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Effect of pseudogap on electronic anisotropy in the strain dependence of the superconducting Tc of underdoped YBa2Cu3Oy

 

The link between electronic anisotropy and high temperature superconductivity in the cuprates and the iron based systems is a subject of great current interest. While a lot of progress on this topic has been made for the iron based systems, relatively less is known about the in-plane electronic anisotropy observed in the pseudogap state of certain underdoped cuprates [1][2][3][4][5][6][7][8][9][10][11][12]. The microscopic factors governing this anisotropy are currently unknown, and are the subject of intense research [13][14][15][16][17][18]. Evidently, identifying the source of this anisotropy is of utmost importance for understanding the pseudogap state and the phase diagram of the cuprates. The purpose of the current joint experimental and theoretical study is to address this issue.

Experimentally, the anisotropy has been probed using a variety of techniques including in-plane electrical conductivity [1], torque magnetometry [2], neutron [3,4] and X-ray [5] diffraction, Nernst coefficient [6,7], scanning tunneling spectroscopy [8,9], nuclear magnetic resonance [10], and elastoresistivity [11]. One school of thought has identified the pseudogap temperature T with an electronic nematic phase transition [2]. However, the situation is unclear because signatures of diverging nematic correlation, expected near a nematic phase transition [19], have not been detected in electronic Raman response in Bi 2 Sr 2 CaCu 2 O 8+δ [20].

Motivated by the status quo, we study the doping evo-lution of the thermodynamic anisotropy N ≡ dT c /d 22 -dT c /d 11 , where dT c /d ii is the variation of the superconducting T c with uniaxial strain ii , ii = (11,22), of underdoped YBa 2 Cu 3 O y (YBCO). The experimental technique involves measuring the jumps in the associated elastic constants ∆c ii at T c using sound velocity measurements (see Fig. 1), from which we extract dT c /d ii using the Ehrenfest relationship. The advantage of this method is that the strain dependence of T c is obtained in zero applied static strain. Consequently, the measurement is free of nonlinear effects that can be difficult to interpret.

To the best of our knowledge, such strain dependence of T c has not been reported earlier in YBCO. This thermodynamic anisotropy is in line with earlier studies of uniaxial pressure dependencies of T c [START_REF] Kraut | Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5-7[END_REF]22]. However, converting them into strain dependencies is difficult due to the large uncertainties in the experimental values of the elastic constant tensor.

Our main observation is that, while the crystalline anisotropy, namely the orthorhombicity, reduces monotonically with decreasing hole doping p < 0.16 [23][24][25], the thermodynamic anisotropy N (p) is a non monotonic function of p (see Fig. 2). In particular, in the range 0.11 < p < 0.14, N (p) does not track the orthorhombicity, instead it increases when p is reduced. We therefore conclude that the observed non-monotonic evolution is rooted in electronic effects. Our theoretical modeling suggests that the enhanced electronic anisotropy in this doping range is driven by the opening of the pseudogap. In other words, the increase in anisotropy with decreasing doping level reflects the fact that the pseudogap potential enhances as the system approaches the Mott insulating state by reducing p.

The sound velocities of several detwinned YBCO sam- ples (see Table I for characteristics) measured across their superconducting transition temperature T c are shown in Fig. 1 (see [27] for experimental details and additional data). We focus on the elastic constants c 11 and c 22 corresponding to longitudinal modes with propagation along the a-axis and b-axis of the orthorhombic crystal structure of YBCO, respectively. In Fig. 1 we show the superconducting contribution to the elastic constants, obtained after subtraction of the thermally activated anharmonic background [START_REF] Varshni | Temperature Dependence of the Elastic Constants[END_REF]. The latter consists of a change of slope and curvature below T c and a downward, mean-field jump ∆c ii (T c ) at T c . This jump is a consequence of having a term φ 2

ii in the free energy that couples the strain with the superconducting order parameter φ. Here we focus on the magnitude of this jump ∆c ii (T c ), which strongly depends on doping level and on propagation direction. In particular, an anisotropy is observed between ∆c 11 (T c ) and ∆c 22 (T c ) at p ≤ 0.11 and p ≥ 0.156: at T = T c , a clear jump is observed in ∆c 22 (T ) but no jump is observed in ∆c 11 (T ). However, at intermediate doping level the anisotropy is reduced, with a clear jump resolved in both modes. The magnitude of ∆c ii (T c ) is governed by the Ehrenfest relationship

∆c ii (T c ) = - ∆C p (T c ) T c 1 V m dT c d ii 2 , (1) 
with ∆C p (T c ) the jump in the heat capacity at T c , and V m the molar volume [START_REF] Millis | Superconductivity and lattice distortions in high-Tc superconductors[END_REF][START_REF] Lüthi | Physical Acoustics in the Solid State[END_REF]. Thus, the anisotropy in ∆c ii implies a difference between dT c /d 11 and dT c /d 22 .

We use a thermodynamic model to fit the data in Fig. 1 and to extract ∆c ii (T c ) [27,[START_REF] Nohara | Unconventional lattice stiffening in superconducting LSCO single crystals[END_REF]. We then use Eq. 1, in combination with specific heat [32][33][34][START_REF] Loram | Evidence on the pseudogap and condensate from the electronic specific heat[END_REF][START_REF] Marcenat | Calorimetric determination of the magnetic phase diagram of underdoped Ortho-II YBCO single crystals[END_REF] and uniaxial pressure dependence of T c data [START_REF] Kraut | Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5-7[END_REF][37][38][39][40][41][42] in order to determine the amplitude and sign of dT c /d ii respectively.

The resulting doping dependencies of dT c /d 11 and dT c /d 22 are shown in Fig. 2b and the values are reported in Table I. While both quantities show a maximum The behavior of N (p) is to be contrasted with the monotonic increase of the orthorhombicity of YBCO with doping over similar range (see [23][24][25] and Fig. 4 in [27]). This difference in the doping trends imply that N (p) is affected by an electronic property which we try to identify in the rest of the paper. Below we discuss three possible electronic scenarios.

One possible source of additional electronic anisotropy can be the short range charge density wave (CDW) order in YBCO [10,[START_REF] Ghiringhelli | Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x[END_REF][START_REF] Chang | Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67[END_REF]. At face value this seems to be the case since dT c /d 22 and dT c /d 11 are individually peaked around p = 0.13, which coincides with the peak in the CDW ordering temperature. However, this simply implies that the CDW contributes significantly in the symmetric channel dT c /d 22 +dT c /d 11 , which is likely due to a competition between CDW and superconductivity [45][46][47][48]. But, in the asymmetric channel dT c /d 22 -dT c /d 11 we do not expect the CDW to be important for the following reason. The CDW state itself is either a biaxial order that preserves tetragonal symmetry [START_REF] Forgan | The microscopic structure of charge density waves in underdoped YBa2Cu3Oy revealed by Xray diffraction[END_REF], in which case it does not contribute to N (p), or it is locally uniaxial with CDW domains running along the in-plane crystallographic axes as seen by X-ray [48,50]. However, even for the latter, the CDW will contribute to N (p) only if these domains are aligned along the same direction, which is not the case in the zero strain limit probed here.

A second possible explanation could be the presence of a significantly large B 1g nematic correlation length, that presumably increases as the doping level p is reduced. However, in such a case one would expect in theory that the magnitude of the elastic constant jumps ∆c ii /c ii to be orders of magnitude larger than their typical value 10 -5 measured in our experiments [51]. Consistently, a dynamical mean field study has reported lack of any significant nematic correlations [18].

The third possibility, which we explore in detail, is that N (p) is governed by the opening of the pseudogap in the single particle electronic properties. This is based on the hypothesis that the pseudogap potential varies with external orthorhombic strain. With such an assumption we expect that varying the pseudogap strength with orthorhombic strain will also change T c , and this process will contribute to N (p). Qualitatively, in this scenario we expect that at low doping N (p) vanishes with orthorhombicity for reasons of symmetry, while at high doping N (p) decreases because the pseudogap strength itself reduces with doping [53]. Thus, N (p) is guaranteed to have an extrema at intermediate doping. Quantitatively, our theory modeling of N (p) consists of the following three steps.

First, we consider the free energy involving the superconducting order parameter φ and the in-plane uniform strains (u 11 , u 22 ). To simplify the discussion we first assume a system with tetragonal symmetry. The free energy has the form

F = 1 2 aφ 2 + 1 2 c 11 u 2 11 + 1 2 c 22 u 2 22 + c 12 u 11 u 22 +λ 1 (u 11 + u 22 )φ 2 + 1 2 λ 2 (u 11 -u 22 ) 2 φ 2 + • • • , (2) 
where the ellipsis implies terms irrelevant for the current discussion. Here a = a 0 (T -T 0 c ), where T 0 c is the superconducting transition temperature in the absence of strain, c 11 = c 22 and c 12 are elastic constants in Voigt notation, and (λ 1 , λ 2 ) are coupling constants. In an orthorhombic system we have u 11 = u 0 /2 + 11 , and u 22 = -u 0 /2 + 22 , where u 0 is the spontaneous orthorhombic strain, and ( 11 , 22 ) are strains that may develop in response to external stresses. Thus, to linear order in the induced strains ii the transition temperature is

T c ( ii ) = T 0 c - 2λ 1 a 0 ( 11 + 22 ) - 2λ 2 a 0 u 0 ( 11 -22 ),
and from which we obtain

N = 4u 0 λ 2 /a 0 . (3) 
Second, we deduce a microscopic expression for the parameter a 0 . Since the superconducting transition is an instability in the particle-particle channel, we can write

a = 1/g - 1 k B T k,ωn f 2 k G k (iω n )G -k (-iω n ), ( 4 
)
where g is the pairing potential, k B is Boltzmann constant, f k is a d-wave form factor, and G k (iω n ) is the electron Green's function. We use the Yang-Zhang-Rice model [54] type of model for the Green's function

G R k (ω) -1 = ω + iΓ 1 -k - P 2 k ω + iΓ 2 + ξ k , (5) 
which has been widely used in the literature to study the low-energy properties of the pseudogap [55][56][57][58][59][60][61][62]. Here, k is the electron dispersion, ξ k = -ω defines the line along which the electron spectral function is suppressed at a given frequency, (Γ 1 , Γ 2 ) are inverse lifetimes, and the pseudogap potential P k ≡ f k P 0 is assumed to have d-wave symmetry. Once the Green's function is known, the quantity a 0 follows simply from

a 0 = (∂a/∂T ) T =T 0 c . (6) 
Third, we obtain a similar microscopic expression for the parameter λ 2 . We consider a tetragonal system with an externally imposed orthorhombic strain η ≡ u 11 -u 22 . For finite η one expects mixing between A 1g and B 1g symmetries. Thus, the four-fold symmetric functions ( k , ξ k ) develop a d-wave component, while the pseudogap potential P k develops an s-wave component. We express these changes as k → ˜ k = k + α 1 ηf k , ξ k → ξk = ξ k + α 2 ηf k , and P k → Pk = P k + βηP 0 , where (α 1 , α 2 ) are constant energy scales and β is an important dimensionless constant capturing the change of pseudogap with external orthorhombic strain. From Eq. ( 2) we get

λ 2 = (1/2)(∂ 2 a/∂ 2 D), (7) 
where the derivative

∂ ∂D ≡ α 1 f k ∂ ∂ k + α 2 f k ∂ ∂ξ k + βP 0 ∂ ∂P k .
Following our earlier hypothesis, we chose the constants (α 1 , α 2 , β) such that the derivative above is dominated by the last term which is the main pseudogap contribution. Thus, Eqs. ( 3)-( 7) and the experimental input of u 0 obtained from diffraction data provide a means to compute the thermodynamic anisotropy N . The details of the particular microscopic model used and the technical steps for the computation of a 0 and λ 2 can be found in [27].

The results of the calculation are shown in Fig. 3. Our main theoretical conclusion is that, in the presence of the pseudogap, the thermodynamic anisotropy N (p) (the solid line) has a maximum around p = 0.11 doping, as seen in the experiments. Beyond this doping the thermodynamic anisotropy decreases even though the crystalline anisotropy, namely the spontaneous orthorhombicity u 0 (p), increases until around p = 0.16. The non-monotonic behavior of N (p) is a result of the presence of the pseudogap. This point is clearly demonstrated by the monotonic evolution of the open symbols in Fig. 3 which are obtained by setting the pseudogap to FIG. 3: Theoretical N = 4u 0 λ 2 /a 0 computed with P g = 0 (full circles) and P g = 0 (empty circles), using a doping dependent orthorhombicity u 0 from scattering measurements [27], and the pseudogap potential from [53]. Without pseudogap, N increases monotonically, mimicking the doping dependent orthorhombicity. The effect of the pseudogap is to produce a non-monotonic N .

zero. In other words, the doping dependence of N (p) is controlled by an interplay between orthorhombicity and the pseudogap. Thus, in Fig. 3 the initial increase of N (p) for 0.05 ≤ p ≤ 0.11 is driven by the increase in the orthorhombicity u 0 (p), with the magnitude of N (p) boosted by the presence of the pseudogap. While, the later decrease of N (p) (the solid line) with doping beyond p = 0.11 is driven by a decrease of the pseudogap potential P 0 and, therefore, a decrease of λ 2 (p). The role of the pseudogap to enhance the in-plane electronic anisotropy has been also noted in an earlier dynamical mean field study [63].

In the actual experiments N (p) has a minimum around p ∼ 0.14, and it increases with further hole doping, a behavior reminiscent of electrical resistivity [1] and thermal expansion [64]. In this regime the pseudogap decreases (see Fig. 2) and our model loses significance. Simultaneously, the impact of the CuO chains, whose oxygen content increases with doping, becomes increasingly significant for the anisotropy. A second possibility is that, with increasing doping the nematic correlations become stronger [20].

To conclude, using ultrasounds on YBCO we extract dT c /d ii , the variation of the superconducting transition temperature T c with in-plane strain ii . We show that the in-plane thermodynamic anisotropy N ≡ dT c /d 22 -dT c /d 11 has an intriguing doping p dependence that does not follow that of the crystalline orthorhombicity. The reported doping dependence of N can be qualitatively accounted for by a Yang-Zhang-Rice type of phenomenological modelling of the opening of the pseudogap in the single-particle electronic properties. Our theory shows that N (p) is crucially affected by the strain de-pendence of the pseudogap potential, which makes N (p) a non-monotonic function of p with a maximum around p ∼ 0.11. Finally, an important prediction of our work is that, in the presence of substantial uniaxial strain, the pseudogap potential would vary significantly and, in particular, can lead to visible gap opening in the nodal region. This prediction can be tested by performing angle resolved photoemission, electronic Raman response, inplane resistivity and Hall measurements under uniaxial strain.

Supplementary Figure S4: Blue circles (left axis) show the orthorhombicity u 0 = (b -a)/(b + a) as a function of hole doping, measured in diffraction experiments [81][82][83]. The blue dotted line is a guide to the eye. This dotted line is used to calculate N ∝ u 0 (see below).

Theoretical details

Using Landau-Ginzburg type argument we established that the measured thermodynamic anisotropy N ≡ dTc/d 22 -dTc/d 11 can be expressed as (see Eq. ( 3) of main text)

N = 4u0λ2/a0.
In the above u0 is the orthorhombicity, which is known experimentally. Below we provide the technical details for computing the quantities a0 and λ2 starting from a microscopic model. These are defined by Eqs. ( 6) and (7), respectively, of the main text. Our starting point is the that the low energy electrons can be described by the Green's function (see Eq. ( 5) of the main text)

G R k (ω) -1 = ω + iΓ1 -k - P 2 k ω + iΓ2 + ξ k .
This ansatz has been widely used in the literature to capture the low energy properties of the cuprates in the pseudogap state. The above can be rewritten as

G R k (ω) = A 1k ω -ω 1k + A 2k ω -ω 2k , (S5) 
where

ω 1k,2k = 1 2 (z 1k + z 2k ) ± (z 1k -z 2k ) 2 + 4P 2 k , (S6) 
with z 1k ≡ k -iΓ1, z 2k ≡ -ξ k -iΓ2, and

A 1k = ω 1k -z 1k ω 1k -ω 2k , A 2k = z 2k -ω 2k ω 1k -ω 2k . ( S7 
)
In terms of the Green's function the particle-particle susceptibility is given by

χpp[ k , ξ k , P k ] = 2 βV | k |≤Λ k,ωn f 2 k G k (iωn)G -k (-iωn), ( S8 
)
where β is inverse temperature, V is volume, and we assume that the Cooper pairing potential is zero above a cutoff energy scale Λ. The form factor f k ≡ cos(kx) -cos(ky) implies that the pairing instability is in the d-wave channel. Note, χpp is a functional of the dispersions ( k , ξ k ), and the pseudogap function P k (p) = P0(p)f k . Here P0(p) is the energy scale of the pseudogap potential that varies with hole doping. First, we discuss the details of the computation of λ2. We assume that T 0 c , the superconducting transition temperature in the absence of external strains, is the lowest energy scale in the problem. Then, for the computation of λ2 it is sufficient to set temperature T = 0. In this limit the above frequency sum can be performed analytically, and we get where E 1k/2k and γ 1k/2k are real quantities that are defined by ω 1k/2k ≡ E 1k/2k -iγ 1k/2k , and the complex quantity

χpp = 2 πV | k |≤Λ k f 2 k A 1k A * 1k E 1k + 2X k cot -1 γ 1k E 1k + A 2k A * 2k E 2k + 2X k cot -1 γ 2k E 2k -X k ln E 2 2k + γ 2 2k E 2 1k + γ 2 1k , ( 
X k = X k + iX k ≡ A 1k A 2k /[E 1k + E 2k + i(γ 2k -γ 1k )].
In the presence of a finite external orthorhombic strain η the quantities ( k , ξ k , P k ) transform to (˜ k , ξk , Pk ), where ˜ k = k + α1ηf k , ξk = ξ k + α2ηf k , and Pk = P k + βηP0. From Eq. ( 7) of the main text we get λ2 = -1/2(∂ 2 χpp/∂ 2 η)η=0. This implies that λ2 = -1 πV

| k |≤Λ k f 2 k α1f k ∂ ∂ k + α2f k ∂ ∂ξ k + βP0 ∂ ∂P k 2 L k , (S10) 
where L k denotes the quantity within [• • • ] in Eq. (S9). In the above equation it is straightforward to take the derivatives and then perform the momentum sum numerically. This leads to the evaluation of λ2(p) as a function of hole doping p. Next, we discuss the details of the computation of a0 = -(∂χpp/∂T ) T =T 0 c . In terms of the Green's function this can be written as

a0 = 2 V | k |≤Λ k f 2 k Im ∞ -∞ dω 2π G R k (ω)G A k (-ω) ω 2T 2 cosh 2 (ω/(2T )) . ( S11 
)
The thermal factor ensures that the ω-integral contributes only for ω T = T 0 c . Since T 0 c is the lowest energy scale, the Green's functions can be expanded in powers of the frequency. This is equivalent to an expansion in powers of T 0 c /max[Γ1, P0]. We keep the first non-zero term, and we get

a0 = 2T 0 c 3πV | k |≤Λ k f 2 k A 1k A * 1k γ 1k (E 2 1k + γ 2 1k ) 2 + A 2k A * 2k γ 2k (E 2 2k + γ 2 2k ) 2 + Im A 1k A * 2k (E 1k -iγ 1k )(E 2k + iγ 2k ) 1 E 1k -iγ 1k - 1 E 2k + iγ 2k . (S12)
It is simple to perform the momentum sum numerically, which leads to a0(p) as a function of hole doping p. We compute a0, λ2 and the thermodynamic anisotropy N (p) using the following model and parameters. The dispersions are taken as k = -2t(cos(kx) + cos(ky)) + 4t cos(kx) cos(ky) -2t (cos(2kx) + cos(2ky)) -µ, (S13a) The decrease of N (p) for p > 0.1 in our calculation is the result of the following two features. First, the increase of a0(p) in this doping range. This is due to the fact that the pseudogap decreases with increasing doping and, therefore, there is more phase space for the contribution of the low energy electrons to the susceptibility χpp and to its temperature dependence.

ξ k = -2t(cos(kx) + cos(ky)), (S13b) 
In general, we expect that susceptibilities are less temperature dependent in the presence of gaps. Second, the decrease in the magnitude of λ2(p) over the same doping range. This feature is the result of our assumption that the pseudogap potential varies significantly in the presence of an external uniaxial strain. Thus, around p ≈ 0.11 the contribution to λ2 is dominated by the term (∂/∂P k ) 2 in Eq. (S10) in our model. On the other hand, by definition, at p = 0.2 this contribution [and also from terms involving (∂/∂ξ k )] vanishes. In other words, an important prediction of our work is that, in the presence of substantial uniaxial strain the pseudogap potential would vary significantly and, in particular, can lead to visible gap opening in the nodal region. prediction can be tested by performing spectroscopy such as angle resolved photoemission and electronic Raman response under uniaxial strain.

In the actual experiments N (p) has a minimum around p ∼ 0.14 and then increases with further hole doping. We think this regime is dominated by the contribution of the anisotropy coming from the CuO chains, rather than the electrons of the copper-oxygen planes. Consequently, this increase is not captured in our theoretical modeling.

FIG. 1 :

 1 FIG. 1: Superconducting contribution to c 22 (T ) (red, left column) and c 11 (T ) (black, right column) near T c as a function of doping in YBCO. A fit based on a thermodynamic model [27] is shown in blue.It is used to extract ∆c ii (T c ), the mean-field jump-like anomaly at T c . When no jump is observed we can extract an upper limit for dT c /d ii which depends on measurement noise level and on the amplitude of the specific heat jump at T c . T c is defined as the position of the mean-field anomaly in ∆c ii (T ). The scale is the same for all doping levels except for p = 0.071 where the vertical scale is reduced for clarity.

FIG. 2

 2 FIG. 2: a) Temperature -doping phase diagram of YBCO in zero magnetic field. Green line is the superconducting dome, black dashed line is the dome of short range CDW, blue dashed line is the pseudogap onset temperature T . b) Doping dependence of dT c /d 11 (black) and dT c /d 22 (red), divided by T c . c) Thermodynamic anisotropy N = dT c /d 22 -dT c /d 11 . The shaded area highlights the doping range where the anisotropy is mostly controled by the physics of the CuO 2 planes, and consequently where comparison with the theoretical model is most relevant (see text). Dashed lines are guide to the eyes. Data from this study are shown using solid symbols [52].

  Supplementary FigureS5: (a, b, c) Variations of the quantities a 0 (p), λ 2 (p) and the thermodynamic anisotropy N (p) as functions of hole doping, respectively. Filled symbols are with finite pseudogap, and open symbols are calculations with the pseudogap potential set to zero. The theoretical model correctly captures the appearance of a maximum in N (p), as seen experimentally. This feature disappears, and N (p) is a monotonic function of p when the pseudogap is set to zero.

with t = 1 ,

 1 t = 0.3t, t = 0.2t. The damping factors are set to Γ1 = 0.1t, and Γ2 = 0.01t. The pseudogap potential is set to P0(p) = Pg(1 -p/0.2), with Pg = 0.3t. Thus, P0(p) is assumed to decrease linearly with hole doping, and disappearing at p = 0.2. Next, we take the energy scales α1 = α2 = 0.5t, and the dimensionless parameter β = -10, and the overall energy cutoff Λ = 0.3t. For the computation of N (p) we use the experimental values of the spontaneous orthorhombicity u0(p) of YBa2Cu3Oy. The results of the calculation are shown in Fig.S5. Our main conclusion is that in the presence of the pseudogap the thermodynamic anisotropy N (p) indeed has a maximum around p = 0.11 doping, see the evolution of the filled symbols in Fig.S5(c). Beyond this doping the thermodynamic anisotropy decreases even though the crystalline anisotropy, namely the spontaneous orthorhombicity u0(p) increases until p = 0.18. The non-monotonic behavior of N (p) is a result of the presence of the pseudogap. This point is clearly demonstrated by the monotonic evolution of the open symbols in Fig.S5(c) which are obtained by setting the pseudogap to zero.

  

TABLE I :

 I Characteristics of the YBCO samples measured in this study: the oxygen content y; the superconducting transition temperature in zero magnetic field T c ; the hole concentration (doping) p, obtained from T c[START_REF] Liang | Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals[END_REF]. Typical dT c /d 11 and dT c /d 22 are given for each oxygen content y.
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SUPPLEMENTARY MATERIAL FOR

Evidence for interplay between pseudogap and orthorhombicity in underdoped YBa 2 Cu 3 O y from ultrasound measurements M. Frachet 1 et al., 1 LNCMI-EMFL, CNRS UPR3228, Univ. Grenoble Alpes, Univ. Toulouse, Univ. Toulouse 3, INSA-T, Grenoble and Toulouse, France

Experimental details

The samples used in this study are detwinned single crystals of YBa2Cu3Oy grown from high-purity starting materials. Note that for each oxygen concentration several samples with slightly different Tc and doping were measured. In total 20 samples were studied. Sound velocity variation ∆vs/vs was measured using a standard pulse-echo technique [START_REF] Lüthi | Physical Acoustics in the Solid State[END_REF]. For high symmetry modes the sound velocity vs and the elastic constant cii are related according to ∆vs/vs = ∆cii/2cii. We focused on the sound velocity of the longitudinal mode propagating along the b-axis (c22) and along the a-axis (c11). The strain is defined as ii = l 0 -l l 0 with l0 the initial lattice parameter. 

Elastic constant anomaly at

Thermodynamic model used to fit the data

In order to extract dTc/d ii, we estimate the magnitude of ∆cii(Tc) using an idealized mean-field second order jump fit to the data as done previously [START_REF] Nohara | Unconventional lattice stiffening in superconducting LSCO single crystals[END_REF][START_REF] Kraut | Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5-7[END_REF]. The thermodynamic fit is derived from a two-fluid model of the free energy, in which Tc and the condensation energy φ are functions of the strain ii:

The elastic constant is obtained by calculating the second derivative of the free energy with respect to ii:

where A is proportional to the strain derivatives of Tc and φ [START_REF] Nohara | Unconventional lattice stiffening in superconducting LSCO single crystals[END_REF]. At T = Tc this equation is equivalent to the Ehrenfest relationship.

Error bars

The error bars on dTc/d ii are estimated as follows. Most of the uncertainty comes from the value of the specific heat jump at Tc, ∆Cp(Tc). The specific heat was not measured in the samples used for this study. We relied on specific heat data from the literature. ∆Cp(Tc)/Tc are shown in figure S2 where the shaded area highlights the scattering of the data, and is used to estimate the error bar on ∆Cp(Tc)/Tc.

Supplementary Figure S2: Reproduction of specific heat jump at T c (∆C p /T c ) as a function of doping from the literature [68][69][70][START_REF] Loram | Evidence on the pseudogap and condensate from the electronic specific heat[END_REF][START_REF] Marcenat | Calorimetric determination of the magnetic phase diagram of underdoped Ortho-II YBCO single crystals[END_REF]. The error bars on ∆C p /T c are evaluated using the scattering of the different data set, highlighted by the gray shaded area.

Another source of error comes from the uncertainty on the absolute value of the elastic constants c11 and c22. The pulseecho technique used in this study allows to measure the absolute value of the sound velocity with an accuracy of a few %. This originates from the uncertainty on the sample dimension and from the fact that we used transducers with finite thickness, resulting in irregular echo shape. Comparing our data in YBCO 6.99 with data of Lei et al. [START_REF] Lei | Elastic constants of a monocrystal of superconducting YBa2Cu3O7[END_REF] and ref. therein, we estimate an error ∆cii/cii ≈ 6 %. We took into account the doping dependence of c11 and c22 using a parabolic model [75] cii(y

y is the oxygen content in YBa2Cu3Oy, and we used c11(y = 7) = 215 GPa and c22(y = 7) = 255 GPa. The previous formula reflects the doping dependence of cii due to the orthorhombicity of YBCO. c11 and c22 must converge to the same value at low doping level, and are increasingly different with increasing doping. This formula results in 6 % change in cii across the doping range studied here. This doping dependence was not observed experimentally most likely because of the low accuracy of the pulse-echo method. Taken into account this doping dependence has little effect on the resulting doping dependence of dTc/d ii, given the large doping dependence of the latter. Nonetheless, we took it into account for the sake of completeness of the analysis. Other sources of error include experimental errors (variations of the amplitude of the elastic constant jump at Tc for different samples at similar doping level), uncertainties on the evaluation of the thermal phonon background which is subtracted to the data to isolate the superconducting contribution, and errors from the thermodynamic fit.

Comparison with uniaxial pressure results

The derivatives dTc/d ii and dTc/dPi are related via the formula dTc/d ii= j cijdTc/dPj. Consequently, in order to compare our results with those from uniaxial pressure measurements we need the complete elastic tensor of YBCO. For the calculation of dTc/dPi we use data from Lei et al. [START_REF] Lei | Elastic constants of a monocrystal of superconducting YBa2Cu3O7[END_REF] and ref. therein, obtained in overdoped YBCO, and we assume doping independent elastic constants. The uncertainties on the off-diagonal elastic constants are large and result in large error bars in the dTc/d ii obtained this way. In Fig. S3, we plot dTc/d ii estimated from measurements of thermal expansion [START_REF] Kraut | Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5-7[END_REF]77] and direct measurements under uniaxial pressure [78][79][80]. Values are also reported in Table S1. There is an overall agreement between all the data sets. p (holes/Cu) dTc/d Supplementary Table S1: dT c /d ii calculated from j c ij dT c /dP j where dT c /dP i was measured in direct uniaxial pressure experiments [79,80] or with thermal expansion [START_REF] Kraut | Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5-7[END_REF]. Elastic constants value taken from [START_REF] Lei | Elastic constants of a monocrystal of superconducting YBa2Cu3O7[END_REF].

Supplementary Figure S3: Data from uniaxial pressure (triangles [79], squares [80]) and thermal expansion (circles) [START_REF] Kraut | Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5-7[END_REF] measurements converted in uniaxial strain dependences. Red is for dT c /d 22 and black (with center dot) for dT c /d 11 . The error bars are large due to the uncertainty on the elastic tensor and on the dT c /dP i . Dashed lines are the same as those shown in Fig. 2b of the main text.

Orthorhombicity

The orthorhombicity from diffraction experiments is shown in blue in Fig. S4. At low doping level, the orthorhombicity increases steadily as oxygen content in the CuO chains is increased. However, for doping levels p > 0.15 or so, the orthorhombicity saturates whereas the oxygen content keeps increasing.This saturation can be caused by the pressure of the oxygen ordering process in the CuO chains of YBCO [74,75]. Increasing oxygen content results in an increase in the anisotropy of in-plane electronic transport [76] and in-plane thermal expansivities [75], even in the doping range where the orthorhombicity saturated. Assuming the sound velocity has a similar doping-dependent anisotropy as thermal expansivity, the increase of the measured N for p > 0.15 can be naturally explained. For practical purposes, the anisotropy from diffraction experiments (blue dotted line in Fig. S4) is used for computing the theoretical doping dependence of N , such as shown in Fig. 4 of the main text.