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Abstract

N -order solutions to the modified Korteweg-de Vries (mKdV) equation
are given in terms of a quotient of two wronskians of order N depending on
2N real parameters. When one of these parameters goes to 0, we succeed
to get for each positive integer N , rational solutions as a quotient of
polynomials in x and t depending on 2N real parameters. We construct
explicit expressions of these rational solutions for orders N = 1 until
N = 6.
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1 Introduction

We consider the modified Korteweg-de Vries (mKdV) equation

ut − 6u2ux + uxxx = 0, (1)

with ut = ∂tu, ux = ∂xu and uxxx = ∂3xu.
The mKdV equation has many applications in various fields as in the study of
waves propagating in plasma [3], the dynamics of traffic flow [4] and fluid me-
chanics [5]. In particular, it is used in nonlinear optics as for example to model
supercontinuum generation in optical fibres [1] or to describe pulses consisting
of a few optical cycles [2].
Various methods have been used to contruct solutions to the mKdV equation.
Hirota [6] constructed the exact soliton for the mKdV equation in 1972. In the
same year, Tanaka [7] was the first to solve the mKdV equation by using the in-
verse scattering technique. Wadati using this same method succeeded to obtain
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the exact N-soliton solution for the mKdV [8]. In 1976, rational solutions to
the mKdV equation [9] were derived by Ono by using Bäcklund transformation.
A limiting procedure based on bilinear results gave other type of solutions [10]
in 1978. In 1983, rational solutions to the mKdV equation were determined by
recurrence relations in [11] by Tanaka. Solitary wave solutions and cnoidal wave
solutions were given in 1994 in [12]. Some classes of periodic solutions of mKdV
have been given in [13] in 2004.
More recently, in 2012, solutions to the mKdV equation has been constructed
via bilinear Bäcklund transformation in [14] and rational solutions in terms of
Wronskians were obtained. In 2016, periodic solutions and rational solution of
first and second order were presented in [15] by using a Darboux transformation
were constructed.

Here, Darboux transformation is used to construct different type of solutions.
Representations of solutions in terms of wronskians of order N depending on 2N
real parameters are given, using trigonometric or hyperbolic functions. Rational
solutions are obtained in performing a passage to the limit when one of these
parameters goes to 0. So rational solutions as a quotient of polynomials in x and
t, depending on 2N parameters are constructed. We give explicit solutions in
the simplest cases N = 1, 2, 3 and some particular rational solutions for N = 1
until 6.

2 N-order solutions to the mKdV equation in

terms of wronskians

2.1 N-order solutions in terms of wronskians of hyperbolic

sine functions

We consider the mKdV equation

ut − 6u2ux + uxxx = 0.

We recall that the wronskian of order N of the functions f1, . . . , fN is the
determinant denoted W (f1, . . . , fN ), defined by det(∂i−1

x fj)1≤i≤N, 1≤j≤N , ∂ix
being the partial derivative of order i with respect to x and ∂0xfj being the
function fj .
We consider aj , bj arbitrary real numbers 1 ≤ j ≤ N . We have the following
result :

Theorem 2.1 Let fj be the functions defined by

fj(x, t) = sinh

(

1

2
ajx−

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N, (2)
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then the function u defined by

u(x, t) = ∂x ln

(

W (∂x(f1), . . . , ∂x(fN ))

W (f1, . . . , fN )

)

(3)

is a solution to the mKdV equation (1) depending on 2N real parameters aj, bj,
1 ≤ j ≤ N .

2.2 Some examples of solutions to the mKdV equation

with sine hyperbolic generating functions

In the following we only give the solutions of order 1, 2 and 3 in the case of
generating hyperbolic sinus functions.
Solution of order 1

Proposition 2.1 The function u defined by

u(x, t) =
a1

sinh(−a1x+ a1
3t− 2b1)

is a solution to the mKdV equation (1) with a1, b1 arbitrarily real parameters.

Solution of order 2

Proposition 2.2 The function u defined by

u(x, t) =
n(x, t)

d(x, t)
, (4)

with
n(x, t) = −

1

2
(a1

2
− a2

2)[a2 sinh(−a1x+ a1
3t− 2b1)− a1 sinh(−a2x+ a2

3t− 2b2)])

and,
d(x, t) = 2 (− sinh(−1/2 a1x+1/2 a1

3t−b1) cosh(−1/2 a2x+1/2 a2
3t−b2)a2+sinh(−1/2 a2x+

1/2 a2
3t−b2) cosh(−1/2 a1x+1/2 a1

3t−b1)a1)(cosh(−1/2 a1x+1/2 a1
3t−b1) sinh(−1/2 a2x+

1/2 a2
3t− b2)a2 − cosh(−1/2 a2x+ 1/2 a2

3t− b2) sinh(−1/2 a1x+ 1/2 a1
3t− b1)a1)

is a solution to the mKdV equation (1) with a1, a2, b1, b2 arbitrarily real pa-
rameters.

Solution of order 3
In this case of order 3, we only present solution with a1 = 1, a2 = 2, a3 = 3,
b1 = 0, b2 = 0, b3 = 0 to shorten the paper.

Proposition 2.3 The function u defined by

u(x, t) =
n(x, t)

d(x, t)
, (5)

with
n(x, t) = −150 (cosh(−1/2x+1/2 t))2 − 384 (cosh(−x+4 t− 2))2 − 54 (cosh(−3/2x+
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27

2
t−3))2+300 sinh(−1/2x+1/2 t) cosh(−3/2x+ 27

2
t−3) cosh(−1/2x+1/2 t) sinh(−3/2x+

27

2
t−3)−312 cosh(−3/2x+ 27

2
t−3) sinh(−x+4 t−2) sinh(−3/2x+ 27

2
t−3) cosh(−x+

4 t− 2)− 180 (cosh(−1/2x+1/2 t))2(cosh(−3/2x+ 27

2
t− 3))2 +480 (cosh(−x+4 t−

2))2(cosh(−1/2x + 1/2 t))2 + 288 (cosh(−x + 4 t − 2))2(cosh(−3/2x + 27

2
t − 3))2 −

600 sinh(−1/2x+ 1/2 t) cosh(−x+ 4 t− 2) cosh(−1/2x+ 1/2 t) sinh(−x+ 4 t− 2)

and,
d(x, t) = 2 (16 sinh(−1/2x+1/2 t) cosh(−x+4 t−2) sinh(−3/2x+ 27

2
t−3)−9 sinh(−1/2x+

1/2 t) cosh(−3/2x+ 27

2
t−3) sinh(−x+4 t−2)−5 cosh(−1/2x+1/2 t) sinh(−x+4 t−

2) sinh(−3/2x+ 27

2
t− 3))(−16 cosh(−1/2x+ 1/2 t) sinh(−x+ 4 t− 2) cosh(−3/2x+

27

2
t−3)+9 cosh(−1/2x+1/2 t) sinh(−3/2x+ 27

2
t−3) cosh(−x+4 t−2)+5 sinh(−1/2x+

1/2 t) cosh(−x+ 4 t− 2) cosh(−3/2x+ 27

2
t− 3))

is a solution to the mKdV equation (1).

2.3 Other types of solutions

We obtain similar results with other types of generating functions whose proofs
are identical.

2.3.1 Solutions with hyperbolic cosine generating functions

Theorem 2.2 Let hj, h be the following functions

hj(x, t) = cosh

(

1

2
ajx−

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N, (6)

then the function u defined by

u(x, t) = ∂x ln

(

W (∂x(h1), . . . , ∂x(hN ))

W (h1, . . . , hN )

)

(7)

is a solution to the mKdV equation (1) with aj, bj 1 ≤ j ≤ N arbitrarily real
parameters.

2.3.2 Solutions with trigonometric generating functions

Theorem 2.3 Let gj be the following functions

gj(x, t) = cos

(

1

2
ajx+

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N, (8)

then the function u defined by

u(x, t) = ∂x ln

(

W (∂x(g1), . . . , ∂x(gN ))

W (g1, . . . , gN )

)

(9)

is a solution to the mKdV equation (1) with aj, bj 1 ≤ j ≤ N arbitrarily real
parameters.
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Theorem 2.4 Let kj be the following functions

kj(x, t) = sin

(

1

2
ajx+

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N, (10)

then the function u defined by

u(x, t) = ∂x ln

(

W (∂x(k1), . . . , ∂x(kN )

W (k1, . . . , kN )

)

(11)

is a solution to the mKdV equation (1) with aj, bj 1 ≤ j ≤ N arbitrarily real
parameters.

3 Rational solutions to the mKdV equation

In the following, we replace all parameters aj and bj , 1 ≤ j ≤ N by âj =
∑N

k=1
ak(je)

2k−1 and b̂j =
∑N

k=1
bk(je)

2k−1 with e an arbitrary real parameter.
We realize this change to obtain rational solutions to the mKdV equation (1);
for this, we perform a limit when the parameter e tends to 0.
We get the following result :

Theorem 3.1 Let ψj be the functions

ψj(x, t, e) = sinh

(

1

2

∑N

k=1
ak(je)

2k−1x−
1

2

(

∑N

k=1
ak(je)

2k−1

)3

t+
∑N

k=1
bk(je)

2k−1

)

,

for 1 ≤ j ≤ N ,
then the function u defined by

u(x, t) = lim
e→0

∂x ln

(

W (∂x(ψ1), . . . , ∂x(ψN ))

W (ψ1, . . . , ψN )

)

(12)

is a rational solution to the mKdV equation (1).

We have similar results with generating sine or trigonometric functions.

We can also give the expression of the rational solutions of the mKdV with-
out the presence of a limit.
We get the following result :

Theorem 3.2 Let ψ, ϕj be the functions

ψ(x, t, e) = sinh

(

1

2

(

∑N

k=1
ake

2k−1

)

x−
1

2

(

∑N

k=1
ake

2k−1

)3

t+
∑N

k=1
bke

2k−1

)

,

ϕj(x, t) =
∂2j−1ψ(x, t, 0)

∂2j−1e
, for 1 ≤ j ≤ N ,

then the function v defined by

v(x, t) = ∂x ln

(

W (∂x(ϕ1), . . . , ∂x(ϕN )

W (ϕ1, . . . , ϕN )

)

(13)

5



is a rational solution to the mKdV equation (1) depending on 2N parameters
aj, bj, 1 ≤ j ≤ N .

We give some examples of rational solutions in the following.
It must be pointed out that these resulting rational solutions are singular.
These results are consequences of the previous result.

3.1 First order rational solutions

We have the following result at order N = 1 :

Proposition 3.1 The function v defined by

v(x, t) =
−a1

a1x+ 2 b1
, (14)

is a rational solution to the mKdV equation (1) with a1, b1, arbitrarily real pa-
rameters.

Figure 1. Solution of order 1 to (1), on the left a1 = 1, b1 = 1; on the right
a1 = 1, b1 = 102.

3.2 Second order rational solutions

Proposition 3.2 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (15)

with
n(x, t) = −2 a1

5x3
−12 a1

4b1x
2
−24 a1

3b1
2x+2 a1(12 a2b1+6 a1

4t−12 b2a1−8 a1b1
3),

and,
d(x, t) = a1

5x4 + 8 a1
4b1x

3 + 24 a1
3b1

2x2 + (24 a1
2b1

3 + a1(24 a2b1 + 12 a1
4t −

24 b2a1 + 8 a1b1
3))x+ 2 b1(24 a2b1 + 12 a1

4t− 24 b2a1 + 8 a1b1
3)

is a rational solution to the mKdV equation (1) dependant on 4 real parameters
a1, a2, b1, b2.
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Figure 2. Solution of order 2 to (1), on the left a1 = 1, a2 = 2, b1 = 10,
b2 = 2; in the center a1 = 1, a2 = 2, b1 = 1, b2 = 2; on the right a1 = 1,

a2 = 2, b1 = 10, b2 = 0.

3.3 Rational solutions of order three

In this case, we only give the rational solution with some fixed parameters in
reason of the length of the general solution. We choose aj = bj = j for 1 ≤ j ≤ 3.
We get the following rational solution given by :

Proposition 3.3 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (16)

with
n(x, t) = 3x8+48x7+336x6+(1344+72 t)x5+(720 t+3360)x4+(2880 t+5376)x3+

(5760 t+ 5376 + 4320 t2)x2 + (5760 t+ 3072 + 17280 t2)x+ 768 + 2304 t+ 17280 t2

and,

d(x, t) = −x9
− 18x8

− 144x7 + (−672 − 72 t)x6 + (−2016 − 864 t)x5 + (−4032 −

4320 t)x4 + (−4096− 9120 t+ (8 + 12 t)(−60 t− 160) + 720 t2)x3 + ((8 + 12 t)(−240−

360 t)−2688−11520 t+4320 t2)x2+((8+12 t)(−192−720 t)−768−5760 t+8640 t2)x+

(8 + 12 t)(−64− 480 t+ 720 t2)

is a rational solution to the mKdV equation (1).
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Figure 3. Solution of order 3 to (1), on the left a1 = 1, a2 = 2, a3 = 3, b1 = 0,
b2 = 0, b3 = 0; in the center a1 = 1, a2 = 2, a3 = 3, b1 = 10, b2 = 2, b3 = 3; on

the right a1 = 1, a2 = 2, a3 = 3, b1 = 10, b2 = 0, b3 = 0.

3.4 Rational solutions of order four

With the same choices of parameters aj = bj = j for 1 ≤ j ≤ 4, we get the
following rational solution given by :

Proposition 3.4 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (17)

with
n(x, t) = 4x15 + 120x14 + 1680x13 + (14560 + 600 t)x12 + (14400 t + 87360)x11 +

(158400 t+384384)x10 + (36000 t2 +1056000 t+1281280)x9 + (3294720+ 648000 t2 +

4752000 t)x8 + (15206400 t + 5184000 t2 + 6589440)x7 + (−2419200 t3 + 10250240 +

24192000 t2+35481600 t)x6+(12300288+72576000 t2−29030400 t3+60825600 t)x5+

(−145152000 t3+145152000 t2+11182080+76032000 t)x4+(67584000 t−36288000 t4+

193536000 t2 +7454720− 387072000 t3)x3 + (−217728000 t4 +40550400 t+3440640+

165888000 t2−580608000 t3)x2+(983040−435456000 t4+82944000 t2−464486400 t3+

14745600 t)x+131072+2457600 t−217728000 t5+18432000 t2−154828800 t3−290304000 t4

and,

d(x, t) = −x16
− 32x15

− 480x14 + (−4480 − 240 t)x13 + (−29120 − 6240 t)x12 +

(−139776−74880 t)x11+(−358912+720 t2−462720 t+(−160−60 t)(180 t+960))x10+

((−160 − 60 t)(2520 t + 3360) − 1752000 t − 696320 + (−360 t − 240)(180 t + 960) +

14400 t2)x9 + (−1013760 + 129600 t2 − 4440960 t + (−160 − 60 t)(8064 + 15120 t) +

(−192−720 t)(180 t+960)+(−360 t−240)(2520 t+3360))x8+(−302400 t3−7580160 t−

1064960+(−192−720 t)(2520 t+3360)+(−360 t−240)(8064+15120 t)+(−64+720 t2−

480 t)(180 t+960)+(−160−60 t)(13440+50400 t))x7+((−64+720 t2−480 t)(2520 t+

3360)− 4233600 t3 − 8248320 t− 753664 + (−160− 60 t)(100800 t+ 15360) + (−192−

720 t)(8064+15120 t)+(−360 t−240)(13440+50400 t))x6+(−25401600 t3−5114880 t−
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319488+ (−192− 720 t)(13440+ 50400 t) + (−360 t− 240)(100800 t+15360)+ (−64+

720 t2 − 480 t)(8064+15120 t)+ (−160− 60 t)(120960 t+11520))x5 +((−64+ 720 t2 −

480 t)(13440+ 50400 t) + (−192− 720 t)(100800 t+15360)+ (−160− 60 t)(302400 t3 +

80640 t+5120)−61440−1382400 t−36288000 t3+(−360 t−240)(120960 t+11520))x4+

((−360 t−240)(302400 t3+80640 t+5120)+(−64+720 t2−480 t)(100800 t+15360)+

(−192−720 t)(120960 t+11520)+(−160−60 t)(1024+23040 t+604800 t3))x3+((−64+

720 t2−480 t)(120960 t+11520)+(−192−720 t)(302400 t3+80640 t+5120)+(−360 t−

240)(1024+23040 t+604800 t3))x2+((−64+720 t2−480 t)(302400 t3+80640 t+5120)+

(−192− 720 t)(1024+ 23040 t+604800 t3))x+ (−64+ 720 t2 − 480 t)(1024+ 23040 t+

604800 t3)

is a rational solution to the mKdV equation (1).

Figure 4. Solution of order 4 to (1), on the left a1 = 1, a2 = 2, a3 = 3,
a4 = 4, b1 = 0, b2 = 0, b3 = 0, b4 = 10; in the center a1 = 1, a2 = 2, a3 = 3,
a4 = 4, b1 = 10, b2 = 0, b3 = 0, b4 = 0; on the right a1 = 1, a2 = 2, a3 = 3,

a4 = 4, b1 = 0, b2 = 0, b3 = 0, b4 = 4.

3.5 Rational solutions of orders five and six

We choose parameters to get the shorter expression of the solution. For this,
we consider aj = j and bj = 0, for 1 ≤ j ≤ N , we get the following rational
solution given by :

Order 5

Proposition 3.5 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (18)

with
n(x, t) = 5x24+2280 tx21+352800 t2x18+4838400 t3x15+2794176000 t4x12+259096320000 t5x9+

5120962560000 t6x6
− 153628876800000 t7x3 + 460886630400000 t8

and,
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d(x, t) = −x25
−600 tx22

−100800 t2x19
−6955200 t3x16

−254016000 t4x13+39626496000 t5x10
−

365783040000 t6x7 + 76814438400000 t7x4 + 460886630400000 t8x

is a rational solution to the mKdV equation (1).

Order 6

Proposition 3.6 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (19)

with
n(x, t) = −6x35

− 6300 tx32
− 2419200 t2x29

− 381024000 t3x26
− 50295168000 t4x23 +

192036096000 t5x20+1371137725440000 t6x17+129970029772800000 t7x14
−116143430860800000 t8x11+

319394434867200000000 t9x8+2146330602307584000000 t10x5+128779836138455040000000 t11x2

and,

d(x, t) = x36 + 1260 tx33 + 544320 t2x30 + 110073600 t3x27 + 11430720000 t4x24 +

329204736000 t5x21+119062379520000 t6x18+7189831434240000 t7x15+1393721170329600000 t8x12
−

59620294508544000000 t9x9
−4292661204615168000000 t10x6+128779836138455040000000 t12

is a rational solution to the mKdV equation (1).

For solutions of order 5 and 6 depending respectively on 10 and 12 parameters,
the structure of the polynomials of the numerators and denominators is the
following.
For order 5, the numerator contains 8370 terms and the denominator 10279; the
degree of the numerator in x is 24, in t is 8; the degree of the denominator in x
is 25, in t is 8.
For order 6, the numerator contains 100409 terms and the denominator 119620;
the degree of the numerator in x is 35, in t is 11; the degree of the denominator
in x is 36, in t is 12.
Unlike other equations like the nonlinear Schrödinger equation, we do not see a
specific structure of polynomials defining these solutions.

4 Conclusion

Two types of representations of solutions to the mKdV equation have been given.
First, we have constructed solutions as a quotient of a wronskian of order N
by a wronskian of order N depending on 2N real parameters. Then rational
solutions to the mKdV equation depending on 2N real parameters, performing
a passage to the limit when one parameter goes to 0.
We can mention some other recent works about this equation. In [18], first
and second-order rational solutions are given as limiting cases of periodic so-
lutions, the second one depending on one real parameter. In [19] the reduced
Maxwell-Bloch (RMB) equations are considered and Nth-order rational solu-
tions containing several free parameters are presented, in particular explicit
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expressions of these solutions from first to second order. Explicit periodic and
rational solutions of first and second order are given in [20], and some typical
nonlinear wave patterns are shown. The first four exact rational solutions of the
set of rational solutions of the mKdV equation are presented in [21]. Multiple
periodic solutions of the mKdV equation are given in [22] and in particular first
to third-order rational solutions.

All the solutions presented in this article are different from those proposed in
previous references and are new. So we get an infinite hierarchy of multipara-
metric families of rational solutions to the mKdV equation as a quotient of a
polynomials in x and t depending on 2N real parameters.
It would be relevant to better understand the structure of polynomials defining
the rational solutions of this equation.
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tions for Darboux-Pöschl-Teller potentials and their difference extensions,
J. Phys A : Math. Theor., V. 42, 404409-1-16, 2009

[27] P. Gaillard, Families of quasi-rational solutions of the NLS equation and
multi-rogue waves, J. Phys. A : Meth. Theor., V. 44, 435204-1-15, 2011

[28] P. Gaillard, Wronskian representation of solutions of the NLS equation and
higher Peregrine breathers, J. Math. Sciences : Adv. Appl., V. 13, N. 2,
71-153, 2012

[29] P. Gaillard, Degenerate determinant representation of solution of the NLS
equation, higher Peregrine breathers and multi-rogue waves, J. Math.
Phys., V. 54, 013504-1-32, 2013

[30] P. Gaillard, Wronskian representation of solutions of NLS equation and
seventh order rogue waves, J. Mod. Phys., V. 4, N. 4, 246-266, 2013

[31] P. Gaillard, V.B. Matveev, Wronskian addition formula and Darboux-
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