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ISOGENOUS HYPERELLIPTIC AND NON-HYPERELLIPTIC JACOBIANS
WITH MAXIMAL COMPLEX MULTIPLICATION

BOGDAN DINA, SORINA IONICA, AND JEROEN SIJSLING

Abstract. We analyze complex multiplication for Jacobians of curves of genus 3, as well as the
resulting Shimura class groups and their subgroups corresponding to Galois conjugation over the
reflex field. We combine our results with numerical methods to find CM fields K for which there
exist both hyperelliptic and non-hyperelliptic curves whose Jacobian has complex multiplication
by ZK . More precisely, we find all sextic CM fields K in the LMFDB for which (heuristically)
Jacobians of both types with CM by ZK exist. There turn out to be 14 such fields among the
547,156 sextic CM fields that the LMFDB contains. We determine invariants of the corresponding
curves, and in the simplest case we also give an explicit defining equation.

Introduction

Because of their singular arithmetic properties and their cryptographic applications, curves of low
genus whose Jacobian admits complex multiplication (CM) have historically been at the forefront
of research on algebraic curves. By Shimura and Taniyama’s theory of complex multiplication, it
is well known that the invariants of these curves generate certain abelian extensions of CM fields.
There is a wide literature on computing these invariants as well as models for genus 1 and genus 2
hyperelliptic curves with CM (see for instance [2, 17, 18, 46]). In recent years, the frontier has shifted
to genus 3, where both hyperelliptic and non-hyperelliptic curves can be considered. A non-trivial
hyperelliptic CM curve over Q was first calculated in [51], whose methods were elaborated in more
detail in [50] and [1]. Starting from the observation that the Galois conjugates of a hyperelliptic
Jacobian are once more hyperelliptic Jacobians, [13] computes the Rosenhain and Shioda invariants
of hyperelliptic curves in the Galois orbit in order to exhibit equations over the corresponding class
fields.

Non-hyperelliptic CM curves were first studied in the form of Picard curves, whose first con-
struction goes back to [25], the methods of which were recently generalized in [32]. The reduction
properties of CM Picard curves have also been studied in detail [29]. The consideration of general
non-hyperelliptic CM curves was taken up in the context of work of Kılıçer, who in her thesis [26]
determined the full list of genus-3 CM curves with field of moduli Q. Explicit defining equations
of these curves were found in [21] in the hyperelliptic case and [27] in the non-hyperelliptic case,
which included 19 non-hyperelliptic, non-Picard CM curves. Reduction properties in the general
case were studied in the works [6, 28].
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The explicit defining equations in the works [21, 27, 50] mentioned above are heuristic, in the
sense that while the results obtained are exceedingly likely to be correct, their rigorous verification,
available in theory by using the methods in [11], is still open because of the long running time of
the algorithms in loc. cit. The current work, which will obtain defining equations and invariants of
CM curves over Q, will also take this heuristic approach throughout. Still, we will give multiple
reasons to believe in the correctness of its results.

For the CM curves defined over Q determined in [26], their Jacobian is up to Q-isomorphism the
unique principally polarized abelian threefold over Q that admits CM by its endomorphism ring,
which is the maximal order of the corresponding CM field. This is often caused by the fact that
there is already a single Q-isomorphism class of such principally polarized abelian threefolds, see
[27, Table 1]. In the cases where this uniqueness over Q fails to hold, it is still true that all curves
with CM by the given maximal order are hyperelliptic. The goal of this paper is to explore the
opposite of this phenomenon: We ask ourselves whether there are sextic CM fieldsK for which there
exist both a hyperelliptic and a non-hyperelliptic curve whose endomorphism ring is isomorphic to
the maximal order ZK of K.

To achieve our goal, we developed and implemented computational methods that, given a CM
field K and a primitive CM type Φ, determine a small set of period matrix representatives of
the corresponding isomorphism classes of principally polarized abelian threefolds, up to Galois
conjugation over the reflex field Kr of K with respect to Φ. A calculation with theta-null values
(using [30]) then allows us to see which of these representatives correspond to hyperelliptic or non-
hyperelliptic curves. Our methods are efficient enough to enable us to check all of the 547,156
sextic CM fields included in the LMFDB [47].

Regarding our first goal, our main result is the following.
Main Result 1. Heuristically, there are 14 sextic CM fields K in the LMFDB for which there exist
both a hyperelliptic and a non-hyperelliptic curve whose Jacobian has primitive complex multiplica-
tion by the maximal order ZK of K. For all of these fields K we have that Gal(K |Q) ' C3

2 o S3.
Though we cannot seriously formulate a conjecture in this direction for lack of mathematical

rigor, circumstantial evidence does to some extent suggest that the sextic CM fields obtained in
Main Result 1 are in fact all of their kind. Indeed, the largest absolute value of the discriminant of
the fields in Main Result 1 equals 5.40 · 1010, whereas the largest such value for the 494,386 sextic
CM fields in the LMFDB with Gal(K |Q) ' C3

2 oS3 equals 1.78 · 1017. Sorted by discriminant, the
index of the field with largest discriminant in Main Result 1 equals 35, 447.

Our result on the second goal concerning hyperelliptic curves is as follows. For more detailed
information, see Section 3.2, and in particular Table 1.
Main Result 2. Heuristically, including the fields mentioned in Main Result 1, there are 3,422 CM
fields K in the LMFDB for which there exists a hyperelliptic curve whose Jacobian has primitive
complex multiplication by the maximal order ZK of K. Of these fields, 348 (resp. 3,057, resp. 17)
have Galois group isomorphic to C6 (resp. D6, resp. C3

2 o S3). We have Q(i) ⊂ K for all but 19
of these fields K. Among the exceptional cases, 2 (resp. 17) have Galois group isomorphic to C6
(resp. C3

2 o S3).
Note that the classification of possible automorphism groups of hyperelliptic and non-hyperelliptic

curves of genus 3 (for example in [38]) shows that if the sextic CM field K contains Q(i), then any
curve whose Jacobian has primitive CM by K is automatically hyperelliptic. This was already used
in [50]. Moreover, families of such fields are quickly found, for example by considering those defined
by polynomials of the form x6 + d2. In this sense the exceptional cases with Q(i) 6⊂ K are also the
more interesting ones. For the 2 cyclic cases among them, equations for corresponding hyperelliptic
curves were already determined in [1]. By contrast, our 3 new exceptional cases with Galois group
C3

2 o S3 are completely new, as are the fields in Main Result 1.
2



Besides determining the fields involved, we can also find corresponding invariants. Our final
main result even gives a defining equation for the field in the Main Result 1 with the smallest
discriminant.

Main Result 3. Let K be the CM field of discriminant −1 · 28 · 3592 defined by the polynomial
t6 +10t4 +21t2 +4, and let r be a zero of the polynomial t4−5t2−2t+1. Consider the hyperelliptic
curve

X : y2 = x8+(−28r3−4r2+132r+84)x7+(−600r3−160r2+2920r+2044)x6

+(−3532r3−940r2+17224r+11944)x5+(9040r3+2890r2−44860r−31460)x4

+(167536r3+49480r2−824532r−576212)x3+(−226976r3−64932r2+1113648r+776872)x2

+(−244204r3−69572r2+1197716r+835300)x+(319956r3+94725r2−1575062r−1100801)

(0.1)

and the smooth plane quartic curve
Y : (14106r3−150652r2+185086r+292255)x4+(−171112r3+44200r2+916008r+93360)x3y

+(−120788r3+49032r2+382244r+300708)x3z+(467744r3−209864r2−2160704r+183416)x2y2

+(−72248r3+64768r2+347488r−362984)x2yz+(5720r3−12378r2−15628r+50692)x2z2

+(−512608r3+349824r2+2423616r−580448)xy3+(202192r3−151024r2−1180320r+403568)xy2z

+(6512r3−11272r2+178120r−71336)xyz2+(−11832r3+12268r2−844r+1376)xz3

+(263424r3−176880r2−1159232r+335040)y4+(−201216r3+100448r2+856096r−249632)y3z

+(62112r3+1984r2−226512r+71624)y2z2+(−12520r3−13112r2+27736r−5360)yz3

+(1526r3+2411r2−658r+197)z4 = 0.

(0.2)

Heuristically, there exists an isogeny of degree 2 between the Jacobians of X and Y , and both have
CM by the maximal order ZK .

The paper is structured as follows. In Sections 1 and 2 we recapitulate the theory on CM
fields and their Shimura class groups that we need. In particular, we prove general results on the
transitivity of the Galois action on CM types and on the image of the reflex type norm that allow
us to determine a small set of representatives of principally polarized abelian threefolds with CM
by a given ring of integers ZK up to Galois conjugacy over the reflex field. In Section 3 we use
these results and further speedups to check the 547,156 sextic CM fields in the LMFDB for the
existence of a corresponding hyperelliptic curve, which leads to Main Results 1 and 2.

Section 4 discusses techniques for determine explicit defining equations, and includes the proof
of the third Main Result. We conclude the paper by some discussions around the relevance of the
André–Oort conjecture to our considerations in Section 5.

A full implementation of our techniques in Magma [5] is an essential part of our results. It is
available online at [14].

Notations and conventions. In this article a curve over a field k is a separated and geometrically
integral scheme of dimension 1 over k. Given an affine equation for a curve, we will identify it with
the smooth projective curve that has the same function field. The Jacobian of a curve X is denoted
by Jac(X). We denote the cyclic group with n elements by Cn and the dihedral group with 2n
elements by Dn.

When the context allows it, we often use the abbreviated notation A for a principally polarized
abelian variety (A,E), as well as using the abbrevation ppav to stand for “principally polarized
abelian variety”. Finally, as in the introduction we will call a curveX of genus g over an algebraically
closed field a CM curve if the endomorphism ring of its Jacobian Jac(X) is an order in a CM field
of degree 2g, so that by this definition, the CM type of a CM curve is primitive.
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1. Theoretical background

For more on the general theory of complex multiplication, we refer to [46, §4]. We supplement
this background with some additional considerations, most of them specific to genus 3, that we will
need for later results.

1.1. Structure of sextic CM fields. A number field K is called a CM field if K is a totally
imaginary quadratic extension of a totally real number field. Given K, the latter field is determined
uniquely; we denote it by K0. As [31, p6] shows, for any CM field K there exists a unique element
% ∈ Aut(K) such that

ι(%(x)) = ι(x) (1.1.1)
for all embeddings ι : K ↪→ C. We call % the complex conjugation on K. Moreover, the Galois
closure of a CM field is once again a CM field. We will consider sextic CM fields in this article.
The corresponding Galois groups can be described as follows:

Theorem 1.1.2. Let K be sextic CM field, with Galois closure L. Then G = Gal(L | Q) is
isomorphic to one of the following groups:

(i) C6;
(ii) D6;
(iii) C3

2 o C3;
(iv) C3

2 o S3.
In the latter two cases, the action of C3 and S3 on C3

2 is given by permutation of the indices. Each
possible group G above admits a unique embedding ι : G→ S6 up to conjugation in S6, under which
they become the groups 6T1, 6T3, 6T6, 6T11 from [3].
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Proof. The first part follows from [15, Sec. 5.1.1]; see also [6, Proposition 2.1]. The second is a
one-off calculation with the conjugacy classes of subgroups of S6, for example by using GAP [3]. �

The notation 6TX for the groups in Theorem 1.1.2 can be used when searching for corresponding
fields in the LMFDB [47].

Remark 1.1.3. The second part of Theorem 1.1.2 in combination with Galois theory shows that
we may assume that under the chosen embedding ι : G → S6 the subgroup H = Gal(L |K) is the
stabilizer of 1.

Example 1.1.4. The sextic CM field with smallest absolute discriminant in the LMFDB whose
Galois group is isomorphic to C6 is Q(ζ7). The field of smallest absolute discriminant with Galois
group D6 is defined by x6 − 3x5 + 10x4 − 15x3 + 19x2 − 12x + 3, that for C3

2 o C3 by x6 − 2x5 +
5x4 − 7x3 + 10x2 − 8x+ 8, and that for C3

2 o S3 by x6 − 3x5 + 9x4 − 13x3 + 14x2 − 8x+ 2.

1.2. CM types. As above, let K be a CM field with complex conjugation % and Galois closure L.
We further fix an embedding ιL : L→ C.

Definition 1.2.1. A CM type of K (with values in L) is a subset Φ ⊂ Hom(K,L) such that
Hom(K,L) = Φq Φ%. (1.2.2)

As in the classical case, we call a CM type of K primitive if it is not induced by a CM type of a
strict CM subfield. Similarly, we call two CM types Φ,Φ′ equivalent if there exists an automorphism
α ∈ Aut(K) such that Φ′ = Φα. As for example in [31], we also call the pair (K,Φ) a CM type.

Remark 1.2.3. Our choice of an embedding ιL : L→ C yields a map
Φ 7→ {ιL ◦ τ : τ ∈ Φ} (1.2.4)

which furnishes a bijection between the CM types in Definition 1.2.1 and the CM types of K in
the classical sense of a set of embeddings into C. For our purposes, it is more useful to consider
the former type.

Remark 1.2.5. Let H = Gal(L |K). Then the natural map
Gal(L |Q)→ Hom(K,L)

σ 7→ σ|K
(1.2.6)

induces a bijection G/H → Hom(K,L). We can and therefore will consider the individual embed-
dings τ : K → L in a CM type as cosets σH in G/H. Under this interpretation, a CM type is
nothing but a section of the natural projection map

G/H → 〈%〉\G/H. (1.2.7)
Alternatively, it is a subset Φ ⊂ G/H on which the restriction of this projection map induces an
bijection.

The normalizer N = NG(H) of H in G acts on the set of sections s : 〈%〉\G/H → G/H via
right composition, and using the natural isomorphism N/H ∼= Aut(K) induced by restriction, we
see that the corresponding quotient is in bijection with the set of CM types up to equivalence. We
determine this normalizer in the following proposition.

Proposition 1.2.8. Let G = Gal(L | Q) be one of the Galois groups in Theorem 1.1.2 and let
H = Gal(L |K). Let N = NG(H) be the normalizer of H in G. Then we have N = 〈H, %〉 except
if G = C6, in which case N = G.

Proof. We have realized our Galois groups as the explicit subgroups 6T1, 6T3, 6T6, 6T11, and
Remark 1.1.3 shows that we may take H to be the stabilizer of 1. We can choose our embeddings
G→ S6 in such a way that we have the following, as used throughout the paper:
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(i) G = C6 = 〈σ〉: H = 1, % = σ3.
(ii) G = D6 = 〈σ, τ〉: H = 〈τ〉, % = σ3.
(iii) G = C3

2 oC3: H = 〈((1, 0, 0), e), ((0, 1, 0), e)〉, % = ((1, 1, 1), e), where e ∈ C3 is the identity.
(iv) G = C3

2 o S3: H = 〈((1, 0, 0), e), ((0, 1, 0), e), ((0, 0, 0), (1, 2))〉, % = ((1, 1, 1), e), where
e ∈ S3 is the identity.

The result is now an unenlightening and unproblematic calculation. �

Definition 1.2.9. There is a natural left action of the Galois group G on CM types Φ of K. As
subsets Φ ⊂ G/H, we have

σΦ = {σϕ : ϕ ∈ Φ} (1.2.10)
for σ ∈ G. On CM types considered as sections s of the projection map G/H → 〈%〉\G/H, the
action is defined by

(σs)(〈%〉cH) = σ · s(〈%〉σ−1cH) (1.2.11)
for σ, c ∈ G. Note that these actions are well-defined because % is central in G. We call the resulting
equivalence on the set of CM types of K the Galois equivalence.

Proposition 1.2.12. Let K be a sextic CM field with Galois group C6. Then K admits 2 CM
types up to equivalence, 1 of them primitive and 1 imprimitive. The same is true when replacing
equivalence with Galois equivalence.

Proof. We can identify a CM type on K with a subset S ⊂ C6 = Z/6Z of cardinality 3 such that
S and 3 + S cover Z/6Z. By Proposition 1.2.8, two such CM types S, S′ are equivalent if they are
related by a translation, so that S′ = i + S for some i ∈ Z/6Z, and the same is true for Galois
equivalence. As is readily verified, representatives up to equivalence are given by {0, 1, 2} and
{0, 2, 4}. The latter CM type is imprimitive, since it is induced from the quotient Z/2Z of Z/6Z
that corresponds to the unique CM quadratic subfield of K. The former type is primitive. See [6,
§3.1] for a different point of view. �

Proposition 1.2.13. Let K be a sextic CM field with Galois group D6. Then K admits 4 CM
types up to equivalence, 3 of them primitive and 1 imprimitive. Up to Galois equivalence, K admits
2 CM types, 1 of them primitive and 1 imprimitive.

Proof. In this case we can choose a standard representation D6 = 〈σ, τ〉 and embed it into S6
by identifying σ with (1 2 3 4 5 6) and τ with (2 6)(3 5). As we have seen in Proposition 1.2.8, the
complex conjugation % is given by the central element σ3 and Gal(L |K) = 〈τ〉. The embeddings of
K into L can therefore be identified with powers σi, or for that matter with elements i of Z/6Z. We
are in a similar situation as Proposition 1.2.12, except that the notion of equivalence is stricter, as
Proposition 1.2.8 shows that this time the only other CM type equivalent to a given type {a, b, c}
is {a+ 3, b+ 3, c+ 3}, which corresponds to applying complex conjugation.

Up to equivalence, we obtain the 4 CM types {0, 1, 2}, {0, 1, 5}, {0, 2, 4}, {0, 4, 5}. Of these
types, {0, 2, 4} is induced by the unique quadratic CM subfield of K and is therefore imprimitive,
while the other types are primitive.

Applying Galois equivalence allows us to multiply with σ, so as in Proposition 1.2.12 we can
apply arbitrary shifts to our subsets of Z/6Z to our CM types. Once more this reduces us to the
two types {0, 1, 2} and {0, 2, 4}, the former primitive and the latter imprimitive. See [6, §3.2] for a
different point of view. �

Proposition 1.2.14. Let K be a sextic CM field with Galois group C3
2 oC3 or C3

2 o S3. Then K
admits 4 CM types up to equivalence, which are all primitive. Up to Galois equivalence, K admits
1 CM type.
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Proof. The first statement follows as in Proposition 1.2.13, since in light of Proposition 1.2.8 ap-
plying equivalence once again comes down to identifying complex conjugate CM types, leaving 4
equivalence classes of the original 8 types. All of these types are primitive because the group H
corresponding to K in the notation of Proposition 1.2.8 is not contained in any subgroup of G
of index 2, or in other words because K has no proper quadratic subfields, let alone proper CM
subfields.

As for working up to Galois equivalence, in the case G = C3
2 o C3 we have that

H = {((∗, ∗, 0), e)} ,
σH = {((0, ∗, ∗), (1 2 3))} ,
σ2H = {((∗, 0, ∗), (1 3 2))} ,
%H = {((∗, ∗, 1), e)} ,
σ%H = {((1, ∗, ∗), (1 2 3))} ,
σ2%H = {((∗, 1, ∗), (1 3 2))} ,

(1.2.15)

where ∗ denotes an element of C2 that can be chosen freely, and where σ = ((0, 0, 0), (1 2 3)). We
see that Φ0 =

{
H,σH, σ2H

}
is a CM type. Moreover, the definition of the Galois action along

with that of the group structure on G implies that for n1 = ((1, 0, 0), e) we have
n1H = {((∗, ∗, 0), e)} = H

n1σH = {((1, ∗, ∗), (1 2 3))} = σ%H

n1σ
2H = {((∗, ∗, 0), (1 3 2))} = σ2H.

(1.2.16)

Similarly, n2 = ((0, 1, 0), e) sends Φ0 to
{
H,σH, σ2%H

}
and n0 = ((0, 0, 1), e) sends Φ0 to

{
%H, σH, σ2H

}
.

Combining the action of these three elements is enough to obtain transitivity of the Galois action
on the full set of CM types

{
%∗, σ%∗, σ2%∗

}
. The considerations for G = C3

2 o S3 are completely
identical, with the small difference that

H = {((∗, ∗, 0), e or (1 2))} ,
σH = {((0, ∗, ∗), (1 2 3) or (1 3))} ,
σ2H = {((∗, 0, ∗), (1 3 2) or (2 3))} ,
%H = {((∗, ∗, 1), e or (1 2))} ,
σ%H = {((1, ∗, ∗), (1 2 3) or (1 3))} ,
σ2%H = {((∗, 1, ∗), (1 3 2) or (2 3))} .

(1.2.17)

�

Given a CM type (K,Φ), there is a reflex CM type (Kr,Φr) to (K,Φ), which is constructed as
follows. We can lift Φ to a CM type ΦL on L, where elements in ΦL are identified by elements in
Gal(L|Q). Inverting elements in ΦL gives rise to a CM type on L denoted by

Φ−1
L = {ϕ−1 : ϕ ∈ ΦL}. (1.2.18)

The reflex CM type (Kr,Φr) is defined in [31, Lemma 2.2]: The CM field Kr is the fixed field of
the group

Hr = {σ ∈ Gal(L |Q) : σΦL = ΦL}, (1.2.19)
and Φr is the unique CM type on Kr that induces Φ−1

L .
In the case where the sextic CM field K is Galois with abelian Galois group C6, we directly

obtain the following result as the left and right stabilizers of Φ coincide:
7



Proposition 1.2.20. Let (K,Φ) be a sextic CM type where K has Galois group C6. If Φ is
primitive, then (Kr,Φr) = (K,Φ). If Φ is imprimitive, then (Kr,Φr) is the restriction of (K,Φ)
to the quadratic CM subfield of K.

To deal with the case G = D6, we first prove the following general statement.

Proposition 1.2.21. Let Φ,Ψ be two CM types of a given field K, and suppose that Ψ = σΦ for
σ ∈ G = Gal(L |Q). Let (Kr,Φr) be the reflex CM type of (K,Φ). Then the reflex CM type of
(K,Ψ) is given by

(σ(Kr),Φrσ−1), (1.2.22)
where

Φrσ−1 =
{

(ϕσ−1)|σ(Kr) : ϕ ∈ Φr
}
. (1.2.23)

Proof. For the extensions of Φ and Ψ to L we have ΨL = σΦL. For the corresponding left stabilizers
HΦ and HΨ we therefore have HΨ = σHΦσ

−1, which already shows that the reflex field of Ψ equals
σ(K). By construction, we have

Φ−1
L =

∐
ϕ∈Φr

ϕHΦ, (1.2.24)

so that
Ψ−1
L = Φ−1

L σ−1 =
∐
ϕ∈Φr

ϕHΦσ
−1 =

∐
ϕ∈Φr

ϕσ−1HΨ. (1.2.25)

Restricting to the reflex field of Ψ, we obtain the statement of the proposition. �

Proposition 1.2.26. Let (K,Φ) be a sextic CM type where K has Galois group D6. If Φ is prim-
itive, then write Φ = σΦ0, where Φ0 corresponds to the set {0, 1, 5} in the notation of Proposition
1.2.13. Then (Kr,Φr) = (σ(Kr),Φr

0σ
−1). If Φ is imprimitive, then (Kr,Φr) is the restriction of

(K,Φ) to the quadratic CM subfield of K.

Proof. This follows from 1.2.21 because the left stabilizer of Φ0 is again generated by the element
τ in Proposition 1.2.13. �

The reflex fields for the remaining Galois groups are described in the upcoming propositions.

Proposition 1.2.27. Let K be a sextic CM field with Galois group C3
2oC3, and let σ = ((0, 0, 0), (1 2 3))

and % = ((1, 1, 1), e) as in Proposition 1.2.8. Let

Φ1 = {id |K , σ|K , σ2|K}, Φ2 = {id |K , σ%|K , σ2|K},
Φ3 = {id |K , σ|K , σ2%|K}, Φ4 = {id |K , σ%|K , σ2%|K}

be representatives of the primitive CM types of K up to equivalence. Then the reflex field Kr of
(K,Φi) is fixed by the group Hr

i ⊂ Gal(L|Q), where
Hr

1 = 〈σ〉, Hr
2 = 〈σn0n1〉, Hr

3 = 〈σn1n2〉, Hr
4 = 〈σn0n2〉, (1.2.28)

with ni as defined in the proof of Proposition 1.2.14. We have
Kr

2 = n1(Kr
1), Kr

3 = n2(Kr
1), Kr

4 = n1n2(Kr
1). (1.2.29)

The reflex CM types Φr
i are all given by
Φr

1 = Φr
2 = Φr

3 = Φr
4 = {id |Kr

i
, n1|Kr

i
, n2|Kr

i
, n1n2|Kr

i
}. (1.2.30)

Proof. Let H = {e, n1, n2, n1n2} be the subgroup of the Galois group corresponding to K. First
consider the CM type Φ1. The induced CM type Φ1,L on L is the union

H ∪ σH ∪ σ2H = {((∗, ∗, 0), e)} ∪ {((0, ∗, ∗), (1 2 3))} ∪ {((∗, 0, ∗), (1 3 2))} . (1.2.31)
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From this explicit presentation, one obtains that the left stabilizer Hr
1 of Φ1,L is generated by σ.

Using equalities similar to (1.2.16) shows that Φ2 = n1Φ1, Φ3 = n2Φ1, and Φ4 = n1n2Φ1. The
corresponding stabilizers are therefore given generated by n1σn

−1
1 = σn0n1, n2σn

−1
2 = σn1n2, and

n1n2σ(n1n2)−1 = σn0n2.
The embeddings in the reflex CM type of Φ1 are in bijective correspondence with the elements

of
Φ−1

1,L = H−1 ∪H−1σ−1 ∪H−1σ−2 = H ∪Hσ−1 ∪Hσ−2 (1.2.32)
up to the action of the right stabilizer Hr

1 = 〈σ〉. These are therefore represented by the elements
of H, which yields the second statement of the proposition for Φ1. Since Φ2 = n1Φ1, Φ3 = n2Φ1,
and Φ4 = n1n2Φ1, representatives of the corresponding inverse CM types up to the right action
of the corresponding stabilizers are furnished by n1H,n2H, and n1n2H. These are all equal to H,
and therefore we obtain the second statement for all CM types Φi. �

Proposition 1.2.33. Let K be a sextic CM field with Galois group C3
2oS3, let σ = ((0, 0, 0), (1 2 3)),

let τ = ((0, 0, 0), (1 2)), let % = ((1, 1, 1), e), and let

Φ1 = {id |K , σ|K , σ2|K}, Φ2 = {id |K , σ%|K , σ2|K},
Φ3 = {id |K , σ|K , σ2%|K}, Φ4 = {id |K , σ%|K , σ2%|K}

be representatives of the primitive CM types of K up to equivalence. Then the reflex field Kr of
(K,Φi) is fixed by the group Hr

i ⊂ Gal(L|Q), where
Hr

1 = 〈σ, τ〉, Hr
2 = 〈σn0n1, τn1n2〉, Hr

3 = 〈σn1n2, τn1n2〉, Hr
4 = 〈σn0n2, τ〉, (1.2.34)

with ni as defined in the proof of Proposition 1.2.14. We have
Kr

2 = n1(Kr
1), Kr

3 = n2(Kr
1), Kr

4 = n1n2(Kr
1). (1.2.35)

The reflex CM types Φr
i are all given by
Φr

1 = Φr
2 = Φr

3 = Φr
4 = {id |Kr

i
, n1|Kr

i
, n2|Kr

i
, n1n2|Kr

i
}. (1.2.36)

Proof. The proof is similar to that of the previous proposition. �

Corollary 1.2.37. Let K be a sextic CM field. Then all primitive CM types of K are Galois
equivalent.

Proof. We proved this result in Propositions 1.2.12, 1.2.13, and 1.2.14, which cover all individual
cases in Theorem 1.1.2. �

Remark 1.2.38. In genus 4, it is no longer true that all primitive CM types are Galois equivalent.
Let K be an octic CM field with Galois group C8, for example Q(ζ32 + ζ15

32 ). Then (with notation
as in the case C6 above) the CM types {0, 1, 2, 3} and {0, 1, 2, 6} are primitive, yet they are not
related even when combining the two equivalences.

1.3. Geometric relevance. Let K be a CM field of degree 2g. As in [46], we consider pairs
(a, ξ), where a is a fractional ZK-ideal and where ξ ∈ K is a totally imaginary element such that
(ξ) = (aaDK|Q)−1. Such a pair (a, ξ) uniquely determines a CM type Φ that consists of those
embeddings ϕ of K into C for which the imaginary part of ϕ(ξ) is positive. In what follows, we
will consider the pairs (a, ξ) and the corresponding triples (Φ, a, ξ) interchangeably. Either gives
rise to a ppav A(a, ξ) = (Cg/Φ(a), E) over C whose endomorphism ring is isomorphic to ZK . The
polarization E that comes with A(a, ξ) is induced by the trace pairing on K.

Conversely, given a ppav A over C whose endomorphism algebra is isomorphic to ZK , we can
consider the representation of K on the tangent space after choosing some isomorphism End(A)⊗
Q ' K. The set of embeddings that thus appear yield a primitive CM type Φ of K. It is important
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to note that the representation of K depends on the chosen isomorphism, which means that given
the ppav A, only the equivalence class of the CM type Φ is well-defined.

The following is shown in [46, Theorem 4.2]:

Proposition 1.3.1. Let K be a CM field of degree 2g, and let Φ be a primitive CM type of K.
Then the association

(a, ξ) 7→ A(a, ξ) = (Cg/Φ(a), E) (1.3.2)
defined above yields a bijection between the set of pairs (a, ξ) at the beginning of this section up to
the equivalence

(a, ξ) ∼ (a′, ξ′) if (a′, ξ′) = (γa, (γγ)−1ξ) for γ ∈ K∗ (1.3.3)
and the set of isomorphism classes of principally polarized abelian varieties that admit CM by ZK
of type Φ up to equivalence.

Definition 1.3.4. We say that two pairs (a, ξ) and (a′, ξ′) are equivalent if there exists an element
α ∈ Aut(K) such that (α−1(a), α(ξ)) and (a′, ξ′) are equivalent in the sense of Proposition 1.3.1.

The following is shown in [46, Proposition 4.11]:

Proposition 1.3.5. Two pairs (a, ξ) and (a′, ξ′) are equivalent if and only if A(a, ξ) and A(a′, ξ′)
are isomorphic as principally polarized abelian varieties.

Recall that we have fixed an embedding of the Galois closure L into C.

Proposition 1.3.6. Let A be a principally polarized abelian variety over C with CM by K of type Φ
up to equivalence, and let σ ∈ Aut(C). Denoting the restriction of σ to L by σ again, we have that
the conjugate principally polarized abelian variety σA has CM by K of type σΦ up to equivalence.

Proof. This follows from the fact that the formation of the tangent space is functorial. Alternatively,
if T ∈ Mg(C) is the tangent representation of a given endomorphism α with respect to a basis of
differentials B of A, then σT is a representation of an endomorphism of σA with respect to σB.
This means that if after our choice of embedding K ↪→ End(A) we can write the representation %
of K on the tangent space of A as a direct sum

% ∼= ϕ1 ⊕ · · · ⊕ ϕg,
we also obtain a representation σ% of K on the tangent space of σA given by

σ% ∼= σϕ1 ⊕ · · · ⊕ σϕg,
which proves the proposition. �

Corollary 1.3.7. Let A be a principally polarized abelian variety over C with primitive CM by K
up to equivalence, and suppose that Gal(L |Q) is isomorphic to D6 (resp. C3

2 o C3 or C3
2 o S3).

Then the degree of the field of moduli of A over Q is a multiple of 3 (resp. 4).

Proof. This follows because the subgroup of Aut(C) that fixes the field of moduli has to fix the
primitive CM type up to equivalence of A by Proposition 1.3.6, combined with the transitivity of
the Galois action proved in Corollary 1.2.37. �

2. The Shimura class group and the Galois action

2.1. Background. We recall some fundamental notions. Throughout, we let K be a CM field.

Definition 2.1.1. The Shimura class group CK of K is the abelian group of equivalence classes

CK =
{

(b, β) : b is fractional ZK-ideal, β ∈ K∗0 totally positive with bb = βZK
}
/ ∼ (2.1.2)

where (b, β) ∼ (b′, β′) if (b′, β′) = (xb, xxβ) for x ∈ K∗.
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As was shown in [8, Theorem 3.1], the structure of CK is given by the sequence

1 −→ (Z∗K0)+/NK|K0(Z∗K) u 7−→ (ZK ,u)−−−−−−−−→ CK
(b,β) 7−→ b−−−−−−−→ Cl(K)

NK|K0−−−−→ Cl+(K0), (2.1.3)

where (Z∗K0
)+ ⊂ Z∗K0

is the group of totally positive units, and Cl+(K0) is the narrow class group
of K0.

Remark 2.1.4. As is discussed in [8], the final map in (2.1.3) is surjective if a finite prime ramifies
in the extension K | K0. This turns out to be the case for all fields considered in this article,
as follows by checking that the relative different DK|K0 = {α− %(α) : α ∈ ZK} is a proper ideal
(also see the proof of [46, Proposition 4.4]). Under this hypothesis, denoting h(K) = |Cl(K)| and
h+(K0) = |Cl+(K0)|, we have

|CK | =
h(K)
h+(K0) ·

∣∣∣(Z∗K0)+/NK|K0(Z∗K)
∣∣∣ . (2.1.5)

Let N = NKr|Q : Kr → Q>0 be the absolute norm map. Combining this map with the reflex
type norm

NΦr : Cl(Kr)→ Cl(K)

[a] 7→

ZK ∩ ∏
ϕ∈Φr

ϕ(a)ZL

 , (2.1.6)

we obtain a map from the regular class group of Kr to the Shimura class group of K, namely
NΦr : Cl(Kr)→ CK

[a] 7→ (NΦr (a), N(a)).
(2.1.7)

2.2. Torsors and moduli spaces. We denote by MZK
the set of isomorphism classes of ppavs

with primitive CM by ZK . Given a primitive CM type Φ, we denote by MZK
(Φ) the set of

isomorphism classes of ppavs that admit CM of type Φ.

Proposition 2.2.1. There is a disjoint union MZK
=
⋃

ΦMZK
(Φ), where Φ runs over a set of

representatives of the equivalence classes of primitive CM types of K.

Proof. This follows from the fact that given a ppav (A,E) with primitive CM by K, the CM type
of (A,E) is uniquely determined up to equivalence, as recapitulated at the beginning of Section
1.3. �

Similar to CK , we define the group

C =
{

(b, β) : b is fractional ZK-ideal, β ∈ K∗ with bb = βZK
}
/ ∼ (2.2.2)

where (b, β) ∼ (b′, β′) if (b′, β′) = (xb, xxβ) for x ∈ K∗. Then there is a tautological injection of
groups

CK ↪→ C. (2.2.3)
The group C acts on the pairs (a, ξ) from Section 1.3 via

(b, β)(a, ξ) = (b−1a, βξ). (2.2.4)

Proposition 2.2.5. Let c = (b, β) ∈ C, and let (b, β)(a, ξ) = (a′, ξ′). Let Φ′ be the CM type of
(a′, ξ′). Then Φ′ = Φ if and only if c ∈ CK .

Proof. This follows because the imaginary parts of ξ and ξ′ have positive signs at the same complex
embeddings if and only if β is totally positive. �
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Let c = (b, β) ∈ C and (a, ξ) be as above. If b is integral, then b−1a properly contains a.
Proposition 2.2.5 shows that if c ∈ CK , the pairs (a, ξ) and c(a, ξ) have the same CM type Φ. This
means that for c ∈ CK the inclusion Φ(a) ⊂ Φ(b−1a) furnishes a canonical isogeny

A(a, ξ)→ A((b, β)(a, ξ)). (2.2.6)

Proposition 2.2.7. Let K be a sextic CM field, and let Φ be a fixed primitive CM type. Then the
setMZK

(Φ) is a torsor under the action of CK .

Proof. Proposition 1.3.1 shows thatMZK
(Φ) is a torsor if it is non-empty. SinceMZK

=
⋃

ΦMZK
(Φ),

where Φ runs over the primitive CM types of K up to equivalence, and since the Galois action on
the components is transitive by Corollary 1.2.37, it suffices to prove that MZK

6= ∅ in order to
show that that one, and hence all, of theMZK

(Φ) with Φ primitive are torsors under CK .
For this, let (a0, ξ0) be the pair explicitly constructed in [46, Proposition 4.4], which has CM by

ZK . If the CM type Φ0 associated to (a0, ξ0) is primitive, then we are done. So suppose that Φ0 is
imprimitive. Then we consider the narrow Hilbert class field H+

0 of K0 and the Hilbert class field
H of K. The final map in (2.1.3) fits into a commutative diagram

Cl(K) Cl+(K0)

Gal(H |K) Gal(H+
0 |K0)

∼

NK|K0

∼

res

(2.2.8)

where the map on the bottom is restriction. The inclusion KH+
0 ⊂ H yields a surjective restriction

map Gal(H |K) → Gal(KH+
0 |K). By Galois theory, the latter group is isomorphic to Gal(H+

0 |
K ∩ H+

0 ). Since K ∩ H+
0 is an at most quadratic extension of K0, we see that the image N of

NK|K0 is of index at most 2 in Cl+(K0).
Let Id(K0) be the group of fractional ZK0-ideals. Fix an enumeration of the real embeddings

of K0, and given an element α ∈ K∗0 , let sgni(α) denote the sign of α under the ith embedding.
Then under the map [a] 7→ [(a, (1, 1, 1))] the narrow class group Cl+(K0) becomes isomorphic to
the group Id(K0)× 〈−1〉3 modulo the equivalence relation

(a, (s1, s2, s3)) ∼ (a′, (s′1, s′2, s′3))
if there exists α ∈ K∗0 such that a′ = αa and s′i = sgni(α)si.

The exact sequence
0→ 〈−1〉3 → Id(K0)× 〈−1〉3 → Id(K0)→ 0 (2.2.9)

induces
0→ S → Cl+(K0)→ Cl(K0)→ 0 (2.2.10)

where S is the quotient of 〈−1〉3 by the image of Z∗K0
under the sign maps.

As before, let N be the image of Cl(K) in Cl+(K0) under the norm map. Since [49, Theorem
10.1] shows that the norm map Cl(K) → Cl(K0) is surjective, and N is of index at most 2 in
Cl+(K0), we see that N ∩ S is of index at most 2 in S. By (2.2.10) this implies that there exists
a ZK-ideal b such that bb is generated by an element β ∈ K0 whose signs at the infinite places of
K0 do not all coincide.

Now let (a, ξ) = (b, β)(a0, ξ0). Then because of the sign property of β, the CM type Φ corre-
sponding to (a, ξ) differs from both Φ0 and Φ0. Our classification of the CM types of sextic CM
fields in Section 1 then shows that Φ is primitive. ThereforeMZK

is non-empty, since it contains
the ppav corresponding to (a, ξ). �
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As in [46, Proposition 4.4], we define the quotient

sK = Cl(K)
Cl(K0)

∣∣∣Z∗K0/NK|K0(Z∗K)
∣∣∣ .

It is shown in loc. cit. that sK is the number of pairs (Φ, A), where Φ is a CM type of K (not
necessarily primitive) and where A is an isomorphism class of ppavs that admits Φ as a CM type.

Corollary 2.2.11. Let K be a sextic CM field with Galois closure L. Then we have

|MZK
| =


|CK | = sK/8 if K is Galois,
3 |CK | = 3sK/8 if Gal(L |Q) ∼= D6,
4 |CK | = sK/2 if Gal(L |Q) ∼= C3

2 o C3 or C3
2 o S3.

(2.2.12)

Proof. The first equalities involving |CK | follow by combining Proposition 2.2.1, 1.2.12, 1.2.13, and
1.2.14. As for the second equalities, if Gal(L |Q) is isomorphic to either C3

2 o C3 or C3
2 o S3, then

all CM types Φ of K are primitive and Proposition 2.2.7 shows that sK = 8 |CK |. If Gal(L |Q) is
isomorphic to C6 or D6, then Proposition 2.2.7 shows that |MK(Φ)| = |CK | for all 6 primitive CM
types of K. If |MK(Φ)| = 0 for one (and hence both) of the imprimitive CM types of K, then we
would have sK = 6 |CK |. On the other hand, comparing the exact sequence in [46, Proposition 4.4]
with (2.1.3) shows that sK/ |CK | is a power of 2. This contradiction shows that sK = 8 |CK | for all
cases, which yields the statement. �

Corollary 2.2.13. The statement of Proposition 2.2.7 also holds for imprimitive CM types Φ of
sextic CM fields.

Proof. This follows from the proof of Corollary 2.2.11. �

2.3. Representatives up to Galois conjugacy. Let us fix a primitive CM type Φ of K. Then
the setMK(Φ) is stable under the action of Gr = Gal(Q |Kr), and the orbits ofMZK

(Φ) under the
action of the group Gr correspond to the elements of the quotient CK/ im(NΦr ). More precisely,
we have the following result.

Theorem 2.3.1 (Main Theorem of Complex Multiplication). Let (A,E) ∼= A(a, ξ) in MZK
(Φ),

and let σ ∈ Gr. Suppose that under the Artin map, the element σ correspond the class of the ideal
b. Then

σ(A(a, ξ)) ∼= A(NΦr (b)(a, ξ)). (2.3.2)

We will use this reciprocity law to prove Theorem 2.3.23, which shows that given A(a0, ξ0) in
MZK

(Φ), we can obtain any other isomorphism class A(a, ξ) inMZK
(Φ) as a Galois conjugate of

an abelian variety A(ba0, η0), where b runs through a fixed (small) set of representatives of G2/eG2,
where G2 = ker(NK|K0) ⊂ Cl(K) and where e|4. The usefulness of this result stems from the fact
that G2/eG2 is usually far smaller than G2 itself. We start with a general observation.

Proposition 2.3.3. Let Φ and Ψ be Galois equivalent CM types. Then there is an equality of
double reflex maps

NΦr ◦NΦ = NΨr ◦NΨ. (2.3.4)

Proof. Let Ψ = σ(Φ) for σ ∈ Gal(L |Q). Then we have

NΨ(a) =
∏
ψ∈Ψ

ψ(a) =
∏
ϕ∈Φ

σ(ϕ(a)) = σ(
∏
ϕ∈Φ

ϕ(a)) = σ(NΦ(a)) (2.3.5)

for all ideals a of ZK . Moreover, by Proposition 1.2.21 we have
NΨr (b) =

∏
ψ∈Ψr

ψ(b) =
∏
ϕ∈Φr

ϕ(σ−1(b)) (2.3.6)
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for all ideals b of ZKr . Therefore

NΨr (NΨ(a)) = NΨr (σ(NΦ(a))) =
∏
ϕ∈Φr

ϕ(σ−1(σ(NΦ(a)))) =
∏
ϕ∈Φr

ϕ(NΦ(a)) = NΦr (NΦ(a)) (2.3.7)

for all ideals a of ZK , which proves our claim. �

For the next statement, also see [45, Theorem 2.2] and [26].

Lemma 2.3.8. Let K be a sextic CM field with Galois group isomorphic to C6 or D6. Then there
exists a primitive CM type Ψ such that for all primitive CM types Φ and for all fractional ZK-ideals
a we have an equality of fractional ZL-ideals

NΦr (NΦ(a)) = NK|Q(a)aa−1NΨ(a). (2.3.9)

If Φ is imprimitive, then NΦr (NΦ(a)) = NΦ(a).

Proof. We prove the statement for the case where the Galois group is isomorphic to D6. The Galois
case is similar. Using the notation in Proposition 1.2.13, let H = Gal(L |K) = 〈τ〉, and let σ be
the generator of the set of embeddings of K into L. By Proposition 2.3.3, it suffices to consider
the case ΦL = {0, 1, 2}. Then Φr

L = {0, 5, 4}, and the double norm computation gives rise to the
element

(1 + σ5 + σ4)(1 + σ + σ2) = 3 + 2σ + σ2 + σ4 + 2σ5 (2.3.10)

in the group algebra of Gal(L |Q). If we consider the elements in this sum up to right multiplication
by elements of the group H, we get

3H + 2σH + σ2H + σ4H + 2σ5H = (H + σH + σ2H + σ3H + σ4H + σ5H) (2.3.11)
+ (H − σ3H) + (H + σH + σ5H). (2.3.12)

The first two terms correspond to NK|Q(a) and aa−1, respectively. The last sum corresponds to
the CM type ΨL = {0, 1, 5}, and is independent of the choice of ΦL.

In the imprimitive case we can take ΦL = {0, 2, 4}. The reflex field is then the unique quadratic
CM subfield of K, and the reflex type its canonical inclusion, which shows our claim. �

Proposition 2.3.13. Let K be a sextic CM field with Galois group isomorphic to C6 or D6, and
let Φ be a primitive CM type of K. If [b] ∈ Cl(K) satisfies bb = βZK for β ∈ K∗0 , then [b2] is in
the image of the reflex type norm NΦr : Cl(Kr)→ Cl(K).

Proof. First let Ψ be the distinguished primitive CM type in Lemma 2.3.8. If a = NΨ(b)ZL, then
by Lemma 2.3.8 we have an equality of fractional ZL-ideals

NΨr (a) = NΨr (NΨ(b)) = NK|Q(b)bb−1
NΨ(b) = NK|Q(b)β−1NΨr (b)b2. (2.3.14)

We therefore have thatNΨr ([a]) = NΨr ([b])[b2] and [b2] = NΨr ([ab−1]) ∈ im(NΨr ). But Proposition
1.2.21 implies that if Φ = σ(Ψ), then Φr = Ψrσ−1, so that NΦr and NΨr have equal images in
Cl(K). (Indeed, if b = NΨr (c), then b = NΦr (σ(c)).) Since all primitive CM types are Galois
equivalent, we obtain our claim. �

Proposition 2.3.15. Let K be a sextic CM field with Galois group isomorphic to C6 or D6. For
any primitive CM type Φ of K and any equivalence class (b, β) in CK the equivalence class of
(NΨ(b)b2, N(b)β2) is in the image of the map NΦr : Cl(Kr)→ CK . Furthermore, if NΨ(b) = µZK
is a principal ZK-ideal, then said image (NΨ(b)b2, N(b)β2) is equivalent to (b2, β2).
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Proof. With a = NΦ(b)ZL and Proposition 2.3.13 we get that

NΦr (a) = (NΦr (a), N(a)) = (NΦr (NΦ(b)), N(NΦ(b)))

= (N(b)β−1NΨ(b)b2, N(b)β−1NΦ(b)b2N(b)β−1NΦ(b)b2)

= (N(b)β−1NΨ(b)b2, N(b)2NΦ(b)NΦ(b))
= (N(b)β−1NΨ(b)b2, N(b)3)

where

NK|K0(N(b)β−1NΨ(b)b2) = N(b)β−1NΨ(b)b2N(b)β−1NΨ(b)b2

= N(b)2(bb)−1(bb)−1NΨ(b)NΨ(b)b2b
2

= N(b)3ZK .

Then since β ∈ K0, the equivalence relation (2.1.2) yields

(N(b)β−1NΨ(b)b2, N(b)3) ∼ (β−1NΨ(b)b2, N(b)) ∼ (NΨ(b)b2, N(b)β2),

This shows the first claim. If NΨ(b) = µZK is a principal ideal, then

(NΨ(b)b2, N(b)β2) ∼ (µb2, N(b)β2) ∼ (b2, (µµ)−1N(b)β2) ∼ (b2, β2)

which shows the second claim. �

Lemma 2.3.16. Let K be a sextic CM field with Galois group isomorphic to C3
2 oC3 or C3

2 o S3,
and let Φ be a CM type of K. Then for all fractional ZK-ideals a we have an equality of fractional
ZL-ideals

NΦr (NΦ(a)) = NK|Q(a)2(aa−1)2. (2.3.17)

Proof. We prove this for the CM type Φ1 and Galois group C3
2 o C3: The statement for the other

CM types follows from Proposition 2.3.3, and the argument for the group C3
2 oS3 is similar. Using

the notation in Proposition 1.2.27, the extensions of Φ1 and Φr
1 to L are given by

{
1, σ, σ2} and

{1, n1, n2, n1n2}, respectively. Considering the given double norm comes down to studying the
element

(1+n1+n2+n1n2)(1+σ+σ2) = 1+n1+n2+n1n2+σ+n1σ+n2σ+n1n2σ+σ2+n1σ
2+n2σ

2+n1n2σ
2

(2.3.18)
in the group algebra of Gal(L |Q), where we consider the elements in this sum up to right multi-
plication by elements of the subgroup H = 〈n1, n2〉 corresponding to the field K. In terms of the
cosets in (1.2.15), this yields

H + n1H + n2H + n1n2H + σH + n1σH + n2σH + n1n2σH + σ2H + n1σ
2H + n2σ

2H + n1n2σ
2H

=H +H +H +H + σH + σ%H + σH + σ%H + σ2H + σ2H + σ2%H + σ2%H

=4H + 2σH + 2σ2H + 2σ%H + 2σ2%H

=(2H + 2σH + 2σ2H + 2%H + 2σ%H + 2σ2%H) + (2H − 2%H),
(2.3.19)

which shows the claim. �

Proposition 2.3.20. Let K be a sextic CM field with Galois group isomorphic to C3
2 o C3 or

C3
2 o S3, and let Φ be a CM type of K. If [b] ∈ Cl(K) satisfies bb = βZK for β ∈ K∗0 , then [b4] is

in the image of the reflex type norm NΦr : Cl(Kr)→ Cl(K).
15



Proof. Once more we only give the proof for the Galois group C3
2 o C3. If a = NΦ(b)ZL, then by

Lemma 2.3.16 we have an equality of fractional ZL-ideals

NΦr (a) = NΦr (NΦ(b)) = NK|Q(b)2
(
bb
−1)2

= NK|Q(b)2β−2b4. (2.3.21)

We therefore have that NΦr ([a]) = [b4], which shows the claim. �

Proposition 2.3.22. Let K be a sextic CM field with Galois group isomorphic to C3
2 o C3 or

C3
2 o S3. For any CM type Φ of K and any equivalence class (b, β) in CK , the equivalence class of

(b4, β4) is in the image of the map NΦr : Cl(Kr)→ CK .

Proof. With a = NΦ(b)ZL and Proposition 2.3.20 we get

NΦr (a) = (NΦr (a), N(a)) = (NΦr (NΦ(b)), N(NΦ(b))) = (N(b)2β−2b4, N(b)2(bb−1)2N(b)2(bb−1)2)
= (N(b)2β−2b4, N(b)4),

Since β ∈ K0, using the equivalence relation in Shimura class group yields that
(N(b)2β−2b4, N(b)4) ∼ (β−2b4, 1) ∼ (b4, β4),

which shows the claim. �

We can now state the main result of this section:

Theorem 2.3.23. Let G2 = ker(NK|K0) ⊂ Cl(K) be the subgroup of classes [b] with the property
that bb is generated by a totally positive element of K0. Let B be a set of ideals that furnishes
representatives of the quotient Q = G2/eG2, where e = 2 if Gal(K) ∈ {C6, D6} and where e = 4 if
Gal(K) ∈

{
C3

2 o C3, C
3
2 o S3

}
. Similarly, let V be a set of units that furnishes representatives of

the quotient (Z∗K0
)+/NK|K0(Z∗K).

Fix A(a0, ξ0) inMZK
(Φ), and let A(a, ξ) inMZK

(Φ) be given. Then the Galois orbit of A(a, ξ)
under the action of Gr = Gal(Q |Kr) contains an abelian variety isomorphic to A(ba0, vβ

−1ξ0),
where b ∈ B, where β ∈ K0 generates bb, and where v ∈ V .

Proof. Proposition 2.2.7 along with (2.1.3) shows that A(a, ξ) is isomorphic to A(ba0, vβ
−1ξ0) for

some ideal b with [b] ∈ G2 and for some v ∈ V . Propositions 2.3.13 and 2.3.20 show that the first
component of the map NΦr surjects onto eG2. Applying a corresponding Galois conjugation to
A(a, ξ) if needed, we may therefore assume that b ∈ B, after which another invocation of (2.1.3)
shows our claim. �

3. Running through the LMFDB

3.1. Algorithms. Let K be a sextic CM field. The considerations in the previous sections give rise
to a method to determine representatives of the set of ppavs with CM by ZK up to isomorphism
and Galois conjugacy. We split up the steps of this method into several algorithms. Throughout,
we fix not only the CM field K but also a primitive CM type Φ of K with values in C. (It is in
fact not essential that Φ be primitive, but this is the case that interests us in the current article.)
Similar algorithms were considered in lower genus in the previous works [18] and [46]. We discuss
differences in our approach in passing.

Algorithm 3.1.1. (Precomputation step)
Input: A sextic CM field K.
Output: Precomputed data used in the later Algorithms 3.1.3, 3.1.7, and 3.1.9.
(1) Determine the class group and unit group Cl(K),Z∗K of K and the class group, narrow

class group and unit group Cl(K0),Cl+(K0),Z∗K0
of its totally real subfield K0;
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(2) Determine the subgroup G1 ⊂ Cl(K) of classes [a] ∈ Cl(K) with the property that aa is
generated by an element of K0;

(3) Determine the subgroup G2 ⊂ Cl(K) of classes [a] ∈ G1 with the property that aa is
generated by a totally positive element of K0;

(4) Let Q = G2/eG2, where e = 2 if Gal(K) ∈ {C6, D6} and where e = 4 if Gal(K) ∈{
C3

2 o C3, C
3
2 o S3

}
;

(5) Determine a set of ideals C of ZK that furnishes representatives of the quotient G1/G2, as
well as a set of ideals B of ZK that furnishes representatives of the quotient Q = G2/eG2;

(6) Determine the subgroup U1 ⊂ Z∗K0
of totally positive units in Z∗K0

;
(7) Determine the subgroup U2 ⊂ U1 of units in Z∗K0

that are norms from Z∗K ;
(8) Determine a set of units W that furnishes representatives of the quotient Z∗K0

/U1, as well
as a set of units V that furnishes representatives of the quotient U1/U2.

The steps in this algorithm can be performed by using classical algorithms for class and unit
groups. We restrict ourselves to some remarks on steps that are somewhat less standard.
Remark 3.1.2. (i) Under the generalized Riemann hypothesis, the calculation of the class und

unit group of K and K0 in Step (1) speeds up tremendously. We have therefore used this
assumption while performing our calculations.

(ii) We can determine the subgroupG1 in Step (2) as the kernel of the homomorphism Cl(K)→
Cl(K0) given by [a] 7→ [aa], and G2 as the kernel of a similar homomorphism to Cl+(K0).
Similar considerations apply to the determination of U1 and U2 in Steps (6) and (7).

(iii) It is important that the representatives returned by Algorithm 3.1.1 be minimized, since
otherwise large precision loss will occur in later steps. In [18, §4.1], this minimization is
also mentioned as being useful when working with the Shimura class group in the genus-2
case. For our purposes this is not merely useful, but also indispensable in practice, as
the class groups involved are of considerable size and working with large powers of ideal
class generators without reducing these already causes unacceptable precision loss when
determining the corresponding lattices in C3 in Algorithm 3.1.9. We therefore spend a few
lines on this reduction step.

For an ideal representative in B and C, this observation means that it should be multi-
plied with a principal ideal in such a way that the norm of the resulting product is smaller
than the Minkowski bound M of K. This can be done as follows. Given an ideal a to be
minimized, one computes the lattice Γ in C3 that is the image of a−1 under the complex
embeddings of K. One then determines a short vector α in Γ, and the corresponding
element α of a−1 will satisfy NK|Q(α) ≤MNK|Q(a−1). Therefore the norm of the ideal αa
is at most M , and we use this product as a minimized ideal representative.

For a unit that furnishes a representative in V , resp.W , being small means the following.
Let ` : Z∗K0

→ R2 be the log map whose image is the Dirichlet lattice of the unit group
Z∗K0

. Then given an element u of V (resp. W ) to be minimized, we can use closest vector
algorithms to find an element u1 (resp. u2) of U1 (resp. U2) such that that `(u) + `(u1)
(resp. `(u) + `(u2)) is small, and we use the corresponding product u · u1 (resp. u · u2) as
a minimized unit representative.

(iv) Note that in contrast to the methods in [18], our precomputation does not require the
computation of the Shimura class group or the image of the reflex norm, which simplifies
its description.

Algorithm 3.1.3. (Determining an initial triple (Φ, a, ξ))
Input: A sextic CM field K and a primitive CM type Φ of K.
Output: A single triple (Φ, a, ξ), with a a fractional ZK-ideal and with ξ ∈ K totally imaginary,

such that (Φ, a, ξ) represents a principally polarized abelian threefold A with CM by K of Φ.
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(1) Determine a pair (a0, ξ0) such that (ξ0) = (a0a0DK|Q)−1. If the imaginary part of ξ0 is
positive for all embeddings in Φ, then return (Φ, a0, ξ0). Otherwise, proceed to the next
step.

(2) Run through the elements c of C, and let γ ∈ K0 be a generator of cc.
(3) Within the previous loop, run through the elements w ofW , and consider (a, ξ) = (ca0, wγ

−1ξ0).
If (a, ξ) admits Φ as a CM type, or in other words, if ξ has positive imaginary part for the
embeddings in Φ, then return (Φ, a, ξ).

Proof. If the algorithm returns a triple, then it is correct by construction. It therefore remains to
show that the algorithm does always furnish an output.

First note that the existence of a triple (Φ, a, ξ) as in the Output step follows from Proposition
2.2.7. Now suppose that we have determined a pair (a0, ξ0) as in Step (1) of the algorithm. Then
since both aaD−1

K|Q and a0a0D
−1
K|Q are principal, and generated by totally imaginary elements of K,

we have that the class of aa−1
0 belongs to G1. Let c ∈ C be an element representing this class, and

let γ ∈ K0 be the chosen generator of cc. We can then write a = δca0 with δ ∈ K∗. Let b = ca0.
Then

(δδξ) = ((δδ)−1aaDK|Q)−1 = (bbDK|Q)−1 (3.1.4)
and

(γ−1ξ0) = ((cc)a0a0DK|Q)−1 = (bbDK|Q)−1, (3.1.5)
so since ξ and ξ0 are totally imaginary, we have δδξ = uγ−1ξ0 for a unit u ∈ Z∗K0

. Let w ∈ W
be a representative of the class corresponding to u. Then (ca0, wγ

−1ξ0) has the property that the
imaginary parts of wγ−1ξ0 has the same signs as δδξ, and hence as ξ. These are exactly the signs
compatible with Φ. Therefore since the algorithm encounters this triple as it runs, it is indeed
guaranteed to return the requested output. �

Remark 3.1.6. (i) Finding a pair (a0, ξ0) as in Step (1) of Algorithm 3.1.3 is possible by using
the methods of [46, Proposition 4.4]: In fact the pair (a0, yz) in loc. cit. can be used.

(ii) For all cases in the LMFDB, Algorithm 3.1.3 did in fact find a triple (Φ, a, ξ). This is the
case because the final condition in Corollary 1.2.37 is satisfied for all sextic CM fields in
the LMFDB.

Given an initial triple (Φ, a, ξ) returned by Algorithm 3.1.3, the others can be determined quickly
by using the precomputed data from Algorithm 3.1.1:

Algorithm 3.1.7. (Determining all triples (Φ, a, ξ))
Input: A sextic CM field K and a primitive CM type Φ of K.
Output: A set S of triples (Φ, a, ξ) as in [46, Theorem 4.2], so that (a, ξ) represents a principally

polarized abelian threefold A that admits CM by K of Φ. Moreover, S satisfies the following property:
Up to Galois conjugacy over the reflex field Kr, any pair (Φ, A), where A is a principally polarized
abelian threefold that admits CM by ZK , is isomorphic over C to an abelian variety corresponding
to one of the elements of S.

(1) Let (Φ, a0, ξ0) be the triple from Algorithm 3.1.3.
(2) Run through the elements b of B, and let β ∈ K0 be a generator of bb.
(3) Within the previous loop, run through the elements v of V , and add (a, ξ) = (ba0, vβ

−1ξ0)
to S.

(4) Return S once the loops above have terminated.

Proof. The correctness of Algorithm 3.1.7 follows from Theorem 2.3.23. �

Remark 3.1.8. (i) We do not claim that the given set S is in actual bijection with the set
of isomorphism classes of pairs (Φ, A) up to Galois conjugacy, and indeed this is not the
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case in general. For our purposes, it suffices that the abelian varieties associated map
surjectively to the latter set of equivalence classes, and we do not impose additionally that
this natural map be injective.

(ii) As was shown in Equation (2.1.5), the size ofMZK
(Φ) is well approximated by h(K)/h+(K0).

When G = C3
2 o S3, the largest size of the quotient h(K)/h+(K0) in (2.1.5) was 11287,

whereas the largest size of the group Q was 128, thus showing the speed gain that our
taking into account Galois conjugacy provides.

Algorithm 3.1.9. (Determining period matrices)
Input: A sextic CM field K and a primitive CM type Φ of K.
Output: The small period matrices τ corresponding to the elements of the set S in Algo-

rithm 3.1.7, sorted into two sets TH and TN that (heuristically) give rise to hyperelliptic and
non-hyperelliptic curves, respectively.

(1) Determine the set S from Algorithm 3.1.7, and initialize TH and TN to be empty sets.
(2) Let (Φ, a, ξ) be in S. Calculate the corresponding principally polarized abelian threefold

(A,E) in the usual manner [46, §4], setting A = C3/Φ(a) and letting E be the R-linear
extension of the trace pairing (α, β) 7→ TrK|Q(ξαβ).

(3) Determine a Frobenius alternating form of E to find some big period matrix P ∈M3,6(C)
for A, and from it, a small period matrix τ ∈M3,3(C).

(4) Reduce τ by using the methods from [27, §2].
(5) Use algorithms, for example those by Labrande [30], to determine whether τ has 1 or

0 vanishing even theta-null values to some high precision (typically 100 digits). In the
former case, add τ to TH ; in the latter, add it to TN .

Remark 3.1.10. (i) Note that our algorithms differ from those in [46], as we fix our primitive
CM type Φ throughout. When considering CM curves up to Galois conjugacy, we are
justified in doing so because of Corollary 1.2.37.

(ii) Because we have insisted that Φ be a primitive CM type, the associated abelian threefolds
are indeed Jacobians of genus-3 curves. The criterion for said Jacobian to be hyperelliptic
in terms of even theta-null values is [20, Lemmata 10 and 11].

(iii) Like the minimization of representatives in Algorithm 3.1.1, Steps (4) of Algorithm 3.1.9
is essential to keep its running time short.

(iv) Our own run of Algorithm 3.1.9 used the native Magma implementation in Step (5)
instead of the algorithms from [30]. The even theta values were computed to 100 digits of
precision, and decided to be numerically equal to zero when their absolute value is at most
10−50. Setting Labrande := true in the implementation at [14] allows for an alternative
verification of these results using [30] instead.

(v) Using interval arithmetic or the fast decay of the terms intervening in the sum that define
a even theta-null value, it is in principle possible to prove rigorously that all such values
are non-zero. This enables one to prove that a ppav A that Algorithm 3.1.9 suspects to
come from a non-hyperelliptic indeed comes from such a curve. By contrast, showing that
A comes from a hyperelliptic curve is more involved. For the moment, we see no other
rigorous method to check this than to calculate an equation for a corresponding curve X
as in 4 and to show that Jac(X) has CM using the algorithms in [11]. We discuss some
further sanity checks in the next section.

3.2. Fields. With the algorithms from Section 3.1 in hand, we considered the sextic CM fields in
the LMFDB [47]. We list our results, which imply Main Results 1 and 2, Table 1. Its first column
lists the possible Galois groups, whereas its second column gives the corresponding number of sextic
CM fields in the LMFDB.
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We have applied our algorithms, implemented in Magma [5] and available at [14], to all of these
547, 156 fields, except for 2 fields with Galois group D6 whose root discriminant exceeds 1012 and
for which the calculation of the class and unit group did not finish in a timely fashion even when
assuming the generalized Riemann hypothesis. The total computation required 4 days on 20 cores
when working to relatively high precision to absolutely exclude rounding errors.

The second column of Table 1 indicates the number of CM fields K in the database whose Galois
group is isomorphic to that indicated in the first column. specified Galois The third column of Table
1 indicates the number of CM fields K considered for which the set TH from Algorithm 3.1.9 is non-
empty, or in other words those fields K for which there (heuristically) exists a hyperelliptic curve
whose Jacobian has primitive CM by ZK . For simplicity, we call such a CM field K hyperelliptic.

As was already known, and as can be deduced from the classification in [38], if a CM field K
contains Q(i), then any curve whose Jacobian has primitive CM by ZK is automatically hyperel-
liptic. We call a hyperelliptic CM field K that does not include Q(i) exceptional hyperelliptic. The
fourth column of Table 1 lists the number of hyperelliptic fields K that are exceptional.

The fifth column of Table 1 indicates the number of fields for which both sets H and N from
Algorithm 3.1.9 there heuristically exists both a hyperelliptic and a non-hyperelliptic curve whose
Jacobian has CM by ZK . For simplicity, we call such a sextic CM field K mixed. Note that all
mixed fields are exceptional hyperelliptic.

Galois group #K # hyp. K # exc. hyp. K # mixed K
C6 10,067 348 2 0
D6 32,544 3,057 0 0
C3

2 o C3 10,159 0 0 0
C3

2 o S3 494,386 17 17 14
Total 547,156 3,422 19 14

Table 1. CM fields in the LMFDB

3.3. Invariants. Let τ ∈Mg,g(C) be a small period matrix. This section briefly recapitulates what
is known on calculating and algebraizing the invariants of the curve over X associated to τ , as well
as verifying the correctness of the resulting curve.

Algorithm 3.1.9 shows that we can calculate an approximation to τ to a given high precision, as
all that we need to do is to determine the image of a basis of a (minimized) representative a under
the given CM type Φ. What is considerably more complicated is to calculate the even theta-null
values associated to τ . Here it is in general essential to use the more sophisticated algorithms by
Labrande [30] to keep the running time within reasonable bounds. We have noticed in passing that
the available implementation of this algorithm does not always function, but still managed to get
by in the cases that interested us, either by using the naive method from [30] to lower precision
or by determining the even theta-null values for only a single element of a given Galois orbit and
conjugating afterwards.

Given the even theta-null values, we can determine a model of X over C to the given precision,
either by using the Rosenhain invariants as in [1] or by using the Weber model from [27]. We can
then calculate a normalized weighted representative I of the corresponding invariants (using the
Shioda invariants in the hyperelliptic case and the Dixmier–Ohno invariants in the non-hyperelliptic
case). The field of moduli of X then coincides with the field generated by the entries of I.

Algebraization. It remains to algebraize the invariants I. A first possible method is the usual
application of the LLL algorithm to determine putative minimal polynomials of the entries of I
over Q and thus to obtain I as elements of a number field. One corresponding implementation is
NumberFieldExtra in [10]. A second method is to symmetrize and use class polynomials, as in
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[13, 18]. Both of these methods became prohibitive in the cases that we considered because of the
large heights of the algebraic numbers that were involved. Indeed, one of the mixed fields, defined
by the polynomial x6 − 2x5 + 11x4 + 42x3 − 11x2 + 340x+ 950, gives rise to a tuple of normalized
Dixmier–Ohno invariants whose first non-trivial entry I6 has height ≈ 2.94 · 10431, with I27 having
a height that larger by an exponential factor of about 27/6. Another reason for us not to use the
class polynomial method from [18] is that this would necessitate later factorization to determine
the Galois orbits, which is superfluous when algebraizing the individual I directly.

Instead we exploited the fact that that the Shimura reciprocity law implies that the entries of I
are the complex embeddings of elements of Hilbert class field H of the reflex field Kr. This replaces
the problem of determining minimal polynomials to the more tractable one of trying to algebraize
the elements of I in H or its subfields, which also reduces to an application of LLL (for example
in the form of the routine AlgebraizeElementsExtra in [10]). In the aforementioned complicated
case we needed 20, 000 digits of precision for our algebraization, but usually around 3, 000 digits
were enough. Incidentally, note that while the reflex Kr itself can be costly to determine via
the usual Galois theory, since the closure L becomes quite large, it can still be quickly recovered
numerically as a subfield of C, namely by applying the methods from the previous paragraph.

Verification. Once we have algebraized the elements of I, we have applied heuristic numerical
methods twice, both in the determination of I itself and in the algebraization of its elements. One
may well ask why one should trust the algebraic invariant values thus obtained to be correct. Here
are several reasons:

(i) For all algebraizations I that we found, the resulting invariants satisfy the known algebraic
dependencies between the Shioda invariants (which can be found in [36]) or the Dixmier–
Ohno invariants (which can be found in [37]). There is no reason whatsoever for this to
hold in the case of incorrect or badly algebraized I.

(ii) Reducing the values of I modulo various large primes, one can apply the reconstruction
algorithms from [34] or [35] and then calculate Weil polynomials to check that the resulting
curves indeed have CM by an order in K for all these primes.

(iii) Conversely, one can bound the primes of bad reduction from I and check that the set thus
obtained contains the primes found in [22].

(iv) In principle one can verify all results obtained over Q by using [11]. That said, these
algorithms still need substantial speedups for these verifications to be feasible for plane
quartic curves over number fields.

This is why we do not harbor any doubts about our results being correct, even though they are by
no means mathematically rigorous yet.

3.4. The mixed cases. Table 2 describes the results for the 17 fields K from Table 1 with Galois
group C3

2 ×S3 that are exceptional. Note that there are also 2 exceptional hyperelliptic fields with
Galois group C6, but these were already considered in [21]: Corresponding polynomials are given
by x6 − x5 + x4 − x3 + x2 − x+ 1 and x6 − 14x3 + 63x2 + 168x+ 161.

The first column of Table 2 gives the polynomial defining the CM field K; this column is sorted
by the absolute discriminant of the ring of integers ZK . The second column describes the length
of the various hyperelliptic Galois orbits under conjugation by Gal(Q |Q); for example, an entry
4281 stands for 2 Galois orbits of length 4 along with single Galois orbit of length 8. Similarly,
the third column describes the length of the non-hyperelliptic Galois orbits under Gal(Q |Q). An
empty entry means that there does not exist such a curve for the field K. Note that Corollary 1.3.7
shows why the length of the Galois orbits in the table are all a multiple of 4. The final column
describes the quotient CK/ im(NΦ) of the Shimura class group by the image of the reflex type norm.
Note that this independent of the chosen primitive CM type Φ because of Proposition 1.2.21 and
Corollary 1.2.37.
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The invariants obtained for the fields in Table 2 are available at [14]. As mentioned above, they
are occasionally on the gargantuan side.

CM field hyp. orbits non-hyp. orbits CK/ im(NΦ)
x6 + 10x4 + 21x2 + 4 41 41 Z/2Z
x6 − 3x5 + 14x4 − 23x3 + 28x2 − 17x+ 4 41 41 Z/2Z
x6 − 2x5 + 12x4 − 31x3 + 59x2 − 117x+ 121 41 4181 Z/4Z
x6 + 14x4 + 43x2 + 36 41 1
x6 − 3x5 + 9x4 + 4x3 + 12x2 + 84x+ 236 41 4181 Z/4Z
x6 − 2x5 + x4 − 4x3 + 5x2 − 50x+ 125 41 43 (Z/2Z)2

x6 + 29x4 + 246x2 + 512 41 1
x6 − 3x5 + 10x4 + 8x3 + x2 + 90x+ 236 41 41 Z/2Z
x6 + 21x4 + 60x2 + 4 41 41 Z/2Z
x6 + 30x4 + 169x2 + 200 41 41 (Z/2Z)2

x6 + 23x4 + 112x2 + 36 41 1
x6 − 2x5 + 12x4 − 44x3 + 242x2 − 672x+ 1224 121 123 (Z/2Z)2

x6 + 26x4 + 177x2 + 128 41 41 Z/2Z
x6 + 29x4 + 226x2 + 252 41 4181 Z/4Z
x6 − 2x5 − 7x4 + 45x3 − 63x2 − 162x+ 729 41 41 Z/2Z
x6 − 2x5 + 11x4 + 42x3 − 11x2 + 340x+ 950 81 81161 Z/4Z
x6 − 3x5 + 29x4 − 53x3 + 200x2 − 174x+ 71 41 41 Z/2Z

Table 2. Generic hyperelliptic and mixed fields with Galois group C3
2 oS3 and the

lengths of the corresponding Galois orbits

4. Explicit defining equations

In this section we further consider the mixed CM field K defined by x6 + 10x4 + 21x2 + 4, which
corresponds to the first entry of Table 2. Our goal is to indicate how to obtain the (heuristic)
explicit defining equations from Main Result 3. The actual calculations are performed in [14]; here
we briefly explain the ideas that underlie them.

There are two Galois orbits in this case, one containing 4 hyperelliptic curves, and one containing
4 non-hyperelliptic curves. Moreover, Corollary 1.2.37 shows that once we fix a CM type Φ, which
we do throughout this section, there is exactly one corresponding hyperelliptic curve X and one
non-hyperelliptic curve Y . We start by finding an equation for X.

4.1. Hyperelliptic simplification. As in Section 3.3, we determine a normalized tuple S of Sh-
ioda invariants corresponding to the curveX, which is defined over the quartic field L corresponding
to the polynomial x4− 5x2− 2x+ 1. The field L is in fact the totally real subfield of the reflex field
Kr of K.

One can try to apply the generic reconstruction algorithms in genus 3 that are available in
Magma, but this turns out not to be optimal, as the resulting hyperelliptic curve is returned over
a random quadratic extension of L with large defining coefficients. Instead, we directly construct the
Mestre conic and quartic C and Q over K from the invariants S, as in [34], and then check whether
the conic C admits a rational point. This turns out to be the case. Choosing a parametrization
P1 → C over K and pulling back the divisor C ∩Q on C, we obtain a degree-8 divisor on P1 that
corresponds to a monic octic polynomial f with the property that

X : y2 = f (4.1.1)
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is a curve with CM by ZK . This is still far from satisfactory, however, as the coefficients of f are
extremely large, namely of height up to 4.92 · 101126. We show how to obtain a simpler equation.
Our approach is essentially ad hoc; while there are minimization and reduction algorithms in
Magma over the rationals due to Cremona–Stoll [44], and over real quadratic number fields due
to Bouyer–Streng [7], we do not find ourselves in one of these cases, so that we are forced to use
other methods.

The octic polynomial f factors as
f = f1f2f3, (4.1.2)

where f1 and f2 are quadratic, both defined over a pleasant quadratic extension M of L with
defining polynomial x8 − 4x7 + 10x5 + 7x4 − 10x3 − 18x2 − 6x + 1 over the rationals. (That this
extension is so agreeable is of course no surprise; the extended version of the Main Theorem of
Complex Multiplication, applied to the 2-torsion of Jac(X), shows that we should expect it to be
related to the Hilbert class field of L ramifying at its single even prime.)

We now consider f over the quadratic extension M of L, over which field we will construct a
simpler polynomial defining the same hyperelliptic curve, which we will the descend back to L. To
start our simplification over M , we apply a Möbius transformation in the x-coordinate that sends
the roots of f1 to 0 and∞ and one of the roots of f2 to 1. This maps the divisor defined by the octic
polynomial f to that defined by a septic polynomial g that additionally satisfies g(0) = g(1) = 0.
We normalize g in such a way that the coefficient of x4 equals 1, for reasons that will become clear,
so that

g = c7x
7 + c6x

6 + c5x
5 + x4 + c3x

3 + c2x
2 + c1x. (4.1.3)

Now inspecting the norms of the coefficients ci shows that we have
(c5) = p−4

2 (σ(c3)) (4.1.4)
where p2 is the unique ideal of ZL above 2 and where σ is the involution that generates Gal(M |L).
Following a hunch, we scale x by α2, where α generates p2. Transforming g accordingly, we obtain
an equality of ideals

(ci) = (σ(c8−i)) (4.1.5)
for all i between 1 and 4.

Our goal is to make Equation (4.1.5) hold on the level of elements, and not merely between ideals.
To achieve this, we consider the unit u = c5/σ(c3) ∈ Z∗M . Consider the polynomial h obtained from
g by scaling x by vx, where v ∈ Z∗M is another unit, and normalizing the coefficient of x4 to equal
1. Then for the coefficients di of h we have d5 = vc5 and d3 = v−1d3. The straight-up equality
d5 = σ(d3) that we are looking for can be rewritten as

vuσ(c3) = vc5 = d5 = σ(d3) = σ(v−1)σ(c3) (4.1.6)
This is the case if and only if

u = vσ(v). (4.1.7)
Since Z∗M ∼= Z/2Z × Z5 and v satisfies this equality if and only of −v does, the equality (4.1.7)
reduces to integral linear algebra once the representation of σ in terms of a given basis of Z∗K is
known. Performing the corresponding computation shows that we can indeed find a v with the
requested properties. Rescaling x accordingly, we find a polynomial g as in (4.1.3) such that

(ci) = (σ(c8−i)) (4.1.8)
is satisfied for all i = 1, . . . , 4.

At this point, our manipulations have lead to a polynomial g with coefficients of maximal height
8.64 · 1016, which is smaller than 4.92 · 101126. We can still do a bit better by further scaling x by
appropriate units v satisfying vσ(v) = 1. This does not affect the property (4.1.8). Our goal is to
make d5 as small as possible as an element of the Minkowski lattice up to shifts by units of the
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indicated type. This reduces to a closest vector problem as in Remark 3.1.2, an approximation for
which is quickly furnished by the usual techniques. Applying the corresponding scaling yields a
slightly smaller polynomial g with coefficients of height 1.11 · 1016.

It now remains to descend our polynomial g with coefficients in M to the original field L. For
this, let σ be the involution that generates the Galois group Gal(M |L), and let B ∈ GL2(M) be
such that

σ(B) = AB, where A =
(

0 1
1 0

)
. (4.1.9)

For example, we can take

B =
(

1 α
1 σ(α)

)
(4.1.10)

where α ∈M is such that M = L⊕ Lα. The matrix B−1 induces a Möbius transformation of the
projective line.

Proposition 4.1.11. Let D = (g)0∪{∞} ⊂ P1, where (g)0 is the divisor of zeros of the polynomial
g, and let E0 = B−1(D).

(i) The divisor E0 ⊂ P1 is defined over L.
(ii) Let f0 be a polynomial whose divisor of zeros is given by E0. Then the hyperelliptic curve

X0 : y2 = f0 over L is isomorphic over Q to the original curve X in (4.1.1).

Proof. (i): The divisor E0 is defined over M , as B and D are. Moreover, we have

σ(E0) = σ(B−1D) = σ(B)−1σ(D) = B−1A−1AD = B−1D = E0 (4.1.12)
This Galois invariance implies our claim.

(ii) This follows from (i) because two hyperelliptic curves are Q-isomorphic if (and only if) the
corresponding branch loci are related by a Möbius transformation. �

Alternatively, f0 is the numerator of the transform of g by B−1. This turns out to be still of
reasonable size when α is. Replacing X be X0, we have achieved our aim of simplifying X. The
result is the equation for X in Main Result 3. The discriminant of the corresponding hyperelliptic
polynomial equals p120

4 p12
7 , where p4 (resp. p7) is an ideal of norm 4 (resp. 7).

4.2. A plane quartic equation. It remains to construct a plane quartic model for the non-
hyperelliptic curve Y from the knowledge of its Dixmier–Ohno invariants I. The direct methods
from [35] gives a ternary quartic with coefficients whose size is beyond hopeless. Methods to obtain
defining equations of smaller size were sketched in [27, §3], using methods due to Elsenhans and
Stoll [16, 43], yet like the methods of Cremona–Stoll in Section 4.1, these are specific to the base
field Q, and therefore of no use in the current situation.

Fortunately, now that we have found the equation for the hyperelliptic curve X in Main Result
3, determining the equation for the non-hyperelliptic curve Y becomes tractable. To see this, let
PX ∈ M3,6(C) be a big period matrix corresponding to X with respect to the canonical basis of
differentials

{
dx/y, xdx/y, x2dx/y

}
corresponding to the equation (0.1), and let PY be the large

period matrix of the Weber model Y : F (x, y, z) = 0 over C for Y obtained in the course of using
Algorithm 3.1.9. This matrix, and all other big period matrices that follow, should be taken with
respect to the canonical basis of differentials

(
xdx(∂F/∂y)−1, ydx(∂F/∂y)−1, dx(∂F/∂y)−1).

Proposition 4.2.1. There exist matrices T ∈M3,3(C) and R ∈M6,6(Z) such that R has determi-
nant 2 and

TPY = PXR. (4.2.2)
Moreover, the pair (T,R) is uniquely determined up to a minus sign.
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Proof. This is a direct consequence of the fact thatX and Y are related by an a-transformation with
NK|Q(a) = 2. In turn, this statement follows from the fact (see Table 2) that CK/ im(N ) ∼= Z/2Z,
and that if we factor (2) = a4b2 in ZK , with NK|Q(a) = NK|Q(b) = 2, the ideal a represents the
non-trivial class in this quotient, which therefore induces an isogeny between the two distinct ppavs
with CM by K of a fixed type Φ. The uniqueness claim follows from the fact that a is the only
ideal of norm 2 whose class in CK/ im(N ) is non-trivial. �

In what follows, given a matrix T ∈M3,3(C) and a ternary quartic form F ∈ C[x, y, z], we denote
the transformation of F under the natural right action of T by F · T .

Proposition 4.2.3. Let F be the ternary quartic form associated to the Weber model whose big
period matrix is PY , and F0 be a multiple of F · T−1 that is normalized in such a way that one of
its coefficients is in L. Then Y0 : F0(x, y, z) = 0 is a model of Y over L.

Proof. We know that Y has field of moduli equal to L. Now since the torsion subgroup of Z∗K is
reduced to 〈−1〉, the automorphism group Aut(Y ) is trivial, since Aut(Y ) = Aut(Jac(Y ))/〈−1〉 for
plane quartic curves Y . Therefore there exists a plane quartic curve Z ⊂ P2 defined over L that
is isomorphic to Y . Let G be a corresponding form, and let PZ be a corresponding period matrix.
The same argument as above shows that there exists a matrix U ∈M3,3(C) such that

UPZ = PXR. (4.2.4)

Because both X and Z are defined over L, the uniqueness of R up to sign implies that U ∈M3(Q)
and σ(U) = ±U for all σ ∈ Gal(Q |Q). Now let G0 = G · U−1, normalized in such a way that one
of its coefficients is in L. Since σ(G · U−1) = σ(G) · σ(U−1) = G · ±U−1, we have that the class of
G · U up to scalar is Galois stable. Therefore G0 is defined over L, and its big period matrix is a
scalar multiple of UPZ = PXR. On the other hand, the ternary quartic F · T also has a big period
that is a scalar multiple of TPY = PXR. Therefore F0 and G0 coincide up to a scalar, and because
of our normalization F0 has coefficients in L as well. �

An algebraization in the field L using LLL shows that we can indeed recover the coefficients
of the ternary quartic form F0 defining Y0 over K. Tweaking its size by scaling x, y, z by units
(similar to the closest vector considerations in Section 4.1) makes the equation of Y0 somewhat
smaller still. Replacing Y by Y0 gives the equation for Y in Main Result 3. Its discriminant factors
as p312

4 p36
7 p14

19p
14
277p

14
1753, where as before subscripts indicate norms.

Remark 4.2.5. We emphasize once more that the equations obtained in this section have not yet
been verified by the methods from [11] because of the considerable effort required to run these
algorithms over large number fields.

5. Around the André–Oort conjecture

5.1. General considerations. In this section, we review a certain number of results around the
André–Oort conjecture. The André–Oort conjecture was formulated in the general context of
Shimura varieties and their special points. A proof of this conjecture under the assumption of the
Generalized Riemann Hypothesis (GRH) for CM fields has been given by Klingler and Yafaev [24].
For an extensive survey on Shimura varieties and a general statement of the conjecture, the reader
is refered to [39].

Although our focus is on genus 3, we start by stating facts that hold for every g ≥ 1. We denote
by Ag be the moduli space of ppavs of genus g over C and byMg the moduli space of of smooth
genus g curves defined over C. Recall that the Torelli morphism

j :Mg → Ag (5.1.1)
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associates to every curve its principally polarized Jacobian. We denote by Tg the closed Torelli
locus, i.e. Tg = j(Mg).

As a complex variety, Ag = Sp2g(Z)\Hg is a Shimura variety whose special points are exactly the
CM points. Recently, Tsimerman [48] proved a result showing the existence of a lower bound on
the size of the Galois orbits of CM points in Ag. Building on joint work with Pila [40], Tsimerman
concluded in this way a proof of the André-Oort conjecture for Ag without the GRH assumption.

Theorem 5.1.2 (André–Oort conjecture [48]). Let Γ be a set of CM points in Ag. Then the Zariski
closure of Γ is a finite union of Shimura subvarieties.

Among the Shimura subvarieties of Ag, a well known example is that of the Hilbert modular
variety, whose points are polarized abelian varieties whose endomorphism ring contains the ring of
integers of a totally real field of genus g. Hilbert modular varieties play an important role when
studying the number of CM points in Tg.

Indeed, let us turn our attention to the case of CM fields with Galois group isomorphic to Cg2 oSg.
Chai and Oort call these fields and their corresponding CM points sufficiently general (see [9, (2.13)]
for a justification of this definition). We will use the following result given in [9].

Lemma 5.1.3. Let Y be an irreducible Shimura subvariety of Ag of positive dimension. Assume
that Y 6= Ag and that Y contains a sufficiently general CM point y in Ag. Then Y is a Hilbert
modular variety attached to the totally real subfield of degree g over Q contained in the CM field
attached to y.

This lemma allowed the authors of [9] to establish the following result for genus g > 3.

Theorem 5.1.4. Assume the André–Oort conjecture to be true. Then for every g > 3 the number
of sufficiently general CM points in Tg is finite.

When g = 3, the closed Torelli locus T3 coincides with A3, but we believe that a similar argument
can be adapted to genus 3, as soon as we restrict to the hyperelliptic locus. Indeed, let us denote
by Mhyp

3 the image of the subspace of hyperelliptic curves inside the Torelli locus. Then Mhyp
3

contains infinitely many hyperelliptic curves with CM, since all genus 3 curves with CM by a field
containing Q(i) are hyperelliptic. This is certainly in accordance with the Andre–Oort conjecture,
since the Shimura surface parametrising points whose endomorphism ring contains

√
−1 is contained

inMhyp
3 .

Assume now that Mhyp
3 contains infinitely many sufficiently general CM points. Then by the

André–Oort conjecture and Lemma 5.1.3, it contains a Hilbert modular variety attached to a totally
real field of degree 3. Recall that among the exceptional hyperelliptic fields listed in Table 2, 14
are mixed, i.e. they allow both a hyperelliptic and non-hyperelliptic curve. This quickly disproves
the fact that the Hilbert modular variety corresponding to the real multiplication subfield of each
of these fields could be contained in the hyperelliptic locus. For the remaining 3 exceptional
hyperelliptic fields listed in the Table, we cannot reach a similar conclusion for the corresponding
real multiplication subfields and their Hilbert modular varieties. One way to tackle the question
experimentally would be to adapt our implementation to compute points with CM by non-maximal
orders, which contain the maximal real multiplication order in these fields. Once the period matrices
of these points are determined, it would suffice to use Algorithm 3.1.9 to check heuristically that
some of the corresponding curves are not hyperelliptic.

As stated in the introduction, we do not have enough evidence to support the claim that the
list of exceptional hyperelliptic CM fields mentioned in Main Result 1 and 2 is complete and we
certainly do not claim that. However, the considerations above support the conjecture that the full
list of exceptional hyperelliptic CM fields should be finite.
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5.2. Cryptographic implications. Let us now turn our attention to applications in cryptogra-
phy. The Discrete Logarithm Problem (DLP) in Jacobians of hyperelliptic curves defined over a
finite field Fq (with q = pd and p a prime) can be solved in Õ(q4/3), using the index calculus
algorithm of Gaudry, Thériault and Diem [19]. In contrast, Jacobians of non-hyperelliptic curves
of genus 3 are amenable to Diem’s index calculus algorithm, which requires only Õ(q) group op-
erations to solve the DLP [12]. As a consequence, an efficient way of attacking DLP on a genus 3
hyperelliptic Jacobian is by reducing it to a DLP on a non-hyperelliptic Jacobian via an explicit
isogeny. Assuming that the kernel of the isogeny will intersect trivially with the subgroup of cryp-
tographic interest, we derive a Õ(q) time attack on the hyperelliptic Jacobian (see [42]). So an
interesting question is how to find such isogenies.

Idea of the attack. To tackle this question, let us consider A an ordinary ppav defined over Fq
isomorphic to a hyperelliptic Jacobian. The theory of canonical lifts of Serre and Tate allows us
to lift A to an ordinary ppav Ã defined over W (Fq), the ring of Witt vectors of Fq, such that
End(A) ' End(Ã) and A → Ã is functorial (see [4]). After fixing an embedding W (F̄q) ↪→ C, we
may assume that Ã is a ppav defined over C with CM by the maximal ring of integers of K and
CM type Φ. As suggested by our Main Results 1 and 2, hyperelliptic Jacobians with CM are rare,
hence most of the times we expect Ã to be a non-hyperelliptic Jacobian with hyperelliptic reduction
mod p. We now consider the following graph: the vertices are absolutely simple 3-dimensional ppav
defined over C with CM by the maximal order of K and the edges are isogenies between ppavs. In
the literature, this is known as the horizontal isogeny graph (see for instance [23]). Moreover, by
[41, Ch. III, Sec. 11, Prop. 13], the isogenies in this graph will reduce to isogenies defined over Fq
of equal degree.

In this graph, our goal is to find an isogeny from Ã to another ppav, which has good quartic
reduction at p. The problem is not trivial, since the number of vertices in this graph is O(#CK),
hence it grows exponentially with the size of the class group of K. If we construct an isogeny to
a p.p.a.v. on the Galois orbit of Ã as in Theorem 2.3.1, then the target variety will also have
hyperelliptic reduction at p.

Consequently, we will choose an isogeny Ĩ corresponding to a non-trivial element in CK/ im(N )
(preferably the one which allows an ideal representative of smallest possible norm). We denote by
B̃ the target ppav obtained in this way and by B its reduction (mod p). Heuristically, both B̃
and B are isomorphic to non-hyperelliptic Jacobians. To support this heuristic, we computed all
primes of hyperelliptic reduction for all non-hyperelliptic orbits for a given CM field.

Example 5.2.1. As an example, we revisit the case of the CM field of equation x6 − 2x5 + x4 −
4x3 + 5x2 − 50x + 125, which is the sixth entry in Table 2. Recall that for this field there is one
hyperelliptic orbit of length 4 and three non-hyperelliptic orbits under conjugation by Gal(Q̄/Q).
The Dixmier-Ohno invariants of plane quartics with CM by this field are defined over a degree 4
extension field of Q of equation x4−17x3−24x2 +7. We computed invariants for one curve on each
of the non-hyperelliptic orbits (see [14] for the numerical values). With these in hand, we computed
the primes of hyperelliptic reduction for these CM points, using the criterion in [33, Theorem 1.10].
We list the results in Table 3, where as before the subscripts denote the norms of the ideals. We
can see that the lists of primes of hyperelliptic reduction for different orbits are almost disjoint
(only p29 appears in two of these lists).
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