
HAL Id: hal-03250712
https://hal.science/hal-03250712v1

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning discontinuous piecewise affine fitting functions
using mixed integer programming over lattice

Ruobing Shen, Bo Tang, Leo Liberti, Claudia d’Ambrosio, Stéphane Canu

To cite this version:
Ruobing Shen, Bo Tang, Leo Liberti, Claudia d’Ambrosio, Stéphane Canu. Learning discontinuous
piecewise affine fitting functions using mixed integer programming over lattice. Journal of Global
Optimization, 2021, �10.1007/s10898-021-01034-x�. �hal-03250712�

https://hal.science/hal-03250712v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Learning discontinuous piecewise affine fitting functions
using Mixed Integer Programming over lattice

Ruobing Shen · Bo Tang · Leo Liberti ·
Claudia D’Ambrosio · Stéphane Canu

Received: date / Accepted: date

Abstract Piecewise affine functions are widely used to approximate nonlinear and
discontinuous functions. However, most, if not all existing models, only deal with
fitting a continuous function. In this paper, we investigate the problem of fitting a
discontinuous piecewise affine function to a given function defined on an arbitrary
subset of an integer lattice, where no restriction on the partition of the domain is en-
forced (i.e., its geometric shape can be nonconvex). This is useful for segmentation
and denoising when the given function corresponds to a mapping from pixels of a
bitmap image to their color depth values. We propose a novel Mixed Integer Pro-
gram (MIP) formulation for the piecewise affine fitting problem, where binary edge
variables determine the location between two partitions of the function domain. To
obtain a consistent partitioning (e.g., image segmentation), we include multicut con-
straints in the formulation. The resulting problem is NP-hard, and two techniques
are introduced to improve the computation. One is to adopt a cutting plane method to
add the exponentially many multicut inequalities on-the-fly. The other is to provide
initial feasible solutions using a tailored heuristic algorithm. We show that the MIP
formulation on grid graphs is approximate, while on king’s graph, it is exact under
certain circumstances. We conduct initial experiments on synthetic images as well as
real depth images, and discuss the advantages and drawbacks of the two models.

Keywords Piecewise affine fitting · Mixed integer programming · Cutting plane ·
Image processing .

Ruobing Shen
Institute of Computer Science, Heidelberg University, 69120 Heidelberg, Germany
E-mail: ruobing.shen@informatik.uni-heidelberg.de

Bo Tang
College of Science, Northeastern University, Boston 02115, USA

Leo Liberti, Claudia D’Ambrosio
LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Stéphane Canu
INSA de Rouen, Normandie Université, 76801 Saint Etienne du Rouvray, France

1 Introduction

Consider a function F defined onD, whereD is a discrete subset of the integer lattice
in the plane. In this paper, we seek to find (or approximate) a discontinuous piecewise
affine function f that best fits F . Our target application is one where F represents the
color depth associated to the pixels of a bitmap image. In statistics, regression is a
widely used approach to model the relationship between the range and the domain of
F , whenever F is either unknown, or too complicated to represent. If y = F (z) for
every z ∈ D, one postulates that F (z) is approximated by a function f(β, z) where
β is a vector of parameters. One then estimates the values of the parameters β so that
a certain function norm ||F (·)− f(β, ·)|| is minimized, i.e.,

min
β

∑
z∈D
‖F (z)− f(β, z)‖.

An alternative approach consists in using non-parametric models, which do not
assume the exact knowledge of parameter β. Function f is then not specified by
a model but rather determined by its range, and, typically, some assumptions are
made [?].

We call a function f piecewise affine (possibly discontinuous) over D if there is
a partition of D into disjoint subsets D1, . . . , Dk such that f is affine when restricted
to each Di (we denote the function f restricted to Di as f i). Let D be the set of all
partitions of D, and F be the set of all piecewise affine functions over D, then any
choice of f ∈ F defines a valid partition D′ ∈ D. Moreover, once the partition D′
is fixed, the corresponding f ∈ F can be easily identified by computing the affine
parameters β within each region Di under some objectives (e.g., mean square error).

The problem of piecewise affine fitting has been studied for decades. Numerous
clustering based algorithms [?,?,?] are designed for different variants of the problem,
but only suffice to find local optimal solutions. Exact formulations of the problem via
MIP are also proposed, but often with restrictions. Examples include the continuous
piecewise linear fitting models [?], where the domain partition is in a sense pre-
defined, and the fitting function f is restricted to be continuous over D. A general n-
dimensional piecewise linear fitting problem has been studied in [?], and formulated
as a parametric model using MIP. However, the assumption that the partitions are
linearly separable does not hold in many practical applications.

In this paper, we focus on the non-parametric model that finds a discontinuous
piecewise affine function f ∈ F to approximate F , where the affine regions are
unknown and the affine parameters within each Di are not explicitly computed. Our
problem can be mathematically represented as follows:

min
D′∈D

n∑
i=1

(∫
Di

| f i(z)− F (z) | dz + λPer(Di)

)
(1a)

(D1 ∪D2 . . . ∪Dn) = D′ and Di ∩Dj = ∅, ∀i 6= j, i, j ≤ n, (1b)

f i is affine on Di, ∀i = 1, . . . , n, (1c)

where Per(Di) denotes the perimeter of each affine region Di and λ is a regular-
ization parameter [?] that penalizes over-partitioning. The first term of the objective

Fig. 1: A synthetic 2D image with noise that has linear trend and its 3D view.

function measures the quality of data fitting, and the second regularization term is
used to balance the former with the number and boundary length of affine regions,
to prevent from over-fitting. Note that an absolute fitting term is adopted here to en-
able a Mixed Integer Linear Programming (MILP) formulation of the model. Further
constraints will be introduced to model the linearity within Di, in Sections 2 and 3.

Since we are mostly interested in the 2 dimensional (2D) case, and Figure 1
shows a synthetic image with noise that has linear trends and its 3D view, where the
horizontal axes z(z1, z2) represent the coordinates of the image pixels. Upon finding
a piecewise affine function f ∈ F , we obtain a segmentation (to be introduced in next
section) of the image into background and three partitions (segments), and a denoised
image (with fitted value f(z)) as a by-product.

1.1 Related work on Image Processing

For denoising (fitting) 2D images, the total variation (TV) model [?] is widely used

min
f

∫
D

(f(z)− F (z))2dz + λTV(f), (2)

where the first part is the squared data fitting term (f is the fitting function) and the
second part is the regularization term. The TV regularizers can be either isotropic or
anisotropic. The latter can be mathematically described as follows:

TVani(f) =

∫
D

(|∂z1f |+ |∂z2f |) dz,

where ∂zi represents the partial derivative of f with respect to zi, for i = 1, 2. Lysaker
and Tai [?] provide a second-order regularizer

R2(f) =

∫
D

(|∂z1z1f |+ |∂z2z2f |) dz,

which better fits the scenarios of this paper.
Let [n] denote the discrete set {1, 2, . . . , n}, and y ∈ Rn be a vector of real

values, where yi = F (i),∀i ∈ Z. Further denote w ∈ Rn be a vector of unknown

real variables, where wi = f(i),∀i ∈ Z. Then, the classical (discrete) piecewise
constant Potts model [?,?] has the form

min
w
‖w − y‖2 + λ‖∇1w‖0, (3)

where ‖ · ‖2 denotes the `2 norm, and ‖ · ‖0 the `0 norm. The discrete first derivative
∇1w is the n− 1 dimensional vector

∇1w = (w2 − w1, w3 − w2, . . . , wn − wn−1),

and the `0 norm of a vector is its number of nonzero entries. The case of F mapping
from 2D lattice (corresponds to 2D images) can be easily generalized [?].

Compared to the TV regularization term which over-penalizes the sharp discon-
tinuities between two regions in an image, the `0 term in the Potts model is more
desirable, but also more computationally costly. The discrete Potts model is in gen-
eral NP-hard to solve. The work [?] was one of the first to utilize the Potts model,
and recently [?,?] formulate it as a MIP that could find global optimum.

Apart from image denoising, we also look into the image segmentation problem.
In graph based models, one first builds a square grid graph G(V,E) to represent an
image, where V corresponds to pixels of an image grid and E represents the 4 or 8
neighboring relations between pixels [?].

A graph partitioning V is a partition of V into disjoint node sets {V1, V2, . . . , Vk}.
Note that in graph-theoretical terms, the problem of image segmentation corresponds
to graph partitioning. The multicut induced by V is the edge set δ(V1, V2, . . . , Vk) =
{uv ∈ E | ∃i 6= j with u ∈ Vi and v ∈ Vj}. Hence, an image segmentation problem
can be represented either by node labeling, i.e., assigning a label to each node v ∈ V ,
or by edge labeling, i.e., a multicut defined by a subset of edges E′ ⊆ E, see the
left image of Figure 2 as an example, where the multicut of 8 dashed edges uniquely
defines a partition of the 4× 4-grid graph into 3 segments.

In machine learning, one often distinguishes between supervised and unsuper-
vised learning. In the former case, the labels of classes (e.g., person, grass, sky, etc)
are pre-defined, and annotated data is needed to train the model. Among many ex-
isting supervised models, the classical Markov Random Field (MRF) is well studied,
and interested readers may refer to [?] for an overview of this field. Recently, Convo-
lutional Neural Networks [?] have become increasingly important in many computer
vision tasks, such as semantics and instance segmentation [?,?,?]. However, huge
amount of annotation effort (in terms of pixel level annotated data) and computa-
tional budget (in terms of number of GPUs and training time) are needed.

In the unsupervised case, the labels’ class information is missing, or only partially
provided (called weakly or semi-supervised learning). This introduces ambiguities
when node labeling is used. See, for example, the node labeling in Figure 2. If we
permute the labels (colors), it will result in the same segmentation. On the contrary,
edge labeling (e.g., by multicuts) does not exhibit such symmetries and is therefore
more appealing in this case. Recent notable approaches are the (lifted) multicut prob-
lems [?,?,?] based on Integer Linear Programming formulations, which label edges
(0 or 1) instead of pixels. The multicut constraints [?] (introduced in Section 3.2) are

Fig. 2: Left: two representations of an image segmentation: node labeling (by colors)
and edge labeling via multicuts (dashed edges). Right: example of a 9-pixel segment.

used to enforce a valid segmentation. These methods do not require annotated data
and can be run directly on CPUs.

In this work, we borrow ideas from the second derivative TV and Potts model,
and propose a novel MILP formulation for the discontinuous piecewise affine fitting
problem. The proposed method is an unsupervised approach.

1.2 Main contributions

The main contributions of this paper are as follows.

– We propose a non-parametric model for the general discontinuous piecewise affine
fitting problem over lattice.

– The model is formulated as a MILP and multicut constraints are added using
cutting plane method to ensure a valid partition (affine region).

– The model is approximate on grid graph, while it is exact on king’s graph under
certain circumstances.

– We design a tailored region fusion based heuristic algorithm, which is used as
initial solution to the MILP.

– We validate both models on synthetic and real images data.

2 MIP for the piecewise linear fitting model: 1D

We first restrict ourselves to the simple case where the domain D ⊆ Z1 and zi = i
(could be easily generalized to D ⊆ R1). Our model is able to find the optimal
piecewise linear function f ∈ F that best fits the original function F : D → R1.

2.1 Modeling as a MIP

The problem over lattice in 1D could be naturally modeled as a chain graph, and we
assume zi = i. The associated graph G(V,E) is defined with V = {i | i ∈ [n]} and

E = {ei = (i, i+ 1) | i ∈ [n− 1]}. We introduce n− 1 binary variables:

xe =

{
1, if two nodes of edge e are in different linear regions,
0, otherwise,

where an edge e is called active if xe = 1, otherwise it is dormant.
Our goal is to fit a piecewise linear function f ∈ F to F . We denote the fitting

value f(i) as wi, for i ∈ [n], and xi := xei , for i ∈ [n − 1]. We further denote the
discrete second derivative of wi

∇2wi := wi−1 − 2wi + wi+1, i ∈ [2 : n− 1],

where [2 : n− 1] denotes the discrete set {2, 3, . . . , n− 1}.
We then define the following property:

∇2wi = 0⇔ xi−1 = xi = 0, i ∈ [2 : n− 1]. (4)

The rationale behind (4) is that a zero second derivative imposes the same linear
region, while a nonzero one infers the boarders of two linear pieces, i.e., there exists
an active edge.

The above property can be modeled via MIP using the “big M” technique, which
leads to the formulation

min
∑n

i=1
|wi − yi|+ λ

∑n−1

i=1
xi (5a)

|∇2wi| ≤M(xi−1 + xi), i ∈ [2 : n− 1], (5b)
wi ∈ R, i ∈ [n], (5c)
xi ∈ {0, 1}, i ∈ [n− 1], (5d)

where λ > 0 is similar to the regularization term in the Potts model (3). It is worth
to mention that there are common tricks to formulate (5a)-(5d) as a MILP. Namely,
|w| ≤Mx is replaced by two constraints w ≤Mx and −w ≤Mx, and the absolute
term |w − y| in the objective function is replaced by ε+ + ε−, plus an additional
constraint w − y = ε+ − ε−, where ε+ ≥ 0, ε− ≥ 0.

It can be easily proved that the optimal solution x? of problem (5a)-(5d) satisfies
property (4). The direction that x?i−1 = x?i = 0 ⇒ ∇2wi = 0 is directly enforced
by constraint (5b). On the other hand, if ∇2wi = 0, the optimal solutions satisfy
x?i−1 + x?i = 0 (thus x?i−1 = x?i = 0) since (5a)-(5d) is a minimization problem with
positive weights on x.

Figure 3 shows an example of 3 linear functions pieces and 2 active edges com-
puted by formulation (5a)-(5d). We see that the optimal solution wi is the fitting
value for node i, and xi = 1 acts as the boundary between two linear pieces. As a
result, the nodes between two active edges define one linear region. Although being
non-parametric, the parameters for each linear function can be easily computed af-
terwards, and the number of regions equals

∑n−1
i=1 xi + 1. Hence, upon solving the

MIP formulation (5a)-(5d) in 1D, a piecewise linear function f ∈ F can be easily
constructed, and f(i) = wi, ∀i ∈ [n], i.e., (1c) holds.

Fig. 3: An example with 3 affine segments and 2 active edges.

Fig. 4: Left: example where outlier exists (both el and er are active). Right: example
with two segments where the optimal solution is not unique (either el or er is active).

Note in the above example of Figure 3, the cases where ∇2wi 6= 0 actually
induces xi−1 + xi = 1. However, there exists instances where xi−1 + xi = 2 for
∇2wi 6= 0. The image on the left of Figure 4 depicts an example where the node 5
is an outlier (as an one node partition), and xel + xer = 2. We also observe that
problem (5a)-(5d) does not necessarily output unique optimal integer solution x. One
extreme example is shown in the right image of Figure 4, where either xel or xer
can be active (but not both) in the optimal solution, and they yield the same optimal
objective value. Furthermore, notice that any solution with ∇2wi 6= 0 and xi−1 +
xi > 0 that satisfies (5b), is feasible, but may not be optimal to (5a)-(5d).

3 MIP of the piecewise affine fitting model: 2D grid graph

We are more interested in the case whereD ⊆ Z2 and we assume zi,j = (i, j), and F
represents the color depth associated to the pixels of a bitmap image. We first focus

Fig. 5: Left: image segmentation with two multicuts on 2D king’s graph. Right: ex-
ample of a 9-pixel segment.

on the simple grid graph representation of D. Our model is able to find the fitting
value w and a valid graph partition. The optimal piecewise affine function can be
approximated and constructed afterwards.

3.1 Modeling as a MIP

The domain of a 2D image with m × n pixels could be naturally modeled as a rect-
angular grid graph G(V,E), where V = {(i, j)| i ∈ [m], j ∈ [n]}, and E represents
the relations between the center and its 4 neighboring pixels (see Figure 2 for demon-
stration). Let yi,j = F (i, j) be either gray scale or RGB value of pixel (i, j), and
in this paper, we restrict ourself to the former, i.e., yi,j ∈ R1. We divide the edge
set E of the grid graph into its horizontal (row) edge and vertical (column) edge
sets. Let xri,j denote the binary edge variable for ((i, j), (i, j + 1)), and xci,j for edge
((i, j), (i+ 1, j)), and they are illustrated in the left of Figure 5. Hence, for any edge
e ∈ E, it can be represented as either xri,j or xci,j , for some i ∈ [m] and j ∈ [n].

The piecewise affine fitting model in grid graph is obtained by formulating (5b)
per row and column, and using a similar objective function

min
∑m

i=1

∑n

j=1
|wi,j − yi,j |+ λ

∑
e∈E

xe (6a)

|∇2
rwi,j | ≤M(xri,j−1 + xrij), i ∈ [m], j ∈ [2 : n− 1], (6b)

|∇2
cwi,j | ≤M(xci−1,j + xcij), i ∈ [2 : m− 1], j ∈ [n], (6c)

wij ∈ R, i ∈ [m], j ∈ [n], (6d)
xrij = x((i,j),(i,j+1)), i ∈ [m], j ∈ [n− 1], (6e)

xcij = x((i,j),(i+1,j)), i ∈ [m− 1], j ∈ [n], (6f)

xrij ∈ {0, 1}, i ∈ [m], j ∈ [n− 1], (6g)

xcij ∈ {0, 1}, i ∈ [m− 1], j ∈ [n], (6h)

xe ∈ {0, 1}, e ∈ E, (6i)

Fig. 6: A counter-example where model (6a)-(6i) does not form a valid segmenta-
tion. Left: 3D view of the input image y (and the fitting function w?). Right: the
corresponding graph and active edges.

where M is again the big-M constant. Here,∇2
rwi,j = wi,j−1 − 2wi,j + wi,j+1,

and ∇2
cwi,j = wi−1,j − 2wi,j + wi+1,j . That is, the discrete second derivative with

respect to z1 and z2-axis. Upon solving (6a)-(6i), it serves for the purpose of de-
noising by computing w. But two questions still remain: does the binary solution x
represent a valid graph partition (or image segmentation)? If so, is w aligned with
any piecewise affine function f ∈ F , i.e., is (1c) satisfied?

The answer to both questions is “no”, unfortunately. We will show in the next two
sections that the first “no” could be fixed by enforcing the multicut constraints [?].
However, the second one is not guaranteed, thus making this model approximate.

3.2 Multicut constraints for valid partitioning

The multicut constraints introduced in [?] are inequalities that enforce valid graph
partitioning (image segmentation) in terms of edge variables. It reads∑

e∈C\{e′}

xe ≥ xe′ , ∀ cycles C ⊆ E, e′ ∈ C, (7)

which basically says that, for any cycle, the number of active edges cannot be 1.
Recall that an edge is called active if its two end nodes belong to different paritions.
Otherwise, the two nodes of the active edge are again “linked” (hence belong to the
same partition) by connecting the rest edges of the cycle, hence a contradiction.

We now prove the following lemma.

Lemma 1 The multicut constraints (7) are needed for the optimal solution x? of
(6a)-(6i) to form a valid segmentation.

Proof We prove this lemma by constructing a counter-example as follows:
In the left image of Figure 6, the input function F , where D contains 15 elements

(nodes), is constructed to lie exactly on two affine planes with respect to their coordi-
nates z = (z1, z2). The optimal fitting affine function of the left plane is w? = 4− z2
and the right one is w? = z2. We shall see that the 3 pixels with fitting data w = 2 lie
on both affine planes with respect to the coordinates z.

Let the vertical axis be y, and, if we project the 3D plot into the z2, y-space, for
fixed z1, i.e., z1 = 0, the resulting F is exactly the same 1D case we studied in the
right image of Figure 4. We have showed that the optimal solution is not unique.

Hence, we can easily construct one optimal solution x? (with 2 green and 1 red
active edges) of (6a)-(6i) shown in the right image of Figure 6, where the multicut
constraints (7) is not satisfied. That is, there exists a cycle e0-e1-e2-e3 that violates it.

3.3 The MIP formulation: 2D grid graph

We thus add the multicut constraints (7) to the piecewise affine fitting model (6a)-(6i),
to form a valid partition. This leads to the MIP formulation of 2D grid graph

min
∑m

i=1

∑n

j=1
|wi,j − yi,j |+ λ

∑
e∈E

xe (8a)

|∇2
rwi,j | ≤M(xri,j−1 + xrij), i ∈ [m], j ∈ [2 : n− 1], (8b)

|∇2
cwi,j | ≤M(xci−1,j + xcij), i ∈ [2 : m− 1], j ∈ [n], (8c)∑

e∈C\{e′}
xe ≥ xe′ , ∀ cycles C ⊆ E, e′ ∈ C, (8d)

wij ∈ R, i ∈ [m], j ∈ [n], (8e)
xrij = x((i,j),(i,j+1)), i ∈ [m], j ∈ [n− 1], (8f)

xcij = x((i,j),(i+1,j)), i ∈ [m− 1], j ∈ [n], (8g)

xrij ∈ {0, 1}, i ∈ [m], j ∈ [n− 1], (8h)

xcij ∈ {0, 1}, i ∈ [m− 1], j ∈ [n], (8i)

xe ∈ {0, 1}, e ∈ E. (8j)

Note that the number of inequalities (8d) is exponentially large [?] with respect to
|E|, where |E| denotes the number of edges inG. Hence, in practice, it is not possible
to include them into (8a)-(8j) at one time. We will discuss in details in Section 5.2
the cutting plane algorithm that handles (8d).

It is well known that, if a cycle C ∈ G is chordless, then the corresponding
multicut constraint (7) is facet-defining for the corresponding multicut polytope [?,?].
Among all, the simplest ones of a grid graph are the 4 and 8-edge chordless cycle
constraints (see the 4-edge cycle e0-e1-e2-e3 in Figure 2 for an example), and the
number of these constraints is linear to |E|.

In Section 6, we will test different strategies of adding the 4 and 8-edge chordless
cycle constraints to (8a)-(8j) as initial constraints.

3.4 Approximate model for piecewise affine fitting: 2D grid graph

We then prove the following theorem.

Fig. 7: A counter-example where model (8a)-(8j) does not form a valid segmentation,
i.e., cycle e0 − e1 − e2. Left: 3D view of input image y. Right: the corresponding
king’s graph and active edges.

Theorem 1 The solution of the MIP formulation (8a)-(8j) does not necessarily cor-
respond to a piecewise affine fitting function f ∈ F that fits F , i.e., (1c) does not
hold.

Proof We prove this theorem by constructing a counter-example where one feasible
solution w? ⊂ (w?, x?) of (8a)-(8j) restricted on one parition does not lie in the same
affine function.

Suppose x? corresponds to the graph partition in the right image of Figure 2,
where the 9 nodes on the top left corner form a partition. For simplicity, we restrict
ourselves to this partition where the integer coordinates of the pixels range from (0, 0)
to (2, 2), i.e., the top left node is at position (0, 0).

By constraint (8b), the w? of the 3 nodes on each row satisfy the same linear
function. Assume the linear function in the first and second row of nodes satisfy
w = a1z2 + b1 and w = a2z2 + b2, where (a, b) are the coefficients of the linear
function and z2 the discrete coordinates that range from 0 to 2 in this case. Then, the
fitting value w? of the 6 nodes on the first two rows are listed in the following matrix:

[
w00 w01 w02

w10 w11 w12

]
=

[
b1 a1 + b1 2a1 + b1
b2 a2 + b2 2a2 + b2

]
.

We can then compute w22 by using constraint (6c), where w22 = 2w12 − w02 =
4a2 + 2b2 − 2a1 − b1. We note that, if w? of the 9 nodes lies in any affine function
f i, then w00 − 2w11 + w22 = 0.

However, we have w00 − 2w11 + w22 = 2(a2 − a1), which is a contradiction
when a1 6= a2. Thus, we complete the proof.

Notice that, however, the MILP formulation (8a)-(8j) guarantees a valid parti-
tioning, thanks to the multicut constraints. Hence, one can then fit an affine function
within each partition afterwards, thus obtaining a valid (without optimality guarantee)
piecewise affine function f ∈ F as post-processing. Hence, this model is approxi-
mate.

4 MIP of the piecewise affine fitting model: 2D King’s graph

We now investigate the king’s graph representation, see Fig. 7 as an example. Recall
that a king’s graph represents all legal moves of the king chess piece on a chess-
board [?]. We show that, compared to the grip graph representation, our model is
able to find a feasible piecewise linear function f ∈ F (hence exact), under certain
circumstances. In other cases, an approximate piecewise affine function can be easily
found afterwards.

4.1 The MIP formulation: 2D King’s graph

In addition to the column and row edges in Section 3.1, we further define two sets
of diagonal edges variables, where xd1i,j represents edge ((i, j), (i + 1, j + 1)), and
xd2i,j for edge ((i, j), (i + 1, j − 1)), as illustrated in the left of Figure 5. The MIP
formulation on king’s graph is similar to that of (8a), by adding the extra second
derivative constraints on the diagonal direction (see (9d)-(9e)).

The multicut constraints (7) are still needed to form a valid segmentation. One
counter example is shown in Figure 7, where the dashed edges are “active“, and
cycle e0 − e1 − e2 does not satisfy the constraint (7). Its proof is similar to that of
Lemma 1, and is omitted here.

The piecewise affine fitting model in 2D king’s graph reads

min
∑m

i=1

∑n

j=1
|wi,j − yi,j |+ λ

∑
e∈E

xe (9a)

|∇2
rwi,j | ≤M(xri,j−1 + xrij), i ∈ [m], j ∈ [2 : n− 1], (9b)

|∇2
cwi,j | ≤M(xci−1,j + xcij), i ∈ [2 : m− 1], j ∈ [n], (9c)

|∇2
d1wi,j | ≤M(xd1i−1,j−1 + xd1i,j), i ∈ [2 : m− 1], j ∈ [2 : n− 1], (9d)

|∇2
d2wi,j | ≤M(xd2i−1,j+1 + xd2i,j), i ∈ [2 : m− 1], j ∈ [2 : n− 1], (9e)∑

e∈C\{e′}
xe ≥ xe′ , ∀ cycles C ⊆ E, e′ ∈ C, (9f)

wij ∈ R, i ∈ [m], j ∈ [n], (9g)
xrij = x((i,j),(i,j+1)), i ∈ [m], j ∈ [n− 1], (9h)

xcij = x((i,j),(i+1,j)), i ∈ [m− 1], j ∈ [n], (9i)

xd1i,j = x((i,j),(i+1,j+1)), i ∈ [m− 1], j ∈ [n− 1], (9j)

xd2i,j = x((i,j),(i+1,j−1)), i ∈ [m− 1], j ∈ [2 : n], (9k)

xrij ∈ {0, 1}, i ∈ [m], j ∈ [n− 1], (9l)

xcij ∈ {0, 1}, i ∈ [m− 1], j ∈ [n], (9m)

xd1i,j ∈ {0, 1}, i ∈ [m− 1], j ∈ [n− 1], (9n)

xd2i,j ∈ {0, 1}, i ∈ [m− 1], j ∈ [2 : n], (9o)

xe ∈ {0, 1}, e ∈ E, (9p)

Fig. 8: A set of minimal subgraphs where the solution w? of (9a)-(9p) are affine, up
to permutation by rotating them any integer multiplier of 90 degrees.

whereM is again the big-M constant. Here,∇2
d1
wi,j = wi−1,j−1−2wi,j+wi+1,j+1,

and ∇2
d2
wi,j = wi−1,j+1 − 2wi,j + wi+1,j−1, that is, the discrete second derivative

with respect to two diagonal directions d1 and d2 . Note that compared to the grid
graph, we also have 3-edge cycles in (9f) now, as shown in Figure 5.

4.2 Exact model for piecewise affine fitting on King’s Graph

We finally prove the following theorem.

Theorem 2 The MIP formulation (9a)-(9p) is exact in finding a piecewise affine fit-
ting function f ∈ F that fits F (i.e., (1c) holds), if each of the resulted partition
contains at most 3 nodes, or contains any one of those connected subgraphs illus-
trated in Figure 8, up to permutation by rotating them any integer multiplier of 90
degrees.

Proof The first part of the proof is straightforward, since any subgraph with less than
or equal to 3 nodes must lie on the same affine function.

We prove the second part by using a similar but more general example of Theo-
rem 1. Let the subgraph of 9 blue nodes be any partition of a feasible solution (x?, w?)
of (9a)-(9p), shown in the right image of Figure 5, and let the top left node be (i, j).
We first prove w? restricted on the following subgraph of 7 nodes lie on the same
affine function (i, j) (i, j + 1) (i, j + 2)

· (i+ 1, j + 1) ·
(i+ 2, j) (i+ 2, j + 1) (i+ 2, j + 2)

 ,
Similar to the proof of Theorem 1,

[
wij wi,j+1 wi,j+2

wi+2,j wi+2,j+1 wi+2,j+2

]
=

[
ja1 + b1, (j + 1)a1 + b1, (j + 2)a1 + b1
ja2 + b2, (j + 1)a2 + b2, (j + 2)a2 + b2

]
,

and with respect to the second column,

wi+1,j+1

=
wi,j+1 + wi+2,j+1

2

=
(j + 1)(a1 + a2) + b1 + b2

2
,

Moreover, if we look at the d1 diagonal direction, we have

wi,j − 2wi+1,j+1 + wi+2,j+2

= ja1 + b1 − ((j + 1)(a1 + a2) + b1 + b2) + (j + 2)a2 + b2

= a2 − a1
= 0,

which implies a1 = a2. Hence, w? restricted on the above subgraph of 7 nodes lie on
the same affine function.

We then prove the above condition also holds on the following subgraph of 6
nodes (i, j) (i, j + 1) (i, j + 2)

· (i+ 1, j + 1) (i+ 1, j + 2)
· · (i+ 2, j + 2)

We first look at the first row, and we have[

wij wi,j+1 wi,j+2

]
=
[
ja1 + b1, (j + 1)a1 + b1, (j + 2)a1 + b1

]
,

For the third column, we have[
wi,j+2 wi+1,j+2 wi+2,j+2

]
=
[
ia2 + b2, (i+ 1)a2 + b2, (i+ 2)a2 + b2

]
,

Since wi,j+2 = ia2 + b2 = (j + 2)a1 + b1, then b2 = (j + 2)a1 − ia2 + b1.
Hence,wij wi,j+1 wi,j+2

· wi+1,j+1 wi+1,j+2

· · wi+2,j+2

 =

ja1 + b1, (j + 1)a1 + b1, (j + 2)a1 + b1
· a2 + (j + 1)a1 + b1, a2 + (j + 2)a1 + b1
· · 2a2 + (j + 2)a1 + b1

 ,
where wi+1,j+1 =

wi,j + wi+2,j+2

2
= a2 + (j + 1)a1 + b1, restricted on the d1

diagonal. Hence, w? restricted on the above subgraph of 6 nodes lie on the same
affine plane.

Similar proof can be made on (i, j) (i, j + 1) (i, j + 2)
(i+ 1, j) (i+ 1, j + 1) ·
(i+ 2, j) · ·

 and

 · · (i, j + 2)
· (i+ 1, j + 1) (i+ 1, j + 2)

(i+ 2, j) (i+ 2, j + 1) (i+ 2, j + 2)

 ,
just to list some, subject to rotating the shape by integer multiplier of 90 degrees.

Thus we complete the proof.

Fig. 9: Each node (colored red) has 4 groups of 2× 2 squared nodes for affine fitting.

Note that, the following two scenarios cannot guarantee w? to lie on the same
affine function, (i, j) (i, j + 1) (i, j + 2)
(i+ 1, j) (i+ 1, j + 1) (i+ 1, j + 2)
· (i+ 2, j + 1) ·

 and

 (i, j) (i, j + 1) (i, j + 2)
(i+ 1, j) · ·
(i+ 2, j) (i+ 2, j + 1) (i+ 2, j + 2)

 ,
since no diagonal second derivative constraints (9d)-(9d) can be enforced. Hence, this
theorem only provides a sufficient condition.

5 Solution Techniques

We now introduce a heuristic and an exact algorithm to solve both models (8a)-(8j)
and (9a)-(9p). In this section, we will focus on solving the first model on grid graph,
and the methods can be easily adopted to the second model on king’s graph as well.

5.1 Region fusion based heuristic algorithm

The resulting problem (8a)-(8j) is a MILP, which is solved using any off-the-shelf
commercial MIP solvers. The underlying sophisticated algorithms are based on the
branch and cut algorithm [?], where a good global upper bound usually helps to im-
prove the performance. In the following, we will introduce a fast heuristic algorithm
that provides a valid partition. It was then given to (8a)-(8j) and upon solving a linear
program, its solution is served as a global upper bound.

Our heuristic is based on the region fusion algorithm [?] which approximates the
Potts model (3). We start by performing parametric affine fitting over the 4 groups
(2× 2 squared nodes) of each node, as shown in Figure 9. We take the group that has
the minimum fitting mean square error, and assign the affine parameters (a vector of
3 in 2D case) to that node. Note that nodes located on the boarders of the grid graph
only have 2 such groups, while corner nodes only have 1 group. Our algorithm then

starts with every node i belonging to its own partition Vi, and for each pair of nodes,
the following minimization problem is solved.

min
w

τi ‖wi − Yi‖2 + τj ‖wj − Yj‖2 + κtγij1(wi 6= wj), (10)

where 1(·) denotes the indicator function, τi the number of nodes in segment Vi ⊆ V ,
and γij represents the number of neighboring nodes between two segments Vi and Vj .
Here, Yi indicates the affine parameter of segment Vi, and wi the unknown variables,
and κt express the regularization parameter at the kth round of iteration.

To speed up computation, instead of solving (10) exactly, the following criteria is
checked instead (see [?] for more detailed description):

τiτj‖Yi − Yj‖2 ≤ κγi,j (τi + τj) .

If the above condition holds, we merge partition Vi and Vj , and the updated affine
parameter (also the values ofwi andwj) is obtained by conducting a parametric affine
fitting over the new partition. If not, the two partition and their affine parameters stay
the same.

The algorithm iterates over each pair of nodes for solving (10), and the regulariza-
tion parameter κ grows over every round of iteration, which increasingly encourages
merging. The algorithm stops after t round of iteration, when κt = λ, where λ is the
pre-defined regularization parameter with respect to (3).

5.2 Exact branch and cut algorithm

Apart from the classical branch-and-cut algorithm inside the MIP solver, we describes
below the cutting plane method that iteratively add lazy constraints from (8d).

Cutting plane method. Similar to the cutting planes method that solves the mul-
ticut problem [?], we start solving (8a)-(8j) by ignoring constraints (8d), or with few
of them (e.g., the 4 or 8-edge cycle constraints).

We then check the feasibility of the resulting solution with respect to (8d). If it is
already feasible, we are done. Otherwise, we identify the current separation problem
and then add the corresponding violated constraints (cuts) to (8a)-(8j). We resolve the
updated MILP, and this procedure repeats until either we get a feasible solution, or
the user-defined limit is reached.

Separation problem. Given an integer solution, it is polynomial to either check
the feasibility with respect to (8d), or to identify and separate the integer infeasible
solutions by adding violated constraints.

Phase 1: Given the incumbent solution of the MILP (8a)-(8j), we extract its binary
solutions and remove edges where xe = 1 from the grid graph G(V,E). We thus
obtain a new graphG′(V ′, E′) where V ′ = V ,E′ ⊆ E and we identify its connected
components. We then check for each active edge to see if their two end nodes belong
to the same component. If there exists any, the current solution is infeasible (and
we call the corresponding active edges violated). Otherwise, a feasible and optimal
solution is found.

Phase 2: If violated edges exist, we search for violated constraints by finding
paths between the two nodes of the edge. We first conduct a depth-first search on the
graph G′, and multiple such paths could be found. We set the maximum depth to 10
to restrict the searching time. If the depth-first search does not return any path, we
then switch to the breadth-first search to return only one shortest path.

Phase 3: For each violated edge, we add the corresponding multicut constraints (8d)
(possibly many) to our MILP (8a)-(8j), where the left hand side corresponds to the
paths found in phase 2 .

Facet-defining searching strategy. The above mentioned strategy that finds vio-
lated constraints does not guarantee facet-defining inequalities. Recall that the multi-
cut constraint (8d) is facet-defining if and only if the corresponding cycle is chordless.
In the facet-defining searching strategy, we in addition keep track of the non-parental
ancestors set (denoted S) of the current node during searching. When we search for
the next node, we make sure that the potential node does not form an edge (with
respect to G) with any node in S.

6 Computational Experiments

In this section, all the experiments are conducted on a desktop with Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz CPU and 64 GB memory, using IBM ILOG Cplex
V12.8.0 as the MIP optimization solver.

We develop and compare the following variants of (8a)-(8j) or (9a)-(9p), and
report their computational results. The experiments are based on synthetic images of
different sizes, as well as real depth images. We normalize the intensity values of all
images to [0, 1], and each experiment is conducted 3 times and only the median of the
results is reported. We report the running time, nodes of the branch and bound tree,
optimality gap, cuts added and the objective function of the MILP.

– MP: The MILP formulation of the piecewise affine fitting model (8a)-(8j) that
adds the multicuts without the facet-defining searching strategy.

– MPH: MP where we adopt the solution of the heuristic in 5.1 as an initial input.
– MPH-F: MPH with the facet-defining searching strategy.
– MPH-4: MPH with the 4-edge cycle multicut constraints as initial inequalities.
– MPH-4&8: MPH with the 4 and 8-edge cycle multicut constraints.
– MPEHF: The MILP formulation (9a)-(9p) where we adopt the solution of the

heuristic as an initial input, and with the facet-defining searching strategy.
– MPEHF-3: MPEH-F with the 3-edge cycle multicut constraints as initial inequal-

ities.
– MPEHF-3&4: MPEH-F with the 3 and 4-edge cycle multicut constraints.

6.1 Automatic computation of parameters

Parameter λ is the regularization term employed to avoid over-fitting in problem
MP (8a)-(8j). We set λ independently for each row and column, denoted λri and

Fig. 10: Top: synthetic images with affine pieces, 2D view. Bottom: Their 3D views.

λcj , since intuitively, this may help adapt to local features. λ is computed in a way
to avoid making an outlier a one-node segment. Let λri = 1

2ξ · maxi |∇2yri | and
λcj = 1

2ξ · maxj |∇2ycj |, where ξ is the user-defined parameter. In this manner, if
there exists an outlier (i, j), making a one-node segment will active all four edges of
(i, j), thus incurring a penalty value of 2(λri + λcj).

ParameterM is for the “big M” constraint in MP (8a)-(8j). In principle, it should
be big enough so that the constraints (6b,6c) are always valid, i.e., M = 2. On the
other hand, it should be not too big, or it may harm the tightness of the LP relaxation.
The value of big M could be computed automatically each on row and column, fol-
lowing the strategy above. However, we have tested different variants and found out
the results only have slight fluctuations. Hence, we simply set M = 2 globally.

6.2 Numerical experiments on synthetic images

In this section, we generate 3 synthetic images that has affine trends, as shown in
Figure 10. We then test different variants of our models on 3 sizes of the images, i.e.,
20 × 30, 40 × 60, and 80 × 120. In addition, we further experiments on scenarios
that add Gaussian noise of level 0, 0.001 and 0.005. Thus, a total of 27 tests (81
experiments, as we run each test 3 times and only report the medium) are done for
each model. We set the time limit of each experiment to 600 seconds.

Before starting these 81 experiment, we run additional experiments to select the
“right” values of ξ. We found out all three images achieve optimal segmentation (with
respect to the ground truth) results when ξ = 0.5. Thus, we keep it fixed throughout
this section to keep our comparison concise.

Fig. 11: Table on MP, MPH and MPH-F.

6.2.1 MP vs MPH

We first conduct experiments on solving MP with and without the heuristic algorithms
(introduced in Section 5.1) to the MIP solver. Our heuristic algorithm is fast to com-
pute, takes 3 seconds on average to converge on the 40× 60 sized images. Note that
we only provide the MIP solver with initial integer solutions x of problem (8a)-(8j),
hence it takes time for the solver to compute w by solving a linear program.

As we can see in the MP column of Figure 11, MIP alone suffices to find optimal
solutions in all tests when the image is clean (without Gaussian noise), even in 80×
120 size. It also reaches optimality on the 20×30 images, with 0.001 Gaussian noise
added. However, without heuristic, no feasible solution are found in Test 26 and 27
within 600 seconds. The results in MPH column indicates that adding the result of
the heuristic as initial solution to the MIP solver mostly improves the results. For
instance, MPH helps reduce the optimality gap from 92.33% to 9.17% in Test 15.
It sometimes also reduce the performance, i.e., increases the running time of finding
optimal solution from 16.08 to 96.18 seconds in Test 4.

6.2.2 MPH vs MPH-F

Given an heuristic solution, we further test the performance of adopting the facet-
defining searching strategy. Recall that although it takes more time to find a facet-
defining multicut constraint (8d) (as described in the facet-defining searching strat-
egy), it is tighter compared to non facet-defining ones. The results are shown in the
MPH and MPH-F columns of Figure 11, where we could see MPH-F performs better
than MPH in most of the cases, with only a few exceptions. For instance, MPH-F
helps reduce the running time from 169.28 to 149.81 seconds in Test 5. MPH-F also
reduces the optimality gap from 88.61% to 15.33% in Test 17.

Fig. 12: Table on MPH, MPH-4 and MPH-4&8.

6.2.3 MPH vs MPH-4 and MPH-4&8

We compare whether adding few facet-defining multicut constraints as initial con-
straints to MPH improves computation. We test the performance of adding only 4-
cycle constraints (MPH-4) and adding both 4-cycle and 8-cycle (MPH-4&8). The
results are shown in Figure 12. We notice that after adding these cycle constraints,
Cplex rarely (only 1 out of 27) add any additional cuts to MPH. We also note that
in general, adding 4-cycle constraints helps on improving the performance. For in-
stance, MPH-4 reduces the optimality gap significantly on test 14, test 17 and test
22. In addition, compared to MPH-4, the experiments shows that adding the 8-cycle
constraints seems harmful in most cases.

6.2.4 Results on image segmentation and denoising

Upon solving our MILP (8a)-(8j), the active edges (xe = 1) together with the multi-
cut constraints (8d) form a valid segmentation, and the fitting variables (w) removes
noise. Although only an approximate formulation, the segmentation results of most
tests (except for Test 25-27) are already “optimal” in terms of image segmentation
(compared to the ground truth). An illustration of the denoising results (as well as
segmentation) can be seen in Figure 13, where the first row are the 40 × 60 images
with 0.005 Gaussian noise, and second row the results from MPH-4.

6.2.5 MPEHF vs MPEHF-3 and MPEHF-3&4

We now conduct similar experiments on different variants of model (9a)-(9p). We see
from Figure 14 that, for image size 20×30 and 40×60, MPEHF-3 and MPEHF-3&4
perform better than MPEHF, not only on the objective function, but also on the opti-
mality gap. Furthermore, we see that the number of cuts also reduces tremendously.

Fig. 13: Top: images (40 × 60) with 0.005 Gaussian noise. Bottom: results from
MPH-4.

Fig. 14: Table on MPEHF vs MPEHF-3 and MPEHF-3&4.

But when the image size becomes 80×120, MPEHF performs best instead. We think
it may be due to the extremely large number of 3 and 4-cycle constraints.

6.2.6 Comparison between MP and MPE

Although only an approximate model, our experiments show that MP performs “much
better” numerically than the “exact” model MPE in most of cases, in terms of opti-
mality gap, and segmentation result. Note that, due to their different objective func-
tions, we cannot simply compare their object function values. We think the perfor-
mance of MP is superior mainly because MP only has roughly half of the edge vari-
ables and hence way fewer multicut constraints (7) than MPE . However, we show

in Figure 15 that MPE achieves valid and optimal fitting result (compared to ground
truth) while MP not. Although not easily visualized in the image, we confirm this by
randomly selecting a few points within one segment and conduct affine fitting.

Hence, we argue that MPE may be useful for small instances, while is MP is more
practical for large scale data.

Fig. 15: Left: original image with 0.01 Gaussian noise, Middle: result of MP, Right:
result of MPE

6.3 Numerical experiments on real images

We further conduct experiments on two real depth images with 2 different sizes (600
pixels and 2400 pixels), which are generated from the disparity maps of the Middle-
bury data set [?] (shown in Figure 16). We only apply the approximate model (8a)-(8j)
on them.

According to the performance of different variants in previous section, we choose
to test MPH-4-F (MPH with the 4-edge cycle multicut constraints using the facet-
defining searching strategy) with respect to the regularization parameter ξ and time
limit. Since real images already contain noise, we do not add extra one. We also run
each experiment 3 times and only report the medium. All the results are shown in
Figure 17.

6.3.1 Regularization parameter ξ

The regularization parameter ξ is introduced to penalize the perimeter as well as the
number of partitions. The larger ξ is, the fewer the partitions are. In this section, we
conduct experiments on using 3 different value of parameter ξ (0.5, 1 and 2), and the
time limit is set to 1200 seconds.

The computational results are shown in the left table of Figure 17. However, since
the objective functions contain both fitting and regularization terms, their absolute
values is not comparable. Instead, we visualize the segmentation results in Figure 18.
It is obvious to see that the number of segments decreases as ξ increases.

Fig. 16: Top: Two images from [?]. Bottom: their disparity maps.

Fig. 17: Table of tests on MPH-4-F with different regularization parameters ξ and
time limits.

6.3.2 Time limit

In this section, we conduct experiments on adopting 4 time limits (50, 200, 600 and
1200 seconds), and we set ξ = 0.5. The computational results are shown in the right
table of Figure 17. Since none of tests finds an optimal solution, the performance
could possibly be further improved by extending the time limit. In addition, a shorter
time limit is still possible to produce a solution with acceptable gap, especially for
images witch smaller size. Figure 19 visualizes the optimality gap with respect to
time limit. As can be predicted, when time limit increases, the optimality gap drops.

Fig. 18: Segmentation results as the ξ increases from left to right.

Fig. 19: Optimality gap decreases as time limit increases.

7 Conclusions

In this paper, we have presented two unsupervised and non-parametric model that
either finds or approximates a discontinuous piecewise affine function to fit the given
data. We formulate them as MILP and solve them with a standard optimization solver.
In both cases, the inclusion of multicut constraints enables a feasible partitioning (or
segmentation of the image domain). Thus, a corresponding piecewise affine function
can be easily reconstructed for the approximate model.

The computational complexity is the main bottleneck of our approach, especially
the exact model. To tackle with it, we add different sets of inequalities as initial con-

straints to our MIP, and add the remaining multicut constraints using cutting planes
method on the fly. We also implemented a special heuristic algorithm that finds a
feasible segmentation, which is used as an initial integer solution to the MIP solver.
We conducted numerical experiments on different variants of our models and study
the effects of adjusting model parameters. We demonstrate the feasibility of our ap-
proach by its applications to segmentation and denoising on both synthetic and real
depth images.

As for future work, its generalization to 3D images is worth investigating. Fur-
thermore, we would like to extend this work beyond the scope of image processing,
to deal with other applications, such as signal compression [?].

	Introduction
	MIP for the piecewise linear fitting model: 1D
	MIP of the piecewise affine fitting model: 2D grid graph
	MIP of the piecewise affine fitting model: 2D King's graph
	Solution Techniques
	Computational Experiments
	Conclusions

