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Abstract10

When sound propagates in a porous medium, it is attenuated via several energy loss

mechanisms which are switched on or o� as the excitation frequency varies. The classical

way of measuring acoustic energy loss in porous materials uses the Kundt impedance

tube. However, due to its short length, measurements are made in the steady state har-

monic regimes. Its lower cuto� frequency is often limited to a few hundreds of Hertz.

Two long acoustic waveguides were assembled from water pipes and mounted to create

test-rigs for the low-frequency acoustic characterization of monolayer and strati�ed air-

saturated poroelastic materials. The �rst waveguide was straight and had a length of 120

m, while the second was coiled to gain space and was 135 m long. The long waveguides

appeal to very low frequency measurements using impulsive acoustic waves (with rich

spectral content) because the incident waves can be separated in time from echoes o�

the extremities of the guides. The transmission coe�cient of porous materials recovered

using the two waveguides compared well with those from the transfer matrix method

(TMM) used here in combination with Biot's 1962 theory to describe propagation in

porous dissipative media. This wave-material interaction model permitted the recovery

of the properties of poroelastic materials from transmitted acoustic waves propagating in

air. The parameters involved are the Young's moduli, Poisson ratio and microstructural

properties such as tortuosity and permeability. Being able to descend to lower frequen-

cies guarantees the correct veri�cation of the magnitude of the measured transmission

coe�cient which approaches unity towards the static frequency. The coiled and straight
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waveguides were found to be equivalent and provided data down to frequencies of the

order of ≈ 12 Hz.

Keywords: Air-saturated poroelastic, Strati�ed layers, transfer matrix method,11

Acoustic waveguide, open-cell plastic foams, low-frequency characterization12

1. Introduction13

Strati�ed layers are often natural structures e.g., geological layers, the human skull,14

bird's wing bones, wood, or plants' leaves. Man made strati�ed layers like sandwich15

structured-composites are composed of a lightweight but thick core separating two sti�16

light skins. The most commonly used core materials are open- and closed-cell structured17

foams. The whole structure is often light and e�cient in resisting bending and buckling18

loads[1]. These composite structures are mainly used in aerospace applications like in19

helicopter rotor blades. Sound absorbing packages need not to be sti� and the cores can20

be made of limp materials such as natural �ber glass or open cell plastic foams.21

Acoustic wave propagation in layered media is therefore an important topic for many22

practical applications, namely medicine, passive noise control, applied geophysics, snow23

layers, to name but a few.24

The goal of this study was to design and develop very low-frequency test-rigs in the25

form of a compact, coiled, long and straight acoustic waveguide for the characterization26

of air-saturated strati�ed or monolayer porous materials. In order to succeed in this27

endeavour, a wave-porous strati�ed media interaction model was also developed.28

Previous theoretical and experimental studies were developed for the characterization29

of closed-cell foams using a straight pipe waveguide 22 m long [2]. The closed-cell foams30

were modeled as equivalent elastic strati�ed material. A coiled 50 m long pipe was re-31

ported previously for the characterization of porous materials using the equivalent �uid32

model [3] in which the porous frame was considered as rigid. However no previous exper-33

iments have been done using very long waveguides (length ≥ 120 m) and the strati�ed34

layers modeled as poroelastic frames saturated with air.35
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The recent development and the simpli�cation of the susceptibility models in the low-36

frequency regime [4, 5] are some of the motivating factors for the development of a very37

low-frequency waveguide characterization test rig. The purpose of such an undertaking38

is to generate real data for the recovery of new low frequency parameters of porous media39

immersed in air and eventually also test the robustness of inversion algorithms [6]. Work-40

ing in the low-frequency regime makes it possible to recover experimentally other new41

transport parameters for air-saturated porous material like the static viscous tortuosity42

α0 and the other visco-inertial parameters characterizing the interactions between the43

�uid and the structure, introduced recently [7, 8].44

The classical, but still popular, Kundt's impedance tube [9] in which acoustic ab-45

sorbing materials are characterized using indirect methods [10, 11, 12], does not allow46

measurements to be done in the very low-frequency regime. This is because of its short47

length. The lower cuto� frequency of a waveguide is determined by its length. The mode48

with the lowest cuto� frequency is the fundamental mode of the waveguide. An open49

ended cylindrical pipe used as a waveguide resonates at an approximate fundamental50

frequency as function of the length [13, 14]. Therefore, a long waveguide is necessary to51

get a very low cuto� frequency. The other advantage of the long pipe over the Kundt52

tube is its ability to accommodate transient or impulsive time signals with rich spectral53

content that can be separated temporally from the ones re�ected from the end of the54

pipe.55

For a circular waveguide, the upper cuto� frequency is determined by its cross-section.56

The propagating part of the acoustic �eld below this cuto� frequency in the pipe con-57

sists only of plane waves. The reasons for using a waveguide instead of a free sound �eld58

is that the propagation problem dimension becomes one-dimensional (up to the higher59

cuto� frequency) i.e., sound waves propagate in one direction as plane waves. This im-60

plies that the waveguide is inherently low-frequency. The existence of loss mechanisms61

in di�erent frequency regimes (thermal, inertial or viscous [15]) can further reduce this62

cuto� frequency if they are within the useful measurement bandwidth of the pipe.63

Since the phenomena occurring involves the skeleton and the �uid, modeling of the sound-64

structure interaction using a biphasic model is the most appealing. Remember that the65

equivalent �uid model is just its approximation [3, 16].66
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A strati�ed theoretical model based on the Biot 1962 theory [17] and the transfer67

matrix method were developed to model the data from the long waveguides. In Biot's68

biphasic �uid-structure interaction theory, the acoustic waves propagate both in the69

skeletal frame and in the saturating �uid of the open-pore porous material. The 196270

version has not been as widely used as the 1956 version [18]. In the former version, Biot71

introduced a parameter w = φ(U − u) representing the �ow of the �uid (U) relative72

to the solid (u). In our study, Gassman's equations [19] in poroelasticity relating dry73

or drained bulk elastic constants to those for �uid-saturated and undrained conditions74

are integrated. The recent advances and generalizations of theories of dynamic responses75

of a �uid in a porous medium using the concepts of dynamic viscous permeability and76

tortuosity [20] as well as the Champoux Allard [21] and Lafarge [22] thermal permeability77

models have been integrated into the Biot 1962 model [17].78

The geometry of the problem and the experimental method for acquiring low-frequency79

acoustic wave transmission data are described in Section (2.1). The theoretical models80

are detailed in Section (3). The results are given in Section(4). Discussions on the prob-81

lems and challenges facing the measurement precision in such long waveguides, and those82

of the theoretical modeling are discussed in Section(5).83

2. Materials and Methods84

2.1. The geometry of the acoustic wave transmission problem85

The approach to solve the acoustic characterization problem of strati�ed or mono86

layers composed of air-saturated porous specimens involves designing and assembling the87

waveguides, equipping them with transducers (loudspeakers) and sensors (microphones)88

then acquiring long in length, transmitted low frequency acoustic wave data.89

The transmission of an acoustic wave through an open-cell cellular panel (plate) of90

in�nite extent bordered on both sides by a �uid of semi-in�nite extent is �rst considered.91

The incident P-wave (pi) propagating in the �uid impinges on the panel and at the92

interface wave mode conversion occurs. In the panel, the P-wave breaks into three waves:93

a solid borne elastic P-wave (P1), a �uid borne P-wave (P2) and a shear wave (P3). At94

the second interface, the shear wave (SW) is transmitted by conversion into a P-wave95
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(ptp←SW ), the solid borne elastic P-wave is transmitted into the �uid as a P-wave (Ptp)96

(see Figure 1).97
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Figure 1: Transmission of acoustic waves by a single layer open-cell panel. The incident compressional

wave Pi (Primary (P) wave) travelling in air impinges on the panel. The mode conversions at the host

medium - panel interfaces are shown. At the �rst interface Γ1, the P-wave breaks into three waves, a

solid borne P-wave (P1), a �uid borne P-wave (P2) and a shear wave (SW ). At the second interface

(Γ2); the SW is transmitted into the host medium by conversion into a P-wave (ptp←SW ); the solid

borne P1-wave is transmitted into the �uid as a P-wave (PtP1
). The angle of incidence in this study is

normal to the speciment.

2.2. The low-frequency acoustic waveguides98

The �rst long waveguide, coiled and therefore more compact, was installed in a nor-99

mal room (it could also be moved into an anechoic chamber if necessary). The second100

waveguide was kept straight and placed outside the main building hanging under the ceil-101

ing of a long parking lot in an exterior climatic and noisy tra�c environment (presence102

of a moderately busy road nearby).103
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The low and high cuto� frequencies of a waveguide of cylindrical crosssection are104

given by105

fLC =
cf

(L+ 1.6 a)
, fHC =

1.8412 cf
(2π a)

, (1)

where cf is the sound velocity in the �uid, L is the length of the pipe and a, its radius).106

2.2.1. The coiled PE pipe waveguide107

The �rst acoustic waveguide was composed of segments of 10, 25 and two 50 m108

long polyethylene (PE) water pipes (interior diameter 2.54 cm) joined together using109

compression nut type mechanical coupling for joining PE pipe to PE pipe. The pipe110

waveguide system (total length 135 m) was coiled (average coiled radius: 30 cm) so as111

to gain space and be able to �t it into the experimental room (Fig. (2a). An acoustic112

loudspeaker was introduced at one end of the waveguide. It was then driven to generate113

an acoustic pulse forcing the pressure to vary in the direction of propagation.114

2.2.2. The straight PVC pipe waveguide115

The second waveguide was a straight 120 m polyvinyl chloride (PVC) pipe with116

internal diameter 34.0mm, external diameter 40.0mm respectively (Fig. 2b and c). It117

was composed of 20 polyurethane water pipes (much longer than in Reference [2]) joined118

together using �ttings and sealed using PVC cement to make the joints air-tight. The119

pipe was left straight. Being longer than any available space in the experimental rooms,120

it was installed under the ceiling of the roof of the car park shelter of the new site of the121

LMA in the north of Marseille.122

A small microphone was placed midway along the length of the waveguide in order123

to capture the acoustic pulse transmitted by the poroelastic layers. The experimental124

setup is shown in Fig. (2d).125

The cuto� frequencies are resumed in Table (1)126

Waveguide Diameter (mm) Length (m) Lower cuto� (Hz) Higher cuto� (kHz)

Coiled 25.4 135 2.5 7.9

Straight 34.0 120 2.8 5.9

Table 1: The cuto� frequencies of the two waveguides.
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(a)

(b) (c)

Loud speaker
Microphone

135 or 120 m

2.54  or 3.4 cm

Long waveguide Porous specimen

(d)

Figure 2: Sketches and photographies of the low-frequency acoustic waveguide experimental test-rigs.

(a) The sketch of the coiled PE pipe waveguide with the loud speaker. (b) The photography of the setup

under the parking lot ceiling with the loud speaker. (c) The straight waveguide downstream. (c) Sketch

of the experimental test-rig for the low-frequency measurement of the transmitted acoustic waves.
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2.2.3. Capturing the transmitted pressure127

The same transducer (exciter) and sensors were used in the coiled and straight waveg-128

uide measurements. A transient wave was generated in the waveguide by a loudspeaker129

(B&C-DE-700-8, Italy) driven by a waveform function generator (Agilent 33250B, Love-130

land Colorado, USA) through a power ampli�er (B&K2706, ). The excitation signal was131

a Heaviside step function de�ned as132

∀t ∈ R, H(t) =

 0, t < 0,

1, t ≥ 0,

The step function was produced by synthesizing a long positive rectangular pulse133

using the function generator. The steep rise in the voltage of the leading edge of the134

pulse caused the loudspeaker membrane to deform. This induced a very short acoustic135

pulse wave in the waveguide. An electret condenser omnidirectional microphone sensor136

with integrated preampli�er (ABM-716-RC Pro-Signal, Omnidirectional, bandwidth 50137

Hz to 16 kHz, external diameter 3 mm, external height 6 mm) placed downstream of the138

waveguide captured the transmitted acoustic wave. This response was digitized using139

a �exible-resolution digitizer (NI-PXI-5922, National Instruments, Austin, TX USA)140

inserted into a Chassis (NI-PXI-1033) connected to a personal laptop computer running141

the NIScope data acquisition program.142

The transmission coe�cient (TC) was obtained through the computation of the trans-143

fer function between the incident pressure obtained in the absence of the specimen and144

the transmitted pressure in the presence of the specimen. The transfer function TIT (f)145

was computed from the quotient of the cross power spectral density (SIT ) of the incident146

pI(t) and transmitted acoustic pressure pT (t) and the power spectral density (SII) of147

pI(t).148

TIT (f) =
SIT (f)

SII(f)
.

which were computed using the programming languages: Matlabr and the free Julia149

programming language [23]). In this study an example computer code is given in Ap-150

pendix A).151
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3. The transfer matrix method152

In this study the transfer matrix method (TMM) was developed to analyze the propa-153

gation of acoustic waves in the strati�ed porous layers. Computations and measurements154

were �rst undertaken for �uid-saturated monolayer open-cell foams and then for �uid sat-155

urated strati�ed layers. The TMM model was based on the Biot 1962 theory [24]. The156

alternative description by Johnson et al [20] of the viscous frictions inside the boundary157

layers in the vicinity of the solid walls was employed. It gives more physical insight158

into these interactions. The thermal e�ects model, developed by Champoux, Allard [25]159

and Lafarge [22] was also employed. These improvements added to the Biot model are160

highlighted in Appendix B. The complete model is abbreviated herein, BJKCAL.161

The equations of motion were derived from constitutive equations relating stresses162

and pressure to the strains and �uid �ow [24] (using indicial notation, ı)163

τı = 2µ εı + δı ((H − 2µ)ε− Cξ),

pf = −Cε+Mξ, (2)

where µ is the shear modulus, H = λc + 2µ, λc = λ + α2
BM (λ is Lamé's coe�cient),164

C = αBM , M =
Kf/φ

1 +D
is the complex modulus, D = (αB − φ)

Km/φ

Ks
, the Biot-165

Willis [26] constant αB = 1−Km/Ks, Ks is the bulk modulus of the solid matrix, Km166

is the drained (dry) bulk modulus and Kf is the bulk modulus of the pore �uid, εkl are167

the components of the in�nitesimal strain tensor and δı is the Kronecker delta function:168

δı =

 1, ı = ,

0, ı 6= .

The relative density ζ = (ρm/ρs) (ρs is the density of the solid matrix and ρm is the169

density of the drained skeleton). The Young's modulus of the dry skeletal frame is given170

by:171

Em = C1Es(1− φ)2, φ = 1− ζ, (3)

where Es is Young's modulus of the solid matrix and φ is the porosity. For open-cell PU172

foam C1 ≈ 1 [27].173

From the constitutive equations are derived the two motion equations expressing the174

dynamic inertial motion of the whole �uid-solid system in terms of the stresses. They175
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are written (using vector calculus notation):176

∇.τ = µ∇2u +∇ [(H − µ)ε− Cξ] =
∂2

∂t2
(ρu + ρfw),

∇(Cε−Mξ) = ρf
∂2

∂t2
u + %(t) ∗ ∂

2

∂t2
w, (4)

where ρ is the density of the mixture (composite), ρf is that of the �uid, u and U are the177

solid and �uid displacements, respectively. The �uid displacement relative to the frame,178

w = φ(U − u) and φ is the porosity. The increase in �uid content ξ = −∇.w and the179

volumetric strain of the solid ε = ∇.u. The equivalent density in the time domain is %(t)180

and can also be represented as %̃(ω) = ρfα(ω)/φ in the frequency domain.181

The derivation of the wavenumbers and phase velocities are given in Appendix C.182

x

1 2 m

++ + ++− − −

Γ
1

Γ Γ Γ Γ
2 3 m m+1

−−

z
θ

r
P

P
i

. . .

Figure 3: The sketch of the strati�ed �uid saturated poroelastic layers.

In order to model wave propagation in a poroelastic layer (Fig. 3), the acoustic wave183

�eld in the layer is characterized by the wave speeds and the stresses in the �uid and184

solid phases. In this context two state vectors V (MΓ+
m

) and V (MΓ+
m+1

) at the �rst and185

second points MΓ+
m
and MΓ−m+1

on the interfaces at Γ+
m and Γ−m+1 of a �uid saturated186
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poroelastic layer m are chosen as:187

V (MΓ+
m

) =
[
u̇sx(MΓ+

m
) u̇sz(MΓ+

m
) u̇fz (MΓ+

m
) τszz(MΓ+

m
) τsxz(MΓ+

m
) τfzz(MΓ+

m
)
]T

V (MΓ−m+1
) =

[
u̇sx(MΓ−m+1

) u̇sz(MΓ−m+1
) u̇fz (MΓ−m+1

) τszz(MΓ−m+1
) τsxz(MΓ−m+1

) τfzz(MΓ−m+1
)
]T
,

(5)

where the "overdot" represents the derivative with respect to time. The state vectors188

can be rewritten in matrix form as:189

V(MΓ+
m

) = [Tm(MΓ+
m

)]A

V(MΓ−m+1
) = [Tm(MΓ−m+1

)]A, (6)

where [Tm] is the transmission matrix of the stresses and velocities and A a vector to be190

determined.191

The derivation of the matrix formulation is given in Appendix D192

The derived matrix equation for air saturated strati�ed bilayer poroelastic plates193

insoni�ed by a plane wave at an oblique angle of incidence θi is therefore given in Eq. (7):194
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4. Results196

4.1. The poroelastic material samples197

The air saturated porous foam materials used for this study were open-cell yellow and198

gray polyurethane (PU) and melamine foam panels. Their micro-visco-acoustic parame-199

ters are given in Table (2). The mechanical parameters (Biot Willis parameters [26]) are200

given Table (3). These parameters were from our previously reported results, but, some201

parameters like Poisson ratio were �ne-tuned a little bit to match the experimental data.202

Specimen φ Λ
Λ′

Λ
σ α∞ k′0

(×10−6 m) (Pa.m−2.s) (×10−9m2 )

Yellow PU Foam 0.98 120 2.8 5200 1.2 5.0

Gray PU Foam 0.98 120 2.0 5000 1.15 3.5

Melamine Foam 0.99 100 2.0 10000 1.01 8.0

Table 2: Values of the parameters recovered using real data and solving an inverse problem [28, 29] for

the three open-cell foam specimens.

203

Specimen ρ (kg/m3) ρs (kg/m
3) Es (Gpa) Em (Pa) νm

Yellow PU Foam 24 1200 0.48 190 × 103 0.45

Gray PU Foam 28 1400 0.48 185 × 103 0.40

melamine Foam 8.35 1570 7.4 180 × 103 0.47

Table 3: Mechanical parameters for the open-cell plastic porous foam specimens [15].

4.2. Validation of the experimental setup and the prediction model204

The incident pressure (captured in the absence of the specimen) and the transmitted205

pressure (with the specimen) and their corresponding power spectral densities for a 1.0206

cm thick open-cell porous gray polyurethane foam (GPUF) in the 135 m long coiled207

waveguide, are depicted in Fig. (4)a and b respectively. The comparison between the208

experimental and theoretical transmission coe�cients are also shown (Fig. (4)c). This209

can be considered as a thin specimen, it has a high transmission coe�cient o� the static210

frequency. The lowest cuto� frequency in this case is ≈ 12 Hz and |T | → 1. The higher211
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cuto� frequency (≈ 1200 Hz) is lower than the theoretical one of 7.9 kHz. The limit212

manifests itself by the presence of oscillations (i.e., noise) in the transmission coe�cient.213

A close examination shows that the deviation from the theoretical model starts at about214

500 Hz. This is explained later in the discussion section 5.2.

(a) (b)

(c)

Figure 4: The transmission coe�cient for a single porous layer inserted into the coiled waveguide, (a)

The incident and transmitted temporal signals. (b) Their power spectral densities. (c) The computed

TMM BJKCAL model (squares) and the experimental (solid line) transmission coe�cients for an open-

cell GPUF (1.0 cm thick).

215

4.3. Comparing the measurement performance of the two pipes using a monolayer of an216

air-saturated poroelastic material217

Two monolayer foams of the same material and the same thickness (but with dif-218

ferent diameters, 2.54 cm and 3.4 cm) were characterized in the coiled and the straight219
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waveguides. The transmission coe�cient data obtained from the two waveguides using220

the same foam material were compared against the theoretical model. The two single221

layer foams were machined from a 1.0 cm thick yellow polyurethane foam (YPUF). The222

comparison between the three transmission coe�cients obtained for each of the speci-223

mens with those from the corresponding theoretical model data computed for the foam224

are shown in Fig. (5)a and b. This demonstrates that the straight and coiled waveguides225

are equivalent and that the bends of the coiled pipe do not a�ect the measurements226

in the useful bandwidth considered (from the lower cuto� frequency, ≈ 12 Hz, up to227

the frequencies where the oscillations start indicating that the signal to noise ratios are228

lower, i.e., ≈ 1100 Hz for the straight pipe and ≈ 800 Hz for the straight one). There229

is more noise in Fig. (5)a than Fig. (5)b because the coiled pipe is longer in length230

(longer air column), therefore the acoustic wave is more attenuated resulting in a lower231

signal to noise ratio. The change from the viscous energy loss mechanism regime to the232

inertial loss regime [15] at ≈ 500 Hz is the reason for the sudden increase in attenuation233

as frequency increases. This is discussed in detail later in section 5.2.234

(a) (b)

Figure 5: The transmission coe�cients for two single layers of YPUF (1.0 cm thick), of diameters 2.54

cm and 3.4 cm inserted in the coiled and straight waveguides respectively. Comparison between the

computed TMM BJKCAL model transmission coe�cient and the experimental ones obtained from each

waveguide, (a) TC in the coiled waveguide, (b) the straight waveguide.
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4.4. Measurement performance of the coiled pipe using a strati�ed layer of an air-saturated235

poroelastic material236

This con�guration involves a 1.4 cm thick GPUF foam and a 1.3 thick melamine foam,237

in simple contact to form a strati�ed layer. In this con�guration, the TC measured in238

the coiled pipe (Figure (6)) o� and near the static frequency agrees well with that of the239

TMM BJKCAL model.

(a)

Figure 6: Comparisons between the theoretical (TMM BJKCAL) and the measured TCs of strati�ed

(double) layers composed of a 1.4 cm and 1.3 cm thick GPUF and melamine foams respectively.

240

5. Discussion241

5.1. Improvement of the TC measurements near the static frequency - use of thick sam-242

ples meticulously slid into the waveguide for proper boundary conditions243

It has previously been reported that the adverse e�ect on the results due to shearing244

vibration resonance can be mitigated by the cutting accuracy (radius and circularity) of245

the materials [30]. Some studies have proposed placing rings on each material surface [31].246

247

In order to put into light the problems that degrade the precision of the measurements,248

thin samples of melamine and yellow polyurethane foam, both of thickness 1.0 cm, were249

tested. The TCs are shown in Fig. (7). In this con�guration, the assumed boundary250

conditions between the two foams gives an acceptable prediction of the transmission251
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coe�cient o� the static frequency (i.e., frequency > 100 Hz). The mismatches with the252

theoretical model near the static frequency are of the same type for the two waveguides.253

It is important to note that the lower cuto� frequency of the microphone is 50 Hz,254

implying that reducing the amplitude will only result in a poor signal to noise ratio near255

the static frequency.256

Figure 7: Comparisons between the theoretical (TMM BJKCAL) and experimental TCs of strati�ed

(double) layers composed of a YPUF (1.0 cm thick) and melamine (1.0 cm thick) in simple contact

placed in the coiled and straight pipes.

The other reason for the TCs of thinner lighter foam samples being poorly captured257

near the static frequency is that, at the lower frequencies, the samples are displaced258

mechanically (blown aside) at the passage of the low frequency acoustic impulsive wave.259

The force of the transient burst displaces the thin low density samples. This makes the260

air tightness of the boundary conditions between the specimen and the pipe di�cult to261

achieve. One of the remedies is to reduce the amplitude of the acoustic pulse in the pipe,262

but without compromising the signal to noise ratio especially in the frequency regimes263

where the attenuation mechanisms come into play.264

The transmission coe�cients of thick monolayer samples of GPUF and melamine foam265

both (2.5 cm thick) were obtained and found to match the theory well (Fig. 8). These266

results con�rm that the mismatch between theory and experiments at low frequencies267

can therefore mainly be explained by the lightweight nature of the thin melamine foam268

samples (easily displaced by the impulsive wave) and the lower cuto� frequency of the269

microphone.270
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A closer and systematic study on how to improve the measurement of the TC for271

thinner samples and the confection of a non invasive sample holder will be undertaken.272

Such a task will be easier to accomplish since the TMM BJKCAL model, developed273

herein, has proved to be accurate and robust to model the experiment.274

(a) (b)

Figure 8: Comparison between (a) The experimental TC of a single layer GPUF (2.5 cm thick), (b) that

of a single layer melamine foam (2.5 cm thick), with the theoretical TC data computed using the TMM

BJKCAL model. The measurements were done in the coiled waveguide (135 m long).

5.2. The measurement bandwidth of the waveguides275

The upper theoretical cuto� frequency of the straight waveguide (diameter 34 mm)276

is fHC ≈ 5.9 kHz and that of the coiled pipe (diameter 25.4 mm) is ≈ 7.9kHz (using277

expressions in Eqn. 1, see Table 1). In reality, these cuto� frequencies of the waveguides278

containing the specimens are lower. A close examination of the transmission coe�cients279

indicate that this is due to the lower signal to noise ratio as a result of the energy loss280

mechanisms in porous material in the long waveguides.281

In this study the coherence function [32, 33] was employed to estimate the causality282

between the incident and transmitted pressure signals in order to determine the frequency283

where the signal to noise ratio becomes too low. The magnitude coherence estimate is a284

function of frequency with values between 0 and 1. It indicates how well the two signals285

correspond to each other at each frequency (i.e, estimates the causality between the input286
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and output) is:287

CIT (ω) =
|SIT (ω)|2

SII(ω)STT (ω)
. (8)

It is therefore the best tool to determine the useful bandwidth of the waveguides.288

This bandwidth depends on the attenuation of the porous specimens in the pipes and289

somehow on the length of the air column.290

(a) (b)

(c)

Figure 9: (a) The spectrum of the incident (without the foam) and transmitted pressure signals for

the single layer melamine (2.5 cm thick) foam in Fig. 8b. The coherence between their incident and

transmitted acoustic pressure signals (b) the melamine foam, (c) the GPUF foam. The measurements

were done in the coiled waveguide (135 m long).

Coherence is consequently used to visualize the bandwidth of the system. The spec-291

trum of the two signals captured for the single layer of melamine foam (2.5 cm thick) and292
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its coherence magnitude are plotted in Fig. (9)a and b. The coherence for a GPUF (2.5293

cm thick) is depicted in Fig. (9)c. The upper cuto� frequencies for the melamine and294

GPUF are ≈ 1200 Hz and 520 Hz respectively. Coincidentally these are the acoustic loss295

mechanism transition frequencies where the acoustic energy loss mechanism transitions296

from the viscosity dominated one to the inertia dominated regime [15]. This frequency297

is given by298

fTr.viscous→inertial =
σφ

2πρfα∞
.

Employing values from Table (2) and the above expression, fTr.viscous→inertial = 1200299

Hz and 525 Hz for the melamine foam and the GPUF respectively.300

Although the theoretical lower cuto� frequency for the long waveguide is fLC ≈ 2.5301

Hz, the dip of the coherence near the static frequency is due to the cuto� frequency of302

the microphone. This is situated around 50 Hz (the microphone manufacturer) but the303

coherence is acceptable up to fLC ≈ 12 Hz. This implies that a microphone with a lower304

cuto� frequency can improve the coherence in this frequency zone.305
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6. Conclusion306

The two test-rigs composed of long pipe waveguides, one straight and the second307

coiled, were found to appeal to the low-frequency characterization of porous open-cell308

materials. The transmission coe�cient data obtained from the two waveguides for mono-309

layer and strati�ed layers of air-saturated poroelastic materials were found to agree with310

those obtained from the transfer matrix method that employs the 1962 version of the311

Biot interaction model [24] (the models takes into account the �uid and skeletal interac-312

tion). The advantage of the low frequency measurement is, it allows the veri�cation of313

the value of the transmission coe�cient. It is unity at the static frequency. The favor-314

able agreement between the measured transmission coe�cients in the waveguides with315

the prediction model make these devices appealing to the recovery of Young's modu-316

lus, Poisson ratio of the skeletons and the micro-geometrical properties such as porosity,317

tortuosity of sound absorbing air-saturated poroelastic materials in air.318

The lowering of the bandwidth of the waveguides through the frequency dependent319

loss mechanisms in the layers and the cuto� frequency of the acoustic sensor were observed320

using the coherence function. These factors resulted in a loss of coherence between the321

incident and transmitted waves for the lower cuto� at around 50 Hz and the higher322

cuto� at ≈ 1100 Hz for the melamine foam and ≈ 500 Hz for the GPUF. Meaning323

that the upper cuto� frequency was way below the theoretical cuto� (higher) frequencies324

of the waveguides. These cuto� frequencies were found to correspond to the transition325

frequencies of the air-saturated poroelastic foams, i.e., the passage from the viscous losses326

regime to the inertial losses regime.327

It was also established that the coiled and straight pipes gave quasi-identical results328

in the measurement bandwidth considered. The advantage of the coiled pipe is that it329

occupies smaller space than the straight one. This is an advantage when the experimental330

arena space is small. However, the larger cross-section area of the straight pipe provides331

a better representation of the samples (averaging the material properties over a larger332

surface area). The wider cross-section means that there is lesser attenuation due to333

the presence of the rigid walls. An improvement in the precision of determining the334

transmission coe�cient was observed when thicker samples were employed.335
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Appendix A. Computer coding of the transmission coe�cient336

Having acquired the incident pressure signal obtained in the absence of the specimen,337

pi, and the transmitted pressure in the presence of the specimen, pt, the transmission338

coe�cient can be computed as follows:339

N = length ( Pi ) ; % Length o f the i n c i d en t s i g n a l340

xdf t = f f t ( Pi ) ; % compute the f a s t Fourier transform341

xdf t = xdf t ( 1 :N/2+1);342

psdx = (1/( Fs*N)) * abs ( xd f t ) . ^ 2 ; % compute the psd343

psdx ( 2 :end=1) = 2*psdx ( 2 :end=1); % conserve the t o t a l power X2344

f r e q = 0 : Fs/N: Fs /2 ; % form f f t f requency345

ydf t = f f t (Pt ) ; % compute the f a s t Fourier transform346

ydf t = ydf t ( 1 :N/2+1);347

psdy = (1/( Fs*N)) * abs ( yd f t ) . ^ 2 ; % compute the psd348

psdy ( 2 :end=1) = 2*psdy ( 2 :end=1);% conserve the t o t a l power X2349

S i i=xdf t .* conj ( xd f t )/N^2; % auto psd = con => conjuga te350

S i t=ydf t .* conj ( xd f t )/N^2; % cros s psd351

Tit=abs ( S i t . / S i i ) ; % compute the t ransmiss ion c o e f f i c i e n t352

Appendix B. The changes made to improve the frequency behavior of the353

Biot model354

In the frequency domain, two factors, the dynamic tortuosity (α̃(ω)) and the dynamic355

compressibility (β(w)) are modi�ed through multiplication with the �uid densities (ρf )356

and compressibility (Kf ), to obtain the modi�ed parameters of the porous medium (ρe =357

ρfα(ω) and Ke = Kfβ(ω)
−1
). These two factors represent the deviation from the non358

dissipative behavior of the �uid in free space as the frequency increases.359

α̃(ω) = α∞

(
1 +

1

i$

√
1 +

M

2
i$

)
, $ =

ωα∞ρf
σφ

, M =
8α∞η

σφΛ2
, (B.1)

where i =
√
−1, η the viscosity, φ and α∞ are respectively the porosity and tortuosity360

of the porous medium, Λ is the viscous characteristic length, k0 =
η

σ
, is an intrinsic361

parameter depending on the geometry of the pores (σ, the �ow resistivity).362
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The dynamic scaled compressibility is given by [22]363

β(ω) = γ−(γ−1)×

(
1 +

1

i$′

√
1 +

M

2
i$′

)−1

, $′ =
ωρfk

′
0Pr

ηφ
, M ′ =

8k′0
φΛ′2

, (B.2)

where $′ is the reduced frequency, γ is the ratio of speci�c heats of the saturating gas,364

Λ′ is the thermal characteristic length, Pr is the Prandtl number. The static thermal365

permeability k′0 which partly characterizes the thermal e�ects at low frequencies (when366

the thermal boundary layer is of the same order of magnitude of the characteristic size367

of the pores).368

Appendix C. Expressions for the wavenumbers369

The Helmholtz-Hodge decomposition370

In order to calculate the wavenumbers, the solid and �uid displacements are �rst371

decomposed into scalar (ϕ) and vector potential (ψ) components using the Helmholtz-372

Hodge decompositions:373

u = ∇ϕs +∇×ψs, U = ∇ϕf +∇×ψf . (C.1)

This can be extended to include the �ltration w374

w = φ(u−U) = ∇ϕ+∇×ψ. (C.2)

Since the gradient and curl operators are linear, the following relations can be deduced375

ϕ = φ(ϕs −ϕf ) and ψ = φ(ψs −ψf ).376

The expressions for the compressional wavenumbers and the rotational wavenum-377

ber are given in the following sections. The solutions to the equations provide three378

wavenumbers for the waves propagating in the solid (one compressional and one shear379

wave) and in the �uid (compressional wave).380

Volumetric/dilational (Θ = ∇.u 6= 0)) or compressional wave wavenumber381

Using plane wave potentials, ϕs = Φs exp(i(−ωt + kr)), ϕf = Φf exp(i(−ωt + kr))382

for the curl-free motion (∇ × u = 0) (the subscripts and subscripts s, f represent the383

solid and �uid) a matrix equation is derived384
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 − (Cφ+H) k2 + (ρf φ+ ρ)ω2 φ
(
Ck2 − ω2ρf

)
− (Mφ+ C) k2 + (%̃(ω)φ+ ρf )ω2 φ

(
Mk2 − ω2%̃(ω)

)

 ϕs

ϕf

 =

 0

0

 , (C.3)

where k2 = k.k with k the complex wavenumber, %̃(ω) =
ρf
φ
α̃(ω).385

The solution to this matrix equation provides two wavenumbers for the waves propa-386

gating in the saturated poroelastic medium, one solid borne and the second �uid borne.387

k2
1,2 = ω2

{
−(%̃(ω)H + ρM − 2ρfC)±

√
4

2(C2 −HM)

}
, (C.4)

where 4 = (%̃(ω)H − ρM)2 + 4(ρfH − %̃(ω)C)(ρfM − %̃(ω)C)388

The rotational or shear wave wavenumber389

The equivoluminal, rotational (Θ = ∇.u = 0) wavenumber is derived using plane390

wave potentials, ψs = Φs3 exp(i(−ωt + kr)), ψf = Φf3 exp(i(−ωt + kr)). The matrix391

equation is given by392

 −µk2 + (φ ρf + ρ)ω2 −φ ρf ω2

(φ %̃(ω) + ρf )ω2 −φ %̃(ω)ω2


 ψs

ψf

 =

 0

0

 , (C.5)

From which the shear wavenumber is393

k2
3 =

ρω2

µ

(
1− ρf

2

%̃(ω)ρ

)
(C.6)

Appendix C.1. The relationships between the solid and �uid displacements394

The ratios between the displacement potentials of the �uid motion and solid in com-395

pressional motion are given by:396

µ1,2 =
Φf
Φs

=
k2
 (Cφ+H)− ω2 (ρ+ φ ρf )(

Ck2
 − ω2ρf

)
φ

,  = 1, 2. (C.7)

The ratio between the displacements potentials of the �uid and solid in shear motion is397

given by:398

µ3 =
Φf3
Φs3

= 1− k2
3µ

φρfω2
+

ρ

φ ρf
. (C.8)
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Appendix D. The transfer matrix formulation399

The incident and re�ected plane wave potentials in the layer for ψ and ϕ are expressed400

in the Laplace domain (L[f(t)](p) =
∫∞

0
f(t)e−p t dt) as:401

ψs =
(
Φ exp(−Kz z) + Φj

′ exp(Kz z)
)

exp(−Kx x),  = 1, 2 (D.1)

ϕs3 =
(
Φ3 exp(−Kz3z) + Φ3

′ exp(Kz3z)
)

exp((−Kx3x), (D.2)

ψf = µψ
s
 ,  = 1, 2, ϕf3 = µ3ϕ

s
3, (D.3)

where Φm et Φ
′

m, (m = 1, 2, 3) are the amplitudes of the incident and re�ected waves,402

respectively, Kz = iχ et Kx = iγ where403

γf = kf sin(θ), Kf = i

√
kf

2 − γf 2,

γ = k sin(θ), j = 1, 2, 3

χ =

√
k

2 − γ2,  = 1, 2, 3.

(D.4)

The vector A is then obtained through expansion of the potentials in Eq. D.1 (see404

also [34] for the purely elastic case), for example:405

Φ̄1 e−κ
z
1 z + Φ̄′1 eκ

z
1 z =

(
Φ̄1 + Φ̄′1

)
cosh (κz1 z)−

(
Φ̄1 − Φ̄′1

)
sinh (κz1 z) . (D.5)

After substitution, the vector takes the form:406

A =
[

Φ̄1 + Φ̄′1 Φ̄1 − Φ̄′1 Φ̄2 + Φ̄′2 Φ̄2 − Φ̄′2 Φ̄3 + Φ̄′3 Φ̄3 − Φ̄′3

]T
.

The characteristic transfer matrix propagation equations in Eq. (6) can be simpli�ed:407

V (MΓ+
m

) = [T ]V (MΓ−m+1
), (D.6)

where the transfer matrix [T ] = [Tm(−d1)][Tm(0)]−1. The matrix [Tm(z)]) is given408

in Appendix E.409

In this study, we present results for a bilayer composed of two air saturated poroelastic410

materials.411
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The boundary conditions between two poroelastic layers412

The second poroelastic layer is placed after the �rst one so that the points at the413

Γ+
2 are inside the second layer (Fig. 1). Thus, the boundary conditions for the coupling414

between two poroelastic layers are:415

� continuity of the solid velocity vector,416

� conservation of the �uid �ow,417

� continuity of the normal and tangential components of the total stress traction418

acting on the interface,419

� continuity of the pressure in the �uid phase.420

The equations of the conditions of continuity between two poroelastic layers are therefore:421

u̇sx(MΓ−m
) = u̇sx(MΓ+

m
), (D.7)

u̇sz(MΓ−m
) = u̇sz(MΓ+

m
), (D.8)

φm−1

(
u̇fz (MΓ−m

)− u̇sz(MΓ−m
)
)

= φm

(
u̇fz (MΓ+

m
)− u̇sz(MΓ+

m
)
)
, (D.9)

τszz(MΓ−m
) + τfzz(MΓ−m

) = τs(MΓ+
m

) + τfzz(MΓ+
m

), (D.10)

τsxz(MΓ−m
) = τsxz(MΓ+

m
), (D.11)

τfzz(MΓ−m
)

φm−1
=

τfzz(MΓ+
m

)

φm
, (D.12)

where φm−1 and φm are the porosities of the �rst and second poroelastic layers (m = 2).422

This results in a coupling matrix (CM ) that provides interface for the two poroelastic423

layers, m and m− 1:424

CM
12 =



1 0 0 0 0 0

0 1 0 0 0 0

0 1− φm
φm−1

φm
φm−1

0 0 0

0 0 0 1 0 1− φm−1

φm

0 0 0 0 1 0

0 0 0 0 0 φm−1

φm


(D.13)

The global matrix for the two layers can be written as:425

T g = [T1][CM12 ][T2], (D.14)
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where [T1] and [T2] are the transfer matrices of the �rst and second poroelastic layers.426

The m strati�ed layers are bounded on both sides by �uids of semi-in�nite extent touching427

Γ1 and Γm+1428

When the strati�ed porous medium is open to a semi-in�nite �uid medium on Γm+1429

(Fig. 3), the conditions of continuity are:430

(1− φm)vsz(MΓ−m+1
) + φmv

f
z (MΓ−m+1

) = vfz (MΓ+
m+1

),

τszz(MΓ−m+1
) = −(1− φm)p(MΓ+

m+1
),

τsxz(MΓ−m+1
) = 0,

τfzz(MΓ−m+1
) = −φmp(MΓ+

m+1
), (D.15)

where p(MΓ+
m+1

) and u̇fz (MΓ+
m+1

) are the acoustic pressure and velocity at a point on431

Vf (MΓ+
m+1

) = [p(MΓ+
m+1

) u̇sz(MΓ−m+1
)]T in the �uid, and ZΓ+

m+1
is the acoustic impedance.432

By introducing the transmission coe�cient (p(MΓ+
m+1

) = T pi cos(θ)), the condition433

in Eq. (D.15) can be written in matrix form:434

Imf Vm(MΓ−m+1
) =



0 1− φm φm 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


×



u̇sx(MΓ−m+1
)

u̇sz(MΓ−m+1
)

u̇fz (MΓ−m+1
)

τszz(MΓ−m+1
)

τsxz(MΓ+
m+1

)

τfzz(MΓ−m+1
)



=


0 1

−(1− φm) 0

0 0

−φm 0

×

[
p(MΓ+

m+1
)u̇fz (MΓ+

m+1
)
]

= Jmf Vf (MΓ+
m+1

) =


T/Z (MΓ+

m+1
)

−(1− φm)T

0

−φmT

 pi cos(θ).(D.16)

On the left hand side of the strati�ed layer (Fig. 1), the continuity conditions at435
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points lying in the �uid at the interface Γ−1 of the �rst layer are given by:436

(1− φ1)u̇sz(MΓ+
1

) + φ1u̇
f
z (MΓ+

1
) = v(MΓ−1

),

τszz(MΓ+
1

) = −(1− φ1)p(MΓ−1
),

τsxz(MΓ+
1

) = 0,

τfzz(MΓ+
1

) = −φ1p(MΓ−1
), (D.17)

where v(MΓ−1
) = (1 − R)p(MΓ−1

)/Z(MΓ−1
) and p(MΓ−1

) = pi cos(θ) is the velocity of437

the particles at point MΓ−1
in the �uid, and Z (MΓ−1

) is the acoustic impedance. These438

conditions can �nally be written in matrix form:439

I1
f V

1(MΓ−1
) =


0 1

−(1− φ1) 0

0 0

−φ1 0


 p(MΓ−1

)

u̇fz (MΓ−1
)

 = J1
f V

f (MΓ−1
) =


(1−R) /Z (MΓ−1

)

−(1− φ1) (1 +R)

0

−φ1 (1 +R)

 pi cos(θ),

(D.18)

where440

J1
f =



0 1− φ1 φ1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (D.19)

Using the previous relationships given in Eqns.(D.16) and (D.18), the transfer matrix441

equation is then derived and given in Eq. (D.20):442

28



I1
f T

gV(MΓ−m+1
) =



0 1− φ1 φ1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


×



T g
11 T g

12 T g
13 T g

14 T g
15 T g

16

T g
21 T g

22 T g
23 T g

24 T g
25 T g

26

T g
31 T g

32 T g
33 T g

34 T g
35 T g

36

T g
41 T g

42 T g
43 T g

44 T g
45 T g

46

T g
51 T g

52 T g
53 T g

54 T g
55 T g

56

T g
61 T g

62 T g
63 T g

64 T g
55 T g

66



×



u̇sx(MΓ+
m+1

)

u̇sz(MΓ+
m+1

)

u̇fz (MΓ+
m+1

)

τszz(MΓ+
m+1

)

τsxz(MΓ+
m+1

)

τfzz(MΓ+
m+1

)



= J1
f V

f (MΓ−1
). (D.20)

Appendix E. Derivation of the transfer matrix members443

The total wave potential for the compressional waves is:444

ψs
t = ψs

1 + ψs
2, ψf

t = ψf
1 + ψf

2 . (E.1)

The stress-strain relations are obtained from the strain energy W such that τı =445

1
2

(
∂W
∂εı

+ ∂W
∂εı

)
446

τxx =
∂W

∂εx
= 2µεx + λcε− αBMξ,

τzz =
∂W

∂εz
= 2µεz + λcε− αBMξ,

τzx =
∂E

∂γy
= µγy,

pf =
∂E

∂ξ
= Mξ − Cε, (E.2)

where ε = εx + εy + εz, εx = ∂ux
∂x , εz = ∂uz

∂z , γy = ∂uz
∂x + ∂ux

∂z and ξ = ∂uz
∂x + ∂ux

∂z .447
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The components of the displacements are derived from the Helmholtz-Hodge decom-448

position (Eq. (C.1))449

us
x =

∂

∂x
ψs
t −

∂

∂z
ϕs

3, us
z =

∂

∂z
ψs
t +

∂

∂x
ϕs

3, (E.3)

from which the wave velocities are derived:450

ṽs
x = p

(
∂

∂x
ψs
t −

∂

dz
ϕs

3

)
, ṽs

z = p

(
∂

∂z
ψs
t +

∂

∂z
ϕs

3

)
,

ṽf
z = p

(
µ1

∂

∂z
ψs

1 + µ2
∂

∂z
ψs

2

)
+ pµ3

∂

∂z
ϕs

3. (E.4)

Using the above relations provides the matrix of the stresses and velocities in the �uid451

saturated poroelastic layer.452

453
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