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Note on Artin’s Conjecture on Primitive Roots

Sankar Sitaraman
Howard University, Washington, DC

To Gerald, Ralph, Sundar and Susan

Abstract

E. Artin conjectured that any integer a > 1 which is not a perfect square is a primitive
root modulo p for infinitely many primes p. Let fa(p) be the multiplicative order of the
non-square integer a modulo the prime p. M. R. Murty and S. Srinivasan [10] showed that

if
∑
p<x

1

fa(p)
= O(x1/4) then Artin’s conjecture is true for a. We relate the Murty-Srinivasan

condition to sums involving the cyclotomic periods from the subfields of Q(e2πi/p) corre-
sponding to the subgroups < a >⊆ F∗p.

1. Introduction

Let a > 1 be an integer which is not a perfect square and let fa(p) be the multiplicative

order of a modulo a given prime p. For such a the Murty-Srinivasan [10] condition
∑
p<x

1

fa(p)
=

O(x1/4) applies, and one could try to evaluate this sum by looking at the average value of
ω(Φj(a)) where Φj(x) is the j−th cyclotomic polynomial and ω(n) is the number of distinct
primes dividing n. We were led to this idea by our thinking of fa(p) as the lengths of the
orbits of the points on the unit circle S1 under the “Frobenius” map σa : x→ xa. This meant
looking at the torsion of the group of roots of unity. Note that for a given prime p, fa(p)

is the order of this map acting on the multiplicative subgroup generated by ζp = e
2πi
p . It is

well known that if fa(p) = j then p | Φj(a) where Φj(x) is the j−th cyclotomic polynomial.
See, for instance, [15], Chapter 2.

Since the Φj(a) divide aj − 1 and we are only concerned with p < x we actually use∑
ωx(a

j − 1) where ωx(m) for integral m is the number of primes upto x that divide it. The
argument to approach the Murty-Srinivasan condition using the average value of ω(Φj(a))
is also in Murty-Wong [11], Section 5, albeit implicitly. There an inequality for a sum that

contains S(x) =
∑
p<x

1

fa(p)
is used to give heuristics for the largest prime factor of aj−1, j ≤ x.

We show how the sum
∑
j≤x

ωx(a
j − 1) can be related to cyclotomic periods after expressing

it in terms of finite Fourier series (exponential sums) and give some bounds for these sums,

from which one could easily get bounds for
∑
p<x

1

fa(p)
.

More precisely, our main result is the following:
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Theorem 1 For a and fa(p) as above, with ηi,p the cyclotomic periods from the subfield of
Q(e2πi/p) corresponding to the subgroup < a >⊆ F∗p, we get the following bounds for any
u ≤ x where x is a fixed positive integer:

A :
∑
j≤u

ωx(a
j − 1) ≤ O(u log log x) + u

∑
p≤x

p−1
fa(p)∑
i=1

|ηi,p|

p
.

B :
∑
j≤u

ωx(a
j − 1) ≤ O(u log log x) + 2πu

∑
p≤x

(∑p−2
k=1

∣∣∣∑k
m=1 ηhm,p

∣∣∣)
p2

where ηhm,p =

fa(p)∑
j=1

ζhma
j

p with hm ≡ mfa(p) (mod p),m ∈ [1, p− 1].

Much progress has been made on Artin’s conjecture by Hooley [8], Gupta-Murty [5],
Heath-Brown [7] and others. Heath-Brown proved that Artin’s conjecture is true for one of
2, 3 and 5.

Our initial motivation was to come up with a Dirichlet series that would help in obtaining
information about the asymptotic behavior of invariants of cyclotomic fields such as class
numbers. We hope to provide such a framework that would enable us to calculate the
asymptotics of fa(p) for a given a more precisely, as indicated in Sitaraman [12]. For instance,
Artin conjectured that fa(p) = p − 1 with a certain non-zero density C (equal to 0.374
approximately) known now as the Artin constant.

The author is grateful to Niranjan Ramachandran and Larry Washington for their hos-
pitality and conversations during his visit to the University of Maryland, College Park, in
2014-15. He would also like to thank Francois Ramaroson and Dani Szpruch for helpful
conversations.

2. From the Murty-Srinivasan criterion to Cyclotomic Periods.

2a. Reduction to estimate of
∑
ωx(a

j − 1)

Let S(x) =
∑
p<x

1

fa(p)
. Let N(j) to be the number of primes p < x with a of order j

modulo p. (i.e, fa(p) = j). Then we have S(x) ≤
∑
j<x

N(j)

j
. Since as mentioned before

fa(p) = j =⇒ p|Φj(a) we get

S(x) =
∑
j<x

N(j)

j
≤
∑
j<x

ωx(Φj(a))

j
.
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Here ωx(m) is a “truncated” version of the usual ω(m) that denotes the number of distinct
prime factors of m in that it only counts primes less than x.

Since Φj(a) is a factor of aj−1 we have
∑
j<x

ωx(Φj(a))

j
≤
∑
j<x

ωx(a
j − 1)

j
. Since it is easier

to deal with aj − 1 we consider the sum
∑
j<x

ωx(a
j − 1)

j
= W (x).

Initially we tried to use sieve theoretic techniques to deal with W (x). H. Halberstam [6]
obtained an Erdös-Kac type result for ω(f(m)) where f(x) ∈ Z[x] is an irreducible polyno-

mial. Namely he showed that
∑
m≤n

ω(f(m))− A(n)

n
√
A(n)

is asymptotically normally distributed,

where A(n) =
∑
p≤n

r(p)

p
with r(p) being the number of solutions to f(k) ≡ 0 mod p with

0 ≤ k < p. Halberstam needs r(p) to be uniformly bounded, and that is possible because the
polynomial is fixed. Here we need to average over several polynomials of varying degree. Even
using a later more general version of Halberstam’s result proved by Granville-Soundararajan
[4] we found it difficult to get a decent estimate for W (x).

On the other hand A. T. Felix [3] has shown that on average
∑

1/fa(p) is about log x.
So actual bound could be much smaller than O(x1/4). This is also the conclusion drawn in
Murty-Wong.

The best bound we know for
∑
p<x

1

fa(p)
is
√
x/(log x)1+δ where δ is some small positive

quantity, given by P. Erdös and M. R. Murty [2]. The bounds A and B, numerically at least,
seem to give better estimates.

2b. Some Notation

In what follows fa(p) will be denoted simply as fp.

ep =
p− 1

fp
.

g is a primitive generator of F∗p and so a ≡ gep (mod p).
gi is the least element of {1, 2, ..., p− 1} such that gi ≡ gi (mod p).

ηi,p =
∑fp

j=1 ζ
gigepj

p =
∑fp

j=1 ζ
giaj

p =
∑fp

j=1 ζ
gia

j

p are the cyclotomic periods for i = 1, 2, ..., ep.
They are contained in the subfield of Q(ζp) corresponding to the subgroup < a > .

Hp is the subgroup < a > generated by a in F∗p.

2c. Proof of bounds A and B

Using summation by parts, one could reduce the estimate of W (x) to that of D(u) for

u ≤ x for positive integers u, where D(u) =
∑
j≤u

ωx(a
j − 1).

Now it is easy to see that

3



D(u) =
∑
j≤u

ωx(a
j − 1) =

∑
p≤x

1

p

∑
j≤u

p∑
k=1

ζk(a
j−1)

p . (1)

Bound A:

Note that, for a fixed prime p we have, on the one hand,
∑
j≤u

ωp(a
j − 1) =

⌊
u

fp

⌋
. Here we

abused the notation a little bit to make ωp(m) equal 1 if p divides m and 0 otherwise. This
will be the case regardless of whether fp divides u or not. Moreover, if fp > u, then clearly

p will not divide any of the aj − 1, j ≤ u, and

⌊
u

fp

⌋
= 0.

For the part of the sum D(u) with k = p we have
∑
p<x

1

p

∑
j≤u

p∑
k=1

ζk(a
j−1)

p =
∑
p<x

∑
j≤u

1

p
and

this is O(u log log x).
In what follows we focus on the k < p part. Also let u ≡ uf (mod fp) with 0 ≤ uf < fp.

There will be no confusion owing to the dependence on p.

D(u) = O(u log log x) +
∑
p≤x

1

p

u∑
j=1

p−1∑
k=1

ζ(a
j−1)k

p

= O(u log log x) +
∑
p≤x

1

p

uf∑
j=1

p−1∑
k=1

ζ(a
j−1)k

p

+
∑
p≤x

1

p

⌊
u

fp

⌋ ∑
Hpgi∈F∗

p/Hp

 ∑
k∈Hpgi

ζ−kp

(
fp∑
j=1

ζa
jk
p

) . (2)

In the last term of the sum in (2) above we used the facts that the sum over j is periodic

with period fp and also that the inner sum

fp∑
j=1

ζa
jk
p is identical for k in the same coset.

In the second term of the sum above, for a fixed j we have

p−1∑
k=1

ζ(a
j−1)k

p = −1 if fp - j

which would be the case for j ≤ uf < fp. So we get

D(u) = O(u log log x) +
∑
p≤x

(
−uf
p

)
+
∑
p≤x

1

p

⌊
u

fp

⌋ ∑
Hpgi∈F∗

p/Hp

 ∑
k∈Hpgi

ζ−kp ηi,p


The second term of the sum is O(u log log x) and for the last term we bound trivially and
then since each coset (i.e, each ηi,p) appears fp times, we get the bound A:

D(u) = O(u log log x) +
∑
p≤x

1

p

⌊
u

fp

⌋ ep∑
i=1

fp|ηi,p|
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=⇒ D(u) ≤ O(u log log x) + u
∑
p≤x

ep∑
i=1

|ηi,p|

p
.

Note: The inner sum of equation (2), namely
∑

Hpgi∈F∗
p/Hp

 ∑
k∈Hpgi

ζ−kp

(
fp∑
j=1

ζa
jk
p

) , can be

seen to equal
∑

i ηi,pηi,p =
∑

i |ηi,p|2 and this is known to be equal to p−fp. See, for instance,
Thaine [14], p. 36. So, left as it is, this sum does not give anything new. Although this
equation actually gives a formula to compute fp in terms of the cyclotomic periods, one
expects it to be hard to work with, given that fp is hard to compute even on average.

Even though it might be bigger than original sum, the bound A (as well as bound B
below) at least eliminates fp from the estimate.

Bound B:

To get bound B we use summation by parts. Since, as seen above, the sum for j = 1 to
uf contributes only O(u log log x) as does the sum for k = p for each p, we simply focus on
the remainder of the expression for D(u). We call this part D(u)′.

D(u)′ =
∑
p≤x

1

p

⌊
u

fp

⌋ ∑
Hpgi∈F∗

p/Hp

 ∑
k∈Hpgi

ζ−kp ηi,p


Before summing by parts, first we rearrange the sum so that it goes from gi = 1 to gi = p−1.

D(u)′ =
∑
p≤x

1

p

⌊
u

fp

⌋( p−1∑
gi=1

ζ−gip ηi,p

)
Now we rearrange the indices again and try to replace the gi with hm ∈ [1, p−1] as m goes

from 1 to p− 1 such that hm+1 − hm ≡ fp (mod p). This can be done by letting hm ≡ mfp
(mod p). Since p - fp the map m→ hm will result in a permutation of {1, 2, ..., p− 1}.

In particular,
∑
gi

ηi,p =

p−1∑
i=1

ηi,p =

p−1∑
m=1

ηhm,p.

Summing by parts,

D(u)′ =
∑
p≤x

1

p

⌊
u

fp

⌋[(∑
gi

ηi,p

)
ζ−hp−1
p +

(
p−2∑
k=1

(
k∑

m=1

ηhm,p

)
(ζ−hkp − ζ−hk+1

p )

)]
. (3)

Now note that
∣∣ζ−hkp − ζ−hk+1

p

∣∣ =

∣∣∣∣2 sin

(
π(hk+1 − hk)

p

)∣∣∣∣ ≤ 2πfp
p

because hk+1−hk = fp,

for k = 1, 2, ..., p− 2. Also note that, since

ep∑
i=1

ηi,p = −1, and there are fp full sets of ηi,p, we

have
∑

gi
ηi,p = −fp. Using these two computations, we get
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|D(u)′| ≤
∑
p≤x

1

p

⌊
u

fp

⌋[
fp +

(
p−2∑
k=1

∣∣∣∣∣
k∑

m=1

ηhm,p

∣∣∣∣∣ 2πfp
p

)]
≤ u

∑
p≤x

1

p
+2πu

∑
p≤x

(∑p−2
k=1

∣∣∣∑k
m=1 ηhm,p

∣∣∣)
p2

Adding the O(u(log log x)) terms from the sum D(u) that were left out, we get bound B:

D(u) ≤ O(u log log x) + 2πu
∑
p≤x

(∑p−2
k=1

∣∣∣∑k
m=1 ηhm,p

∣∣∣)
p2

Due to the increased possibility of cancellations, we think bound B would be better than
bound A. Numerically that seems to be the case.

2d. Estimates for Bounds A and B

Clearly, the best estimates for the bounds A and B would be obtained using estimates

for the average values of |ηi,p| and

∣∣∣∣∣
k∑

m=1

ηhm,p

∣∣∣∣∣ over the cyclotomic periods as well as over

the primes. Here we restrict ourselves to seeing what estimates can be obtained for a fixed
prime. As such, in this section we will drop the subscript p from ηi,p and ηhm,p.

Bound A:
As mentioned in the Note in the previous section, we have

∑
i ηiηi =

∑
i |ηi|2 = p − fp.

From this we see that all the cyclotomic periods have absolute values bounded by
√
p, and

possibly the absolute values are much less than
√
p, at least on average. Indeed, we have

(looking at the general term from the sum in bound A):(∑
i

|ηi|

)2

≤ ep
∑
i

|ηi|2 =⇒ 1

p

∑
i

|ηi| ≤
√
ep

p

√∑
i

|ηi|2

=⇒ 1

p

∑
i

|ηi| ≤

√
p− 1

fp

√
p− fp
p

=

√
1

fp
− 1

p
×

√
1− fp

p
. (4)

(The first inequality above follows from the elementary fact that the average of a set of
positive numbers is smaller than the square root of the average of their squares).

As expected the estimate from equation (4) does not yield a better estimate for D(u)
(and hence for

∑
1/fp) than the existing ones.

On the other hand there are several estimates that show that maxi |ηi| is smaller than
fp when fp itself is small. For instance we have

maxi |ηi| < p−3α/8fp when fp > p
1
3
+α.
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See Bourgain [1] for a survey of such results. H. Montgomery, R. C. Vaughan and T.

D. Wooley [9] conjecture that maxi |ηi| < min
(√

p, C
√
fp × log p

)
, with the constant C

independent of p.
Suppose maxi |ηi| < Mp. When one uses such an estimate in bound A one gets

D(u) =
∑
j≤u

ωx(a
j − 1) ≤ O(u log log x) + u

∑
p≤x

ep∑
i=1

|ηi,p|

p

≤ O(u log log x) + u
∑
p≤x

1

p

(
p− 1

fp
(Mp)

)
≤ O(u log log x) + u

∑
p≤x

Mp

fp
.

Since one key problem is that we don’t know the amount of primes with fp in a given interval
pa ≤ fp ≤ pb it is difficult to average the bound A over the primes p. Even otherwise, it
appears that using existing estimates for the maximum of the periods it would be difficult
to get a useful estimate for D(u) and hence

∑
p 1/fp. One does need a good estimate for the

averages of the |ηi| as opposed to their maximum.

Bound B:
For bound B we have the following very basic estimate in the form of a trigonometric

sum:

We first estimate

∣∣∣∣∣
k∑

m=1

ηhm,p

∣∣∣∣∣ . As before we omit p in the subscript and denote hm,p by

hm. We get: ∣∣∣∣∣
k∑

m=1

ηhm

∣∣∣∣∣ =

∣∣∣∣∣
k∑

m=1

fp∑
j=1

ζhma
j

p

∣∣∣∣∣ =

∣∣∣∣∣
k∑

m=1

fp∑
j=1

ζhma
j

p

∣∣∣∣∣
=⇒

∣∣∣∣∣
k∑

m=1

ηhm

∣∣∣∣∣ =

∣∣∣∣∣
fp∑
j=1

k∑
m=1

ζmfpa
j

p

∣∣∣∣∣ =

∣∣∣∣∣
fp∑
j=1

ζfpa
j

p

k−1∑
m=0

ζmfpa
j

p

∣∣∣∣∣ ≤
fp∑
j=1

∣∣∣∣sin(πajfpk/p)

sin(πajfp/p)

∣∣∣∣ .
Putting everything together, we get for Bound B the following estimate in terms of a

trigonometric sum:

D(u) ≤ O(u log log x) + 2πu
∑
p≤x

1

p2

(
p−2∑
k=1

fp∑
j=1

∣∣∣∣sin(πajfpk/p)

sin(πajfp/p)

∣∣∣∣
)
.

2e. Implications for Artin’s Conjecture

If D(u) is of order ux1/4/(log x) or less then after summation by parts we get that W (x)
is of order x1/4 and that would verify the Murty-Srinivasan condition and hence Artin’s
conjecture.
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Now, when fp > p3/4 the
∑

1/fp is at most O(x1/4/(log x)). So main problem is when
fp < p3/4.

Erdös and Murty [2] show that for most primes fp is of order bigger than
√
p. In the

bounds given here most of the contribution would come from the primes p with small fp and
for such p the approximation of sin(πfp/p) by πfp/p would be better.

Finally, the full sums of bounds A and B seem to be at least as big as ux1/4, based on
numerical evidence.

Nevertheless, one could try to use the expression for D(u) in terms of cyclotomic periods
(equation (2) and (3)) without taking absolute values as we did here (to get the bounds A
and B). If it is possible to sum over the primes first before summing over the k’s a la Voronoi
in his estimate for the Dirichlet divisor problem (cf. for instance, Tenenbaum [13] I.6.4) one
could make progress on the conjecture.

In this direction would the deep estimates of exponential sums over finite fields developed
by Bourgain, Konyagin, et al be useful ? See for instance Bourgain’s survey article [1].
Perhaps the same methods would yield good estimates for average sums for the cyclotomic
periods.
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