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Abstract

A social choice rule (SCR) is monotonic if raising a single alterna-
tive in voters' preferences while leaving the rankings otherwise unchanged
is never detrimental to the prospects for winning of the raised alterna-
tive. Monotonicity is rather weak but well-known to discriminate against
scoring elimination rules, such as plurality with a run o� and single trans-
ferable vote. We de�ne the minimal monotonic extension of an SCR as
its unique monotonic supercorrespondence that is minimal with respect
to set inclusion. After showing the existence of the concept, we charac-
terize, for every non-monotonic SCR, the alternatives that its minimal
monotonic extension must contain. As minimal monotonic extensions can
entail coarse SCRs, we address the possibility of re�ning them without vi-
olating monotonicity provided that this re�nement does not diverge from
the original SCR more than the divergence prescribed by the minimal
monotonic extension itself. We call these re�nements monotonic adjust-
ments and identify conditions over SCRs that ensure unique monotonic
adjustments that are minimal with respect to set inclusion. As an appli-
cation of our general �ndings, we consider plurality with a runo�, char-
acterize its minimal monotonic extension as well as its (unique) minimal
monotonic adjustment. Interestingly, this adjustment is not coarser than
plurality with a runo� itself, hence we suggest it as a monotonic substitute
to plurality with a runo�.
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1 Introduction

Monotonicity conditions imposed over social choice rules (SCRs) elaborate the
idea that whenever one or more voters change their preferences in a certain
�direction�, the collective choice must also �move towards a similar direction�.
Depending on the precise meaning attributed to the two concepts within quo-
tation marks, the literature admits a variety of monotonicity conditions, most
of which have a normative appeal that rests on strategic concerns.

These conditions are usually strong, the central example being the one iden-
ti�ed by Maskin (1999) as a necessary (but not su�cient) condition for Nash
implementation. For resolute SCRs, Maskin monotonicity coincides with strong
positive association which Muller & Satterthwaite (1977) show to be equivalent
to strategy-proofness. Hence, by Gibbard (1973) and Satterthwaite (1975), only
dictatorial or imposed resolute SCRs are Maskin monotonic. When resoluteness
is not required, the class of Maskin monotonic SCRs expands but, as Jackson
(2001) discusses, still excludes most of the interesting SCRs, such as scoring
rules and Condorcet extensions.

There are three other prominent monotonicity conditions that can be ex-
pressed with reference to Maskin monotonicity:

• Danilov (1992) monotonicity characterizes Nash implementable SCRs, hence
is stronger than Maskin monotonicity.

• Condition alpha (Abreu & Sen (1990)) replaces Maskin monotonicity when
the target is implementation via subgame perfect equilibria. Condition
alpha is considerably weaker than Maskin monotonicity. As Nunez and
Sanver (2018) show, it is satis�ed by several Condorcet extensions while
failed by scoring rules.

• One-way monotonicity is suggested by Sanver & Zwicker (2009) as a
weaker form of strategy-proofness. It is also weaker than Maskin mono-
tonicity, indeed satis�ed by scoring rules while failed by Condorcet exten-
sions.

A monotonicity condition whose normative appeal is independent of any
strategic concern is simple monotonicity1 which asserts that raising a single al-
ternative in voters' preferences while leaving the rankings otherwise unchanged
is never detrimental to the prospects for winning of the raised alternative.2

Throughout the paper we refer to simple monotonicity as monotonicity. Mono-
tonicity is rather weak and satis�ed by most voting rules of the literature. How-
ever, it discriminates against scoring elimination rules which contain well-known

1Simple monotonicity is perhaps the oldest known monotonicity condition in the literature.
It has been expressed under di�erent names during its relatively long history that predates
modern social choice theory. For a comprehensive account, see Black et al. (1958), Brams &
Fishburn (2002) and comments on page 120 of Fishburn (1982).

2The condition has a slightly stronger version which additionally requires that no new
alternative is added to the chosen set. We chose to analyze the weaker version for reasons we
discuss in Footnote 11.
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members such as plurality with a runo� and single transferable vote (Smith
1973).3

Under an SCR that fails monotonicity, it is ambiguous to the candidates
whether they should try to convince voters on the rightness of the cause they
defend. This is a perverse incentive which is incompatible with the idea that
healthiness of democratic outcomes comes from virtues of deliberation. Thus,
conducting elections under a non-monotonic SCR is susceptible to give un-
healthy outcomes.4 Given the perversity induced by monotonicity failures, a
question of interest is to compare SCRs according to their likelihood of non-
monotonicity. This is addressed by Lepelley et al. (1996) for the comparison
of plurality with runo� and antiplurality with runo� when there are three al-
ternatives only. Their analysis gives a complete description of instances where
plurality with a runo� fails monotonicity.5

We suggest recovering failures of monotonicity by minimally extending SCRs
to their monotonic supercorrespondences.6 The SCR that picks every alterna-
tive at every preference pro�le is trivially monotonic. As a result, every non-
monotonic SCR admits at least one monotonic supercorrespondence. A more
interesting and less obvious point is whether a unique minimal supercorrespon-
dence that ensures monotonicity exists. To illustrate our point, consider two
preference pro�les P and P ′ where an alternative x is raised at the latter in
the way expressed by the de�nition of simple monotonicity. Suppose an SCR
F picks x at P but not at P ′. In order to transform F into a monotonic SCR
without discarding any of the originally chosen alternatives, x must be added to
the choice set at P ′. Such an analysis must be made for all pairs of preference
pro�les. Moreover, the added alternatives must also satisfy the requirements of
monotonicity. Thus, transforming F into a monotonic SCR through adding new
alternatives may be a complicated process and it is not obvious whether there
is a unique way of minimally making these additions. Our results on minimal
monotonic extensions answer this question a�rmatively and characterize, for ev-
ery non-monotonic SCR, the alternatives that its minimal monotonic extension
must contain.7

As minimal monotonic extensions can entail coarse SCRs, we address the
possibility of re�ning them without violating monotonicity. To be sure, such a
re�nement must discard some of the alternatives picked by the original SCR,
as otherwise the monotonic extension that is re�ned would not be minimal.
Nevertheless, we ask these re�nements to coincide with the original SCR at
pro�les where the minimal monotonic extension does so, thus ensuring that
they do not diverge from the original SCR more than the divergence prescribed

3An early discussion of other monotonicity failures is given by Fishburn (1982) while a
more recent and comprehensive account can be found in Felsenthal and Nurmi (2017).

4See Doron and Kronick (1977) for arguments against using non-monotonic SCRs.
5These instances, expressed by their Propositions 1 and 3, are special cases of the general

characterization we give in our Theorem 5.1.
6Our approach is similar to the approach in Sen (1995) for Maskin monotonicity.
7Caragiannis et al. (2014) characterize what they call �the approximation with the least

approximation ratio� for the non-monotonic Dodgson's voting rule and this corresponds to
the minimal monotonic extension as we de�ne here.
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by the minimal monotonic extension itself. We call these re�nements monotonic
adjustments and identify conditions over SCRs that ensure unique monotonic
adjustments that are minimal with respect to set inclusion. As an illustration of
the concept, consider the instance exempli�ed in the previous paragraph. The
collective choice rendered monotonic must contain at least x and some other y
at P ′. Now, suppose we need to make a singleton choice at P ′ while x is kept at
P and monotonicity is preserved. Inevitably, x will be the unique choice, hence
discarding y, at P ′. In case the choice of x at P is admissible and monotonicity
is adopted, the choice of x at P ′ is well-justi�ed.8 On the other hand, it is not
obvious that such distortions of F will yield a monotonic SCR. Our analysis
establishes the conditions under which the minimal monotonic extension of F
can be re�ned while monotonicity is preserved and F is minimally distorted.

As an application of our general �ndings, we consider plurality with a runo�,
an SCR that is well-known to fail monotonicity. We characterize the minimal
monotonic extension of plurality with a runo�, as well as its unique minimal
monotonic adjustment. Interestingly, this adjustment is not coarser than plural-
ity with a runo� itself, hence we suggest it as a monotonic substitute to plurality
with a runo�.

Section 2 presents the basic notions and notation. Section 3 introduces the
concept of a minimal monotonic extension, establishes its uniqueness and gives
for every SCR, a characterization of the alternatives that its minimal monotonic
extension must contain. Section 4 introduces the concept of monotonic adjust-
ment and provide conditions an SCRs must satisfy to possess a unique minimal
monotonic adjustment. Section 5 gives an application of these general �ndings
to plurality with a runo�. Here, we compute the minimal monotonic extension
and the minimal monotonic adjustment of this SCR and explain why the latter
can be suggested as a monotonic substitute to plurality with a runo�. Section
6 concludes.

2 Basic notions and notation

Throughout the paper, for a given set X, 2X denotes the power set of X and
#X denotes the cardinality of X. Consider a society N with #N = n ≥ 2
confronting a set of alternatives A with #A ≥ 3. Each voter i ∈ N has a
preference Pi ∈ L(A) where L(A) is the set of linear orders over A.9 We write
P ∈ L(A)n for a (preference) pro�le. A social choice rule (SCR) is a mapping
F : L(A)n −→ 2A\{∅}. We may occasionally de�ne an SCR over some restricted
but non-empty domain D ⊆ L(A)n, hence as a mapping f : D −→ 2A\{∅}.

Given any distinct P, P ′ ∈ L(A)n, we say that P ′ is an improvement for
x ∈ A with respect to P i� xPiy ⇒ xP ′iy ∀y ∈ A\{x},∀i ∈ N and y Pi z ⇐⇒
y P ′i z ∀y, z ∈ A\{x},∀i ∈ N . Note that the distinctness of P and P ′ implies

8We further address this point in Section 4. We thank an anonymous referee for raising
the issue.

9So precisely one of x Pi y and y Pi x holds for any distinct x, y ∈ A while x Pi x fails for
all x ∈ A. Moreover, x Pi y and y Pi z implies x Pi z for all x, y, z ∈ A.
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the existence of some i ∈ N for whom y Pi x and x P ′i y for some y ∈ A\{x}.
We write IMPx(P )  L(A)n for the set of pro�les which are improvements
for x with respect to P . When P ′ is an improvement for x with respect to
P , we equivalently say that P is a worsening for x with respect to P ′ and let
WORx(P ′)  L(A)n be the set of pro�les which are worsenings for x with
respect to P ′.

An SCR F : L(A)n −→ 2A\{∅} is called monotonic if and only if given any
P ∈ L(A)n, any x ∈ F (P ) and any P ′ ∈ IMPx(P ), we have x ∈ F (P ′).10 In
case F is de�ned over a restricted domain D, the condition would require both
P and P ′ belong to D.

Although quite desirable, not every SCR is monotonic. The next section
suggests a solution to monotonicity violations.

3 Monotonic extensions: de�nition and charac-

terization

Given two SCRs F, G : L(A)n −→ 2A\{∅}, we say that G is an extension of
F if and only if F (P ) ⊆ G(P ) ∀P ∈ L(A)n, which we write as F ⊆ G. When
G is also monotonic, we call it a monotonic extension of F . We write µ(F ) to
denote the set of all monotonic extensions of F . Note that µ(F ) is non-empty
for any SCR F , as the SCR K(P ) = A ∀P ∈ L(A)n is a monotonic extension
of every F .

Given any two SCRs F and G with F (P )∩G(P ) 6= ∅ for all P ∈ L(A)n, we
de�ne the SCR F ∩G as F ∩G(P ) = F (P )∩G(P ) ∀P ∈ L(A)n. We �rst show
that the intersection of any two monotonic SCRs is also monotonic.

Proposition 3.1. Let F, G : L(A)n −→ 2A\{∅} be two SCRs with F ∩G (P ) 6=
∅ for all P ∈ L(A)n. If F and G are both monotonic, then F ∩ G is also
monotonic.

Proof: Let F and G be as in the statement of the proposition. Take any
P ∈ L(A)n, any x ∈ F ∩ G (P ) and any P ′ ∈ IMPx(P ). As x ∈ F ∩ G (P )
implies x ∈ F (P ) and x ∈ G(P ) while F and G are both monotonic, we have
x ∈ F (P ′) and x ∈ G(P ′), implying x ∈ F ∩G (P ′), establishing that F ∩G is
monotonic. Q.E.D.

Among all the monotonic extensions of a given SCR F , we are mainly in-
terested in the smallest with respect to set inclusion. We de�ne the minimal
monotonic extension of F as the SCR F =

⋂
G∈µ(F )G. As A and N are both

�nite, so is µ(F ). Therefore, since H ∩G is well-de�ned for any H,G ∈ µ(F ), so
is F . Also, monotonicity of F follows from �nitely many applications of Propo-
sition 3.1 and, by construction, within µ(F ), F is minimal with respect to set
inclusion.11

10The stronger version which we mention in Footnote 2 would additionally impose F (P ′) ⊆
F (P ).

11Our conclusion on the existence of a unique minimal monotonic extension would not
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Remark that while F ⊆ F in general, we have F = F if and only if F
is monotonic. Let δF (P ) = F (P )\F (P ) ∀P ∈ L(A)n give the divergence be-
tween F and F . Note that δF is an SCR de�ned over the domain ∆F =
{P ∈ L(A)n : δF (P ) 6= ∅}.

We now present a characterization result which speci�es the alternatives that
minimal monotonic extensions contain.

Theorem 3.1. Given any SCR F : L(A)n −→ 2A\{∅}, any P ∈ L(A)n, and
any x ∈ A\F (P ), we have x ∈ δF (P ) if and only if there exists P ′ ∈WORx(P )
such that x ∈ F (P ′).

Proof: To show the �if� part, take any SCR F , any P ∈ L(A)n, any x ∈
A\F (P ) and any P ′ ∈ WORx(P ) with x ∈ F (P ′). Consider any G ∈ µ(F ).
Since G is an extension of F , we have x ∈ G(P ′) ⊇ F (P ′). Moreover, x ∈ G(P ),
as G is monotonic. Thus, x ∈ G(P ) for any G ∈ µ(F ), implying x ∈ F (P ) =⋂
G∈µ(F )G(P ).
To show the �only if� part, take any SCR F and suppose there exists P ∗ ∈

L(A)n with some x∗ ∈ δF (P ∗) while x∗ ∈ F (P ) for no P ∈ WORx∗(P ∗).
Construct the SCR F ∗ de�ned at each P ∈ L(A)n as

F ∗(P ) =

{
F (P ) if P /∈WORx∗(P ∗)
F (P ) \ {x∗} if P ∈WORx∗(P ∗) ∪ {P ∗}

Note that F ∗(P ) is well-de�ned because x∗ ∈ F (P ) for no P ∈WOR x∗(P ∗)∪
{P ∗}. We have F ∗ ⊆ F by construction while x∗ ∈ δF (P ∗). So, F ∗  F . We
now show F ⊆ F ∗. Take any P ∈ L(A)n and any x ∈ F (P ) ⊆ F (P ). If P /∈
WORx∗(P ∗), then F (P ) = F ∗(P ), hence x ∈ F ∗(P ). If P ∈ WORx∗(P ∗) ∪
{P ∗} and x 6= x∗, then x ∈ F (P ) \ {x∗} = F ∗(P ). The case P ∈ WORx∗(P ∗)
and x = x∗ contradicts our supposition that x∗ /∈ F (P ) ∀P ∈ WORx∗(P ∗).
Finally, the case x = x∗ and P = P ∗ is null because x∗ ∈ δF (P ∗). Therefore
F ⊆ F ∗.

Thus, F ∗ is both an extension of F and a proper subcorrespondence of F .
We complete the proof by showing that F ∗ is monotonic which contradicts the
minimality of F . Take any P ∈ L(A)n, any x ∈ F ∗(P ) and any P ′ ∈ IMPx(P ).
Consider �rst the case where P ∈ WORx∗(P ∗) ∪ {P ∗}. Since F ∗(P ) = F (P )
\ {x∗}, we have x 6= x∗ implying x ∈ F (P ) which implies x ∈ F (P ′) by the
monotonicity of F while x 6= x∗ensures x ∈ F ∗(P ′). Now consider the case where
P /∈ WORx∗(P ∗). So x ∈ F (P ) = F ∗(P ) and x ∈ F (P ′) by the monotonicity
of F . If P ′ /∈ WORx∗(P ∗), then F (P ′) = F ∗(P ′), thus x ∈ F ∗(P ′). If P ′ ∈
WORx∗(P ∗), then P ∗ ∈ IMPx(P ) which implies x 6= x∗, as otherwise P /∈
WORx∗(P ∗) is contradicted. When x 6= x∗, we have x ∈ F (P ) = F ∗(P ) and
x ∈ F (P ′) by the monotonicity of F . Again, x 6= x∗ ensures x ∈ F ∗(P ′) =
F (P ′), establishing the monotonicity of F ∗. Q.E.D.

So, coming back to the illustration at the introduction, when F picks x at
P but not at P ′ where x is raised, it is straightforward to see that x must

be valid under the stronger version of monotonicity expressed in Footnote 10, as the non-
emptiness of µ(F ) could not be ensured. We thank David Pennock for raising this issue.
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be added to the choice set at P ′. Theorem 3.1 formally shows this but more
importantly establishes that this addition does not create further complications
at other pro�les. In other words, when x is chosen at P but not at P ′ where x
is raised, it is necessary but also su�cient to add x to the collective choice at
P ′, hence the minimal monotonic extension.

4 Re�ning the extension: monotonic adjustments

Minimal monotonic extensions may be coarse. By de�nition they cannot be
re�ned by preserving both their monotonicity and their property of being an
extension of the considered SCR. However, for any F , we may aim to consider
a monotonic re�nement G of F which satis�es G(P ) = F (P ) ∀P ∈ L(A)n\∆F .
So G coincides with F over the domain L(A)n\∆F and selects a subset of F over
∆F . As F is the minimal monotonic extension of F , G cannot be an extension
of F . Thus, G is a monotonic re�nement of F , obtained at the expense of
discarding some outcomes prescribed by F , i.e., F (P ) * G(P ) at some P ∈ ∆F .
We call G a monotonic adjustment of F .

Given any F, we de�ne the SCR

F̃ (P ) =

{
F (P ) if P ∈ L(A)n\∆F

δF (P ) if P ∈ ∆F

So F̃ coincides with F over the domain L(A)n\∆F while over ∆F it discards
all alternatives prescribed by F and picks those in δF . As a matter of fact, F̃
is constructed with the aim of obtaining from F a monotonic and maximally
resolute SCR that distorts the original prescriptions of F as little as possible.
As it will occur in Section 5, there may be instances where F̃ can be proposed
as a monotonic substitute for F . At a �rst glance, it may seem counterintuitive
to re�ne F by picking the alternatives δF (P ) that are rejected by F . To justify
this choice, two remarks are in order:

- δF (P ) consists of alternatives that are found plausible by F at some
pro�le P ′ which is a worsening for those alternatives with respect to P . This
observation, combined with adopting monotonicity as a reasonable condition
makes the choice of δF (P ) well-justi�ed.12 In other words, if F is �interesting�
(in spite of its non-monotonicity) and we wish to render it monotonic, then F̃
is also �interesting�.

- The outcomes of F represent alternatives from which a �nal singleton choice
will be made. Thus, if F itself is an acceptable SCR, then so are its re�nements.
Moreover, F̃ distorts F only at pro�les where F distorts F . Thus, in case F is
seen as a reasonable solution to the non-monotonicity problem of F (which is
the case when the notion of a minimal monotonic extension is adopted), then
so can be seen F̃ .

12This argument would fail in case we were re�ning a monotonic extension of F that is not
minimal. We thank an anonymous referee for raising this issue.
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To be sure, the monotonicity of F̃ is not granted, as we can see from Example
4.1 below. In the sequel we write r(x, Pi) = # {y ∈ A | y Pi x}+ 1 for the rank
of x ∈ A at Pi ∈ L(A).

Example 4.1. Fix some x∗, y∗ ∈ A. The SCR F1 chooses A\{y∗} at every
pro�le P where r(x∗, Pi) = r(y∗, Pj) = 1 for some i, j ∈ N and F1 chooses A
otherwise.

To see that F̃1 is not monotonic, let A = {x∗, y∗, z}, n = 2 and consider the
two pro�les P , R with

P1 P2

z y∗

y∗ z
x∗ x∗

R1 R2

x∗ y∗

z x∗

y∗ z

where F̃1(P ) = F1(P ) = {x∗, y∗, z} and F̃1(R) = δF1
(R) = {y∗}. So x∗ ∈

F̃1(P )\F̃1(R) while R ∈ IMPx∗(P ), showing the non-monotonicity of F̃1.
We introduce two conditions over F that render F̃ monotonic. Given any

x ∈ A and any P,Q,R ∈ L(A)n, we say that Q is between P and R for x
whenever R ∈ IMPx(P ) and Q ∈ WORx(R) ∩ IMPx(P ).

Condition γ1: Take any x ∈ A and any P,Q,R ∈ L(A)n such that Q is
between P and R for x. If x ∈ F (P ) ∩ F (R) and x /∈ F (Q), then δF (R) = ∅.

γ1 says that if x is chosen at P but creates a monotonicity problem at Q
where it is raised while this problem is resolved at R where it is further raised,
then there should be no other alternative that creates a monotonicity problem
at R.

Condition γ2: Take any x ∈ A and any P , R ∈ L(A)n with R ∈ IMPx(P )
and x ∈ F (P ) ∩ F (R). If x ∈ F (Q) for any Q that is between P and R for x
and δF (P ) = ∅ then δF (R) = ∅.

γ2 says that if x is chosen in all pro�les between P and R while P exhibits
no monotonicity problem, then R exhibits no monotonicity problems as well.

The two conditions are rather technical but they characterize the monotonic-
ity of F̃ . Before showing this result, we establish the logical independence of the
two conditions. In fact, F1 in Example 4.1 exempli�es an SCR that satis�es γ1
but fails γ2. To see that F1 satis�es γ1, take x, P,Q,R as in the statement of
the condition. As x /∈ F (Q), we have x = y∗and y∗ ∈ F (R) implies F (R) = A
which in turn implies δF1

(R) = ∅. The violation of γ2 can be observed through
Example 4.1 by noting that x∗ ∈ F (P ) ∩ F (R) and x∗ ∈ F (Q) for any Q that
is between P and R for x∗, while δF1(P ) = ∅ but δF1(R) 6= ∅.

We now give an example of an SCR that fails γ1 but satis�es γ2.

Example 4.2. The SCR F2 picks the unique plurality winner (ties broken by
an exogenous linear order) at every pro�le P . Moreover, if P ∈ L(A)n is such
that r(x, Pi) = 2 for all i ∈ N , for some x ∈ A, then x is also picked at P .

To see the failure of γ1, let A = {x, y, z}, n = 3 and consider the three
pro�les P , Q, R with

8



P1 P2 P3

y y y
x x x
z z z

Q1 Q2 Q3

x y y
y x x
z z z

R1 R2 R3

x x y
y y x
z z z

Here, Q is between P and R for x, and x ∈ F2(P )∩F2(R) while x /∈ F2(Q).
However, δF2

(R) = {y} 6= ∅, showing the failure of γ1. To see the satisfaction
of γ2, take x, P,R as in the statement of the condition. As x ∈ F (P ) ∩ F (R)
and x ∈ F (Q) for any Q that is between P and R for x, it must be that x
is the plurality winner at P . As δF1(P ) = ∅, there exists no y ∈ A\ {x} with
r(y, Pi) ≤ 1 for all i ∈ N . I1 and r(y, Pj) = 2 for all j ∈ I2. As R ∈ IMPx(P ),
x is the plurality winner at R while there exists no y ∈ A\ {x} with r(y,Ri) ≤ 1
for all i ∈ N , impliying δF2

(R) = ∅, hence the satisfaction of γ2.

We �rst show that γ1 is equivalent to the monotonicity of δF :

Lemma 4.1. Given any SCR F : L(A)n −→ 2A\{∅}, δF : ∆F −→ 2A\{∅}
is monotonic if and only if F satis�es γ1.

Proof: To show the �if� part, let F satisfy γ1. Take any Q ∈ ∆F , any
x ∈ δF (Q) and any R ∈ IMPx(Q) ∩ ∆F . As x ∈ δF (Q), ∃ P such that Q ∈
IMPx(P ) and x ∈ F (P ). Note that Q ∈ WORx(R). Therefore, Q is between
P and R for x. Since F is monotonic, x ∈ F (R) ∪ δF (R). As x ∈ F (P ),
x /∈ F (Q) and R ∈ ∆F , by γ1, x /∈ F (R). Therefore x ∈ δF (R), establishing
the monotonicity of δF .

To show the �only if� part, let δF be monotonic. Take any x ∈ A, any
P,Q,R ∈ L(A)n such that Q is between P and R for x while x ∈ F (P ) ∩ F (R)
but x /∈ F (Q). Since P ∈ WORx(Q), x ∈ F (P ) and x /∈ F (Q), by Theorem
3.1, x ∈ δF (Q). Suppose, for a contradiction, R ∈ ∆F . Since R ∈ IMPx(Q)
and δF is monotonic, we have x ∈ δF (R), contradicting x ∈ F (R). Therefore
R /∈ ∆F i.e., δF (R) = ∅, showing that γ1 holds. Q.E.D.

So, for example, F1 in Example 4.1 satis�es γ1, which implies the mono-
tonicity of δF1

while δF2
is not monotonic for F2 in Example 4.2, which fails

γ1.13

Theorem 4.1. Given any SCR F : L(A)n −→ 2A\{∅}, F̃ is a monotonic
adjustment of F if and only if F satis�es γ1 and γ2.

Proof: We �rst prove the �if� part. By construction, F̃ is a re�nement of
F . We now show that F̃ is monotonic. Take any P ∈ L(A)n, any x ∈ F̃ (P )

and any P ′ ∈ IMPx(P ). We show that x ∈ F̃ (P ′) for the four exhaustive cases
below, thus establishing the monotonicity of F̃ .

Case 1. P, P ′ ∈ ∆F . Thus F̃ (P ) = δF (P ) and F̃ (P ′) = δF (P ′). By Lemma
4.1, monotonicity of δF implies x ∈ F̃ (P ′).

13One can see this through the pro�les in Example 4.2 where δF2 (Q) = {x} and R ∈
IMPx(Q) but x /∈ δF2

(R) = {y}.
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Case 2. P ∈ ∆F , P ′ ∈ L(A)n\∆F . Since F is monotonic, x ∈ F (P ′) =

F̃ (P ′).
Case 3. P, P ′ ∈ L(A)n\∆F . Thus x ∈ F (P ), implying x ∈ F (P ′) = F̃ (P ′),

as otherwise we would have P ′ ∈ ∆F .
Case 4. P ∈ L(A)n\∆F , P ′ ∈ ∆F . Suppose x /∈ F̃ (P ′). As F̃ (P ) = F (P )

and P ′ ∈ IMPx(P ), we have x ∈ F (P ′), thus x ∈ F (P ′). By monotonicity of F ,
for any Q between P and P ′ for x, either x ∈ F (Q) or x ∈ δF (Q). If x ∈ δF (Q∗)
for some Q∗ between P and P ′ for x, then by γ1, δF (P ′) = ∅ which contradicts
P ′ ∈ ∆F . If x ∈ F (Q) for all Q between P and P ′ for x, then by γ2, δF (P ′) = ∅
which again contradicts P ′ ∈ ∆F . Therefore x ∈ F̃ (P ′).

We now prove the �only if� part. Let F̃ be a monotonic adjustment of F .
Thus δF : ∆F −→ 2A\{∅} is monotonic and by Lemma 4.1, F satis�es γ1.
Take any x ∈ A, any P , R ∈ L(A)n with R ∈ IMPx(P ), x ∈ F (P ) ∩ F (R) and
x ∈ F (Q) for any Q that is between P and R for x. Let also δF (P ) = ∅, which
ensures F̃ (P ) = F (P ), implying x ∈ F̃ (P ). As R ∈ IMPx(P ), monotonicity
of F̃ (P ) implies x ∈ F̃ (R). If δF (R) 6= ∅ then F̃ (R) = δF (R) which means
x ∈ δF (R), contradicting x ∈ F (R). Therefore δF (R) = ∅ i.e., γ2 holds. Q.E.D.

Several remarks are in order.
γ1 and γ2 are logically compatible, as they are jointly satis�ed by F3, as

de�ned below:

Example 4.3. The SCR F3 picks at every pro�le the unique plurality loser
(ties being broken by an exogenous linear order).

Note that ∆F3 = L(A)n. Therefore, γ2 holds trivially. Also, for any P ∈
L(A)n and Q ∈ IMPx(P ) if x ∈ F3(P ) and x /∈ F3(Q), then x is the plurality
loser at P and not the plurality loser at Q. Thus, for any R ∈ IMPx(Q), x is
still not the plurality loser, hence x /∈ F3(R). Therefore, γ1 holds trivially as
well.

To complete the picture on logical independence, we note that the SCR F4

de�ned below fails both conditions:

Example 4.4. The SCR F4 picks some �xed x∗ ∈ A at every pro�le; moreover
the unique plurality loser (ties broken by an exogenous linear order) at P if and
only if r(x∗, Pi) = 1 for all i ∈ N ; and also y ∈ A with r(y, Pi) = 2 for all i ∈ N .

When F̃ is ensured to be a monotonic adjustment, it need not be unique nor
minimal (with respect to set inclusion). This can be seen through F3 in Example
4.3 where F 3 picks A at every pro�le while ∆F3

= L(A)n which implies that
any monotonic SCR is indeed a monotonic adjustment of F3. Nevertheless, if
F̃ is a monotonic adjustment of F while F satis�es the following Condition γ3,
then F̃ turns out to be the unique monotonic adjustment of F that is minimal
with respect to set inclusion:

Condition γ3: Given any P ∈ ∆F and any x ∈ δF (P ), we have x ∈ F (R)
for some R ∈ WORx(P ) \∆F .
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γ3 says that if x creates a monotonicity problem at P , then among the
pro�les where x is lowered but chosen (such pro�les exist by Theorem 3.1) at
least one must exhibit no monotonicity problem.

Before stating our result, we note the logical independence of γ1, γ2 and γ3.
In fact, F1 in Example 4.1 satis�es γ1 and γ3 but fails γ2; F2 in Example 4.2
satis�es γ2 and γ3 but fails γ1; F3 in Example 4.3 satis�es γ1 and γ2 but fails
γ3.

Theorem 4.2. Given any SCR F : L(A)n −→ 2A\{∅}, F̃ is the unique minimal
monotonic adjustment of F if and only if F satis�es γ1, γ2 and γ3.

Proof: We �rst prove the �if� part. By Theorem 4.1, F̃ is a monotonic
adjustment of F . We now show that F̃ is unique and minimal with respect to
set inclusion. Take any monotonic G which is a re�nement of F and coincides
with F on L(A)n\∆F . So G(P ) = F̃ (P ) for all P ∈ L(A)n\∆F . Now take any
P ∈ ∆F and any x ∈ F̃ (P ) = δF (P ). By γ3, there exists P ′ ∈ WORx(P ) \∆F

such that x ∈ F (P ′) = G(P ′). Since G is monotonic and P ∈ IMPx(P ′) we
have x ∈ G(P ). Therefore, G(P ) ⊇ F̃ (P ) = δF (P ) for all P ∈ ∆F , hence F̃ is
the unique minimal monotonic adjustment of F .

We now prove the �only if� part. Let F̃ be the unique minimal monotonic
adjustment of F . By Theorem 4.1, F satis�es γ1 and γ2. For γ3, take any
P ∈ ∆F and any x ∈ δF (P ). Suppose, for a contradiction, that x /∈ F (R)
∀R ∈ WORx(P )\∆F . Let D = {R ∈ WORx(P ) | x ∈ δF (R)}. Consider the
following SCR F̂ : L(A)n −→ 2A\{∅} de�ned as

F̂ (Q) =

{
δF (Q)\{x} if Q ∈ D ∪ {P}
F̃ (Q) otherwise

Note that F̂ is a re�nement of F and F̂ = F on L(A)n\∆F , i.e., F̂ is an
adjustment of F . Next we argue that F̂ is monotonic. To see this, note that
for any y 6= x, any R ∈ L(A)n and any R′ ∈ IMPy(R), y ∈ F̂ (R) yields
y ∈ F̃ (R) which implies y ∈ F̃ (R′) due to monotonicity of F̃ , so y ∈ F̂ (R′) as
y 6= x. Now consider x ∈ A. For any Q ∈ D ∪ {P}, x /∈ F̂ (Q), so checking
monotonicity condition would be void in this case. When Q /∈ D ∪ {P} and
x ∈ F̂ (R) = F̃ (R), due to our contrary assumption there is no Q′ ∈ D ∪ {P}
which is an improvement for x with respect to Q. Therefore monotonicity check
would be void in this case too. In all other pro�les F̂ coincides with F̃ whose
monotonicity gives us the monotonicity of F̂ . Therefore, F̂ is a monotonic
adjustment of F . Also by construction, we have F̂ ( F̃ which contradicts
minimality of F̃ . Hence, F satis�es γ3 as well.Q.E.D.

SCRs that satisfy all three conditions and, thus, are covered by Theorem 4.2
exist, as we discuss in the next section.

We close the section by discussing an issue raised by an anonymous referee:
How �close� is F̃ to F compared to other monotonic re�nements of F? Such
an analysis needs to measure the distance between two SCRs. Our framework
allows several such measures. For example, one can de�ne the distance between
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two SCRs F and G as the number of preference pro�les where F and G dis-
agree14. This is a measure which overlooks whether the disagreement occurs at
a pro�le where monotonicity is violated or not. As a result, it allows monotonic
re�nements of F that are closer to F than F̃ is.15 However, when F̃ is unique,
these re�nements inevitably distort F at pro�les where monotonicity is not vi-
olated. So, under a measure that honors monotonicity and re�ects the spirit of
F̃ by giving a su�ciently low (but non-zero) weight to disagreements at pro�les
where monotonicity is violated, F̃ would turn out to be closer to F than any
other other monotonic re�nement of F .

5 An application: plurality with a runo�

For any x ∈ A and P ∈ L(A)n, de�ne τ(x, P ) = #{i ∈ N | r(x, Pi) = 1} as the
number of voters who rank x at the top. Let π1(P ) = {x ∈ A | τ(x, P ) ≥ τ(y, P )
∀y ∈ A} be the set of plurality winners, i.e., the alternatives ranked at the
top by the highest number of voters. Similarly, π2(P ) = {x ∈ A\ π1(P ) |
τ(x, P ) ≥ τ(y, P ) ∀y ∈ A \ π1(P )}.

Let

RO(P ) =

{
{{x, y}}x∈π1(P ), y∈π1(P )\{x} if #π1(P ) ≥ 2
{{x, y}}{x}=π1(P ), y∈π2(P ) if #π1(P ) = 1

be de�ned as the set of unordered pairs of alternatives that go for a runo� at
P ∈ L(A)n. Note that RO is not an SCR and due to ties, RO(P ) may contain
more than one unordered pair. We now de�ne the SCR ρ : L(A)n −→ 2A\{∅}
which picks at each P ∈ L(A)n the set of candidates that go for a runo�, i.e.,

ρ(P ) =
⋃

{x,y}∈RO(P )

{x, y}.

Plurality with a runo� is the SCR FPR : L(A)n −→ 2A\{∅} de�ned for each
P ∈ L(A)n as

FPR(P ) = {x ∈ A|∃{x, y} ∈ RO(P ) and #{i ∈ N |xPiy} ≥ #{i ∈ N |yPix}}.

It is well-known that FPR is not monotonic.16

14We could de�ne a more sophisticated measure that also takes into account the amount of
disagreement at a given pro�le but we don't wish to deal with details that are unnecessary
for the argument we are about to make.

15To see this, let A = {x, y} and N = {1, 2}. De�ne F (P ) = {x, y} when x Pi y ∀i ∈ N ;
F (P ) = {y} when y Pi x ∀i ∈ N ; and F (P ) = {x} when x Pi y and y Pj x for i 6= j. Here,
monotonicity is violated at the two pro�les where the outcome is {x}, hence F̃ disagrees with
F at those two pro�les. On the other hand, the SCR G that agrees with F at every pro�le
except the one where x is ranked �rst by both voters (G picks {x} rather than {x, y} at this
pro�le) is monotonic. So, under the measure we described, G is closer to F than F̃ .

16For example, let n = 93, A = {a, b, c} and P be a pro�le where 42 voters have the
preference aPibPic; 27 voters have the preference bPicPia; and 24 voters have the preference
cPiaPib. So RO(P ) = {{a, b}} and FPR(P ) = {a}. Let P ′ be a pro�le where 46 voters
have the preference aP ′i bP

′
i c; 23 voters have the preference bP ′i cP

′
ia; and 24 voters have the

preference cP ′iaP
′
i b. Now RO(P ′) = {{a, c}} and FPR(P ′) = {c} while P ′ ∈ IMPa(P ).
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We �rst show that the minimal monotonic extension of plurality with a
runo� can only contain elements who went for a runo�.

Proposition 5.1. FPR ⊆ ρ.

Proof: We have FPR ⊆ ρ by de�nition. So, if ρ is monotonic, then ρ ∈
µ(FPR) which proves the proposition, as FPR = ∩G∈µ(FPR). Thus, we complete
the proof by establishing the monotonicity of ρ.

Take any P ∈ L(A)n, any x ∈ ρ(P ) and any P ′ ∈ IMPx(P ). As x ∈ ρ(P ),
we have {x, y} ∈ RO(P ) for some y ∈ A\{x}. If #π1(P ) ≥ 2, then x ∈ π1(P ).
By P ′ ∈ IMPx(P ), we have x ∈ π1(P ′), which implies x ∈ ρ(P ′).
If #π1(P ) = 1 and π1(P ) = {x}, then π1(P ′) = {x} as well, implying x ∈ ρ(P ′).
Finally, if #π1(P ) = 1 and π1(P ) 6= {x}, then x ∈ π1(P ′) ∪ π2(P ′). Moreover,
x ∈ π1(P ′) in case #π1(P ′) ≥ 2, implying x ∈ ρ(P ′). Q.E.D.

The next proposition identi�es the elements of ρ excluded from FPR. As a
matter of fact, an alternative who does not go to a runo� as an untied plurality
winner is never included to the minimal monotonic extension.

Proposition 5.2. For any P ∈ L(A)n and any x ∈ ρ(P ) \ FPR(P ), if τ(x, P ) ≤
τ(y, P ) for all {x, y} ∈ RO(P ), then x /∈ FPR(P ).

Proof: Take any P ∈ L(A)n and any x ∈ ρ(P ) \ FPR(P ) with τ(x, P ) ≤
τ(y, P ) ∀{x, y} ∈ RO(P ). Suppose x ∈ FPR(P ). By Theorem 3.1, ∃P ′ ∈
WORx(P ) with x ∈ FPR(P ′).

First observe that π1(P ′) = {x} does not hold because otherwise P ∈
IMPx(P ′) would imply π1(P ) = {x} as well, which would contradict τ(x, P ) ≤
τ(y, P ) ∀{x, y} ∈ RO(P ). As a result, the following two cases are exhaustive:

Case 1: x ∈ π1(P ′) and #π1(P ′) ≥ 2.
So τ(y, P ′) = τ(z, P ′) ∀{y, z} ∈ RO(P ′). Note that P ∈ IMPx(P ′) and

τ(x, P ) ≤ τ(y, P ) ∀{x, y} ∈ RO(P ) imply RO(P ) = RO(P ′). As x ∈ FPR(P ′),
∃ {x, y} ∈ RO(P ′) with #{i ∈ N | x P ′i y} ≥ #{i ∈ N | y P ′i x}. By
RO(P ) = RO(P ′) we note {x, y} ∈ RO(P ) and by P ∈ IMPx(P ′) we have
#{i ∈ N | x Pi y} ≥ #{i ∈ N | y Pi x}, implying x ∈ FPR(P ), contradicting
x ∈ ρ(P ) \ FPR(P ).

Case 2: x ∈ π2(P ′) and π1(P ′) = {y} for some y ∈ A \ {x}.

So {x, y} ∈ RO(P ′) and {x, z} /∈ RO(P ′) ∀z ∈ A \ {x, y}. As x ∈ FPR(P ′),
we have #{i ∈ N | x P ′i y} ≥ #{i ∈ N | y P ′i x}. Note that P ∈ IMPx(P ′)
implies {x, y} ∈ RO(P ) and #{i ∈ N | x Pi y} ≥ #{i ∈ N | y Pi x}, implying
x ∈ FPR(P ), contradicting x ∈ ρ(P ) \ FPR(P ).

Therefore, we conclude x /∈ FPR(P ). Q.E.D.
Thus, an alternative which is included to the minimal monotonic extension

at pro�le P must be the unique untied plurality winner at P . On the other
hand, untied plurality winners are not always included to the extension. Our
next result identi�es the precise conditions under which this inclusion happens.
Before stating the formal result, let us denote the number of voters who ranks
an alternative x on top and z as second in pro�le P , by Nx,z(P ) = #{i ∈
N |xPizPiy ∀y ∈ A\{x, z}}.
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Proposition 5.3. For any P ∈ L(A)n and any x ∈ A\FPR(P ) with π1(P ) =
{x}, we have x ∈ FPR(P ) if and only if for all y ∈ π2(P ), there exists z ∈
A\{x, y} such that

(i) τ(x, P )− τ(y, P ) ≥ τ(y, P )− τ(z, P )
(ii) Nx,z(P ) ≥ τ(y, P )− τ(z, P )
(iii) #(i ∈ N | x Pi z)−#(i ∈ N | z Pi x) ≥ 2(τ(y, P )− τ(z, P )).

Proof: Take any P ∈ L(A)n and x ∈ A \ FPR(P ) where π1(P ) = {x} and
consider any y ∈ π2(P ).

To see the �only if� part, let x ∈ FPR(P ). By Proposition 3.1, ∃ P ′ ∈
WORx(P ) such that x ∈ FPR(P ′). As x /∈ FPR(P ), #(i ∈ N | xPiy) <
#(i ∈ N | yPix). As P ′ ∈ WORx(P ), x /∈ FPR(P ), #(i ∈ N | xP ′iy) <
#(i ∈ N | yP ′ix). So ∃z ∈ A\{x, y} such that {x, z} ∈ RO(P ′) while #(i ∈
N | xP ′iz) ≥ #(i ∈ N | zP ′ix) because otherwise x ∈ FPR(P ′) would not
be possible. Moreover {x, z} /∈ RO(P ) because otherwise we would have x ∈
FPR(P ). Thus, noting {x, z} ∈ RO(P ′)\RO(P ), we observe the existence of
some K ⊆ (i ∈ N | Pi 6= P ′i ). r(x, Pi) = 1 and r(z, Pi) = 2 ∀i ∈ K.

Moreover, #K ≥ τ(y, P ) − τ(z, P ) and #K ≥ τ(x, P ) − τ(y, P ) which
establishes (i) and (ii).

As #(i ∈ N | xP ′iz) ≥ #(i ∈ N | zP ′ix), we have #(i ∈ N | xP ′iz) −#(i ∈
N | zP ′ix) ≥ 2#K which establishes (iii).

To see �if� part, suppose ∃z ∈ A\{x, y} that satis�es conditions (i), (ii)
and (iii) in the statement of the lemma. Take some K ⊆ Nx,z(P ) with #K =
τ(y, P ) − τ(z, P ). Condition (i) ensures the existence of K. Now, take P ′ ∈
L(A)n with P ′i = Pi ∀i ∈ N\K and sP ′i t ⇐⇒ sPit ∀ s, t ∈ A\{x, z} ∀i ∈ K
and zP ′ixPis ∀s ∈ A\{x, z} ∀i ∈ K. Note that P ′ ∈ WORx(P ). Moreover,
as #K = τ(y, P ) − τ(z, P ), we have τ(y, P ′) = τ(z, P ′). Also, by condition
(ii), τ(x, P ′) ≥ τ(z, P ′). Hence {x, z} ∈ RO(P ′). By condition (iii), #(i ∈
N | xP ′iz) ≥ #(i ∈ N | zP ′ix). Thus, x ∈ FPR(P ′) with, by Proposition 3.1,
x ∈ FPR(P ). Q.E.D.

Note that replacing in the statement of the proposition the universal quan-
ti�cation of y with the existential one makes an equivalent statement, as this
change has no impact on the satisfaction of conditions (i), (ii), (iii). More-
over, having a unique plurality winner which is a plurality runo� loser implies
π2(P ) = FPR(P ).

Propositions 5.1, 5.2 and 5.3 lead to the following theorem as a corollary:

Theorem 5.1. For each P ∈ L(A)n, for each x ∈ A\FPR(P ), we have x ∈
δFPR

(P ) if and only if π1(P ) = {x} and given any y ∈ π2(P ) = FPR(P ), there
exists z ∈ A\{x, y} such that

(i) τ(x, P )− τ(y, P ) ≥ τ(y, P )− τ(z, P )
(ii) Nx,z(P ) ≥ τ(y, P )− τ(z, P )
(iii) #(i ∈ N | x Pi z)−#(i ∈ N | z Pi x) ≥ 2(τ(y, P )− τ(z, P )).

So at each P , δFPR
(P ) is either empty or contains a single alternative which

is the unique plurality winner (but plurality with a runo� loser) satisfying the
conditions identi�ed by Proposition 5.3.
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Plurality with a runo� also satis�es the conditions that endows it with a
unique minimal monotonic adjustment.

Theorem 5.2. FPR : L(A)n −→ 2A\{∅} admits a unique minimal monotonic

adjustment F̃PR de�ned as F̃PR(P ) = FPR(P ) for all P ∈ L(A)n\∆FPR
and

F̃PR(P ) = δFPR
(P ) for all P ∈ ∆FPR

.

Proof: We prove the result through Theorem 4.2, by showing that FPR
satis�es γ1, γ2 and γ3. For γ1, take any x ∈ A, and any P , Q, R such that
R ∈ IMPx(P ) and Q is between P and R for x while x ∈ FPR(P ) ∩ FPR(R)
and x /∈ FPR(Q). Since x ∈ FPR(P ) and Q ∈ IMPx(P ), x /∈ FPR(Q) implies
x ∈ δFPR

(Q) by Theorem 3.1. Thus, by Theorem 5.1, π1(Q) = {x}. Since R ∈
IMPx(Q), we have π1(R) = {x} as well. As x ∈ FPR(R), we have δFPR

(R) = ∅
by Proposition 5.3. Therefore, γ1 is satis�ed. For γ2, let x ∈ A, P,R ∈ L(A)n

be as in γ2. Suppose δFPR
(R) 6= ∅, which implies {y} = π1(R) for some y 6= x

and {x} ∈ π2(R) by Theorem 5.1. Note that, as R ∈ IMPx(P ), {y} = π1(P )
and {x} ∈ π2(P ). Since δFPR

(P ) = ∅, by Proposition 5.3

τ(y, P )− τ(x, P ) > τ(x, P )− τ(z, P )

∀z ∈ A\{x, y}. Since R ∈ IMPx(P ), we have τ(x,R) ≥ τ(x, P ), τ(y,R) ≤
τ(y, P ) and τ(z,R) ≤ τ(z, P ) ∀z ∈ A\{x, y}. Therefore,

τ(y,R)− τ(x,R) > τ(x,R)− τ(z,R)

which contradicts Proposition 5.3. Therefore, δFPR
(R) = ∅. So γ2 is satis�ed.

As for γ3, take any P ∈ ∆FPR
. By Proposition 5.3, δFPR

(P ) = π1(P ) = {x}.
If δFPR

(Q) 6= ∅ for all Q ∈ WORx(P ) then it is not possible to �nd y, z that
satis�es conditions (i), (ii) and (iii) of Proposition 5.3 which contradicts the
proposition. Therefore, ∃P ′ ∈WORx(P ) with x ∈ F (P ′) i.e., γ3 is satis�ed.
So all three conditions are met, making F̃PR the unique minimal monotonic
adjustment of F . Q.E.D.

F̃PR is an SCR that suggests to replace the plurality with a runo� win-
ner with the plurality winner at pro�les where plurality with a runo� exhibits
a monotonicity problem. More precisely, F̃PR coincides with plurality with a
runo� unless there is a di�erent unique plurality winner that satis�es the three
conditions of Theorem 5.1, in which case this plurality winner is the outcome.
Thus, F̃PR is a combination of plurality with a runo� with plurality that over-
comes the non-monotonicity problem of plurality with a runo�. Four properties
of F̃PR are worth to be mentioned:

• As there can be at most one alternative who goes to a runo� as an untied
plurality winner, by Theorems 5.1 and 5.2, F̃PR is singleton-valued at
every pro�le where it diverges from plurality with a runo�, thus being
su�ciently re�ned to be of practical use.

• The plurality rule is capable to pick a Condorcet loser (in fact, even an
alternative ranked last by a majority), a well-known defect that is recov-
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ered by plurality with a runo�.17 F̃PR is also free from this defect and
never picks a Condorcet loser, a matter that is ensured by condition (iii)
of Theorem 5.1.

• Although plurality with a runo� needs the full ranking of every voter, at
the cost of making a two round election, it can be implemented by simply
asking voters their best alternative. F̃PR also needs the full ranking of
every voter while it does not admit an informationally simpler two round
version.

• Saari (1990) presents weak consistency as a central unifying theme for a
wide class of social choice paradoxes. Under weak consistency, if the choice
of an SCR F agrees at two pro�les P and Q belonging respectively to two
disjoint societies N and M , then F must make the same choice at the
pro�le P ∪Q belonging to the combined society N ∪M .18 The failure of
weak consistency by plurality with a runo� is not recovered by its minimal
monotonic extension nor by its minimal monotonic adjustment. To see
this take A = {w, x, y, z, t}, a society N with 9 voters with the pro�le P
where 4 voters' preference is x � w � y � z � t, 3 voters' preference is
y � t � w � x � z, 3 voters' preference is t � w � x � y � z, and
a society M with 9 voters with the pro�le Q where 4 voters' preference
is x � w � y � z � t, 3 voters' preference is z � t � w � x � y, 3
voters' preference is t � w � x � z � y. Note that FPR(P ) = FPR(P ) =

F̃PR(P ) = FPR(Q) = FPR(Q) = F̃PR(Q) = {x} while FPR(P ∪ Q) =

FPR(P ∪Q) = F̃PR(P ∪Q) = {t}. Therefore, none of FPR, FPR and F̃PR
are weakly consistent.

6 Conclusion

We introduce two concepts of interest in the treatment of SCRs that fail mono-
tonicity. We start with the minimal monotonic extension of an SCR F which is
the monotonic supercorrespondence F of F that is minimal with respect to set
inclusion. Every non-monotonic F admits a unique minimal monotonic exten-
sion F . However, F may be too coarse to be used as an SCR. As a result we
suggest to re�ne it while preserving its monotonicity, a concept that we call a
monotonic adjustment of F . We introduce an SCR F̃ which agrees with F at
pro�les where F agrees with F . In other words, in case F leaves F intact, F̃
does not distort F . On the other hand, when F adds alternatives to F , F̃ re-
�nes F by discarding all outcomes prescribed by F and preserving all outcomes
added by F . We provide conditions under which F̃ turns out to be the unique
minimal monotonic adjustment of F . To illustrate the use of all this analysis,
we consider a well-known non-monotonic SCR, namely plurality with a runo�

17Sertel and Kalayc�o§lu (1995) comprehensively discussed this issue while campaigning
against the usage of the plurality rule in Turkish political elections.

18A more formal and complete description of these concepts is beyond the scope of this
paper but can be found in Saari (1990).
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and identify its minimal monotonic extension as well as its minimal monotonic
adjustment.

As already argued in Section 4, F is an irresolute SCR, thus prescribing
at each pro�le the list of acceptable alternatives from which a �nal singleton
choice will be made. Therefore, in case F is proposed as a solution to the
monotonicity failure of F , subcorrespondences of F could also present a solu-
tion in this direction. Moreover, the outcomes added by F at some pro�le P
are alternatives that are prescribed by F at some other pro�le P ′ which is a
worsening for those alternatives with respect to P . This observation, combined
with adopting monotonicity as a reasonable condition allows to conclude that
if F is �interesting� (in spite of its non-monotonicity) and we wish to render it
monotonic, then F̃ is also �interesting�. Thus, substituting a non-monotonic F
with its minimal monotonic adjustment arises as a possibly plausible recovery
of the non-monotonicity problem. In fact, plurality with a runo� presents an
instance where its minimal monotonic adjustment turns out to be an SCR of
interest.

We think several point run o� procedures, including the single transferable
vote, would be covered by our Theorem 4.2. Moreover, our analysis inspires
the derivation a formal index of non-monotonicity based on the shape of δF :
∆F −→ 2A\{∅}. This would allow to compare the degree of non-monotonicity
of SCRs, such as plurality with a runo� and the single transferable vote, by
computing their minimal monotonic extensions. We leave all these as open
questions raised by our analysis.

References

Abreu, D., & Sen, A. (1990). Subgame perfect implementation: a necessary
and almost su�cient condition. Journal of Economic Theory, 50(2), 285-299.
Black, D., Newing, R. A., McLean, I., McMillan, A., & Monroe, B. L. (1958).
The Theory of Committees and Elections. Springer.
Brams, S. J., & Fishburn, P. C. (2002). Voting procedures. Handbook of Social
Choice and Welfare. Ed: Arrow, J. K., Sen, A. K., Suzumura, K. Elsevier
173-236.
Danilov, V. (1992). Implementation via Nash equilibria. Econometrica, 60(1),
43-56.
Doron, G. & Kronick, R. (1977). Single transferable vote: An example of per-
verse social choice function, American Journal of Political Science, 21, 303-311.
Felsenthal, D. S., & Nurmi, H. (2017). Monotonicity Failures A�icting Proce-
dures for Electing a Single Candidate. Springer, Switzerland.
Fishburn, P. C. (1982). Monotonicity paradoxes in the theory of elections.
Discrete Applied Mathematics, 4(2), 119-134.
Gibbard, A., (1973). Manipulation of voting schemes: a general result. Econo-
metrica, 41(4), 587-601.
Lepelley, D., Chantreuil, F., & Berg, S. (1996). The likelihood of monotonicity
paradoxes in run-o� elections. Mathematical Social Sciences, 31(3), 133-146.

17



Maskin, E. (1999). Nash equilibrium and welfare optimality. The Review of
Economic Studies, 66(1), 2-38.
Muller, E., & Satterthwaite, M. A. (1977). The equivalence of strong positive
association and strategy-proofness. Journal of Economic Theory, 14(2), 412-418.
Saari D. G. (1990). Consistency of decision processes. Annals of Operations
Research, 23, 103-137.
Sanver, M. R., & Zwicker, W. S. (2009). One-way monotonicity as a form of
strategy-proofness. International Journal of Game Theory, 38(4), 553-574.
Satterthwaite, M. A. (1975). Strategy-proofness and Arrow's conditions: ex-
istence and correspondence theorems for voting procedures and social welfare
functions. Journal of Economic Theory, 10(2), 187-217.
Sen, A. (1995). The implementation of social choice functions via social choice
correspondences: a general formulation and a limit result. Social Choice and
Welfare, 12(3), 277-292.
Sertel M. R. and Kalayc�o§lu E. (1995). Türkiye �çin Yeni Bir Seçim Yöntemi
Tasar�m�na Do§ru, TÜS�AD Türk Sanayicileri ve �³adamlar� Derne§i.
Smith, J. H. (1973). Aggregation of preferences with variable electorate. Econo-
metrica, 41(6), 1027-1041.

18


