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When sound propagates in a porous medium, it is attenuated via several energy loss mechanisms which are switched on or o as the excitation frequency varies. The classical way of measuring acoustic energy loss in porous materials uses the Kundt impedance tube. However, due to its short length, measurements are made in the steady state harmonic regimes. Its lower cuto frequency is often limited to a few hundreds of Hertz.

Two long acoustic waveguides were assembled from water pipes and mounted to create test-rigs for the low-frequency acoustic characterization of monolayer and stratied airsaturated poroelastic materials. The rst waveguide was straight and had a length of 120 m, while the second was coiled to gain space and was 135 m long. The long waveguides appeal to very low frequency measurements using impulsive acoustic waves (with rich spectral content) because the incident waves can be separated in time from echoes o the extremities of the guides. The transmission coecient of porous materials recovered using the two waveguides compared well with those from the transfer matrix method (TMM) used here in combination with Biot's 1962 theory to describe propagation in porous dissipative media. This wave-material interaction model permitted the recovery of the properties of poroelastic materials from transmitted acoustic waves propagating in air. The parameters involved are the Young's moduli, Poisson ratio and microstructural properties such as tortuosity and permeability. Being able to descend to lower frequencies guarantees the correct verication of the magnitude of the measured transmission coecient which approaches unity towards the static frequency. The coiled and straight 1 waveguides were found to be equivalent and provided data down to frequencies of the order of ≈ 12 Hz.

Introduction

Stratied layers are often natural structures e.g., geological layers, the human skull, bird's wing bones, wood, or plants' leaves. Man made stratied layers like sandwich structured-composites are composed of a lightweight but thick core separating two sti light skins. The most commonly used core materials are open-and closed-cell structured foams. The whole structure is often light and ecient in resisting bending and buckling loads [START_REF] Gibson | Principles of Composite Material Mechanics[END_REF]. These composite structures are mainly used in aerospace applications like in helicopter rotor blades. Sound absorbing packages need not to be sti and the cores can be made of limp materials such as natural ber glass or open cell plastic foams.

Acoustic wave propagation in layered media is therefore an important topic for many practical applications, namely medicine, passive noise control, applied geophysics, snow layers, to name but a few.

The goal of this study was to design and develop very low-frequency test-rigs in the form of a compact, coiled, long and straight acoustic waveguide for the characterization of air-saturated stratied or monolayer porous materials. In order to succeed in this endeavour, a wave-porous stratied media interaction model was also developed.

Previous theoretical and experimental studies were developed for the characterization of closed-cell foams using a straight pipe waveguide 22 m long [START_REF] Ogam | Identication of the mechanical moduli of closed-cell porous foams using transmitted acoustic waves in air and the transfer matrix method[END_REF]. The closed-cell foams were modeled as equivalent elastic stratied material. A coiled 50 m long pipe was reported previously for the characterization of porous materials using the equivalent uid model [START_REF] Sebaa | Measuring ow resistivity of porous material via acoustic reected waves[END_REF] in which the porous frame was considered as rigid. However no previous experiments have been done using very long waveguides (length ≥ 120 m) and the stratied layers modeled as poroelastic frames saturated with air.

The recent development and the simplication of the susceptibility models in the lowfrequency regime [START_REF] Fellah | Measuring permeability of porous materials at low frequency range via acoustic transmitted waves[END_REF][START_REF] Sadouki | Measuring static viscous permeability of porous absorbing materials[END_REF] are some of the motivating factors for the development of a very low-frequency waveguide characterization test rig. The purpose of such an undertaking is to generate real data for the recovery of new low frequency parameters of porous media immersed in air and eventually also test the robustness of inversion algorithms [START_REF] Roncen | Acoustical modeling and bayesian inference for rigid porous media in the low-mid frequency regime[END_REF]. Working in the low-frequency regime makes it possible to recover experimentally other new transport parameters for air-saturated porous material like the static viscous tortuosity α 0 and the other visco-inertial parameters characterizing the interactions between the uid and the structure, introduced recently [START_REF] Norris | On the viscodynamic operator in Biot's equations of poroelasticity[END_REF][START_REF] Roncen | Inverse identication of a higher order viscous parameter of rigid porous media in the high frequency domain[END_REF].

The classical, but still popular, Kundt's impedance tube [START_REF] Chung | Transfer function method of measuring in-duct acoustic properties. i. theory[END_REF] in which acoustic absorbing materials are characterized using indirect methods [START_REF] Ben Mansour | Inuence of compaction pressure on the mechanical and acoustic properties of compacted earth blocks: An inverse multi-parameter acoustic problem[END_REF][START_REF] Arun | Investigation of the acoustic performance of bagasse[END_REF][START_REF] Doutres | Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube[END_REF], does not allow measurements to be done in the very low-frequency regime. This is because of its short length. The lower cuto frequency of a waveguide is determined by its length. The mode with the lowest cuto frequency is the fundamental mode of the waveguide. An open ended cylindrical pipe used as a waveguide resonates at an approximate fundamental frequency as function of the length [START_REF] Kinsler | Fundamentals of Acoustics[END_REF][START_REF] Morse | Theoretical acoustics[END_REF]. Therefore, a long waveguide is necessary to get a very low cuto frequency. The other advantage of the long pipe over the Kundt tube is its ability to accommodate transient or impulsive time signals with rich spectral content that can be separated temporally from the ones reected from the end of the pipe.

For a circular waveguide, the upper cuto frequency is determined by its cross-section.

The propagating part of the acoustic eld below this cuto frequency in the pipe consists only of plane waves. The reasons for using a waveguide instead of a free sound eld is that the propagation problem dimension becomes one-dimensional (up to the higher cuto frequency) i.e., sound waves propagate in one direction as plane waves. This implies that the waveguide is inherently low-frequency. The existence of loss mechanisms in dierent frequency regimes (thermal, inertial or viscous [START_REF] Ogam | Recovery of biot's transition frequency of air-saturated poroelastic media using vibroacoustic spectroscopy[END_REF]) can further reduce this cuto frequency if they are within the useful measurement bandwidth of the pipe.

Since the phenomena occurring involves the skeleton and the uid, modeling of the soundstructure interaction using a biphasic model is the most appealing. Remember that the equivalent uid model is just its approximation [START_REF] Sebaa | Measuring ow resistivity of porous material via acoustic reected waves[END_REF][START_REF] Ogam | The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder[END_REF]. matrix method were developed to model the data from the long waveguides. In Biot's biphasic uid-structure interaction theory, the acoustic waves propagate both in the skeletal frame and in the saturating uid of the open-pore porous material. The 1962 version has not been as widely used as the 1956 version [START_REF] Allard | Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials[END_REF]. In the former version, Biot introduced a parameter w = φ(U -u) representing the ow of the uid (U) relative to the solid (u). In our study, Gassman's equations [START_REF] James | Origin of Gassmann's equations[END_REF] in poroelasticity relating dry or drained bulk elastic constants to those for uid-saturated and undrained conditions are integrated. The recent advances and generalizations of theories of dynamic responses of a uid in a porous medium using the concepts of dynamic viscous permeability and tortuosity [START_REF] Johnson | Theory of dynamic permeability and tortuosity in uidsaturated porous media[END_REF] as well as the Champoux Allard [START_REF] Champoux | Dynamic tortuosity and bulk modulus in air-saturated porous media[END_REF] and Lafarge [START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF] thermal permeability models have been integrated into the Biot 1962 model [START_REF] Biot | Generalized theory of acoustic propagation in porous dissipative media[END_REF].

The geometry of the problem and the experimental method for acquiring low-frequency acoustic wave transmission data are described in Section (2.1). The theoretical models are detailed in Section (3). The results are given in Section(4). Discussions on the problems and challenges facing the measurement precision in such long waveguides, and those of the theoretical modeling are discussed in Section(5).

Materials and Methods

The geometry of the acoustic wave transmission problem

The approach to solve the acoustic characterization problem of stratied or mono layers composed of air-saturated porous specimens involves designing and assembling the waveguides, equipping them with transducers (loudspeakers) and sensors (microphones) then acquiring long in length, transmitted low frequency acoustic wave data.

The transmission of an acoustic wave through an open-cell cellular panel (plate) of innite extent bordered on both sides by a uid of semi-innite extent is rst considered.

The incident P-wave (p i ) propagating in the uid impinges on the panel and at the interface wave mode conversion occurs. In the panel, the P-wave breaks into three waves: a solid borne elastic P-wave (P 1 ), a uid borne P-wave (P 2 ) and a shear wave (P 3 ). At the second interface, the shear wave (SW) is transmitted by conversion into a P-wave (p tp←SW ), the solid borne elastic P-wave is transmitted into the uid as a P-wave (P tp ) (see Figure 1). wave P i (Primary (P) wave) travelling in air impinges on the panel. The mode conversions at the host medium -panel interfaces are shown. At the rst interface Γ 1 , the P-wave breaks into three waves, a solid borne P-wave (P 1 ), a uid borne P-wave (P 2 ) and a shear wave (SW ). At the second interface (Γ 2 ); the SW is transmitted into the host medium by conversion into a P-wave (pt p←SW ); the solid borne P 1 -wave is transmitted into the uid as a P-wave (Pt P 1 ). The angle of incidence in this study is normal to the speciment.

The low-frequency acoustic waveguides

The rst long waveguide, coiled and therefore more compact, was installed in a normal room (it could also be moved into an anechoic chamber if necessary). The second waveguide was kept straight and placed outside the main building hanging under the ceiling of a long parking lot in an exterior climatic and noisy trac environment (presence of a moderately busy road nearby).

The low and high cuto frequencies of a waveguide of cylindrical crosssection are given by

f LC = c f (L + 1.6 a) , f HC = 1.8412 c f (2π a) , (1) 
where c f is the sound velocity in the uid, L is the length of the pipe and a, its radius).

The coiled PE pipe waveguide

The rst acoustic waveguide was composed of segments of 10, 25 and two 50 m long polyethylene (PE) water pipes (interior diameter 2.54 cm) joined together using compression nut type mechanical coupling for joining PE pipe to PE pipe. The pipe waveguide system (total length 135 m) was coiled (average coiled radius: 30 cm) so as to gain space and be able to t it into the experimental room (Fig. (2a). An acoustic loudspeaker was introduced at one end of the waveguide. It was then driven to generate an acoustic pulse forcing the pressure to vary in the direction of propagation.

The straight PVC pipe waveguide

The second waveguide was a straight 120 m polyvinyl chloride (PVC) pipe with internal diameter 34.0mm, external diameter 40.0mm respectively (Fig. 2b andc). It was composed of 20 polyurethane water pipes (much longer than in Reference [START_REF] Ogam | Identication of the mechanical moduli of closed-cell porous foams using transmitted acoustic waves in air and the transfer matrix method[END_REF]) joined together using ttings and sealed using PVC cement to make the joints air-tight. The pipe was left straight. Being longer than any available space in the experimental rooms, it was installed under the ceiling of the roof of the car park shelter of the new site of the LMA in the north of Marseille.

A small microphone was placed midway along the length of the waveguide in order to capture the acoustic pulse transmitted by the poroelastic layers. The experimental setup is shown in Fig. (2d).

The cuto frequencies are resumed in was computed from the quotient of the cross power spectral density (S IT ) of the incident p I (t) and transmitted acoustic pressure p T (t) and the power spectral density (S II ) of

p I (t). T IT (f ) = S IT (f ) S II (f ) .
which were computed using the programming languages: Matlab and the free Julia programming language [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]). In this study an example computer code is given in Appendix A).

The transfer matrix method

In this study the transfer matrix method (TMM) was developed to analyze the propagation of acoustic waves in the stratied porous layers. Computations and measurements were rst undertaken for uid-saturated monolayer open-cell foams and then for uid saturated stratied layers. The TMM model was based on the Biot 1962 theory [START_REF] Biot | Mechanics of deformation and acoustic propagation in porous media[END_REF]. The alternative description by Johnson et al [START_REF] Johnson | Theory of dynamic permeability and tortuosity in uidsaturated porous media[END_REF] of the viscous frictions inside the boundary layers in the vicinity of the solid walls was employed. It gives more physical insight into these interactions. The thermal eects model, developed by Champoux, Allard [START_REF] Champoux | On acoustical models for sound propagation in rigid frame porous materials and the inuence of shape factors[END_REF] and Lafarge [START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF] was also employed. These improvements added to the Biot model are highlighted in Appendix B. The complete model is abbreviated herein, BJKCAL.

The equations of motion were derived from constitutive equations relating stresses and pressure to the strains and uid ow [START_REF] Biot | Mechanics of deformation and acoustic propagation in porous media[END_REF] (using indicial notation, ı)

τ ı = 2µ ε ı + δ ı ((H -2 µ)ε -Cξ), p f = -Cε + M ξ, (2) 
where µ is the shear modulus,

H = λ c + 2µ, λ c = λ + α 2 B M (λ is Lamé's coecient), C = α B M , M = K f /φ 1 + D is the complex modulus, D = (α B -φ) K m /φ K s
, the Biot-Willis [START_REF] Biot | The elastic coecients of the theory of consolidation[END_REF] constant α B = 1 -K m /K s , K s is the bulk modulus of the solid matrix, K m is the drained (dry) bulk modulus and K f is the bulk modulus of the pore uid, ε kl are the components of the innitesimal strain tensor and δ ı is the Kronecker delta function:

δ ı =    1, ı = , 0, ı = .
The relative density ζ = (ρ m /ρ s ) (ρ s is the density of the solid matrix and ρ m is the density of the drained skeleton). The Young's modulus of the dry skeletal frame is given by:

E m = C 1 E s (1 -φ) 2 , φ = 1 -ζ, (3) 
where E s is Young's modulus of the solid matrix and φ is the porosity. For open-cell PU foam C 1 ≈ 1 [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF].

From the constitutive equations are derived the two motion equations expressing the dynamic inertial motion of the whole uid-solid system in terms of the stresses. They are written (using vector calculus notation):

∇.τ = µ∇ 2 u + ∇ [(H -µ)ε -Cξ] = ∂ 2 ∂t 2 (ρu + ρ f w), ∇(Cε -M ξ) = ρ f ∂ 2 ∂t 2 u + (t) * ∂ 2 ∂t 2 w, ( 4 
)
where ρ is the density of the mixture (composite), ρ f is that of the uid, u and U are the solid and uid displacements, respectively. The uid displacement relative to the frame, w = φ(U -u) and φ is the porosity. The increase in uid content ξ = -∇.w and the volumetric strain of the solid ε = ∇.u. The equivalent density in the time domain is (t)

and can also be represented as ˜ (ω) = ρ f α(ω)/φ in the frequency domain.

The derivation of the wavenumbers and phase velocities are given in Appendix C.

x 1 2 m In order to model wave propagation in a poroelastic layer (Fig. 3), the acoustic wave eld in the layer is characterized by the wave speeds and the stresses in the uid and solid phases. In this context two state vectors

+ + + + + - - - Γ 1 Γ Γ Γ Γ 2 3 m m+1 - - z θ r P P i . . .
V (M Γ + m ) and V (M Γ + m+1
) at the rst and second points M Γ + m and M Γ - m+1 on the interfaces at Γ + m and Γ - m+1 of a uid saturated poroelastic layer m are chosen as:

V (M Γ + m ) = us x (M Γ + m ) us z (M Γ + m ) uf z (M Γ + m ) τ s zz (M Γ + m ) τ s xz (M Γ + m ) τ f zz (M Γ + m ) T V (M Γ - m+1 ) = us x (M Γ - m+1 ) us z (M Γ - m+1 ) uf z (M Γ - m+1 ) τ s zz (M Γ - m+1 ) τ s xz (M Γ - m+1 ) τ f zz (M Γ - m+1 ) T , (5) 
where the "overdot" represents the derivative with respect to time. The state vectors can be rewritten in matrix form as:

V(M Γ + m ) = [T m (M Γ + m )]A V(M Γ - m+1 ) = [T m (M Γ - m+1 )]A, (6) 
where [T m ] is the transmission matrix of the stresses and velocities and A a vector to be determined.

The derivation of the matrix formulation is given in Appendix D

The derived matrix equation for air saturated stratied bilayer poroelastic plates insonied by a plane wave at an oblique angle of incidence θ i is therefore given in Eq. ( 7): ters are given in Table [START_REF] Ogam | Identication of the mechanical moduli of closed-cell porous foams using transmitted acoustic waves in air and the transfer matrix method[END_REF]. The mechanical parameters (Biot Willis parameters [START_REF] Biot | The elastic coecients of the theory of consolidation[END_REF]) are

                (1-φ1 )T g +φ1 T g (1-φ1 )T g +φ1 T g (1-φ1 )T g +φ1 T g (1-φ1 )T g +φ1 T g (1-φ1 )T g +φ1 T g (1-φ1 )T g +φ1 T g p i cos(θ i ) Z A 0 
φm pi cos(θi )                 ×                 us x (Γ - m+1 ) us y (Γ - m+1 ) uf z (Γ - m+1 ) τ s zz (Γ - m+1 ) τ s xz (Γ - m+1 ) τ f zz (Γ - m+1 ) R T                 =              p i cos(θ i ) Z A -(1-φ1 )pi cos(θi ) 0 -φ1 pi cos(θi ) 0 0 0 0              (7 
given Table (3). These parameters were from our previously reported results, but, some parameters like Poisson ratio were ne-tuned a little bit to match the experimental data. It has previously been reported that the adverse eect on the results due to shearing vibration resonance can be mitigated by the cutting accuracy (radius and circularity) of the materials [START_REF] Song | Investigation of the vibrational modes of edge-constrained brous samples placed in a standing wave tube[END_REF]. Some studies have proposed placing rings on each material surface [START_REF] Dupont | A method for measuring the acoustic properties of a porous sample mounted in a rigid ring in acoustic tubes[END_REF].

In order to put into light the problems that degrade the precision of the measurements, thin samples of melamine and yellow polyurethane foam, both of thickness 1.0 cm, were tested. The TCs are shown in Fig. [START_REF] Norris | On the viscodynamic operator in Biot's equations of poroelasticity[END_REF]. In this conguration, the assumed boundary conditions between the two foams gives an acceptable prediction of the transmission coecient o the static frequency (i.e., frequency > 100 Hz). The mismatches with the theoretical model near the static frequency are of the same type for the two waveguides.

It is important to note that the lower cuto frequency of the microphone is 50 Hz, implying that reducing the amplitude will only result in a poor signal to noise ratio near the static frequency. The other reason for the TCs of thinner lighter foam samples being poorly captured near the static frequency is that, at the lower frequencies, the samples are displaced mechanically (blown aside) at the passage of the low frequency acoustic impulsive wave.

The force of the transient burst displaces the thin low density samples. This makes the air tightness of the boundary conditions between the specimen and the pipe dicult to achieve. One of the remedies is to reduce the amplitude of the acoustic pulse in the pipe, but without compromising the signal to noise ratio especially in the frequency regimes where the attenuation mechanisms come into play.

The transmission coecients of thick monolayer samples of GPUF and melamine foam both (2.5 cm thick) were obtained and found to match the theory well (Fig. 8). These results conrm that the mismatch between theory and experiments at low frequencies can therefore mainly be explained by the lightweight nature of the thin melamine foam samples (easily displaced by the impulsive wave) and the lower cuto frequency of the microphone.

A closer and systematic study on how to improve the measurement of the TC for thinner samples and the confection of a non invasive sample holder will be undertaken.

Such a task will be easier to accomplish since the TMM BJKCAL model, developed herein, has proved to be accurate and robust to model the experiment. 

The measurement bandwidth of the waveguides

The upper theoretical cuto frequency of the straight waveguide (diameter 34 mm) is f HC ≈ 5.9 kHz and that of the coiled pipe (diameter 25.4 mm) is ≈ 7.9kHz (using expressions in Eqn. 1, see Table 1). In reality, these cuto frequencies of the waveguides containing the specimens are lower. A close examination of the transmission coecients indicate that this is due to the lower signal to noise ratio as a result of the energy loss mechanisms in porous material in the long waveguides.

In this study the coherence function [START_REF] Rabiner | Theory and Application of Digital Signal Processing[END_REF][START_REF] Steven | Modern Spectral Estimation[END_REF] was employed to estimate the causality between the incident and transmitted pressure signals in order to determine the frequency where the signal to noise ratio becomes too low. The magnitude coherence estimate is a function of frequency with values between 0 and 1. It indicates how well the two signals correspond to each other at each frequency (i.e, estimates the causality between the input and output) is:

C IT (ω) = |S IT (ω)| 2 S II (ω)S T T (ω) . (8) 
It is therefore the best tool to determine the useful bandwidth of the waveguides.

This bandwidth depends on the attenuation of the porous specimens in the pipes and somehow on the length of the air column. from the viscosity dominated one to the inertia dominated regime [START_REF] Ogam | Recovery of biot's transition frequency of air-saturated poroelastic media using vibroacoustic spectroscopy[END_REF]. This frequency is given by

f T r. viscous→inertial = σφ 2πρ f α ∞ .
Employing values from Table (2) and the above expression, f T r. viscous→inertial = 1200

Hz and 525 Hz for the melamine foam and the GPUF respectively.

Although the theoretical lower cuto frequency for the long waveguide is f LC ≈ 2.5

Hz, the dip of the coherence near the static frequency is due to the cuto frequency of the microphone. This is situated around 50 Hz (the microphone manufacturer) but the coherence is acceptable up to f LC ≈ 12 Hz. This implies that a microphone with a lower cuto frequency can improve the coherence in this frequency zone.

Conclusion

The two test-rigs composed of long pipe waveguides, one straight and the second coiled, were found to appeal to the low-frequency characterization of porous open-cell materials. The transmission coecient data obtained from the two waveguides for monolayer and stratied layers of air-saturated poroelastic materials were found to agree with those obtained from the transfer matrix method that employs the 1962 version of the Biot interaction model [START_REF] Biot | Mechanics of deformation and acoustic propagation in porous media[END_REF] (the models takes into account the uid and skeletal interaction). The advantage of the low frequency measurement is, it allows the verication of the value of the transmission coecient. It is unity at the static frequency. The favorable agreement between the measured transmission coecients in the waveguides with the prediction model make these devices appealing to the recovery of Young's modulus, Poisson ratio of the skeletons and the micro-geometrical properties such as porosity, tortuosity of sound absorbing air-saturated poroelastic materials in air.

The lowering of the bandwidth of the waveguides through the frequency dependent loss mechanisms in the layers and the cuto frequency of the acoustic sensor were observed using the coherence function. These factors resulted in a loss of coherence between the incident and transmitted waves for the lower cuto at around 50 Hz and the higher cuto at ≈ 1100 Hz for the melamine foam and ≈ 500 Hz for the GPUF. Meaning that the upper cuto frequency was way below the theoretical cuto (higher) frequencies of the waveguides. These cuto frequencies were found to correspond to the transition frequencies of the air-saturated poroelastic foams, i.e., the passage from the viscous losses regime to the inertial losses regime.

It was also established that the coiled and straight pipes gave quasi-identical results in the measurement bandwidth considered. The advantage of the coiled pipe is that it occupies smaller space than the straight one. This is an advantage when the experimental arena space is small. However, the larger cross-section area of the straight pipe provides a better representation of the samples (averaging the material properties over a larger surface area). The wider cross-section means that there is lesser attenuation due to the presence of the rigid walls. An improvement in the precision of determining the transmission coecient was observed when thicker samples were employed.

The dynamic scaled compressibility is given by [START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF] 

β(ω) = γ -(γ -1)× 1 + 1 i 1 + M 2 i -1 , = ωρ f k 0 P r ηφ , M = 8k 0 φΛ 2 , (B.2)
where is the reduced frequency, γ is the ratio of specic heats of the saturating gas, Λ is the thermal characteristic length, P r is the Prandtl number. The static thermal permeability k 0 which partly characterizes the thermal eects at low frequencies (when the thermal boundary layer is of the same order of magnitude of the characteristic size of the pores).

   -(Cφ + H) k 2 + (ρ f φ + ρ) ω 2 φ Ck 2 -ω 2 ρ f -(M φ + C) k 2 + (˜ (ω)φ + ρ f ) ω 2 φ M k 2 -ω 2 ˜ (ω)       ϕ s ϕ f    =    0 0    , (C.3)
where k 2 = k.k with k the complex wavenumber, ˜ (ω) =

ρ f φ α(ω).
The solution to this matrix equation provides two wavenumbers for the waves propagating in the saturated poroelastic medium, one solid borne and the second uid borne.

k 2 1,2 = ω 2 -(˜ (ω)H + ρM -2ρ f C) ± √ 2(C 2 -HM ) , (C.4) where = (˜ (ω)H -ρM ) 2 + 4(ρ f H -˜ (ω)C)(ρ f M -˜ (ω)C)
The rotational or shear wave wavenumber

The equivoluminal, rotational (Θ = ∇.u = 0) wavenumber is derived using plane wave potentials, ψ s = Φ s 3 exp(i(-ωt + kr)), ψ f = Φ f 3 exp(i(-ωt + kr)). The matrix equation is given by

   -µ k 2 + (φ ρ f + ρ) ω 2 -φ ρ f ω 2 (φ ˜ (ω) + ρ f ) ω 2 -φ ˜ (ω)ω 2       ψ s ψ f    =    0 0    , (C.5)
From which the shear wavenumber is

k 2 3 = ρω 2 µ 1 - ρ f 2 ˜ (ω)ρ (C.6)
Appendix C.1. The relationships between the solid and uid displacements

The ratios between the displacement potentials of the uid motion and solid in compressional motion are given by:

µ 1,2 = Φ f  Φ s  = k 2  (Cφ + H) -ω 2 (ρ + φ ρ f ) Ck 2  -ω 2 ρ f φ ,  = 1, 2.
(C.7)

The ratio between the displacements potentials of the uid and solid in shear motion is given by:

µ 3 = Φ f 3 Φ s 3 = 1 - k 2 3 µ φ ρ f ω 2 + ρ φ ρ f . (C.8)
The boundary conditions between two poroelastic layers

The second poroelastic layer is placed after the rst one so that the points at the Γ + 2 are inside the second layer (Fig. 1). Thus, the boundary conditions for the coupling between two poroelastic layers are: continuity of the solid velocity vector, conservation of the uid ow, continuity of the normal and tangential components of the total stress traction acting on the interface, continuity of the pressure in the uid phase.

The equations of the conditions of continuity between two poroelastic layers are therefore:

us x (M Γ - m ) = us x (M Γ + m ), (D.7) us z (M Γ - m ) = us z (M Γ + m ), (D.8) φ m-1 uf z (M Γ - m ) -us z (M Γ - m ) = φ m uf z (M Γ + m ) -us z (M Γ + m ) , (D.9) τ s zz (M Γ - m ) + τ f zz (M Γ - m ) = τ s (M Γ + m ) + τ f zz (M Γ + m ),
(D.10)

τ s xz (M Γ - m ) = τ s xz (M Γ + m ), (D.11) τ f zz (M Γ - m ) φ m-1 = τ f zz (M Γ + m ) φ m , (D.12)
where φ m-1 and φ m are the porosities of the rst and second poroelastic layers (m = 2).

This results in a coupling matrix (C M ) that provides interface for the two poroelastic layers, m and m -1:

C M 12 =               1 0 0 0 0 0 0 1 0 0 0 0 0 1 -φm φm-1 φm φm-1 0 0 0 0 0 0 1 0 1 -φm-1 φm 0 0 0 0 1 0 0 0 0 0 0 φm-1 φm               (D.13)
The global matrix for the two layers can be written as:

T g = [T 1 ][C M 12 ][T 2 ],
(D.14)

where [T 1 ] and [T 2 ] are the transfer matrices of the rst and second poroelastic layers.

The m stratied layers are bounded on both sides by uids of semi-innite extent touching

Γ 1 and Γ m+1
When the stratied porous medium is open to a semi-innite uid medium on Γ m+1 (Fig. 3), the conditions of continuity are:

(1 -φ m )v s z (M Γ - m+1 ) + φ m v f z (M Γ - m+1 ) = v f z (M Γ + m+1 ), τ s zz (M Γ - m+1 ) = -(1 -φ m )p(M Γ + m+1 ), τ s xz (M Γ - m+1 ) = 0, τ f zz (M Γ - m+1 ) = -φ m p(M Γ + m+1 ), (D.15)
where p(M Γ + m+1

) and uf

z (M Γ + m+1
) are the acoustic pressure and velocity at a point on

V f (M Γ + m+1 ) = [p(M Γ + m+1 ) us z (M Γ - m+1 
)] T in the uid, and Z Γ + m+1 is the acoustic impedance.

By introducing the transmission coecient (p(M Γ + m+1 ) = T p i cos(θ)), the condition in Eq. (D.15) can be written in matrix form:

I m f V m (M Γ - m+1 ) =            0 1 -φ m φ m 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1            ×                     us x (M Γ - m+1 ) us z (M Γ - m+1 ) uf z (M Γ - m+1 ) τ s zz (M Γ - m+1 ) τ s xz (M Γ + m+1 ) τ f zz (M Γ - m+1 )                     =         0 1 -(1 -φ m ) 0 0 0 -φ m 0         × p(M Γ + m+1 ) uf z (M Γ + m+1 ) = J m f V f (M Γ + m+1 ) =         T /Z (M Γ + m+1 ) -(1 -φ m )T 0 -φ m T         p i cos(θ). (D.16)
On the left hand side of the stratied layer (Fig. 1), the continuity conditions at points lying in the uid at the interface Γ - 1 of the rst layer are given by:

(1 -φ 1 ) us z (M Γ + 1 ) + φ 1 uf z (M Γ + 1 ) = v(M Γ - 1 ), τ s zz (M Γ + 1 ) = -(1 -φ 1 )p(M Γ - 1 ), τ s xz (M Γ + 1 ) = 0, τ f zz (M Γ + 1 ) = -φ 1 p(M Γ - 1 
),

(D.17)

where

v(M Γ - 1 ) = (1 -R)p(M Γ - 1 )/Z(M Γ - 1 
) and p(M Γ - 1 ) = p i cos(θ) is the velocity of the particles at point M Γ - 1 in the uid, and Z (M Γ -

1

) is the acoustic impedance. These conditions can nally be written in matrix form:

I 1 f V 1 (M Γ - 1 ) =         0 1 -(1 -φ 1 ) 0 0 0 -φ 1 0           p(M Γ - 1 ) uf z (M Γ - 1 )   = J 1 f V f (M Γ - 1 ) =         (1 -R) /Z (M Γ - 1 ) -(1 -φ 1 ) (1 + R) 0 -φ 1 (1 + R)         p i cos(θ), (D.18) 
where Using the previous relationships given in Eqns.(D. [START_REF] Ogam | The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder[END_REF]) and (D.18), the transfer matrix equation is then derived and given in Eq. (D.20): 

J 1 f =            0 
I 1 f T g V(M Γ - m+1 ) =            0 
T g                    ×                     us x (M Γ + m+1 ) us z (M Γ + m+1 ) uf z (M Γ + m+1 ) τ s zz (M Γ + m+1 ) τ s xz (M Γ + m+1 ) τ f zz (M Γ + m+1 )                     = J 1 f V f (M Γ - 1 
).

(D.20)

Appendix E. Derivation of the transfer matrix members

The total wave potential for the compressional waves is:

ψ s t = ψ s 1 + ψ s 2 , ψ f t = ψ f 1 + ψ f 2 .
(E.1)

The stress-strain relations are obtained from the strain energy W such that τ ı = (E.4)

Using the above relations provides the matrix of the stresses and velocities in the uid saturated poroelastic layer. 

T m (z) =                    -p cosh (κz

Figure 1 :

 1 Figure 1: Transmission of acoustic waves by a single layer open-cell panel. The incident compressional

Figure 2 :

 2 Figure 2: Sketches and photographies of the low-frequency acoustic waveguide experimental test-rigs. (a) The sketch of the coiled PE pipe waveguide with the loud speaker. (b) The photography of the setup under the parking lot ceiling with the loud speaker. (c) The straight waveguide downstream. (c) Sketch of the experimental test-rig for the low-frequency measurement of the transmitted acoustic waves.

Figure 3 :

 3 Figure 3: The sketch of the stratied uid saturated poroelastic layers.

1 .

 1 The poroelastic material samplesThe air saturated porous foam materials used for this study were open-cell yellow and gray polyurethane (PU) and melamine foam panels. Their micro-visco-acoustic parame-

4. 2 .Figure 4 : 4 . 3 .Figure 5 : 4 . 4 .

 2443544 Figure 4: The transmission coecient for a single porous layer inserted into the coiled waveguide, (a) The incident and transmitted temporal signals. (b) Their power spectral densities. (c) The computed TMM BJKCAL model (squares) and the experimental (solid line) transmission coecients for an opencell GPUF (1.0 cm thick).

Figure 6 :

 6 Figure 6: Comparisons between the theoretical (TMM BJKCAL) and the measured TCs of stratied (double) layers composed of a 1.4 cm and 1.3 cm thick GPUF and melamine foams respectively.

Figure 7 :

 7 Figure 7: Comparisons between the theoretical (TMM BJKCAL) and experimental TCs of stratied (double) layers composed of a YPUF (1.0 cm thick) and melamine (1.0 cm thick) in simple contact placed in the coiled and straight pipes.

Figure 8 :

 8 Figure 8: Comparison between (a) The experimental TC of a single layer GPUF (2.5 cm thick), (b) that of a single layer melamine foam (2.5 cm thick), with the theoretical TC data computed using the TMM BJKCAL model. The measurements were done in the coiled waveguide (135 m long).

Figure 9 :

 9 Figure 9: (a) The spectrum of the incident (without the foam) and transmitted pressure signals for the single layer melamine (2.5 cm thick) foam in Fig. 8b. The coherence between their incident and transmitted acoustic pressure signals (b) the melamine foam, (c) the GPUF foam. The measurements were done in the coiled waveguide (135 m long).

1 -φ 1 φ 1

 11 

1 -φ 1 φ 1

 11 

  x + λ c ε -α B M ξ, τ zz = ∂W ∂ε z = 2µε z + λ c ε -α B M ξ, τ zx = ∂E ∂γ y = µγ y , p f = ∂E ∂ξ = M ξ -Cε, (E.2)where ε = ε x + ε y + ε z , ε x = ∂ux ∂x , ε z = ∂uz ∂z , γ y = ∂uz ∂x + ∂ux ∂z and ξ = ∂uz ∂x + ∂ux ∂z .29The components of the displacements are derived from the Helmholtz-Hodge decomposition (Eq. (C.1))

Table (

 ( 

			1)		
	Waveguide Diameter (mm) Length (m) Lower cuto (Hz) Higher cuto (kHz)
	Coiled	25.4	135	2.5	7.9
	Straight	34.0	120	2.8	5.9

Table 1 :

 1 The cuto frequencies of the two waveguides.

Table 2 :

 2 Values of the parameters recovered using real data and solving an inverse problem[START_REF] Groby | Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reected coecients[END_REF][START_REF] Ogam | Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonic waves[END_REF] for the three open-cell foam specimens.Specimenρ (kg/m 3 ) ρ s (kg/m 3 ) E s (Gpa) E m (Pa) ν m

	Specimen	φ	Λ	Λ Λ	σ	α∞	k 0
			(×10 -6 m)		(Pa.m -2 .s)		(×10 -9 m 2 )
	Yellow PU Foam 0.98	120	2.8	5200	1.2	5.0
	Gray PU Foam	0.98	120	2.0	5000	1.15	3.5
	Melamine Foam	0.99	100	2.0	10000	1.01	8.0
	Yellow PU Foam	24	1200	0.48	190 × 10 3 0.45
	Gray PU Foam		28	1400	0.48	185 × 10 3 0.40
	melamine Foam		8.35	1570	7.4		180 × 10 3 0.47

Table 3 :

 3 Mechanical parameters for the open-cell plastic porous foam specimens[START_REF] Ogam | Recovery of biot's transition frequency of air-saturated poroelastic media using vibroacoustic spectroscopy[END_REF].

Having acquired the incident pressure signal obtained in the absence of the specimen, p i , and the transmitted pressure in the presence of the specimen, p t , the transmission coecient can be computed as follows: N = length(Pi ) ; % Length o f t h e i n c i d e n t s i g n a l

x d f t = fft ( Pi ) ; % compute t h e f a s t Fourier transform x d f t = x d f t ( 1 :N/2+1); psdx = ( 1 / ( Fs*N) ) * abs( x d f t ) . ^2 ; % compute t h e psd psdx ( 2 : end=1) = 2* psdx ( 2 : end=1); % c o n s e r v e t h e t o t a l power X2 f r e q = 0 : Fs/N: Fs / 2 ; % form f f t f r e q u e n c y y d f t = fft ( Pt ) ; % compute t h e f a s t Fourier transform y d f t = y d f t ( 1 :N/2+1); psdy = ( 1 / ( Fs*N) ) * abs( y d f t ) . ^2 ; % compute t h e psd psdy ( 2 : end=1) = 2* psdy ( 2 : end=1);% c o n s e r v e t h e t o t a l power X2 S i i=x d f t . * conj( x d f t )/N^2; % auto psd = con => c o n j u g a t e S i t=y d f t . * conj( x d f t )/N^2; % c r o s s psd Tit=abs ( S i t . / S i i ) ; % compute t h e t r a n s m i s s i o n c o e f f i c i e n t Appendix B. The changes made to improve the frequency behavior of the

Biot model

In the frequency domain, two factors, the dynamic tortuosity (α(ω)) and the dynamic compressibility (β(w)) are modied through multiplication with the uid densities (ρ f ) and compressibility (K f ), to obtain the modied parameters of the porous medium (ρ e = ρ f α(ω) and K e = K f β(ω) -1 ). These two factors represent the deviation from the non dissipative behavior of the uid in free space as the frequency increases.

where i = √ -1, η the viscosity, φ and α ∞ are respectively the porosity and tortuosity of the porous medium, Λ is the viscous characteristic length,

, is an intrinsic parameter depending on the geometry of the pores (σ, the ow resistivity).

Appendix C. Expressions for the wavenumbers

The Helmholtz-Hodge decomposition

In order to calculate the wavenumbers, the solid and uid displacements are rst decomposed into scalar (ϕ) and vector potential (ψ) components using the Helmholtz-Hodge decompositions:

This can be extended to include the ltration w w = φ(u -U ) = ∇ϕ + ∇ × ψ.

(C.2)

Since the gradient and curl operators are linear, the following relations can be deduced

The expressions for the compressional wavenumbers and the rotational wavenumber are given in the following sections. The solutions to the equations provide three wavenumbers for the waves propagating in the solid (one compressional and one shear wave) and in the uid (compressional wave).

Volumetric/dilational (Θ = ∇.u = 0)) or compressional wave wavenumber Using plane wave potentials,

for the curl-free motion (∇ × u = 0) (the subscripts and subscripts s, f represent the solid and uid) a matrix equation is derived

Appendix D. The transfer matrix formulation

The incident and reected plane wave potentials in the layer for ψ and ϕ are expressed in the Laplace domain (L[f(t)](p) = ∞ 0 f (t)e -p t dt) as:

(D.1)

(D.2)

where Φ m et Φ m , (m = 1, 2, 3) are the amplitudes of the incident and reected waves,

(D.4)

The vector A is then obtained through expansion of the potentials in Eq. D.1 (see also [START_REF] Brekhovskikh | Waves in layered Media[END_REF] for the purely elastic case), for example:

(D.5)

After substitution, the vector takes the form:

The characteristic transfer matrix propagation equations in Eq. ( 6) can be simplied: In this study, we present results for a bilayer composed of two air saturated poroelastic materials.