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Abstract (200 words) 39 
 40 
There is a growing interest in decomposing high-density surface electromyography (HDsEMG) 41 

into motor unit spike trains to improve knowledge on the neural control of muscle contraction. 42 

However, the reliability of decomposition approaches is sometimes questioned, especially 43 

because they require manual editing of the outputs. We aimed to assess the inter-operator 44 

reliability of the identification of motor unit spike trains. Eight operators with varying 45 

experience in HDsEMG decomposition were provided with the same data extracted using the 46 

convolutive kernel compensation method. They were asked to manually edit them following 47 

established procedures. Data included signals from three lower leg muscles and different 48 

submaximal intensities. After manual analysis, 126 ± 5 motor units were retained (range across 49 

operators: 119-134). A total of 3380 rate of agreement values were calculated (28 pairwise 50 

comparisons ´ 11 contractions/muscles ´ 4-28 motor units). The median rate of agreement 51 

value was 99.6%. Inter-operator reliability was excellent for both mean discharge rate and time 52 

at recruitment (intraclass correlation coefficient > 0.99). These results show that when provided 53 

with the same decomposed data and the same basic instructions, operators converge toward 54 

almost identical results. Our data have been made available so that they can be used for training 55 

new operators. 56 

 57 

  58 
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Introduction  59 

Movements result from the activation of motor units, each comprising of a motoneuron and the 60 

muscle fibers it innervates. Motoneurons send trains of action potentials to the muscle fibers, 61 

which produce force. The neural drive is the net output of all the motor neurons that innervate 62 

the muscle, i.e. the ensemble of activation times of the motoneurons. In healthy individuals, 63 

there is a one-to-one relationship between the generation of an action potential in the motor 64 

neuron and the generation of an action potential in the innervated muscle fibers. Thus, the 65 

discharge times of motor units contain direct information about the neural drive. As a result, 66 

there is a growing interest in decoding the discharge characteristics of motor units to advance 67 

our knowledge on the neural control of movement (Del Vecchio et al., 2020; Farina et al., 2016), 68 

to develop human-machine interfaces (Chen et al., 2020), and to design rehabilitation 69 

interventions in people with neurological conditions (Ting et al., 2019).  70 

Activity of motor units is conventionally detected using intramuscular electromyography 71 

(EMG) electrodes. Although it provides direct recordings of motor unit action potentials, this 72 

invasive technique can only identify a limited number of units from small muscle regions. 73 

Recent developments in electrode technology and signal processing makes it possible to 74 

identify the concurrent activity of many motor units non-invasively (Farina et al., 2016; 75 

Marateb et al., 2011). Specifically, high-density surface EMG (HDsEMG) electrodes can be 76 

used to provide a spatial sampling of motor unit action potentials (Merletti et al., 1999; Merletti 77 

et al., 2008). Blind source separation procedures (Holobar and Zazula, 2007; Negro et al., 2016) 78 

applied to these signals currently enable the identification of up to 30-40 motor units. However, 79 

after an automatic extraction, most of these approaches require some degree of manual 80 

analysis/editing of the motor unit spike trains to check for false positives and false negatives 81 

(Del Vecchio et al., 2020; Enoka, 2019). This manual analysis consists of reinforcing the motor 82 

unit spike trains with tuned motor unit separation filters. The motor unit separation filter is a 83 
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spatio-temporal filter that, when applied to surface EMG, yields the spike train of individual 84 

motor unit. The coefficients of the motor unit filters form the inverse of the surface EMG 85 

mixing matrix and are estimated automatically by decomposition algorithms. Afterwards, each 86 

spike train is segmented into motor unit firing patterns and baseline noise. Each individual 87 

motor unit filter can then be recalculated from the segmented firings of a given motor unit. In 88 

this process, some of the automatically segmented motor unit firings may be manually removed 89 

or additional ones added, refining the motor unit filter. The refined motor unit filter may be 90 

reapplied to surface EMG signals, yielding refined motor unit spike train and its segmentation 91 

into motor unit firings. This procedure is iteratively repeated, leading to manual improvement 92 

of motor unit firing patterns. In motor unit filter refinement, manual adding or removing of the 93 

motor unit firings is typically based on the height of the spikes in the identified spike train and 94 

on pulse-to-noise ratio (Holobar et al., 2014), but may also consider regularity of inter-spike 95 

interval of identified motor unit firing patterns. This manual step potentially calls into question 96 

the accuracy of such results, casting doubt on any conclusions reached by interpreting 97 

decomposed motor unit activity. It is therefore important to quantify the reliability of the 98 

manual editing step among different operators. In other words, we need to determine whether 99 

different operators who have access to the same output from the decomposition algorithm 100 

would extract similar motor unit spike trains. 101 

The overall aim of this study was to assess the inter-operator reliability of the identification of 102 

motor unit spike trains. Specifically, we aimed to assess the rate of agreement among operators 103 

from experimental signals collected during submaximal contractions and its relationship with 104 

the accuracy of the motor unit identification (pulse-to-noise ratio). A secondary aim was to 105 

assess the inter-operator reliability for two motor unit discharge characteristics commonly used 106 

in the literature, i.e., the mean discharge rate and the time at which the first action potential is 107 

detected. All raw and processed data have been made available so that they can be used for 108 

training new operators.  109 
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Methods 110 

1. Participants 111 

Eight operators with varying amount of experience in HDsEMG decomposition volunteered to 112 

participate in this experiment (Table 1). They all co-authored this article (FH, JI, JR, SN, SA, 113 

ADV, AC, and AH). The research ethics committee of the University of Nantes approved this 114 

study (CERNI, n°13102020), which was based on the re-use of data collected in two different 115 

experiments (approval # 2013001448 from the University of Queensland and approval #44 680 116 

from the University of Rome ‘Foro Italico’).  117 

Operator 
# 

Background No. studies with 
HDsEMG 

decomposition 

Time to edit 
(min) 

1 Human movement science 2 239 
2 Informatics and systems engineering 2 310 
3 Human movement science 0 210 
4 Human movement science 0 389 
5 Human movement science 2 428 
6 Human movement science 20 186 
7 Human movement science 5 211 
8 Computer science 55 152 

Table 1. Operator experience. The number of (co)authored articles that involved 118 
decomposition of HDsEMG signals is given for each operator, together with the total time each 119 
operator took to edit the motor units in the present study. Note that each operator was previously 120 
exposed to manual analysis of motor unit spike trains, with varying level of experience as 121 
reflected in their number of (co)authored articles. 122 
 123 

2. Experimental data 124 

In two different experiments, HDsEMG was recorded from the Gastrocnemius lateralis (GL) 125 

and Gastrocnemius medialis (GM) [experiment I, (Hug et al., 2021)] and the tibialis anterior 126 

(TA) [experiment II, (Del Vecchio et al., 2019)]. These muscles were selected because they 127 

usually yield to different numbers – and accuracy - of decomposed units. For example, Hug et 128 

al. (2021) highlighted the challenge of extracting motor units from the GL muscle. In contrast, 129 

the TA muscle is known to be a reliable muscle for HDsEMG decomposition (Del Vecchio et 130 

al., 2020). Apart from the muscle investigated, the decomposition output depends on the 131 
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contraction level and properties of the subcutaneous layers, which are specific to each 132 

participant (Del Vecchio et al., 2020). Therefore, we focused on data from four contraction 133 

intensities collected from different participants. Of note, the two original studies (Del Vecchio 134 

et al., 2019; Hug et al., 2021) measured only males and therefore the present study only 135 

considers decomposition from data collected in males. 136 

 137 

2.1. Experimental design. Data from the GL and GM muscles were collected during a series of 138 

isometric tasks, as detailed in Hug et al. (2021). Participants laid prone on a custom-made 139 

dynamometer equipped with a torque sensor (TRE-50K, Dacell, Korea). Their right ankle angle 140 

was set at 10° of plantarflexion (0° being the foot perpendicular to the shank), with their knee 141 

was fully extended. After a warm-up involving 15-20 submaximal contractions, the participants 142 

performed three maximal isometric contractions for 3 to 5 s with 120-s rest in between. The 143 

maximal value obtained from a moving-time window of 250-ms was considered as the peak 144 

torque (MVC torque). Then, participants performed three contractions at each of the following 145 

intensities: 10%, 30%, 50%, and 70% of their MVC torque. The order of the intensities was 146 

randomized. These contractions involved a 5-s ramp-up, a 15-s (50% and 70% of MVC) or 20-147 

s plateau (10% and 30% of MVC) and a 5-s ramp down phase. The contractions were separated 148 

by either 60-s (10% of MVC) or 120-s (30%, 50% and 70% of MVC) of rest. Feedback of the 149 

target and torque output was displayed on a monitor.  150 

The detailed description of the experimental protocol with the TA muscle has been described 151 

previously (Del Vecchio et al., 2019). The force sensor (load cell, CCt Transducer s.a.s, Turin, 152 

Italy) was placed in a custom dynamometer to measure the isometric dorsiflexion force of the 153 

dominant leg [see Figure 1 in (Del Vecchio et al., 2019)]. Participants were seated on a massage 154 

table with their hip flexed at 120° (180° being supine), their knee extended to 180°, and their 155 

ankle placed at 10° of plantar flexion (0° being the foot perpendicular to the shank). The foot 156 

and the ankle were held in place with Velcro straps on an adjustable footplate. Participants 157 
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performed three to four maximal isometric contractions with 30 s of recovery in between. The 158 

peak force (MVC force) was used as a reference to determine the target force for the 159 

submaximal contractions. These contractions involved a ramp-up phase at 5% MVC s−1, a 10-160 

s plateau (35%, 50%, or 70% MVC), and a ramp-down phase performed at the same rate as the 161 

ramp-up phase. Two repetitions were performed at each contraction level. The order was 162 

randomized, and the contractions were separated by 3-5 min of rest. 163 

 164 

2.2. High-density surface electromyography. 165 

For GL, GM, and TA muscles, HDsEMG was measured using two-dimensional adhesive grids 166 

of 64 electrodes (13×5 electrodes with one electrode absent from a corner, gold-coated, inter-167 

electrode distance: 8 mm; [ELSCH064NM2, SpesMedica, Battipaglia, Italy]). 168 

 The grids were aligned with the main fascicle direction as determined using B-mode ultrasound 169 

(Aixplorer, Supersonic Imagine, France) for GM and GL or using a dry array of 16 electrodes 170 

for TA. Before electrode application, the skin was shaved and then cleaned with an abrasive 171 

pad and alcohol. The adhesive grids were held on the skin using semi-disposable bi-adhesive 172 

foam layers (SpesMedica, Battipaglia, Italy). The skin-electrode contact was optimized by 173 

filling the cavities of the adhesive layers with conductive paste (SpesMedica, Battipaglia, Italy). 174 

Strap electrodes dampened with water were placed around the contralateral (ground electrode) 175 

and ipsilateral ankle (reference electrode). The EMG signals were recorded in monopolar mode, 176 

bandpass filtered (20-500 Hz) and digitized at a sampling rate of 2048 Hz using a multichannel 177 

acquisition system (EMG-Quattrocento; 400-channel EMG amplifier, OT Biolelettronica, 178 

Turin, Italy).  179 

 180 

3. Data analysis 181 

Automatic decomposition of the HDsEMG signals 182 
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First, the monopolar EMG signals were bandpass filtered between 20 and 500 Hz using a 183 

second-order Butterworth filter. The HDsEMG signals were decomposed with the convolutive 184 

blind source separation method (Holobar and Farina, 2014; Holobar et al., 2014; Holobar and 185 

Zazula, 2007) implemented in the DEMUSE software tool (v5.01; The University of Maribor, 186 

Slovenia). The following extraction parameters were selected: 50 iterations, maximal 187 

coefficient of variation of 50%. This decomposition procedure can identify motor unit discharge 188 

times over a wide range of contraction intensities and has been extensively validated using 189 

experimental and simulated signals (Holobar and Farina, 2014; Holobar et al., 2014). The 190 

decomposition was performed on either 10-s (TA, GL, and GM at 50% and 70% MVC) or 15-191 

s (GL and GM at 10% and 30% MVC) centered on the torque (GL, GM) or force (TA) plateau. 192 

 193 

Manual edition of the decomposition results  194 

After the automatic identification of the motor units, all the motor unit spike trains were visually 195 

inspected and manually edited by each of the eight operators. Together with the initial automatic 196 

decomposition data, a standardized list of instructions was given to each operator. Specifically, 197 

they had to:  198 

i) Read a tutorial (Del Vecchio et al., 2020) to make sure that they all had the same 199 

basic knowledge on HDsEMG decomposition, 200 

ii) Inspect and edit the motor unit spike trains over the whole contraction,  201 

iii) Remove unreliable motor units that had a pulse-to-noise ratio lower than 30 dB 202 

(Holobar et al., 2014), as classically done in the literature (Avrillon et al., 2021; 203 

Laine et al., 2015), 204 

iv) Note the time that they took to edit each file. 205 

It should be noted that the decision to discard a motor unit with a pulse-to-noise ratio < 30 was 206 

taken after manual edition (step ii), i.e., after first trying to improve its accuracy. As explained 207 

in detail in Del Vecchio et al. (2020), the manual editing/analysis of the motor unit spike trains 208 
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(step ii) consisted in the following steps performed in an iterative way: i) identifying and 209 

removing the spikes of lower quality, ii) re-calculating the motor-unit filter and re-applying it 210 

over a portion of the signal, and iii) adding the new spikes recognized as motor unit firings. 211 

Each of these steps includes subjective decision-making, which is a potential source of 212 

discrepancies between operators. 213 

 214 

Rate of agreement 215 

For each motor unit, the rate of agreement (RoA) between decompositions was calculated for 216 

all pairs of operators (i.e. 28) as follows: 217 

𝑅𝑜𝐴! =
"!

"!#$!#%!#
	(1)  218 

Where Aj denotes the number of discharges of the jth motor unit that were identified by both 219 

operators, Ij is the number of discharges identified by operator #1 but not by operator #2, and 220 

Sj is the number of discharges identified by operator #2 but not by operator #1. The discharge 221 

time tolerance was set to ±1 time point. It means that a firing was considered Aj if it was 222 

identified by both operators at time instants separated by not more than ~ 0.49 ms (1/2048 Hz). 223 

Of note, a total of 3380 RoA values were calculated, i.e. 28 pairwise comparisons ´ 11 224 

contractions ´ 4-28 motor units per contraction. 225 

 226 
Motor unit discharge characteristics 227 

We assessed the inter-operator reliability of two motor unit discharge characteristics commonly 228 

extracted from motor unit spike trains. First, the time of recruitment of each motor unit was 229 

determined as the time when the first action potential was observed.  Second, we estimated the 230 

mean discharge rate of each motor unit during the plateau of torque/force.  231 

 232 
 233 
5. Statistical analysis 234 
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Statistical analyses were performed in Statistica v7.0 (Statsoft, Tulsa, OK, USA). A Shapiro-235 

Wilk test was used to test for a normal distribution. A Mann-Whitney test was used to compare 236 

the RoA and the pulse-to-noise ratio values between the motor units that had been identified by 237 

all eight operators and those that had been only identified by some of the operators. We used 238 

Pearson’s correlation coefficient to assess the relationship between the RoA and the pulse-to-239 

noise ratio of the edited units. Finally, we assessed the inter-operator reliability of the motor 240 

unit discharge rate and time of motor unit recruitment by calculating the intraclass coefficient 241 

of correlation (ICC). All data are reported as mean ± standard deviation and the level of 242 

significance was set at p ≤ 0.05.  243 

  244 
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Results 245 

The entire dataset is available at 10.6084/m9.figshare.13695937 246 
 247 
Fig. 1 depicts an example of the outcome of the decomposition, before and after the manual 248 

analysis step. The automatic decomposition allowed the identification of 231 motor units 249 

(ranging from 5 for GL at 10% MVC to 39 for GM at 30% MVC; Table 2). On average, 265 ± 250 

99 min were needed for manual editing of these motor units (Table 1), i.e., »1 min 8s per motor 251 

unit for contractions ranging from 25 to 30 s. After manual editing, 126 ± 5 motor units were 252 

retained for further analysis (range across operators: 119-134) (Table 2). The number of motor 253 

units identified by each operator is detailed in Table 3.  254 

 255 

Fig. 1. Example of the decomposition outcome before and after manual analysis. Three 256 
motor units from the gastrocnemius medialis (70% MVC) are depicted. The left panels (A) 257 
exhibit the discharge times identified by the automatic decomposition over a 10-s window. 258 
After identifying and removing the spikes with lower quality, the motor-unit filter was re-259 
calculated and re-applied over the whole contraction. The new spikes recognized as motor 260 

unit firings were added leading to the results depicted on the right panels (B). Of note, manual 261 
analysis of the first motor unit (MU#1) did not lead to a pulse-to-noise ratio>30 dB, and 262 

therefore this motor unit was discarded following manual editing. MVC, Maximal Voluntary 263 
Contraction. 264 

 265 
 266 
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 After automatic decomposition After manual editing 
Muscle & 
condition  

No. 
MUs 

Mean PNR 
 (range) 

Mean DR, 
pps 

(range) 

No. MUs 
(range) 

Mean PNR 
(range) 

Mean DR, 
pps 

(range) 
GL  

10% MVC 
5 34.2±5.1 

(27.1-39.8) 
10.1±1.9 
(8.6-12.5) 

4.0±0 
(4-4) 

37.5±7.5 
(31.2-47.2) 

8.1±0.9 
(7.2-8.9) 

GL  
30% MVC 

16 30.7±5.2 
(18.9-37.7) 

10.8±1.6 
(8.5-12.8) 

8.6±0.7 
(8-10) 

33.7±2.2 
(30.7-36.8) 

8.2±1.3 
(5.2-9.6) 

GL  
50% MVC 

36 23.5±5.9 
(16.2-35.2) 

15.7±2.7 
(13.4-19.5) 

4.0±0 
(4-4) 

32.5±1.8 
(30.5-34.7) 

11.3±1.3 
(10.1-12.8) 

GL  
70% MVC 

13 29.8±4.5 
(20.5-36.3) 

17.9±1.1 
(16.8-19.4) 

4.9±0.4 
(4-5) 

32.5±1.1 
(31.7-34.3) 

14.0±1.5 
(12.5-15.7) 

GM  
10% MVC 

22 31.9±3.1 
(26.4-38.6) 

10.8±1.5 
(8.7-13.2) 

16.5±0.8 
(16-18) 

32.6±2.0 
(30.4-37.5) 

8.1±1.1 
(6.3-10.4) 

GM 
30% MVC 

39 31.8±6.1 
(18.9-41.2) 

11.9±2.2 
(7.7-17.3) 

26.1±1.6 
(24-28) 

34.6±2.7 
(30.0-40.3) 

8.1±1.0 
(6.0-10.5) 

GM  
50% MVC 

19 37.4±6.4 
(23.3-46.5) 

11.7±3.2 
(7.2-18.6) 

15.4±0.5 
(15-16) 

38.1±4.3 
(31.2-45.1) 

7.6±1.2 
(5.7-9.8) 

GM  
70% MVC 

10 31.3±3.5 
(27.3-39.2) 

16.5±1.6 
(14.2-18.4) 

5.8±0.5 
(5-6) 

32.4±2.8 
(30.2-37.7) 

12.2±0.6 
(11.7-13.1) 

TA  
35% MVC 

22 37.8±4.8 
(27.8-49.6) 

15.6±3.0 
(9.0-21.5) 

20.3±1.0 
(19-21) 

38.7±4.0 
(32.8-50.1) 

12.0±1.2 
(9.0-14.4) 

TA  
50% MVC 

18 32.6±5.4 
(18.8-39.0) 

18.6±2.5 
(13.7-23.3) 

13.3±1.3 
(12-15) 

35.6±3.4 
(31.0-40.6) 

15.5±1.4 
(12.4-17.6) 

TA  
75% MVC 

31 24.3±6.8 
(17.3-36.9) 

24.5±4.6 
(14.2-29.6) 

6.9±0.8 
(6-8) 

33.4±1.9 
(30.7-36.1) 

17.4±1.5 
(15.4-20.5) 

Table 2. Characteristics of the decomposed motor units. The number of decomposed motor 267 
units (No. MUs), the mean pulse-to-noise ratio (PNR), and the mean discharge rate (DR) 268 
obtained both before and after the manual editing are given for each contraction. The mean 269 
discharge rate was calculated over the force/torque plateau. Of note, the mean discharge rate 270 
after automatic decomposition is reported only for the motor units which were retained after 271 
manual editing and all instantaneous discharge rate values > 100pps were automatically 272 
removed. GL, Gastrocnemius lateralis; GM, Gastrocnemius medialis; TA, Tibialis anterior; 273 
MUs, motor units. MVC, maximal voluntary contraction 274 
 275 

 Operators 
 #1 #2 #3 #4 #5 #6 #7 #8 
GL 10% MVC 4 4 4 4 4 4 4 4 
GL 30% MVC 9 10 9 8 8 8 8 9 
GL 50% MVC 4 4 4 4 4 4 4 4 
GL 70% MVC 5 5 5 4 5 5 5 5 
GM 10% MVC 16 17 16 16 18 16 16 17 
GM 30% MVC 27 28 27 25 27 24 24 27 
GM 50% MVC 16 16 15 15 16 15 15 15 
GM 70% MVC 6 6 5 5 6 6 6 6 
TA 35% MVC 21 21 21 19 21 19 19 21 
TA 50% MVC 14 15 12 12 12 13 13 15 
TA 70% MVC 8 8 6 7 6 6 7 7 
Total number of MUs 130 134 124 119 127 120 121 130 
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Table 3. Number of selected motor units per operator. The operators were asked to select 276 
motor units only if their pulse-to-noise ratio was higher than 30 (see Methods). Despite this 277 
common criterion, the manual decomposition yielded to a slightly different number of units 278 
depending on the operators. MUs, motor units. MVC, maximal voluntary contraction 279 
 280 

Fig. 2 shows representative motor unit spike trains identified by each of the eight operators. A 281 

total of 3380 RoA values were calculated (see Methods). The mean and median RoA values 282 

were 98.9% and 99.6%, respectively (Fig 3).  RoA ranged from 56.5% to 100%, with only 20 283 

out of 3380 values (0.6%) being lower than 85%. These lowest RoA values were observed for 284 

two particular motor units (motor unit #4 for GL 50% MVC and motor unit #15 for GM 50% 285 

MVC). For motor unit #15, one operator did not recalculate the motor unit filter over the whole 286 

contraction. This led to some firings being missed, and thus to a low RoA value (60.2%) for the 287 

comparison with each of the seven other operators. Of note, the RoA was 100% when calculated 288 

between all the other operators. For motor unit #4, the recalculation of the motor unit filter led 289 

to the identification of new spikes with moderate quality, which were selected by two out of 290 

the eight operators (Fig. 4).  291 

Both the RoA (99.0 ± 2.1 vs. 96.6 ± 5.5%; p < 0.001) and the pulse-to-noise ratio (35.7 ± 3.8 292 

vs. 33.1 ± 3.6 dB; p<0.001) were higher for the motor units that were retained by all the 8 293 

operators (n = 112) than those retained by only some operators (n = 24). 294 
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 295 

Fig. 2. Example of the inter-operator reliability of the identification of a motor unit 296 
spike train (MU #2 of the Gastrocnemius medialis). After the automatic identification of 297 
the motor units on a portion of the torque plateau (Panel A), all the motor unit spike trains 298 

were visually inspected and manually edited by each of the eight operators (Panel B). The rate 299 
of agreement was then calculated for each pair of operators (Panel C).  300 

 301 

 302 

Fig. 3. Distribution of rate of agreement values. The rate of agreement was calculated for 303 
each pair of operators leading to 3380 values (28 pairwise comparisons ´ 11 contractions ´ 4-304 

28 motor units per contraction). 305 
 306 
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 307 

Fig 4. Example of discrepancies between two operators. The recalculation of the motor 308 
unit filter led to the identification of new spikes with moderate quality, which were selected 309 

by operator #5 but not by operator #1. 310 
 311 

Fig. 5 shows the mean RoA value for each motor unit and each contraction. The association 312 

between the RoA and the PNR of the edited units was analyzed by correlation analysis. There 313 

was a significant positive correlation, albeit small (P = 0.026, r = 0.19), indicating that the inter-314 

operator agreement tended to be higher for motor units that were identified with higher 315 

accuracy. 316 

 317 

Fig. 5. Rate of agreement between operators for each contraction and each motor unit. 318 
The mean rate of agreement across operators is depicted for each motor unit (black dot) and 319 
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each contraction (grey bar). GL, Gastrocnemius lateralis; GM, Gastrocnemius medialis; TA, 320 
Tibialis anterior; Numbers indicate the contraction intensity in % of the maximal voluntary 321 

contraction. 322 
We assessed the impact of the discrepancies between operators, albeit very limited, on two 323 

discharge characteristics commonly used, i.e. the mean discharge rate over the plateau and the 324 

time of recruitment. To do this, we considered the motor units identified by all the operators (n 325 

= 112). For both the mean discharge rate and the time of recruitment, the ICC value was very 326 

high (> 0.99). 327 

 328 

  329 



 17 

Discussion  330 

We assessed the inter-operator reliability of identification of motor unit spike trains from 331 

HDsEMG. Specifically, eight operators were provided with the same automatically extracted 332 

data and were asked to manually edit them. Based on the 126 ± 5 motor units retained after 333 

manual edition, the median RoA value was very high (99.6%) leading to an excellent inter-334 

operator reliability of the mean discharge rate at the force/torque plateau and the time at 335 

recruitment. There was a significant, albeit weak, positive correlation between RoA and the 336 

accuracy of the final decomposition assessed by the pulse-to-noise ratio. Taken together, these 337 

results show that identification of motor unit discharge times from HDsEMG decomposition is 338 

highly reliable across operators with varying levels of experience. 339 

 340 

Recent advances in technology and signal processing have made it possible to identify motor 341 

units from surface HDsEMG signals. There is a growing interest in using this approach to 342 

improve our knowledge on the neural control of movement and to develop human-machine 343 

interfaces. However, the reliability of this approach is sometimes questioned, especially 344 

because it requires manual editing of the output from the decomposition algorithm (Enoka, 345 

2019). As described in the methods section, manual editing requires different subjective steps 346 

(Del Vecchio et al., 2020), each having the potential to introduce discrepancies between 347 

operators. In our experiment, the eight operators analyzed the same dataset (extraction data) by 348 

following the same instructions, such as discarding motor units with a pulse-to-noise ratio < 30 349 

dB. Despite this standardized process, they retained a slightly different number of motor units. 350 

There are different potential explanations for the differing number of motor units identified 351 

among operators. First, some operators could have discarded some motor units early in the 352 

editing process, considering that manual editing would not increase their pulse-to-noise ratio, 353 

while other operators could have successfully edited these same motor units. Second, the 354 
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subjective steps of the editing process may have differed among operators, even slightly, such 355 

that only some operators succeeded in obtaining a pulse-to-noise ratio > 30 dB for some motor 356 

units. Specifically, the motor unit filter is updated from the spikes being present in the time-357 

window of interest. Therefore, even small discrepancies in the selection of the false and true 358 

positives affect the motor unit filter and thus the spikes that will be identified with the updated 359 

filter. As both the most experienced operator (#8) and one of the least experienced operator (#1) 360 

extracted a similar number of motor units (n = 130, Table 3), we believe that experience did 361 

not have a major influence on the number of identified motor units, at least in our experimental 362 

conditions. Of note, quantifying the experience of the operators was not straightforward and 363 

further work is needed to assess the effect of experience and/or training on the editing step. 364 

 365 

The vast majority of motor units were identified by all the operators. An important result is that 366 

the RoA between pairs of operators was very high, with a median value of 99.6% (Fig. 3). This 367 

means that when provided with the same decomposed data and the same basic instructions, 368 

operators converged toward almost identical motor unit spike trains. This logically led to very 369 

similar mean discharge rate and time of recruitment (both ICC > 0.99), which are two motor 370 

unit discharge characteristics often calculated from HDsEMG decomposition. In the rare cases 371 

where RoA values were low (0.6% of the RoA values < 85%), there was either a mistake made 372 

by one operator (motor unit #15 for GM 50% of MVC) or clear discrepancies between operators 373 

for a significant portion of the signal (motor unit #4 for GL 50% of MVC; Fig. 4). Specifically, 374 

Fig. 4 shows that the recalculation of the motor unit filter yielded to pulse trains of low 375 

amplitude, which were selected as being spikes by two out of the eight operators. Of note, 376 

because our study was designed to test the reliability between operators, we cannot infer 377 

accuracy; this means that we cannot determine which operators made the correct choice. 378 

It is well known that the outcomes of the decomposition (number of identified units and 379 

accuracy) depend on the muscle being investigated, properties of the subcutaneous layers,  and 380 
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the contraction intensity (Del Vecchio et al., 2020). Here, we selected data from different 381 

muscles, different submaximal contraction intensities, and different participants. The number 382 

of identified motor units tended to be lower for GL than either GM or TA. In addition, there 383 

were less identified motor units at 70-75% of MVC than at lower intensities. Because of the 384 

small number of identified units for some muscles/contraction intensities, and the different 385 

contraction intensities tested for TA compared to GM and GL, it was impossible to 386 

systematically test for between-muscle or between-intensity differences in RoA, with 387 

appropriate statistics. However, given the very high RoA values (Fig. 5), we can confidently 388 

conclude that the inter-operator reliability was high, regardless of the muscle or the contraction 389 

intensity.  390 

 391 

This study requires consideration of several methodological aspects. First, the high RoA values 392 

should be interpreted within the context of our standardized procedure, in which we gave a set 393 

of instructions based on previous recommendations (Del Vecchio et al., 2020). Slight 394 

divergence from this procedure, such as a different pulse-to-noise ratio threshold, could have 395 

led to different results. Importantly, our results demonstrate that following our basic set of 396 

instructions (see Methods) ensures that the manual analysis of motor unit spike trains is highly 397 

reliable across operators. Second, even though our results are based on outputs from a specific 398 

decomposition algorithm (DEMUSE tool software, see Methods), we do not believe that 399 

different results would have been obtained with another decomposition algorithms. Third, we 400 

selected operators with varying experience. Quantifying this experience is not straightforward. 401 

Ideally, we should have used the total number of units they had decomposed in their careers, 402 

but none of the operators had kept such a record. We therefore estimated this experience based 403 

on the number of published peer-reviewed articles including HDsEMG decomposition. Also, 404 

we selected operators from different research teams/universities, which ensured that they had 405 

had different prior training. Because HDsEMG decomposition requires training and some basic 406 
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knowledge on neuromuscular physiology, we chose not to select fully inexperienced operators. 407 

Our results showed that moderate experience together with simple instructions are sufficient to 408 

ensure high reliability across operators. It suggests that the level of experience is certainly not 409 

a critical issue, at least not more than what is required for editing intramuscular EMG 410 

decomposition. We hope that the raw and the decomposed data provided with this article can 411 

be used to train new operators. Fourth, our experiment only considers data collected in males. 412 

We were not avoiding studying females; but for unknown reasons automatic decomposition is 413 

often more challenging in females (Del Vecchio et al., 2020). However, as we tested a large 414 

number of motor units with varying accuracy (as assessed by the initial pulse-to-noise ratio), 415 

we believe that reliability of manual editing would have been similar for signals collected in 416 

females, if automatic decomposition was successful. Finally, it is important to note that the high 417 

RoA across operators does not provide information about the decomposition accuracy. 418 

However, the accuracy of decomposition was verified in previous studies using experimental 419 

(Chen and Zhou, 2016; Holobar et al., 2010; Negro et al., 2016) or simulated signals (Holobar 420 

et al., 2014; Holobar and Zazula, 2007). Together with the excellent reliability of the manual 421 

editing reported herein, it provides further evidence that motor unit spike trains can be reliably 422 

estimated from HDsEMG decomposition of recordings obtained during submaximal isometric 423 

contractions. 424 

 425 
 426 
  427 
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