∣ ∫
P
Ỹ (x) log+(Ỹ (x)−1)Λ(dx)−

∫
P
Ỹ (x) log+(Ỹ (x)/A)Λ(dx)

∣∣∣∣
≤A logA ·Λ

(
A≥ Ỹ (x)≥ 2

)
+ logA

∫
P
1{

Ỹ (x)>A
}Ỹ (x)Λ(dx)<∞, (5.15)

where the finiteness of the last two terms are from (5.1) and (5.3).
We now turn to the proof of (5.13). To this end, for each y ≥ 0, we divide Y (x) into

Y y+(x) :=
∑
j≥1

1{xj≥−y/2}e
−xj and Y y−(x) :=

∑
j≥1

1{xj<−y/2}e
−xj .

Notice that for all x ∈ P , L ∈R and y ∈R+, we have

Y (x)1{Y (x)≥L}=
(
Y y+(x) + Y y−(x)

)
1{Y (x)≥L}

= Y y+(x)1{Y y+(x)≥L}+Y y+(x)1{Y (x)≥L≥Y y+(x)}+Y y−(x)1{Y (x)≥L}.

Additionally, since Y (x)≥ Y y+(x)≥ Y (x)/2 whenever Y y+(x)≥ Y y−(x), we have

Y y+(x)1{Y (x)≥L≥Y y+(x)}≤ Y
y
+(x)1{Y (x)≥L≥Y y+(x)≥Y y−(x)}+ Y y+(x)1{Y y+(x)<Y y−(x)}

≤ Y (x)1{Y (x)≥L≥Y (x)/2} + Y y−(x),

As a result, we have

Y (x)1{Y (x)≥L} ≤ Y
y
+(x)1{Y y+(x)≥L} + Y (x)1{Y (x)≥L≥Y (x)/2} + 2Y

y
−(x). (5.16)



The derivative martingale in a branching Lévy process 25

By similar arguments as in (5.15), to show that (5.13) holds, it is enough to prove that∫
P
Y (x)(log(Y (x)/A)− 2)+Λ(dx) =

∫ ∞
2

dy

∫
P
Y (x)1{Y (x)≥Aey}Λ(dx)<∞,

where the equality is due to Fubini’s theorem. By Proposition 3.3, this is equivalent to

P↑b

(∫ ∞
2

f2(ξr)dr <∞
)
> 0, where f2(y) :=

1

y+ 1

∫
P
Y (x)1{Y (x)≥Aey}Λ(dx).

In view of (5.16), it suffices to prove that

P↑b

(∫ ∞
2

f3(ξr)dr <∞
)
> 0, where f3(y) :=

1

y+ 1

∫
P
Y
y
+(x)1{Y y+(x)≥Aey}Λ(dx), (5.17)

E↑b

(∫ ∞
2

f4(ξr)dr

)
<∞, where f4(y) :=

1

y+ 1

∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx), (5.18)

E↑b

(∫ ∞
2

f5(ξr)dr

)
<∞, where f5(y) :=

1

y+ 1

∫
P
Y y−(x)Λ(dx). (5.19)

Using Fubini’s theorem and Lemma 3.6, we have

E↑b

(∫ ∞
2

f4(ξr)dr

)
=

∫
P
Y (x)Λ(dx)E↑b

(∫ ∞
2

1

ξr + 1
1{Y (x)≥Aeξr≥Y (x)/2}dr

)
≤C

∫
P
Y (x)Λ(dx)

∫ ∞
2

y

y+ 1
1{Y (x)≥Aey≥Y (x)/2}dy

≤C log 2

∫
P
Y (x)1{Y (x)≥A}Λ(dx).

The last integral is finite by (5.3), so (5.18) follows. Similarly, we deduce (5.19) by using Lemma 3.6
and the observation that∫ ∞

2
dy

∫
P
Y
y
−(x)Λ(dx)≤ 2

∫
P

∑
j≥1
|xj |e−xj1{xj<−1}Λ(dx),

which is finite by (2.4).
We now turn to (5.17). For all y ≥ 2, using the fact that (xj+y)+ ≥ y1{xj>−y/2}/2≥ 1{xj>−y/2},

we obtain

f(y)≥ 1

(y+ 1)

∫
P
1{Y y+(x)>Aey}Y

y
+(x)Λ(dx) = f3(y).

Now (5.17) follows from (5.11). This completes the proof of (5.13).
Finally, we turn to the proof of (5.14), by following similar steps as the proof of (5.13). Using

Fubini’s theorem, (5.3) and Proposition 3.3, we observe that (5.14) is a consequence of∫ ∞
2

ydy

∫
P
1{Y (x)>Aey}Y (x)Λ(dx)<∞

⇐⇒ P↑b

(∫ ∞
2

dr

∫
P
1{Y (x)>Aeξr}Y (x)Λ(dx)<∞

)
> 0,
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which, using again (5.16), is a consequence of the three conditions

P↑b

(∫ ∞
2

f6(ξr)dr <∞
)
> 0, where f6(y) :=

∫
P
Y y+(x)1{Y y+(x)≥Aey}Λ(dx), (5.20)

E↑b

(∫ ∞
2

f7(ξr)dr

)
<∞, where f7(y) :=

∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx), (5.21)

E↑b

(∫ ∞
2

f8(ξr)dr

)
<∞, where f8(y) :=

∫
P
Y
y
−(x)Λ(dx)<∞. (5.22)

We remark that∫ ∞
2
ydy

∫
P
Y (x)1{Y (x)≥Aey≥Y (x)/2}Λ(dx)≤C

∫
P

log+(Y (x)/A− 2)Y (x)Λ(dx),

which is finite as we have already proved (5.13), on account of (5.3). Similarly, we have∫ ∞
2

ydy

∫
P
Y y−(x)Λ(dx)≤

∫
P

∑
j≥1

x2je
−xj1{xj<−1}Λ(dx),

which is finite by (2.4). Then we can deduce (5.21) and (5.22), by using Fibini’s theorem and
Lemma 3.6, in the same way as we prove (5.18).

We thus only have to prove (5.20). For all y ≥ 2, since (y+ xj)+ ≥ 1{xj≥−y/2}(y+ 1)/3, we have

f(y)≥ 1

3

∫
P
1{Y y+(x)>Aey}Y

y
+(x)Λ(dx).

Then (5.20) follows from (5.11), which completes the proof of (5.14).
In sum, assuming that Q̂b

(
lim supt→∞Zbt <∞

)
> 0, we deduce (5.12), (5.13) and (5.14). There-

fore, (H) holds.

Proof of the necessary part of Theorem 2.1. Assume that (H) does not hold. By Lemma 5.4, we have

lim sup
t→∞

Zbt =∞, Q̂b-a.s., for all b > 0.

By Fact 4.5, this implies that limt→∞Zbt = 0, P-a.s.. Using Corollary 4.3, we conclude that Z∞ = 0
P-a.s., completing the proof.
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