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WEIGHTED SUBSPACE DESIGNS FROM q-POLYMATROIDS

EIMEAR BYRNE, MICHELA CERIA, SORINA IONICA, AND RELINDE JURRIUS

Abstract. The Assmus-Mattson theorem gives a way to identify block designs arising from
codes. This result was broadened to matroids and weighted designs by Britz et al. in 2009.
In this work we present a further two-fold generalisation: first from matroids to polymatroids
and also from sets to vector spaces. To achieve this, we study the characteristic polynomial of
a q-polymatroid and outline several of its properties. We also derive a MacWilliams duality
result and apply this to establish criteria on the weight enumerator of a q-polymatroid for which
dependent spaces of the q-polymatroid form the blocks of a weighted subspace design.

1. Introduction

The characteristic polynomial of a matroid is a well studied object. It was first introduced as
a matroid generalisation of the chromatic polynomial of a graph. It arises in critical problems,
analyses of the Tutte polynomial, and is the subject of numerous identities [2]. For a thorough
treatment of the subject see [20], for example.

In combinatorics, the concept of a q-analogue can be viewed as a generalisation from sets to
vector spaces. Recently, the q-analogue of a matroid has been studied [11]. A generalisation
of this is a q-polymatroid [9, 10, 17]. Similar to classical matroids, there are many interesting
connections between q-(poly)matroids and rank-metric codes. In this paper we develop the
theory of the characteristic polynomial of a q-polymatroid. We show the relation between the
characteristic polynomial of a polymatroid and its dual, establishing a MacWilliams-like identity
for q-polymatroids. In a similar line of research, Shiromoto [17] established a q-analogue of
Greene’s theorem.

Another motivation to study the characteristic polynomial is to establish a q-analogue of
the Assmus-Mattson theorem [1]. This theorem gives a criterion for identifying a t-design as
a collection of supports of codewords of fixed weight in a linear code. Since its publication in
1969 it has seen a number of generalisations [6, 13] and has been used widely to obtain new
constructions of designs [8, 16]. In one of these results [3], the authors define a weighted t-design
as a generalisation of a classical t-design and give criteria for identifying such an object among
the dependent sets of a matroid of a fixed cardinality. A weighted t-design is a collection of
subsets B of a fixed cardinality k chosen from an n-set of points P together with a function f
defined on B such that for any t-set T ⊂ P the sum

∑
B∈B:T⊂B f(B) is independent of T . In

the case that f is the characteristic polynomial that takes the value 1 if and only if T ⊂ B, the
weighted t-design is an ordinary design.

In this paper, we generalise the results of [3] to q-polymatroids, which is a two-fold gener-
alisation: first from matroids to polymatroids and also from sets to vector spaces. Hence the
results presented here give a q-analogue of their result. The q-analogue of a weighted t-design
is a weighted subspace design; in the definition shown above we replace the collection of subsets
B with a collection of subspaces of a fixed dimension k and T with a t-dimensional subspace.

In Section 2 we study q-polymatroids and their necessary properties for this work. In Sec-
tion 3 we outline properties of the characteristic polynomial of a q-polymatroid that will be
used later and in Section 4 look at the case of q-polymatroids arising from matrix codes. In
Section 5 we give a version of the MacWilliams duality result for q-polymatroids. In Section 6
we give criteria for identifying when the dependent spaces of a q-polymatroid are the blocks of
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a weighted t-subspace design.

Notation 1. Throughout, we let n denote a fixed positive integer and we will let q denote a
fixed prime power. We let E denote an n-dimensional vector space over the finite field Fq of
order q. We let L(E) denote the lattice of all subspaces of E, ordered with respect to inclusion,
which we denote by ≤. We will write U < V for U, V ≤ E if U is strictly contained in V . The
join of a pair of subspaces is their vector space sum and the meet of a pair of subspaces is their
intersection.

2. q-Polymatroids

q-Polymatroids and their connections to linear codes were introduced in [10] and [17]. Their
properties have been further developed in [9]. In our presentation, we will not assume that
q-polymatroids are representable, that is, we will not assume that the q-polymatroids under
consideration here are constructed from rank-metric codes over Fq. We use the following defini-
tion of a q-polymatroid from [17], since it suits our purposes to have an integer valued function
in what follows.

Definition 2. A (q, r)-polymatroid is a pair M = (E, ρ) for which r ∈ N0 and ρ is a function
ρ : L(E) −→ N0 satisfying the following axioms.

(R1) For all A ≤ E, 0 ≤ ρ(A) ≤ r dimA.
(R2) For all A,B ≤ E, if A ≤ B then ρ(A) ≤ ρ(B).
(R3) For all A,B ≤ E, ρ(A+B) + ρ(A ∩B) ≤ ρ(A) + ρ(B).

If it is not necessary to specify r, we will simply refer to such an object as a q-polymatroid.
If M is a q-polymatroid, we denote its rank function by ρM . Note that a (q, 1)-polymatroid is
a q-matroid.

Recall that a lattice isomorphism between a pair of lattices (L1,∨1,∧1), (L2,∨2,∧2) is a
bijective function ϕ : L1 → L2 that preserves the meet and join, that is, for all x, y ∈ L1 we
have that ϕ(x ∧1 y) = ϕ(x) ∧2 ϕ(y) and ϕ(x ∨1 y) = ϕ(x) ∨2 ϕ(y). We hence define a notion of
equivalence between q-polymatroids.

Definition 3. Let E1, E2 be Fq-linear spaces. Let M1 = (E1, ρ1) and M2 = (E2, ρ2) be
q-polymatroids. We say that M1 and M2 are lattice-equivalent if there exists a lattice iso-
morphism ϕ : L(E1) −→ L(E2) such that ρ1(A) = ρ2(ϕ(A)) for all A ≤ E1. In this case we
write M1

∼= M2.

Remark 4. This definition is not the same as the definition of equivalence of q-polymatroids
given in [9] and [10]. The q-polymatroids (E1, ρ1) and (E2, ρ2) are equivalent if there exists
an Fq-linear isomorphism τ : E1 −→ E2 such that ρ1(A) = ρ2(τ(A)) for all A ≤ E1. Since every
vector space isomorphism induces a lattice isomorphism, equivalence implies lattice-equivalence
for q-polymatroids.

Definition 5. Let F be a an Fq-vector space. We denote by bF a fixed non-degenerate sym-
metric bilinear form (which we call an inner product) on F . For any subspace U ≤ F we denote

the orthogonal complement of U with respect to bF by U⊥(F ) := {a ∈ F : bF (u, a) = 0∀u ∈ U}.
We write U⊥ := U⊥(E).

The dual q-polymatroid was defined in [10, 17].

Definition 6. Let M = (E, ρ) be a (q, r)-polymatroid. For every subspace A ≤ E, define
ρ∗(A) := r dim(A)− ρ(E) + ρ(A⊥). Then M∗ := (E, ρ∗) is a (q, r)-polymatroid called the dual
of M .

As noted in [9], the definition of the dual of M depends on the choice of inner product bE ,
but all such choices yield equivalent duals.

It is easy to see that for a map ρ : L(E) −→ N0 satisfying the axioms (R1)-(R3), the
restriction of that map to L(T ), for each subspace T ≤ E, also yields a q-polymatroid.
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Definition 7. Let M = (E, ρ) be a (q, r)-polymatroid and let T ≤ E. For every subspace
A ≤ T , define ρM |T (A) := ρ(A). Then M |T := (T, ρM |T ) is a (q, r)-polymatroid called the
restriction of M to T .

Definition 8. Let I ≤ E and let M = (E, ρ) be a (q, r)-polymatroid. We say that I is an
independent space of M if ρ(I) = r dim I. A subspace that is not independent, is called a
dependent space of M . We call C ≤ E a circuit of M if it is a minimal dependent space
with respect to inclusion. We call T ≤ E a cocircuit of M if it is a circuit of M∗.

For q-matroids, the following result is (I2) of the independence axioms (see [5, Definition 7]).
We show that this holds for q-polymatroids.

Lemma 9. Let M = (E, ρ) be a (q, r)-polymatroid and let I ≤ E be an independent space of
M . Then every subspace of I is independent.

Proof. Since I is independent, we have ρ(I) = r dim(I). Let J, J ′ be subspaces of I such that I
is a direct sum of J and J ′. By (R1) and applying semimodularity (R3) to J and J ′ we get

r dim(J) + r dim(J ′) ≥ ρ(J) + ρ(J ′) ≥ ρ(J + J ′) + ρ(J ∩ J ′)
= ρ(I) = r dim(I) = r(dim(J) + dim(J ′))

Since ρ(J) ≤ r dim(J) and ρ(J ′) ≤ r dim(J ′) we must have that ρ(J) = r dim(J) and ρ(J ′) =
r dim(J ′) and the result follows. �

From the above lemma, it follows that C ≤ E is a circuit of a q-polymatroid if it is a
dependent space whose proper subspaces are all independent. In the case of a q-matroid, we
have ρ(I) = dim(I) for any independent space of the q-matroid. Furthermore, if I is a maximal
independent subspace of A ≤ E then ρ(A) = ρ(I).

Proposition 10. Let M = (E, ρ) be a q-matroid and let T ≤ E. Define a map

ρM/T : L(E/T ) −→ Z : A 7→ ρ(A)− ρ(T ).

Then M/T := (E/T, ρM/T ) is a q-matroid.

Proof. It is easy to see that ρM/T is well-defined, since every subspace of E/T corresponds to
a unique subspace of E that contains T . It is straightforward to see that the axioms (R2) and
(R3) hold for M/T , given that M is a q-matroid. Let A ≤ E such that T ≤ A. Let I ≤ E
be a maximal independent space of T and let J be a maximal independent subspace of A that
contains I. The space J exists by [5, Lemma 23]. By definition, we have ρ(A) = ρ(J) = dim(J)
and ρ(T ) = ρ(I) = dim(I) = dim(T ∩ J). Therefore,

ρM/T (A/T ) = ρ(A)− ρ(T ) = dim(J)− dim(T ∩ J) = dim(J/(T ∩ J))

= dim((J + T )/T ) = dim(J + T )− dim(T )

≤ dim(A)− dim(T ) = dim(A/T ).

�

In fact, as shown in [9, Theorem 5.2] the statement holds for q-polymatroids as well, simply
applying semimodularity. We thus have the following definition.

Definition 11. Let M = (E, ρ) be a (q, r)-polymatroid and let T ≤ E. We define the map
ρM/T : L(E/T ) −→ Z : A 7→ ρ(A) − ρ(T ). Then M/T := (E/T, ρM/T ) is a (q, r)-polymatroid
called the contraction of M from T .

It will sometimes be more convenient for us to use the slightly less commonly used definition
of contraction to a subspace.

Definition 12. Let M = (M,ρ) be a (q, r)-polymatroid and let X ≤ E. We denote by M.X
the q-polymatroid M.X := (E/X⊥, ρE/X⊥). We call M.X the contraction of M to X.
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In the language of classical matroids, the contraction of M to X is the contraction of M
from E − X, that is M.X = M/(E − X) (see [14, Chapter 3]). In the q-analogue we have
M.X := M/X⊥.

The following duality result is a straightforward extension of [11, Theorem 60]. It relates
the contraction of a q-polymatroid from a subspace to a restriction of its dual q-polymatroid.
We will make good use of this in Section 6, where we give a construction of weighted subspace
designs from q-polymatroids.

Lemma 13. Let M = (E, ρ) be a (q, r)-polymatroid and let T be a subspace of E. Then,

M∗/T ∼= (M |T⊥)∗ and (M/T )∗ ∼= M∗|T⊥ .

Proof. Let φ : L(E/T ) −→ L(T⊥) be defined by φ(X/T ) = (X⊥)⊥(T
⊥), for each X ≤ E such

that T ≤ X (in which case X⊥ ≤ T⊥). That is, φ(X/T ) is the orthogonal complement of X⊥

in T⊥, with respect to bT⊥ . Clearly φ(E/T ) = 0⊥(T
⊥) = T⊥, φ(T ) = (T⊥)⊥(T

⊥) = 0 and if

T ≤ X ≤ Y then Y ⊥ ≤ X⊥ and so φ(X/T ) = (X⊥)⊥(T
⊥) ≤ (Y ⊥)⊥(T

⊥) = φ(Y/T ). Observe
that for T ≤ X we have

dim(φ(X/T )) = dim((X⊥)⊥(T
⊥)) = dim(T⊥)− dim(X⊥)

= dim(X)− dim(T ) = dim(X/T ).

LetA be subspaces of E satisfying T ≤ A ≤ E. We claim that ρM∗/T (A/T ) = (ρM |
T⊥

)∗(φ(A/T )).

ρM∗/T (A/T ) = ρ∗(A)− ρ∗(T )

= r dim(A)− ρ(T⊥) + ρ(A⊥)− r dim(T )

= r dim(A/T )− ρM |
T⊥

(T⊥) + ρM |
T⊥

(A⊥)

= r dim(φ(A/T ))− ρM |
T⊥

(T⊥) + ρM |
T⊥

(φ(A/T )⊥(T
⊥))

= (ρM |
T⊥

)∗(φ(A/T )).

This shows that M∗/T ∼= (M |T⊥)∗. That (M/T )∗ ∼= M∗|T⊥ holds can be seen by replacing M
with M∗ in the previous identity and taking duals. �

Remark 14. In fact, the above result holds even in terms of equivalence in the stronger sense
[9, Definition 2.6 (a)], and not only lattice-equivalence, as was shown in Theorem 5.3 of the
same paper. Note that in establishing the equivalence of these q-polymatroids, the vector space
isomorphism depends on the choice of the bilinear form arising in the construction of the lattice
isomorphism.

Lemma 15. Let M = (E, ρ) be a (q, r)-polymatroid and let I ≤ E be an independent space of
M . Let I ≤ A ≤ E. Then A is independent in M if and only if A/I is independent in M/I.
Moreover, if A is a circuit in M then A/I is a circuit in M .

Proof. Let A be independent in M . Then

r dim(A/I) = r dim(A)− r dim(I) = ρ(A)− ρ(I) = ρM/I(A/I),

hence A/I is an independent space of M/I. Conversely, if A/I is independent in M/I then

r dim(A)− r dim(I) = r dim(A/I) = ρM/I(A/I) = ρ(A)− ρ(I) = ρ(A)− r dim(I),

so ρ(A) = r dim(A).
Let A be a circuit in M . Any proper subspace of A/I has the form B/I for some unique

I ≤ B < A. Since A is a circuit, A/I is a dependent space in M/I, and B is an independent
space of M . Therefore B/I is independent and so A/I is a circuit of M/I. �

Example 16 (The Vámos q-Matroid). This q-matroid is constructed over L(F8q). Choose the

canonical basis for F8q denoted by e1, . . . , e8. Moreover, we consider

C := {〈e1, e2, e3, e4〉, 〈e1, e2, e5, e6〉, 〈e3, e4, e5, e6〉, 〈e3, e4, e7, e8〉, 〈e5, e6, e7, e8〉}.
4



For each A ≤ F8q , we define ρ(A) as follows:

ρ(A) :=

 dim(A) if dim(A) ≤ 3,
3 if A ∈ C,
4 if dim(A) ≥ 4 and A /∈ C.

We prove that ρ is the rank function of a q-matroid. It is easy to see that (R1) and (R2) hold.
Let us consider (R3). If the spaces A, B are both of dimension smaller than 4 or greater than
4, (R3) holds trivially. Indeed, the potential occurrence of a dependent 4-dimensional space can
occur only on the left hand side of the inequality, making it stricter but without compromising
it. Note also that if we only have the occurrence of independent 4-dimensional spaces then
(R3) holds true. Let us consider now the interaction of 4-dimensional dependent spaces with
the other spaces. As a first case, let dim(A) < 4 and dim(B) = 4, ρ(B) = 3. If A ≤ B,
ρ(A+B) = ρ(B) = 3 and ρ(A∩B) = ρ(A) = dim(A) and then (R3) holds true. If A * B, there
is at least a one-dimensional subspace of A not in B, therefore ρ(A+B) = 4, but this also means
that dim(A∩B) < dim(A). Therefore ρ(A+B) + ρ(A∩B) ≤ 4 + dim(A)− 1 = ρ(A) + ρ(B) =
dim(A) + 3, so also in this case (R3) is true. Let dim(A) = dim(B) = 4, ρ(A) = 4 ρ(B) = 3.
Then ρ(A + B) = 4 and ρ(A ∩ B) ≤ 3 so (R3) is trivially true. Let dim(A) = dim(B) = 4,
ρ(A) = ρ(B) = 3, A 6= B (the equality case is trivial). Then ρ(A + B) = 4 and ρ(A ∩ B) ≤ 2
(indeed two 4 dimensional dependent space intersect in a space of dimension at most 2) thus
(R3) is trivially true. Now suppose dim(A) > 4, dim(B) = 4, and ρ(B) = 3. In this case
ρ(A + B) = 4 and ρ(A ∩ B) ≤ 3, making (R3) true again. Note that the set C is the set of
circuits of the Vámos q-matroid.

3. Characteristic Polynomial of a q-Polymatroid

In this section, we introduce the characteristic polynomial of a q-polymatroid. This polyno-
mial and its properties are well-studied in the case of a classical polymatroid [2, 21], in which
case its coefficients are the Möbius coefficients of the lattice of subsets of {1, . . . , n}. In the
q-polymatroid case the underlying lattice is the lattice of subspaces of E. We will use the
characteristic polynomial to obtain a version of the MacWilliams identities for q-polymatroids.

3.1. The Möbius Function on a Lattice. Throughout this paper we will use the Möbius
function (see, e.g. [19, Chapter 25]), which is fundamental to the definition of a characteristic
polynomial. We recall some basic results.

Let (P,≤) be a partially ordered set. The Möbius function for P is defined via the recursive
formula

µ(x, y) :=


1 if x = y,

−
∑

x≤z<y µ(x, z) if x < y,

0 otherwise.

Lemma 17 (Möbius Inversion Formula). Let f, g : P −→ Z be any two functions on a poset
P . Then

(1) f(x) =
∑
x≤y

g(y) if and only if g(x) =
∑
x≤y

µ(x, y)f(y).

(2) f(x) =
∑
x≥y

g(y) if and only if g(x) =
∑
x≥y

µ(y, x)f(y).

For the subspace lattice of E and for two subspaces U and V of dimensions u and v, we have
that

µ (U, V ) =

 (−1)v−uq(
v−u
2 ) if U ≤ V

0 otherwise.
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Definition 18. Given a pair of nonnegative integers N and M , the q-binomial or Gaussian
coefficient counts the number of M -dimensional subspaces of an N -dimensional subspace over
Fq and is given by: [

N
M

]
q

:=

M−1∏
i=0

qN − qi

qM − qi
.

We state the following identity, which can be shown using Möbius inversion.

Lemma 19. Let I, J be subspaces of E of dimensions i and j, respectively, satisfying I∩J = {0}
and i + j ≤ k. Then, the number of k-dimensional subspaces of E that contain I and meet
trivially with J is

j∑
s=0

(−1)sq(
s
2)
[
j
s

]
q

[
n− i− s
k − i− s

]
q

= qj(k−i)
[
n− i− j
k − i

]
q

where n is the dimension of E.

3.2. The Characteristic Polynomial. The following definition is mainly for convenience. It
originates in weight enumeration in linear codes.

Definition 20. Let M = (E, ρ) be a (q, r)-polymatroid. For each A ≤ E we define

`M (A) := ρM (E)− ρM (A).

By the definition of the rank function of a q-polymatroid, for each subspace A of E we see that
`M (A) is non-negative integer in {0, . . . , ρM (E)}. For the remainder, we let M denote a fixed
(q, r)-polymatroid M = (E, ρ) and we write ` := `M and ρ := ρM . For the dual q-polymatroid,
we write `∗ := `M∗ and ρ∗ := ρM∗ .

Definition 21. The characteristic polynomial of M is the polynomial in Z[z] defined by

p(M ; z) :=
∑

X:X≤E
µ(0, X)z`(X).

Clearly p(M ; 1) = 0 and so unless p(M ; z) is identically zero, z − 1 is a factor in Z[z]. For
the (q, r)-polymatroid M , we have

p(M ; z) :=
n∑
j=0

(−1)jq(
j
2)

∑
X≤E,dim(X)=j

z`(X).

Example 22. We calculate the characteristic polynomial of the Vámos q-matroid of Example
16. From the rank function it follows that:

`(X) :=

 4− dim(X) if dim(X) ≤ 3,
1 if X ∈ C,
0 if dim(X) ≥ 4 and X /∈ C.

We split our calculations in the coefficients of the powers of z. For the coefficient of z4 we only
have X ≤ E with dimX = 0, i.e. the zero space. Then µ(0, X) = µ(0, 0) = 1 and we get the
term z4. For z3 and z2 we get∑

dimX=1

µ(0, X)z`(X) = −
[
8
1

]
q

z3,
∑

dimX=2

µ(0, X)z`(X) = q

[
8
2

]
q

z2.

For the coefficient of z we have to consider the five circuits of dimension 4 and all spaces of
dimension 3. This gives (

5q6 − q3
[
8
3

]
q

)
z.

6



Finally, the constant term is determined by all spaces of dimension 4 that are not circuits, plus
all spaces of higher dimension:

q6

([
8
4

]
q

− 5

)
− q10

[
8
5

]
q

+ q15
[
8
6

]
q

− q21
[
8
7

]
q

+ q28 = q6

([
8
4

]
q

− 5− q4
[
8
3

]
q

+ q9
[
8
2

]
q

− q15
[
8
1

]
q

+ q22

)
Adding all terms gives the characteristic polynomial of the Vámos q-matroid. For example,

for q = 2, we have p(M ; z) = z4 − 255z3 + 21590z2 − 776920z + 755584 = (z − 1)(z3 − 254z2 +
21336z − 755584).

It is easily checked that the characteristic polynomial is an invariant of the lattice-equivalence
class of a matroid.

Lemma 23. Let E1, E2 be Fq-linear spaces. Let M1 = (E1, ρ1) and M2 = (E2, ρ2) be a pair of
lattice-equivalent q-polymatroids. Then p(M1; z) = p(M2; z).

Proof. Let φ : L(E1) −→ L(E2) be a lattice isomorphism such that ρ2(φ(X)) = ρ1(X) for all
X ∈ L(E1). Since L(E1) and L(E2) are equivalent lattices, we have that dim(X) = dim(φ(X))
for all X ∈ L(E1) and in particular µ1(0, X) = µ2(0, φ(X)), where µi denotes the Möbius
function on L(Ei). Moreover, X ≤ Y in L(E2) if and only if φ(X) ≤ φ(Y ) in L(E1). By
assumption, `M1(X) = `M2(φ(X)) for each X ∈ L(E1) and so the result now follows. �

We have the following results on the characteristic polynomial of the contraction of M to
a subspace T . These will be important later when we define the q-polymatroid version of the
rank weight enumerator.

Lemma 24. Let T ≤ E. The following hold.

(1) `M.T (X/T⊥) = `M/T⊥(X/T⊥) = `(X).

(2) p(M.T ; z) =
∑

T⊥≤X≤E

µ(T⊥, X)z`(X).

Proof. The first part follows from a direct computation.

`M.T (X/T⊥) = `M/T⊥(X/T⊥) = ρM/T⊥(E/T⊥)− ρM/T⊥(X/T⊥)

= ρ(E)− ρ(T⊥)− ρ(X) + ρ(T⊥)

= ρ(E)− ρ(X) = `(X).

Let µ̄ denote the Möbius function on the lattice of subspaces of E/T . Then, applying (1) we
have:

p(M.T ; z) = p(M/T⊥; z) =
∑

T⊥≤X≤E

µ̄(0, X/T⊥)z
`
M/T⊥ (X/T

⊥)
=

∑
T⊥≤X≤E

µ(T⊥, X)z`(X),

which proves (2). �

Clearly, if T has dimension t, p(M.T ; z) =

t∑
j=0

(−1)jq(
j
2)

∑
T⊥≤Y,dim(Y )=n−t+j

z`(Y ).

Example 25. Let T be a subspace of E. We calculate p(M.T ; z) where M is the Vámos q-
matroid (Example 16). If T has dimension 5, then dimT⊥ = 3. We need only consider two
cases, depending on whether or not T⊥ is contained in a circuit (a member of C). Note that
the circuits intersect pairwise in dimension 2 or 0, so T⊥ cannot be in more than one circuit.
Suppose T⊥ is in none of the circuits. Then for all X such that T⊥ < X ≤ E we have that
`(X) = 0. For X = T⊥, we have `(X) = 1. So the q-matroid M.T is lattice-equivalent to the
uniform q-matroid U1,5. Its characteristic polynomial is

p(M.T ; z) = µ(T⊥, T⊥)z1 +
∑

T⊥<X≤E

µ(T⊥, X)z0 = z − 1.
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Suppose now that T⊥ is contained in a circuit C ∈ C. Among all X such that T⊥ ≤ X ≤ E
we have that `(X) = 1 for X = T⊥ and X = C. Otherwise, `(X) = 0. The q-matroid M.T
has rank 1 and all 1-dimensional spaces are independent, except for the circuit C/T⊥. For the
characteristic polynomial we get the following:

p(M.T ; z) = µ(T⊥, T⊥)z + µ(T⊥, C)z +
∑

X:T⊥<X≤E,X 6=C

µ(T⊥, X)

= z − z −

([
8− 3
4− 3

]
q

− 1

)
+ q

[
8− 3
5− 3

]
q

− q3
[
8− 3
6− 3

]
q

+ q6
[
8− 3
7− 3

]
q

− q10,

= −

([
5
1

]
q

− 1

)
+ q

[
5
2

]
q

− q3
[
5
3

]
q

+ q6
[
5
4

]
q

− q10 = 0.

In fact, since
∑

X:T⊥<X≤E,X 6=C µ(T⊥, X) + 1 + µ(T⊥, C) = 0, we see that the constant term is
zero without the need for any calculation.

We continue to develop technical properties of the characteristic polynomial of the contraction
M.T . In Section 6, we will use the fact that the characteristic polynomial of M.T is identically
zero when T is an independent space of the dual q-polymatroid.

Lemma 26. If T ≤ E is an independent space of M∗ then `(T⊥) = 0.

Proof. Let V = T⊥. We will show that if V ⊥ is an independent space of M then `∗(V ) = 0.
Then the statement of the lemma will follow by replacing M with M∗ and V with T⊥. By
definition, `∗(T ) = ρ∗(E) − ρ∗(T ). It also holds that ρ∗(Y ) = dim(Y ) − ρ(E) + ρ(Y ⊥) for any
subspace Y ≤ E. Therefore,

`∗(V ) = r dim(E)− ρ(E)− (r dim(V )− ρ(E) + ρ(V ⊥))

= r dim(E)− r dim(V )− ρ(V ⊥)

= r dim(V ⊥)− ρ(V ⊥),

which evaluates to zero if V ⊥ is an independent space of M . �

Lemma 27. If T ≤ E is an independent space of M∗ then p(M.T ; z) = 0.

Proof. By Lemma 26, `(T⊥) = 0. Since all subspaces of an independent space are independent,
we have that `(X) = 0 for all T⊥ ≤ X. Applying this to the characteristic polynomial, we get

p(M.T ; z) =
∑

T⊥≤X≤E

µ(T⊥, X)z`(X) =
∑

T⊥≤X≤E

µ(T⊥, X) = 0.

�

Lemma 28. Let T ≤ E be a circuit of M∗ = (E, ρ∗). Then p(M.T ; z) = z`(T
⊥) − 1.

Proof. Let X ≤ E. If T⊥ is strictly contained in X, then X⊥ is strictly contained in T , and so
X⊥ is independent in M∗ by Lemma 9. Therefore, ρ∗(X⊥) = r dim(X⊥) and so

`(X) = ρ(E)− ρ(X) = ρ(E)− (ρ∗(X⊥)− r dim(X⊥) + ρ(E)) = r dim(X⊥)− ρ∗(X⊥) = 0.

Therefore,

p(M.T ; z) =
∑

T⊥≤X≤E

µ(T⊥, X)z`(X) = z`(T
⊥) +

∑
T⊥<X≤E

µ(T⊥, X)

= z`(T
⊥) − µ(T⊥, T⊥) = z`(T

⊥) − 1.

�

Remark 29. Note that if M is a q-matroid, a cocircuit T of M has `(T⊥) = dim(T )−ρ∗(T ) =
dim(T )− (dim(T )− 1) = 1 hence p(M.T ; z) = z − 1.
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Lemma 30. Let T ≤ E be an independent space of M∗. The following hold.

(1) ρ(E) = ρ(T⊥).
(2) For any subspace U ≤ T⊥, we have `M |

T⊥
(U) = `(U).

Proof. By definition of the dual q-polymatroid, we have ρ(T⊥) = ρ∗(T )−dim(T ) + ρ(E). Since
T is independent in M∗, ρ∗(T ) = dim(T ) and so we get ρ(T⊥) = ρ(E), which establishes (1).
Therefore, `M |

T⊥
(U) = ρM |

T⊥
(T⊥)− ρM |

T⊥
(U) = ρ(T⊥)− ρ(U) = ρ(E)− ρ(U) = `(U), which

proves (2). �

Corollary 31. Let T ≤ U be subspaces of E such that T is independent in M∗. If U/T is a
circuit in M∗/T then

p((M∗/T ))∗.(U/T ); z) = p(M |T⊥ .(U⊥)⊥(T
⊥); z) = z`(U

⊥) − 1.

Proof. Recall that (M∗/T )∗ ∼= M |T⊥ under the map φ : A/T 7→ (A⊥)⊥(T
⊥) for any A ≤ E

with T ≤ A. In particular, if U/T is a circuit in M∗/T then φ(U/T ) is a circuit in (M |T⊥)∗.

Moreover φ(U/T )⊥(T
⊥) = U⊥. From Lemmas 30 and 28 we have

p((M∗/T ))∗.(U/T ); z) = p(M |T⊥ .φ(U/T ); z) = z
`M|

T⊥
(U⊥) − 1 = z`(U

⊥) − 1.

�

The following result will be used in the proof of Corollary 69.

Lemma 32. Let W ≤ E and let T ≤W be an independent space of M∗. Then

p(M |T⊥/W⊥; z) =
∑

A:A+T=W

p(M.A; z).

Proof. By Lemmas 24 and 30, we have `M |
T⊥/W

⊥(U/W⊥) = `(U) for any subspace U satisfying

T ≤ U ≤ W . Since p(M/U ; z) =
∑

A:U≤A≤E
µ(U,A)z`(A), by applying the Möbius inversion

formula we have z`(U) =
∑

A:U≤A≤E
p(M/A; z). Therefore, we have

p(M |T⊥/W⊥; z) =
∑

U :W⊥≤U≤T⊥
µ(W⊥, U)z`(U)

=
∑

U :W⊥≤U≤T⊥
µ(W⊥, U)

∑
A:U≤A≤E

p(M/A; z)

=
∑

U :W⊥≤U≤T⊥
µ(W⊥, U)

∑
A:U≤A≤E

p(M.A⊥; z)

=
∑

U⊥:W⊥≤U⊥≤T⊥
µ(W⊥, U⊥)

∑
A:U⊥≤A≤E

p(M.A⊥; z)

=
∑

U :T≤U≤W
µ(W⊥, U⊥)

∑
A:0≤A≤U

p(M.A; z)

=
∑

A:0≤A≤W
p(M.A; z)

∑
U :A+T≤U≤W

µ(W⊥, U⊥)

=
∑

A:A+T=W

p(M.A; z),

where the last equality follows from the fact that∑
U :A+T≤U≤W

µ(W⊥, U⊥) =
∑

U :W⊥≤U⊥≤A⊥∩T⊥
µ(W⊥, U⊥) =

{
1 if A⊥ ∩ T⊥ = W⊥,
0 otherwise.

�
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Remark 33. Let W,T,X ≤ E such that φ(W/T ) = X. Then (W⊥)⊥(T
⊥) = X and so

X⊥(T
⊥) = W⊥. Therefore, M |T⊥ .X = M |T⊥/W⊥.

We now present some further results on the characteristic polynomial.

Definition 34. A loop of the (q, r)-polymatroid M is a circuit of dimension 1.

Clearly, if e is a loop of M , then 0 ≤ ρ(e) < r. If M is a q-matroid then the loops of M all
have rank zero.

Lemma 35. Let e be a one-dimensional subspace of E. The following are equivalent:

(1) p(M.e; z) = 0,
(2) ρ(e⊥) = ρ(E),
(3) e is not a loop in M∗.

Proof. We have p(M.e; z) = z`(e
⊥) − z`(E) = z`(e

⊥) − 1, which is zero if and only if `(e⊥) =
ρ(E) − ρ(e⊥) = 0. This shows that (i) and (ii) are equivalent. The one-dimensional space
e is independent in M∗ if and only if ρ∗(e) = r. Since ρ∗(e) = r dim(e) − ρ(E) + ρ(e⊥) =
r − ρ(E) + ρ(e⊥), this occurs if and only if ρ(e⊥) = ρ(E), which shows that (ii) and (iii) are
equivalent. �

Remark 36. We remark that for a classical matroid M , if e is a loop of M then it is easy to
see that p(M.e; z) = 0. This is because if e is a loop, by semimodularity, the fact that e /∈ E− e
forces ρ(E − e) = ρ(E). Then by the classical version of the lemma above, this gives that
p(M.e; z) = 0. For a q-matroid, however, it may occur that e ≤ e⊥, in which case if e is a loop,
the same argument using semimodularity does not imply that ρ(e⊥) = ρ(E).

Definition 37. For each A ∈ L(E), define c(A) := {X ≤ E : A ≤ X, ρ(A) = ρ(X)}. The
closure of A in the (q, r)-polymatroid M is denote by cl(A) and is defined to be the vector
space sum of the members of c(A) that is, cl(A) :=

∑
X∈c(A)X.

Lemma 38. Let L = cl({0}). Let X be a subspace of E such that X⊥ ≤ L. Then

p(M.X; z) =


zρ(E) +

∑
A:X⊥(A≤E

µ(X⊥, A)z`(A) if X = L⊥,∑
A:X⊥≤A≤E,A*L

µ(X⊥, A)z`(A) otherwise.

If X⊥ = L then p(M.X; z) is a monic polynomial of degree ρ(E) in z. In particular, if M is a
q-matroid and has no loops then p(M ; z) is monic polynomial of degree ρ(E).

Proof. From Lemma 24 we have, p(M.X; z) =∑
A:X⊥≤A≤E

µ(X⊥, A)z`(A) = zρ(E)
∑

A:X⊥≤A≤L

µ(X⊥, A) +
∑

A:X⊥≤A≤E,A*L

µ(X⊥, A)z`(A)

By the definition of the Möbius function,
∑

A:X⊥≤A≤L µ(X⊥, A) = 0 unless X⊥ = L. If A * L

then `(A) = ρ(E) − ρ(A) < ρ(E), so if L = X⊥ then p(M.X; z) is a monic polynomial with

leading term zρ(E). Setting X = E, we obtain that if furthermore M is a q-matroid with no
loops, its characteristic polynomial is monic of degree ρ(E). �

Remark 39. If M is a q-matroid, cl({0}) is the space containing all the loops. By contrast if
M is a q-polymatroid, this is not necessarily the case, since loops need not have rank 0.

In the q-matroid case, cryptomorphisms between matroidal axiom systems such as those
relating to independent spaces, the closure function, flats, hyperplanes etc were established in
[5]. A subspace F is called a flat of a q-matroid if cl(F ) = F . Moreover, if M is a q-matroid,
its collection of flats forms a semi-modular lattice [4, Theorem 2]. The following result will be
used in Corollary 74.

10



Theorem 40. Let M be a q-matroid. Let X ≤ E such that X contains a unique cocircuit C.
Then

p(M.X; z) =

{
z − 1 if X = C,
0 otherwise.

Proof. Denote the independent and dependent spaces of M∗ by I∗ and D∗, respectively. Clearly
X is a dependent space of M∗ and by the uniqueness of C, any subspace of X in D∗ contains
C. Therefore, `(A⊥) = 0 for every A ≤ X such that C � A.

Let U ≤ X such that X = C + U , U ∩ C = {0}. If U is the zero space then X = C and it
follows that p(M.X; z) = z−1 by Lemma 28. Assume that U 6= {0}. For any proper subspace I
of C we have U + I ∈ I∗, so that `(A⊥) = 0 where A = U + I. Moreover, U ∈ I∗ is non-trivial,
so that X is not a sum of cocircuits of M and in particular is not an open set. By [5, Corollary
78], X⊥ is not a flat in M .

Since C is a cocircuit, by [5, Corollary 71] C⊥ is a hyperplane in M and in particular,
cl(C⊥) = C⊥. Let F denote the set of flats of the q-matroid M . Then F = cl(F ) for each
F ∈ F and for each B ≤ E, there is a unique flat F such that cl(B) = F , in which case
ρ(B) = ρ(F ).

p(M.X; z) =
∑

A:X⊥≤A≤E

µ(X⊥, A)z`(A) =
∑

A:A≤X
µ(A,X)z`(A

⊥),

=
∑

A:C≤A≤X
µ(A,X)z`(A

⊥) +
∑

A:A≤X,C�A

µ(A,X),

=
∑
F∈F

X⊥≤F≤C⊥

∑
A:X⊥≤A⊥≤C⊥

cl(A⊥)=F

µ(X⊥, A⊥)z`(F ) +
∑
I:I<C

∑
Y :Y≤U

µ(I + Y,C + U),

=
∑
F∈F

X⊥≤F≤C⊥

z`(F )
∑

A:X⊥≤A⊥≤C⊥
cl(A⊥)=F

µ(X⊥, A⊥) +
∑
I:I<C

µ(I, C)
∑

Y :Y≤U
µ(Y, U),

=
∑
F∈F

X⊥≤F≤C⊥

z`(F )
∑

A:X⊥≤A⊥≤C⊥
cl(A⊥)=F

µ(X⊥, A⊥)−
∑

Y :Y≤U
µ(Y,U).

Since U 6= {0} by assumption, we have
∑

Y :Y≤U µ(Y, U) = 0. Equivalently, X⊥ is not a flat in

M . By [4, Theorem 2] F forms a semimodular lattice and so by [21, Proposition 3.3], we have∑
A:X⊥≤A⊥≤C⊥,cl(A⊥)=F

µ(X⊥, A⊥) = 0.

�

Remark 41. In fact, by a similar argument (also essentially the same as for classical matroids),
it holds that for a q-matroid M , p(M.X; z) = 0 unless X⊥ is a flat in M . Equivalently, we have
that p(M.X; z) = 0 unless X is a sum of co-circuits of M .

3.3. The Weight Enumerator of a q-Polymatroid. We define next the weight enumerator
of a q-polymatroid. In Section 5, we will show that these coefficients satisfy a duality property
and in Section 6, we will apply this duality result to establish a criterion for identifying a
weighted subspace design determined by a q-polymatroid.

Definition 42. We define the weight enumerator of the (q, r)-polymatroid M to be the list
[AM (i; z) : 0 ≤ i ≤ n], where for each i we define

AM (i; z) :=
∑

X≤E,dim(X)=i

p(M.X; z) =
∑

X≤E,dim(X)=i

p(M/X⊥; z).

11



Lemma 43. Let T ≤ E. The following hold.

(1) If Z ≤ E and T ≤ Z then p((M/T )
/

(Z/T ); z) = p(M.Z⊥; z).

(2) AM/T (j; z) =
∑

X≤T⊥:dim(X)=j

p(M.X; z).

Proof. Let T ≤ Z ≤ Y ≤ E. Then (Y/T )
/

(Z/T ) and Y/Z are isomorphic. Let V = (E/T )
/

(Z/T )

and write MV = (M/T )
/

(Z/T ). We have a lattice isomorphism between L(E/Z) and L(V ).

Moreover, it is easy to check that ρMV
((Y/T )

/
(Z/T )) = ρM/Z(Y/Z). Therefore, MV and M/Z

are lattice-equivalent and Z⊥ ≤ T⊥. We thus have

p(MV ; z) = p(M/Z; z) = p(M.Z⊥; z).

Let X ≤ T⊥. It is straightforward to check that dim((X⊥/T )⊥(E/T )) = dim(X). Therefore,

AM/T (j; z) =
∑

X⊥/T≤E/T :dim((X⊥/T )⊥(E/T ))=j

p(M/T
/

(X⊥/T ); z) =
∑

X≤T⊥:dim(X)=j

p(M.X; z)

�

4. Matrix Codes and q-Polymatroids

We consider properties of a q-polymatroid arising from an Fq-linear rank-metric code. There
are several papers outlining properties of rank-metric codes. The q-polymatroids associated
with these structures have been studied in [10, 9, 17].

Notation 44. Throughout this section, we let m be a positive integer. As stated in Definition
5, we write U⊥ to denote the orthogonal complement of U ≤ E with respect to bE . By abuse
of notation, we also write U⊥ to denote the orthogonal complement of

• U ≤ Fn×mq with respect to the inner product bFn×m
q

defined by bFn×m
q

(X,Y ) = Tr(XY T )

for all X,Y ∈ Fn×mq and

• U ≤ Fnqm with respect to the dot product defined by x · y =
∑n

i=1 xiyi for all x =
(x1, . . . , xn), y = (y1, . . . yn) ∈ Fnqm .

Definition 45. We say that C ⊆ Fn×mq is a linear rank metric code, or a matrix code if C

is a subspace of Fn×mq . The minimum distance of C is the minimum rank of any member of
C. We say that C is an Fq-[n×m, k, d] rank metric code if it has Fq-dimension k and minimum

distance d. The dual code of C is C⊥ := {Y ∈ Fn×mq : Tr(XY T ) = 0 ∀X ∈ C}.

Definition 46. Let X ∈ Fn×mq and let U ≤ E. We say that U is the support of X if colsp(X) =
U . Let C be an Fq-[n ×m, k, d] rank metric code. We say that U is a support of C if there
exists some X ∈ C with support U .

Definition 47. Let m be a positive integer and let C be an Fq-[n×m, k, d] rank-metric code.
For each subspace U ≤ E, we define

CU := {A ∈ C : colsp(A) ≤ U⊥} and C=U := {A ∈ C : colsp(A) = U⊥}.
Let ρ : L(E) −→ N≥0 be defined by ρ(U) := k − dim(CU ). We denote by MC the (q,m)-
polymatroid (E, ρ).

Clearly, we have `(U) = dim(CU ) for every U ≤ E.

Lemma 48. Let C be an Fq-[n×m, k, d] rank-metric code. The following hold.

(1) MC⊥ = (MC)∗,
(2) p(M/U ; q) = |C=U |.
(3) Wi(C) = AMC

(i, q) for each i ∈ {1, .., n},
(4) AMC

(i, q) = 0 if and only if p(M/U ; q) = 0 for every i-dimensional subspace U ≤ E,
(5) If AMC

(i, q) = 0 then AMC/T (i, q) = 0 for every t-dimensional subspace T ≤ E.
12



Proof. (1) has been established in [10, Theorem 7.1]. Since |CU | =
∑
U⊂V
|C=V |, by Möbius

inversion we have

|C=U | =
∑
U≤V

µ(U, V )|CV | =
∑
U≤V

µ(U, V )q`(V ) = p(M.U⊥; q) = p(M/U ; q).

Therefore (2) holds. The number of codewords of C that have rank i over Fq is

Wi(C) =
∑

U :dim(U)=n−i

|C=U | =
∑

U :dim(U)=n−i

p(M.U⊥; q) =
∑

U :dim(U)=i

p(M.U ; q) = AMC
(i; q),

which gives (3). Clearly, AMC
(i; q) = 0 if and only if p(M.U ; q) = 0 for each U ≤ E of dimension

i, which gives (4). Let T be a t-dimensional subspace of E. By Lemma 43 we have

AMC/T (i, q) =
∑

X≤T⊥:dim(X)=i

p(M.X; q).

If AMC
(i; q) = 0, then from (4) we have p(M.X; q) = 0 for each i-dimensional subspace X, and

so we get AMC/T (i, q) = 0, which proves (5). �

Remark 49. Note that Part (2) of Lemma 48 is an instance of the critical theorem for q-
polymatroids and matrix codes.

Remark 50. In [10], the authors define a pair of q-polymatroids associated with matrix code.
The one given above is the q-polymatroid whose rank function is determined by the column-
spaces of the codewords. A second q-polymatroid is one whose rank function is determined by
the row-spaces of the codewords.

One way to construct an Fq-[n ×m, k, d] rank metric code is by taking a subspace of Fnqm ,
and expanding its elements with respect to a basis of Fqm over Fq. This class of rank metric
codes are referred to as vector rank-metric codes.

Definition 51. Let Γ be a basis of Fqm over Fq. For each x ∈ Fnqm , we write Γ(x) to denote
the n×m matrix over Fq whose ith row is the coordinate vector of the ith coefficient of x with
respect to the basis Γ. The rank of x is the rank of the matrix Γ(x). Note that the rank of x
is well-defined, being independent of the choice of basis Γ.

For the remainder, we fix Γ to be a basis of Fqm over Fq.

Definition 52. A (linear rank-metric) vector code C is an Fqm-subspace of Fnqm . The mini-
mum distance of C is the minimum rank of any non-zero element of C. We say that C is an
Fqm-[n, k, d] code if it has Fq-dimension k and Γ(C) has minimum rank distance d. The code

C⊥ denotes the dual code of C with respect to the standard dot product on Fnqm .

Each vector rank metric code determines a q-matroid, as follows.

Definition 53. Let m ≥ n and let C be an Fqm-[n, k, d] rank-metric code. Let U ≤ E and
let x ∈ C. We say that U is a support of x if U is the column space of Γ(x) and we write
σ(x) = U . For each subspace U ≤ E, we define

CU := {x ∈ C : σ(x) ≤ U⊥} and C=U := {x ∈ C : σ(x) = U⊥}.
Let ρ : L(E) −→ N≥0 be defined by ρ(U) := k− dimFqm (CU ). We denote by MC the q-matroid
(E, ρ).

Remark 54. Note that in the definition given above, the rank function for the q-matroid of C is
the rank function of the associated (q,m)-polymatroid as defined in Definition 47, divided by m.
Since C is Fqm-linear, CU is an Fqm-vector space for each subspace U and so has Fq-dimension
a multiple of m. Therefore the results of Lemma 48 hold with qm in place of q. For example,
with respect to the characteristic polynomial of the q-matroid, we have p(M/U ; qm) = |C=U |
for an Fqm-[n, k, d] code C and subspace U .
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Example 55. Let α be a primitive element of F26 and let C be the F26-[6, 3, 3] vector rank
metric code generated by the matrix:

G =

 1 0 0 α13 α47 α35

0 1 0 α44 α62 α32

0 0 1 α34 α22 α19

 .
With respect to the basis Γ = {1, . . . , α5}, the rows of G are expanded to the following binary
matrices: 

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0
0 1 0 1 1 1
1 0 0 0 1 0

 ,


0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
1 0 1 1 0 1
0 1 0 0 1 1

 ,


0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 1 0 0 1
0 0 1 1 1 0
0 1 1 1 0 1

 .

A basis of Γ(C) over F2, which has 18 elements, is found by multiplying each row of G by
successive powers of α and expanding with respect to Γ. Γ(C) is an F2-[6× 6, 18, 3] rank metric
code with rank-metric weight distribution [1, 0, 0, 567, 37044, 142884, 81648]. Moreover, C is
formally self-dual, that is, its dual code has the same weight distribution. Now consider the
q-matroid arising from C, with rank function satisfying ρ(U) = 3−dimF26 (CU ) for each U ≤ F62.
There are 9 different 3-dimensional spaces that are supports of C and for each such subspace U
we have p(M.U ; 26) = |C=U⊥ | = 26. Also |CU⊥ | = |C=U⊥ |+ 1, so that ρ(U⊥) = 3− 1 = 2, and
`(U⊥) = 1. These subspaces U are the cocircuits of the q-matroid MC of minimum dimension,
which we list below.

〈(010011), (001010), (000100)〉, 〈(101100), (010000), (000001)〉, 〈(100001), (011000), (000010)〉,
〈(100111), (010010), (001101)〉, 〈(100110), (010101), (001001)〉, 〈(100010), (001011), (000111)〉,
〈(110001), (000101), (000011)〉, 〈(100100), (010100), (001111)〉, 〈(100000), (010110), (001000)〉.

There are 588 4-dimensional supports of C. Similarly, for each such subspace U we have
p(M.U ; 26) = |C=U⊥ | = 26, ρ(U⊥) = 2, and `(U⊥) = 1. It can be checked that none of
these spaces contains a cocorcuit of dimension 3, so these are also cocircuits of MC . There
are 63 5-dimensional supports of C and of course the only 6-dimensional support is the entire
space F62. Each 5-dimensional support U is the support of exactly 2268 different codewords, so
p(M.U ; 26) = |C=U⊥ | = 2268. We have |CU⊥ | = 4096 for each such U , so that ρ(U⊥) = 3−2 = 1,
and `(U⊥) = 2.

`(U)
dim(U)

0 1 2 3 4 5 6

0 0 0

[
6
3

]
2

− 9 = 1386

[
6
4

]
2

= 651

[
6
5

]
2

= 63 1

1 0 0 588 9 0 0 0

2 0

[
6
1

]
2

= 63

[
6
2

]
2

− 588 = 63 0 0 0 0

3 1 0 0 0 0 0

We now write down the characteristic polynomial of MC .

p(MC ; z) =
∑

U :0≤U≤E
µ(0, U)z`(U)

= z3 +
∑

U :0<U≤E,`(U)=2

µ(0, U)z2 +
∑

U :0<U≤E,`(U)=1

µ(0, U)z +
∑

U :0<U≤E,`(U)=0

µ(0, U)

= z3 + 63z2 + 1104z − 1168 = (z − 1)(z2 + 64z + 1168).
14



5. MacWilliams Identities for q-Polymatroids

We establish a version of the MacWilliams identities for the (q, r)-polymatroids that we shall
use in establishing criteria for the existence of a weighted t-design over Fq. Duality via the rank
polynomial of a q-polymatroid was considered in [17]. We start with a result that relates the
characteristic polynomial of a q-polymatroid with that of its dual.

Lemma 56. Let U ≤ E. Then∑
A:A≤U

p(M∗.A; z) = zr dim(U)−ρ(E)
∑

A:A≤U⊥
p(M.A; z).

Proof. Since p(M/U ; z) =
∑

A:U≤A≤E
µ(U,A)z`(A), by Möbius inversion we have

z`(U) =
∑

A:U≤A≤E
p(M/A; z).

Therefore,

z`
∗(U) =

∑
A:U≤A≤E

p(M∗/A; z) = z`(U
⊥)−ρ(E)+r dim(U⊥),

and so∑
A:U≤A≤E

p(M∗/A; z) = z`(U
⊥)−ρ(E)+r dim(U⊥) = zr dim(U⊥)−ρ(E)

∑
A:U⊥≤A≤E

p(M/A; z).

It follows that
∑

A:U≤A⊥≤E

p(M∗.A; z) = zr dim(U⊥)−ρ(E)
∑

A:U⊥≤A⊥≤E

p(M.A; z), and so

∑
A:A≤U

p(M∗.A; z) = zr dim(U)−ρ(E)
∑

A:A≤U⊥
p(M.A; z).

�

We now show that for any subspace U ≤ E, the characteristic polynomial of M∗.U is com-
pletely determined by the set {p(M.V ; z) : V ≤ E}.

Corollary 57. Let U ≤ E. We have the identity:

zρ(E)p(M∗.U ; z) =
∑
V≤E

p(M.V ; z)

dim(V ⊥∩U)∑
j=0

[
dim(V ⊥ ∩ U)

j

]
q

(−1)dim(U)−jq(
dim(U)−j

2 )zjr.

Proof. From Lemma 56, we have:∑
A:A≤U

p(M∗.A; z) = zr dim(U)−ρ(E)
∑

A:A≤U⊥
p(M.A; z). (1)

Apply the Möbius inversion formula to (1) to get the identity

p(M∗.U ; z) =
∑

A:A≤U
µ(A,U)zr dim(A)−ρ(E)

∑
V :V≤A⊥

p(M.V ; z).

Then

zρ(E)p(M∗.U ; z) =
∑

A:A≤U
µ(A,U)zr dim(A)

∑
V≤A⊥

p(M.V ; z)

=
∑

(A,V ):A≤U,A≤V ⊥
p(M.V ; z)µ(A,U)zr dim(A)

=
∑
V≤E

p(M.V ; z)
∑

A:A≤U∩V ⊥
µ(A,U)zr dim(A).

15



Finally, this yields

zρ(E)p(M∗.U ; z) =
∑
V≤E

p(M.V ; z)

dim(V ⊥∩U)∑
j=0

[
dim(V ⊥ ∩ U)

j

]
q

(−1)dim(U)−jq(
dim(U)−j

2 )zjr. (2)

�

We now have the following MacWilliams identity, relating the weight enumerators of M and
M∗. This version of the identity, or rather its corollary will be used in the main theorem of
Section 6.

Theorem 58. Let s ∈ {0, ..., n}. Then

n−s∑
i=0

[
n− i
s

]
q

AM (i; z) = zρ(E)−rs
s∑
i=0

[
s
i

]
q

AM∗(i; z).

Proof. We start with the left-hand-side of the equation and rewrite it, noting that
[
n−i
s

]
=[

n−i
n−s−i

]
counts the number of (n − s)-dimensional subspaces that contain a fixed space of di-

mension i. This yields:

n−s∑
i=0

[
n− i
s

]
q

AM (i; z) =
n−s∑
i=0

[
n− i

n− s− i

]
q

∑
dim(X)=i

p(M.X; z)

=
∑

{(U,X):X≤E,X≤U,dim(U)=n−s}

p(M.X; z)

=
∑

U :dim(U)=n−s

∑
X≤U

p(M.X; z)

From Lemma 56, this gives:

n−s∑
i=0

[
n− i
s

]
q

AM (i; z) =
∑

U :dim(U)=n−s

zρ(E)−r dim(U⊥)
∑

X≤U⊥
p(M∗.X; z)

=
∑

V :dim(V )=s

zρ(E)−rs
∑
X≤V

p(M∗.X; z)

= zρ(E)−rs
∑

{(V,X):dim(V )=s,X≤V }

p(M∗.X; z)

= zρ(E)−rs
s∑
i=0

[
s
i

]
q

∑
X≤E:dim(X)=i

p(M∗.X; z)

= zρ(E)−rs
s∑
i=0

[
s
i

]
q

AM∗(i; z)

�

Corollary 59. Let S ≤ {1, ..., n}. The pair of lists

[AM∗(i; z) : i ∈ {|S|+ 1, . . . , n}] and [AM (j; z) : j ∈ S],

is determined uniquely by the pair of lists

[AM∗(i; z) : i ∈ {1, . . . , |S|}] and [AM (j; z) : j ∈ {1, . . . , n} − S].

Proof. From Theorem 58, we have the matrix equation([
n− i
s

]
q

)i
s

(AM (i; z))i = diag(zρ(E)−rs)s

([
s
i

]
q

)i
s

(AM∗(i; z))i .
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Let t = |S|. It is well-known that every t × t minor of the matrix

([
n− i
s

]
q

)
0≤i≤n,0≤s≤t

is non-zero and every t × t minor of the matrix

([
s
i

]
q

)
0≤i≤n,n+1−t≤s≤n

is non-zero. If the

coefficients {AM (j; z) : j ∈ S} are known, then since the corresponding t × t submatrix of([
s
i

]
q

)
0≤i≤n,n+1−t≤s≤n

is invertible, the coefficients {AM∗(i; z) : i ≤ |S|} can be retrieved.

Similarly, we can retrieve the coefficients [AM (j; z) : j ∈ {1, ..., n} − S]. �

6. Weighted Subspace Designs from q-Polymatroids

6.1. Weighted Subspace Designs. In [3], the authors give a definition of a weighted subspace
design, which generalizes a t-design. An t-(n, k, λ) design is a collection of k-subsets of an n-
set (called blocks) with the property that every t-subset of the n-set is contained in exactly
λ blocks. A q-analogue of this notion is that of a t-design over Fq, which is a collection of k-
dimensional subspaces of E called blocks, with the property that every t-dimensional subspace
of E is contained in the same number of blocks. Similarly, there is a q-analogue of a weighted
t-design.

Definition 60. Let G be a group. A weighted t-(n, k, λ; q) design D is a triple (E,B, f) for
which B is a collection of k-subspaces of E (called blocks), and f : B 7→ G is a weight function

such that the equality
∑

B:T≤B
f(B) = λ holds for some θ ∈ G and for all t-spaces T of V . We

say that D is a weighted subspace design or is a weighted design over Fq.

A subspace design (a design over Fq) can be interpreted as a weighted subspace design with
the weight function f(B) := 1 for all B ∈ B. For an excellent survey on subspace designs, see
[12]. In general, obtaining new subspace designs is a difficult problem, often highly dependent
on computer search, which is exacerbated by the number of subspaces involved, which is expo-
nential in comparison to classical designs for the same parameters. For example, it is not yet
known if a 3-(8, 4, 1; 2) subspace design exists; such a design would have 6477 blocks, chosen
from an ambient space having 200,787 4-dimensional subspaces. Its classical analogue, the ex-
tended Fano plane, has 14 blocks, chosen from a collection of 70 4-sets. In [4], a construction
of a q-analogue of a perfect matroid design (q-PMD) was given, which is a q-matroid for which
all flats of the same dimension have the same rank. This q-PMD yields a construction of a
subspace design from a q-Steiner system. In the following sections we will show another way
that subspace designs and weighted subspace designs can arise from q-polymatroids satisfying
certain rigidity properties.

The intersection numbers of a weighted subspace design are important invariants and can
used to establish non-existence results.

Theorem 61. Let (E,B, f) be a t-(n, k, λ; q) weighted subspace design and let I, J be two
subspaces of E of dimension i and j, respectively such that I ∩ J = {0}. If i+ j ≤ t, then

∑
B∈B:I≤B,B∩J={0}

f(B) = q(k−i)j
[
n− i− j
k − i

]
q

[
n− t
k − t

]−1
q

λ.

In particular, this number is independent of the choice of I of dimension i and J of dimension
j. We denote it by λi,j.
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Proof. If X be a subspace of E of dimension x ≤ t, then since (E,B, f) is a weighted subspace
design, we have[

k − x
t− x

]
q

∑
B∈B:X≤B

f(B) =
∑

B∈B:X≤B

∑
T :X≤T≤E,dim(T )=t

f(B), (3)

=
∑

T :X≤T≤E,dim(T )=t

∑
B∈B:T≤B

f(B) =

[
n− x
t− x

]
q

λ.

Now suppose that X = I + K for some K ≤ J of dimension s. Then I ∩ K = {0} and
dim(I +K) = i+ s and so (3) becomes:

g(K) :=
∑

B∈B:I+K≤B
f(B) =

[
n− (i+ s)
t− (i+ s)

]
q

[
k − (i+ s)
t− (i+ s)

]−1
q

λ.

Define h(K) =
∑

B∈B:I⊆B,B∩J=K
f(B). We wish to compute h({0}). Since g({0}) =

∑
K≤J

h(K),

applying Möbius inversion on the lattice L(J), we get:

h({0}) =
∑
K≤J

µ(0,K)g(K) =

j∑
s=0

[
j
s

]
q

(−1)sq(
s
2)
[
n− i− s
t− i− s

]
q

[
k − i− s
t− i− s

]−1
q

λ

= λ

[
n− t
k − t

]−1
q

j∑
s=0

(−1)sq(
s
2)
[
j
s

]
q

[
n− i− s
k − i− s

]
q

= λ

[
n− t
k − t

]−1
q

qj(k−i)
[
n− i− j
k − i

]
q

,

where the last equality follows from Lemma 19. �

Remark 62. The proof outlined above is a direct q-analogue of [3, Theorem 2.6]. The inter-
section numbers for subspace designs were given in [7, 18], for which the authors proposed an
inductive argument.

We have the following constructions of new weighted subspaces designs from a given one.

Corollary 63. Let D := (E,B, f) be a weighted t-(n, k, λ; q) design. Let I, J ≤ E have dimen-
sion i and j, respectively, for 0 ≤ i, j ≤ t.

(1) D is an i− (n, k, λi; q) weighted subspace design with λi =

[
n− i
k − i

]
q

[
n− t
k − t

]−1
q

λ

(2) Define B⊥ := {B⊥ : B ∈ B}. Then D⊥ = (E,B⊥) is a t − (n, n − k, λ⊥; q) weighted

subspace design with λ⊥ :=

[
n− k
t

]
q

[
k
t

]−1
q

λ.

Proof. To see that (1) holds, apply Theorem 61 with λi := λi,0. Let I be an i-dimensional

subspace of E. We have λi,0 =
∑

B∈B:I≤B f(B) =

[
n− i
k − i

]
q

[
n− t
k − t

]−1
q

.

To see that (2) holds, apply Theorem 61 with λ⊥ := λ0,t. Clearly the members of B all have

dimension n− k. A t-dimensional subspace T is contained in B⊥ ∈ B⊥ if and only if B ≤ T⊥,
in which case B has trivial intersection with a t-dimensional space. �

6.2. Subspace Designs from q-Polymatroids. We now present criteria for the existence of
a weighted subspace design arising from the dependent spaces of a q-matroid. The approach is
in essence a generalization of the original argument given by Assmus and Mattson [1]. To do
this, we obtain a q-analogue of [3, Theorem 3.3]. Throughout this section we let F denote an
arbitrary field. Since p(M ; z) ∈ Z[z], it gives a well-defined function on any field, viewed as a
Z-module. We define the following sets (c.f. [3]).
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Definition 64. Let θ ∈ F. We define the following.

• DM (i; θ) := {X ≤ E : dim(X) = i, p(M.X; θ) 6= 0},
• RM (t; θ) := {j ∈ {1, . . . , n− t} : AM∗(j; θ) 6= 0},
• dM := min{dim(X) : X ≤ E,X is a cocircuit of M}.

Proposition 65. Let θ ∈ F such that θs 6= 1 for any s ∈ {1, . . . , r}. For each i ∈ {1, . . . , n}, the
following holds. The members of DM (i; θ) are all dependent spaces of M∗. Moreover DM (dM ; θ)
is precisely the set of all circuits of M∗ of dimension dM .

Proof. If X ∈ DM (i; θ) then p(M.X; θ) 6= 0, which by Lemma 27, means that X is a dependent

space of M∗. By Lemma 28, for any circuit X of M∗ we have p(M.X; z) = z`(X
⊥)−1. By (R2),

ρ∗(X) is lower-bounded by the rank of any of its subspaces, which are all independent in M∗.
Therefore, ρ∗(X) ≥ r(dim(X)− 1) and so

r = r dim(X)− r(dim(X)− 1) ≥ r dim(X)− ρ∗(X) = `(X⊥) > 0.

By hypothesis, p(M.X; θ) = θ`(X
⊥) − 1 6= 0 and so X ∈ DM (dim(X); θ). In particular,

DM (dM ; θ) is precisely the set of all circuits of M∗ of dimension dM . �

We will now present the main results of this section: Theorem 66 and its two corollaries.

Theorem 66. Let θ ∈ F such that θs 6= 1 for any s ∈ {1, . . . , r}. Let t < dM be a positive
integer. Suppose that σ∗ := |RM (t; θ)| ≤ dM − t and suppose further that for each t-dimensional
subspace T and j ≤ n− t it holds that

AM∗(j; θ) = 0 =⇒ AM∗/T (j; θ) = 0.

Then (E,DM (dM ; θ), f) is a weighted t-design over Fq with f(X) := p(M.X; θ).

Proof. Let T be a t-dimensional subspace of E. Since t < dM , T is independent in M∗. By
Lemma 15, any dependent space A of M∗/T has the form A = B/T for a dependent space B
of M∗. Therefore,

σ∗ ≤ dM − t ≤ dim(B)− t = dim(A). (4)

In other words, no dependent space of M∗/T has dimension less than σ∗. By Lemma 27, if X
is independent in M∗/T then p((M∗/T )∗.X; θ) = 0. Therefore,

A(M∗/T )∗(i; θ) =
∑

X≤E/T :dim(X)=i

p((M∗/T )∗.X; θ) = 0, for all 0 ≤ i ≤ σ∗ − 1.

By hypothesis, AM∗/T (j; θ) = 0 for all j /∈ RM (t; θ). So the coefficients,

[AM∗/T (j; θ) : j /∈ RM (t; θ)] and [A(M∗/T )∗(i; θ) : 0 ≤ i ≤ σ∗ − 1],

are known. Now apply Corollary 59, (setting S = RM (t; θ)) to see that the coefficients

[AM∗/T (j; θ) : j ∈ RM (t; θ)] and [A(M∗/T )∗(i; θ) : σ∗ ≤ i ≤ n− t],
are uniquely determined and independent of our choice of T of dimension t. It follows that the
A(M∗/T )∗(i; θ) are uniquely determined for 0 ≤ i ≤ n− t. We will now show that∑

X∈DM (dM ;θ):T≤X

p(M.X; θ) = A(M∗/T )∗(dM − t; θ)

which will establish that (E,DM (dM ; θ), f) is a weighted t-design over Fq with f(X) := p(M.X; θ).
Let B be a circuit of M∗ that contains T such that dim(B) = dM . From Lemma 15, B/T

is a circuit of M∗/T and dim(B/T ) = dim(B) − t = dM − t. Conversely, if A is a circuit of
M∗/T satisfying dim(A) = dM − t, then A = B/T for a dependent space B of M∗ of dimension
dim(B) = dM , which is therefore a circuit of M∗, as it has minimal dimension.

By Proposition 65, DM (dM ; θ) is precisely the set of all cocircuits of M of dimension dM and
hence there is a one-to-one correspondence between the members of DM (dM ; θ) that contain
T and the circuits of M∗/T of dimension dM − t. By (4), no dependent space of M∗/T has
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dimension less than dM − t, so any dependent space of M∗/T of dimension dM − t is a circuit
of M∗/T and all such circuits are members of D(M∗/T )∗(dM − t; θ). Therefore, there is a one-
to-one correspondence between the members of DM (dM ; θ) that contain T and the members of
D(M∗/T )∗(dM − t; θ).

From Corollary 31, for any circuit X/T of M∗/T we have

p((M∗/T )∗.(X/T ); θ) = θ`(X
⊥) − 1.

Therefore, ∑
X∈DM (dM ;θ),T≤X

p(M.X; θ) =
∑

X∈DM (dM ;θ),T≤X

(θ`(X
⊥) − 1),

=
∑

X/T∈D(M∗/T )∗ (dM−t;θ)

(θ`(X
⊥) − 1),

=
∑

X/T≤E/T :dim(X/T )=dM−t

p((M∗/T )∗.(X/T ); θ),

= A(M∗/T )∗(dM − t; θ),

which is independent of our choice of T of dimension t. It follows that (E,DM (dM ; θ), f) is a
weighted t-design over Fq with f(X) := p(M.X; θ). �

Remark 67. Recall that in Remark 33 we observed that if W,T,X ≤ E satisfy T ≤ W and
φ(W/T ) = X then M |T⊥ .X = M |T⊥/W⊥. Clearly, dim(W ) = dim(X) + dim(T ) and so if T is
a t-dimensional space then:

AM |
T⊥

(j; z) =
∑

X≤T⊥:dim(X)=j

p(M |T⊥ .X; z) =
∑

W≤E:dim(W )=j+t

p(M |T⊥/W⊥; z).

Remark 68. In the proof of Theorem 66, we saw that with the hypothesis of the theorem, that
the A(M∗/T )∗(i; θ) (and therefore the AM∗/T (i; θ)) are uniquely determined for 0 ≤ i ≤ n − t.
By Lemma 13, it then follows that the AM |

T⊥
(i; θ) are uniquely determined for 0 ≤ i ≤ n− t.

Corollary 69. Let θ ∈ F such that θs 6= 1 for any s ∈ {1, . . . , r}. Let t < dM be a positive
integer. Suppose that σ∗ := |RM (t; θ)| ≤ dM − t and suppose further that for each t-dimensional
subspace T and j ≤ n− t it holds that

AM∗(j; θ) = 0 =⇒ AM∗/T (j; θ) = 0.

Then for each j ∈ {dM , ..., n− t}, (E,DM (j; θ), f) is a weighted t-design over Fq with f(X) :=
p(M.X; θ).

Proof. We will prove by induction on w ∈ {dM , ..., n − t} that (E,DM (w, θ), f) is a weighted
t-design. The first step was proved in Theorem 66. Suppose now that (E,DM (j, θ), f) is a
weighted t-design for each j ∈ {dM , . . . , w − 1}. We will show that (E,DM (w, θ), f) is also a
weighted t-design.

Let T ≤ E have dimension t and let W ≤ E contain T and have dimension w. Let A ≤ W
such that A + T = W . Then A ∩ T = I for a unique subspace I of dimension i, so that
dim(A) = w − t+ i. Therefore,

{A ≤W : A+ T = W} =
⋃
I≤T
{A ≤W : A ∩ T = I, dim(A) = w − t+ dim(I)}.

Using this observation and Lemma 32 we have

p(M |T⊥/W⊥) =
∑

A:A+T=W

p(M.A; θ) =
∑
I≤T

∑
A:A≤W,A∩T=I,dim(A)=w−t+dim(I)

p(M.A; θ).
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By hypothesis, for each 1 ≤ j ≤ w − 1, (E,DM (j, θ), p(M.•)) is a weighted t-design, and so
by Theorem 61, for any subspaces I ≤ T of dimension 0 ≤ i < t (so that dM − t ≤ w − t ≤
w − t+ i ≤ w − 1) we have ∑

A:A≤W,A∩T=I,dim(A)=w−t+i

p(M.A; θ) = Λwi,t−i(M ; θ),

for Λwi,t−i(M ; θ) that depend only on t, w, i. It follows that

p(M |T⊥/W⊥) = p(M.W ; θ) +
∑
I<T

Λwdim(I),t−dim(I)(M ; θ) = p(M.W ; θ) +

t−1∑
i=0

[
t

i

]
Λwi,t−i(M ; θ).

Therefore, by Remark 67 we have

AM |
T⊥

(w − t; θ) =
∑

W :T≤W,dim(W )=w

p(M |T⊥/W⊥)

=
∑

W :T≤W,dim(W )=w

(
p(M.W ; θ) +

t−1∑
i=0

[
t

i

]
Λwi,t−i(M ; θ)

)

=
∑

W :T≤W,dim(W )=w

p(M.W ; θ) +

[
n− t
w − t

] t−1∑
i=0

[
t

i

]
Λwi,t−i(M ; θ).

By Remark 68, AM |
T⊥

(w− t; θ) is independent of our choice of T of dimension t. It follows that∑
W :T⊂W,dim(W )=w

p(M.W ; θ) depends only on the integers w, t. �

Corollary 70. Let θ ∈ F such that θ 6= 1. Let t < dM be a positive integer. Suppose that
σ∗ := |RM (t; θ)| ≤ dM − t and suppose further that for each t-dimensional subspace T and
j ≤ n− t it holds that

AM∗(j; θ) = 0 =⇒ AM∗/T (j; θ) = 0.

Then for each j ∈ {dM∗ , ..., n − t}, (E,DM∗(j; θ), f
∗) is a weighted t-design over Fq with

f∗(X) := p(M∗.X; θ) for all subspaces X ≤ E.

Proof. For each dM∗ ≤ j ≤ n − t, define the set Dj := {X⊥ : X ∈ DM∗(j; θ)}. Let T be a
t-dimensional subspace of E. Then for each j we have:∑
X∈DM∗ (j,θ),T≤X⊥

p(M∗.X; θ) =
∑

X:X≤T⊥,dim(X)=j

p(M∗.X; θ) =
∑

X:X≤T⊥,dim(X)=j

p(M∗/X⊥; θ).

Now for each X ≤ T⊥ we have (E/T )
/

(X⊥/T ) ∼= E/X⊥ and it is easy to see that the corre-
sponding q-polymatroids are lattice-equivalent. Then, applying Lemma 13 and using the fact

that φ(X⊥/T )⊥(T
⊥) = X, we get

M∗.X ∼= (M∗/T )
/

(X⊥/T ) ∼= (M |T⊥)∗/φ(X⊥/T ) = (M |T⊥)∗.φ(X⊥/T )⊥(T
⊥) ∼= (M |T⊥)∗.X.

Therefore,∑
X∈Dj ,T≤X

p(M∗.X; θ) =
∑

X:T≤X,dim(X)=n−j

p((M |T⊥)∗.X; θ) = A(M |
T⊥ )

∗(n− j; θ).

From Remark 68, A(M |
T⊥ )

∗(n− j; θ) is independent of the choice of T of dimension t. It follows

that (E,Dj , f∗) is a weighted subspace design with f∗ defined by f∗(X) = p(M∗.X; θ) for each
X ≤ E. The result now follows by Corollary 63: the required subspace design is the dual of
(E,Dj , f∗). �

Remark 71. The quantities in Definition 64 and the results of Proposition 65, Theorem 66
and Corollaries 69 and 70 all hold with an indeterminate z in place of a specific choice of θ in
F. In particular, p(M.X; z) is a non-zero polynomial on F for any cocircuit X of M .
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In general, a (q, r)-polymatroid M may satisfy the hypothesis of Corollary 69 for one choice
of θ, but fail for another choice. However, if the hypothesis holds for indeterminate z, then a
weighted t-design over Fq can be constructed for any choice of θ that doesn’t vanish on p(M.X; z)
for a cocircuit X of M . This is the case with the uniform q-matroid.

Example 72. Let k be a positive integer, k ≤ n and let M = (E, ρ) be the uniform q-matroid,
with rank function defined as follows:

ρ(U) :=

{
dim(U) if dim(U) ≤ k,

k if dim(U) > k.

We denote this q-matroid by Uk,n. Then M∗ = (E, ρ∗) is the uniform q-matroid Un−k,n, whose
independent spaces are exactly those of dimension n− k or less, and for which all other spaces
are dependent and have rank n − k. Therefore, dM = n − k + 1 is the size of any cocircuit
of M . Now p(M∗.X; z) = 0 for all subspaces X such that 1 ≤ dim(X) ≤ k, as these are
the independent spaces of M , and so AM∗(i; z) = 0 for all i ∈ {1, ..., k}. Therefore for any
t ≤ dM −1 = n−k, we have RM (t; z) ≤ {k+1, ..., n− t} and so |RM (t; z)| ≤ n−k− t ≤ dM − t.

We claim that AM∗/T (j, z) = 0 whenever AM∗(j, z) = 0 for j ∈ {1, ..., n − t} and t ∈
{1, ..., n − k}. Let T be a t-dimensional subspace of E. By Lemma 24, the q-matroid M∗/T
satisfies

AM∗/T (j, z) =
∑

X≤T⊥:dim(X)=j

p(M∗.X; z) = 0 ∀ j ∈ {1, ..., k}.

Therefore, AM∗(j; z) = AM∗/T (j, z) = 0 for j ∈ {1, ..., k}.
Let X ≤ E be a subspace of dimension at least k + 1 and let subspace U ≤ E be a subspace

containing X⊥. Since dim(U/X⊥) ≥ dim(U)−n+k+1, if dim(U/X⊥) ≥ 1 then dim(U) ≥ n−k
and so ρ∗(U) = n− k. Then ρ(X⊥) = dim(X⊥) ≤ n− k − 1 and

ρM∗/X⊥(U/X⊥) = ρ∗(U)− ρ∗(X⊥) = ρ∗(U)− dim(X⊥) ≥ ρ∗(U)− n+ k + 1 = 1.

In particular, M∗.X has no loops and so by Lemma 38, p(M∗.X; z) is a monic polynomial
of degree n − k − dim(X⊥). Therefore, if AM∗(j; z) = 0, then p(M∗.X; z) = 0 for each j-
dimensional space X, k + 1 ≤ j ≤ n − 1. It follows again by Lemma 24 that AM∗(j; z) = 0.
Therefore, M = Uk,n satisfies the hypothesis of Corollary 69, so that (E,DUk,n

(i, z), p(Uk,n; z))
is a weighted t-design for 1 ≤ t < n− k.

6.3. Further Implications. We now obtain a weaker form of the Assmus-Mattson theorem for
matrix codes as a direct consequence of Theorem 66. Note that the result for subspace designs
(those weighted designs with f(B) = 1) obtained from rank-metric codes was shown in [6] with
the further assumption that the number of codewords with a given support was dependent only
on the dimension i of that space for some range of i.

Corollary 73. Let C be an Fq-[n ×m, k, d] rank metric code. Let t < d be a positive integer

and let C⊥ have no more than d − t distinct rank weights in the set {1, . . . , n − t}. For each
i ∈ {d, . . . , n− t}, let

B(i) = {U ≤ E : dim(U) = i, |C=U | 6= 0}.
Then for each i ∈ {d, . . . , n−t}, (E,B(i), f) is a weighted t-design over Fq with f(X) := |C=X |.

Proof. By Lemma 48, we have that (MC)∗ = MC⊥ and for any i ∈ {1, . . . , n}, Wi(C
⊥) =

A(MC)∗(i; q). Also, p(MC .X; q) = |C=X | for any subspace X ≤ E. Now dM = min{dimX :
X is a cocircuit of M}, which by Proposition 65, is the minimum dimension of any subspace X
such that p(M.X; q) 6= 0.

Since C has minimum distance d, there exists a d-dimensional subspace X ≤ E such that
|C=X | = p(M.X; q) 6= 0, while p(M.U ; q) = 0 for every subspace U ≤ E with dim(U) < d.
Therefore, d = dM . By hypothesis, at most d− t = dM − t of the integers Wi(C

⊥) are non-zero
for i ∈ {1, ..., n− t}. By Lemma 48,

A(MC)∗(i; q) = 0 =⇒ A(MC)∗/T (i; q) = 0,
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for any t-dimensional subspace T ≤ E. Therefore MC satisfies the hypothesis of Corollary 69
and so the result follows. �

In the case of a q-matroid M satisfying the hypothesis of Theorem 66, with an extra assump-
tion on the cocircuits of M , our results imply the existence of a subspace design.

Corollary 74. Let M be a q-matroid, θ ∈ F, θ 6= 1 and let p be the greatest integer such that
any subspace X ≤ E of dimension at most p contains at most one cocircuit of M . Then, for
each i ∈ {dM , . . . p}, it holds that DM (i; θ) = {C ≤ E : C is a cocircuit of M,dim(C) = i}.

Proof. If C is a cocircuit of M then p(M.C; θ) = θ − 1 6= 0 and so C ∈ DM (dim(C); θ). Now
let X ∈ DM (i; θ) for some i ≤ p. Then p(M.X; θ) 6= 0 and X is a dependent space of M∗ of
dimension at most p, so that X contains a unique circuit. By Theorem 40, we have X = C and
the result follows. �

Corollary 75. Let M be a q-matroid that has at least one circuit and one cocircuit. Let t < dM
be a positive integer such that the hypothesis of Theorem 66 holds for some θ ∈ F, θ 6= 1. Let p be
the greatest integer such that any subspace X ≤ E of dimension at most p contains at most one
cocircuit (respectively, at most one circuit) of M . Then for each i ∈ {dM , . . . , p} (respectively,
{dM∗ , . . . , p}) the set of cocircuits (respectively, the set of circuits) of M of dimension min{i, n−
t} form the blocks of a t-subspace design. Consequently, for each i ∈ {dM , . . . , p} (respectively,
{dM∗ , . . . , p}), the set of hyperplanes of M (respectively, of M∗) of dimension n − i form the
blocks of a t-subspace design.

Proof. From Corollary 74, for each i ∈ {dM , . . . , p} we have that Ci := DM (i; θ) is the set of
cocircuits of M of dimension i. Then by Corollary 69, for each i ∈ {dM . . . p}, Ci is the set
of blocks of a weighted t-subspace design with f(X) = p(M.X; θ) = θ − 1. Define a function

f̂ : DM (i; θ) −→ F by f̂(X) = (θ − 1)−1f(X). This yields a t-subspace design Di whose blocks
are Ci. By [5, Corollary 71], for each i-dimensional cocircuit X of M , X⊥ is a hyperplane of
M and has dimension n − i. By Corollary 63, the set of hyperplanes of M of dimension n − i
form the blocks of a t-subspace design, i.e. the complementary design of Di. With the same
arguments as above, by Corollary 70 the analogous statements hold for the circuits of M and
the hyperplanes of M∗. �

An element c of an Fqm-[n, k, d] vector rank metric code C is called minimal if for any
c′ ∈ C, σ(c′) ≤ σ(c) =⇒ c′ ∈ 〈c〉Fqm := {νc : ν ∈ Fqm}. In this case, for U = σ(c),
we have p(M.X; qm) = |C=U | = qm − 1. If every codeword of rank i in C is minimal, then
A(M⊥C )(i; qm) = Wi(C

⊥) = (qm−1)|DM (i; qm)|. If we apply this with Corollary 75, we retrieve
the Assmus-Mattson theorem for Fqm-[n, k, d] codes (c.f. [6]).

Corollary 76. Let C be an Fqm-[n, k, d] code. Let t < d be a positive integer and let C⊥ be an

Fqm-[n, n− k, d⊥] code having no more than d− t distinct rank weights in the set {1, ..., n− t}.
Let p be the greatest integer such that every codeword of C of rank at most p is minimal.

(1) The supports of the words of rank weight d in C (respectively d⊥ in C⊥) form the blocks
of a t-design over Fq.

(2) For each i ∈ {d, . . . , p} (respectively, {d⊥, . . . , p}) the supports of the minimal codewords
of C (respectively C⊥) of dimension min{i, n− t} form the blocks of a t-design over Fq.

Example 77. In [15, Theorem 12], the author shows that any non-degenerate Fqm-[N, k > 1]
rank metric code with constant weight d satisfies N = km, d = m and is generated by a
matrix G ∈ Fk×Nqm whose N columns form a basis of Fkqm as an Fq vector space. Moreover,

the dual code has minimum distance 2. Let C⊥ be an Fqm-[km, k,m] constant weight code

constructed as above. Let M = MC , so that M∗ = MC⊥ . For any X ≤ Fkmq , we have

p(M.X; qm) = 0 unless X is the support of a codeword of C⊥, in which case dim(X) = m.
Therefore, AM∗(m, q

m) = qkm − 1, AM∗(0, q
m) = 1 and AM∗(i, q

m) = 0 for i 6= 0,m. Then
dM = d = 2 and RM (2; θ) = {m}. Therefore, by Corollary 76 the cocircuits of M of dimension
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2, which are the supports of codewords of rank 2, form a 1-design over Fq. Similarly, the supports

of the words of rank m in C⊥ form the blocks of a 1-design over Fq, in fact a 1-(km,m, 1; q)

design, which is a q-Steiner system, whose blocks form a spread in Fkmq .

Example 78. Let C be the F62-[6, 3, 3] vector rank metric code of Example 55. Then both C
and its dual have weight distribution [1, 0, 0, 567, 37044, 142884, 81648]. From Corollary 76, the
supports of the words of weight 3 and the supports of the words of weight 4 form the blocks
of a pair of 1-designs. Explicitly, the supports of the words of rank 3 in C form a 1-(6, 3, 1; 2)
design, which is a q-Steiner system having 9 blocks. This collection of blocks is a spread in F62.
The supports of the words of rank 4 form a 1-(6, 4, 140; 2) design having 588 blocks.
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