
HAL Id: hal-03250708
https://hal.science/hal-03250708v1

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum feasible subsystems of distance geometry
constraints

Maurizio Bruglieri, Roberto Cordone, Leo Liberti

To cite this version:
Maurizio Bruglieri, Roberto Cordone, Leo Liberti. Maximum feasible subsystems of distance geometry
constraints. Journal of Global Optimization, 2021, �10.1007/s10898-021-01003-4�. �hal-03250708�

https://hal.science/hal-03250708v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Maximum feasible subsystems of distance geometry
constraints

Maurizio Bruglieri · Roberto Cordone · Leo

Liberti

the date of receipt and acceptance should be inserted later

Abstract We study the problem of satisfying the maximum number of distance
geometry constraints with minimum experimental error. This models the determi-
nation of the shape of proteins from atomic distance data which are obtained from
nuclear magnetic resonance experiments and exhibit experimental and systematic
errors. Experimental errors are represented by interval constraints on Euclidean
distances. Systematic errors occur from a misassignment of distances to wrong
atomic pairs: we represent such errors by maximizing the number of satisfiable
distance constraints. We present many mathematical programming formulations,
as well as a “matheuristic” algorithm based on reformulations, relaxations, restric-
tions and refinement. We show that this algorithm works on protein graphs with
hundreds of atoms and thousands of distances.

Keywords Protein conformation, MINLP, diagonally dominant programming.

1 Introduction

We discuss an interesting hybrid of two problems: the Maximum Feasible Sub-

system (MaxFS) [17] and the Distance Geometry Problem (DGP) [25], and
its application to the problem of determining the spatial conformation of proteins
from distance data derived from Nuclear Magnetic Resonance (NMR) experiments.

One of the authors (LL) was partly funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759.

Maurizio Bruglieri
Dipartimento di Design, Politecnico di Milano, Italy
E-mail: maurizio.bruglieri@polimi.it

Roberto Cordone
Dipartimento di Informatica, Università degli Studi di Milano, Italy
E-mail: roberto.cordone@unimi.it

Leo Liberti
LIX CNRS Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
E-mail: liberti@lix.polytechnique.fr

2 Maurizio Bruglieri et al.

The MaxFS is as follows: given a set of constraints, generally of the form

∀i ∈M gLi ≤ gi(x) ≤ gUi , (1)

determine a subset S ⊆M of maximum cardinality such that the set of constraints
of Eq. (1) indexed by S is feasible. This problem is NP-hard to solve, and does
not admit a polynomial-time approximation scheme unless P = NP [5].

The (Euclidean) DGP is as follows: given an integer K > 0 and a simple con-
nected edge-weighted graph G = (V,E, d), where d : E → R+, determine whether
there exists a realization x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖2 = dij . (2)

There are many applications of the DGP [25] and even more variants. The one we
are specially interested in is the interval DGP (iDGP), which replaces d : E → R+

with the interval weight function d : E → IR+ such that d({i, j}) = [Lij , Uij] [21,
15]. Specifically, Eq. (2) becomes

∀{i, j} ∈ E Lij ≤ ‖xi − xj‖2 ≤ Uij . (3)

The iDGP is NP-hard by inclusion of the DGP: the inclusion follows from the
case Lij = Uij for all {i, j} ∈ E. We note that if Lij = 0 and Uij is infinite (for
all {i, j} ∈ E) the problem is clearly tractable since any realization is feasible. The
existence of a “phase transition” threshold between tractability and hardness of
this problem is an open question [1]. From now on, we shall assume all norms are
Euclidean (a.k.a. `2) unless stated otherwise. We also denote n = |V | and m = |E|.

We are now in the position of stating the main problem discussed in this paper.

Max Feasible Subsystem of Distance Geometry constraints (MaxFSDGP).
Given an integer K > 0 and a simple connected edge-weighted graph
G = (V,E, d) with d : E → IR+, determine the maximum cardinality sub-
set S ⊆ E inducing a subgraph of G, such that there exists a realization
x : V [E]→ RK satisfying

∀{i, j} ∈ S Lij ≤ ‖xi − xj‖ ≤ Uij . (4)

We recall that d({i, j}) = [Lij , Uij] for each {i, j} ∈ E, as explained above. The
connectedness assumption, as in many problems on graphs, is without loss of gen-
erality: for a disconnected graph it suffices to find the connected components in
polynomial time, and solve the problem on each connected component indepen-
dently.

The MaxFSDGP is motivated by a specific application of the DGP, namely the
determination of the shape of proteins given some of their inter-atomic distances.
In principle, NMR can determine all inter-atomic distances in a given protein
up to a certain length threshold (somewhere between 5Å and 6Å). In practice,
reality is fuzzier than this. First, we note that proteins rarely crystallize (so X-ray
crystallography does not help), but usually live in a solution. Secondly, proteins
vibrate, but we assume that they do not (this is called the “molecular rigidity
assumption”) [28].

NMR experiments yield a probability distribution over triplets (atom label,
atom label, distance value); this distribution is used to imperfectly reconstruct the
weighted graph G that is the actual input to the DGP. It is not easy to understand

Maximum feasible subsystems of distance geometry constraints 3

the methods used by NMR machinery to perform this reconstruction, other than
they are mostly based on simulated annealing [31]; attempts to construct the
conformations starting directly from NMR output are under way [29]. According
to [8], this process induces two types of errors: experimental errors (due to the
rigidity assumption), and systematic errors (due to the imperfect reconstruction).
Specifically, the experimental errors are accommodated by the interval bounds on
the iDGP. The systematic errors are described in [8] as consisting of a certain
proportion of completely wrong distances. This induces sets of constraints in (3)
that are likely to be infeasible. We propose the MaxFSDGP in order to address the
issue and find solutions subject to such limitations.

The focus of this paper is to solve MaxFSDGP instances using formulations
and solution methods from Mathematical Programming (MP). In particular, we
present exact formulations and several reformulations thereof. We construct a prac-
tically viable solution method based on solving an approximate matrix formulation
of MaxFSDGP followed by rank reduction and a refinement phase. Since Polyno-
mial Programs (PP) offer more reformulation opportunities than with general
Nonlinear Programs (NLP), `2 norm terms are always squared.

The rest of this paper is organized as follows. In Sect. 2 we introduce an exact
formulation of the MaxFSDGP problem. In Sect. 3 we construct a relaxation in the
same primal variables as the exact formulation. In Sect. 4 we construct some matrix
relaxations, and propose methodologies for reducing solution rank and improving
the quality of the low-rank solutions. In Sect. 5 we describe two computational
approaches to solving MaxFSDGP instances, based on the formulations of Sect. 3
and 4, and discuss computational results obtained from protein instances of small
and medium sizes.

2 Exact formulation

In this section we present a Mathematical Programming (MP) formulation of the
MaxFSDGP problem.

2.1 Experimental errors

Experimental errors are addressed by minimizing the infeasibilities w.r.t. Eq. (2)
or Eq. (3). A well-known box-constrained formulation targeting the DGP is:

min
x∈[xL,xU]

∑
{i,j}∈E

(‖xi − xj‖2 − d2ij)
2, (5)

where xL, xU are given lower and upper bounds for the decision variable n ×
K matrix x = (x1, . . . , xn). Eq. (5) was tested computationally in e.g. [20]. A
corresponding reformulation for the iDGP can be obtained replacing each term
‖xi − xj‖2 − d2ij of Eq. (5) with

max(0, L2
ij − ‖xi − xj‖

2) + max(0, ‖xi − xj‖2 − U2
ij),

4 Maurizio Bruglieri et al.

so that setting the objective to zero corresponds to the (nonconvex) pure feasibility
problem:

∀{i, j} ∈ E ‖xi − xj‖2 ≥ L2
ij

∀{i, j} ∈ E ‖xi − xj‖2 ≤ U2
ij

xL ≤ x ≤ xU .

 (6)

We remark that xL, xU may or may not be provided by the specific DGP
application being tackled; but that, even when they are not explicitly provided,
Prop. 2.2 below can be used to derive them. We also note that Eq. (5) and Eq. (6)
can be solved without bound constraints. In the latter case, it may be advisable to
impose a zero centroid constraint instead, which removes translation invariance:

1

n

∑
i∈V

xi = 0. (7)

Henceforth, we shall refrain (for brevity) from mentioning bound or zero centroid
constraints on realization variables in the MP formulations below, unless the con-
text requires it.

2.2 Systematic errors

The MaxFSDGP can be formulated in a natural way, using so-called “big-M” tech-
niques and binary decision variables to linearly represent disjunctions as follows [4]:

max
∑

{i,j}∈E
yij

∀{i, j} ∈ E d2ij −M(1− yij) ≤ ‖xi − xj‖2 ≤ d2ij +M(1− yij)
y ∈ {0, 1}m.

 (8)

In the above, it is clear that yij = 1 enforces the constraint on edge {i, j} in the
DGP, i.e. Eq. (2), whereas yij = 0 relaxes it.

Note that, since distances are always non-negative, the LHS of the distance
constraints in Eq. (8) can be tightened to d2ijyij . This yields:

max
∑

{i,j}∈E
yij

∀{i, j} ∈ E d2ijyij ≤ ‖xi − xj‖
2 ≤ d2ij +M(1− yij)

y ∈ {0, 1}m.

 (9)

Lemma 2.1 The y component of every optimal solution for the MaxFSDGP defines a

connected graph.

Proof Suppose, by contradiction, that an optimal solution is made up by at least
two connected components C1 and C2. Since we consider the MaxFSDGP defined
on a connected graph, there exists a path given by the sequence of vertices v1,
v2,. . . ,vk (with k ≥ 2) connecting C1 with C2 where v1 belongs to C1, vk belongs
to C2 and v2,. . . ,vk−1 belong neither to C1 nor to C2. Finding a realization for the
vertices of the path is trivial and it is always possible to move as a whole both C1

Maximum feasible subsystems of distance geometry constraints 5

and C2 in such a way to continue to respect their internal distance constraints and
the realization of v1 and vk. Therefore, adding the path to the starting solution we
obtain a feasible solution for the MaxFSDGP satisfying the distances of k−1 (≥ 1)
additional edges. This contradicts the optimality of the starting solution. ut

Proposition 2.2 If M = (
∑
{i,j}∈E dij)

2, then the optimal solution of Eq. (8) solves

the MaxFSDGP.

Proof First, we claim that any feasible DGP instance can be realized in a sphere
of radius R = 1

2

∑
{i,j}∈E

dij . A cycle graph C on V = {1, 2, . . . , n} with E =

{{1, 2}, {2, 3}, . . . , {n − 1, n}, {1, n}} with d1n =
∑
{i,j}∈E\{1,n} dij can be realized

on a straight segment of length r = d1n embedded in any Euclidean space [33]; if
this segment is centered about the origin it belongs by construction to the sphere
RSK−1. Any other biconnected graph on n vertices will have more cycles than C,
and hence will induce realizations in RK having segments shorter than 2R when
projected on any coordinate axis. Connected but non-biconnected graphs are the
same as trees: the tree yielding a realization with longest segment projection on
any coordinate axis is the path on n vertices realized as a segment of length 2R;
again, by centering the segment it is easy to see that the path can be realized in
a sphere of radius R. Lastly, we note that the above claim also shows that the
maximum possible distance between two vertices i, j in a realization of an opti-
mal solution for the MaxFSDGP is 2R, since it must induce a connected subgraph
according to Lemma 2.1. This shows that if a MaxFSDGP instance has a solution
with a certain support vector y∗ for the maximum cardinality set of feasible con-
straints, then setting y = y∗ in Eq. (8) will induce a valid realization x∗ of the
subgraph consisting of the edges {i, j} for which y∗ij = 1, and vice versa. ut

In practice, segment realizations are extremely rare, and therefore M can be tight-
ened w.r.t. Prop. 2.2. We remark that bounds on M can also be inferred from
xL, xU , if they are given; and, conversely, that [xL, xU] can be set to [−

√
M,
√
M]

if the application field does not explicitly provide them.

2.3 Systematic and experimental errors together

We consider Eq. (6) and employ the y binary variables as in Eq. (9) to acti-
vate/deactivate the distance constraints. This yields a valid MP formulation for
the MaxFSDGP, as follows:

max
∑

{i,j}∈E
yij

∀{i, j} ∈ E ‖xi − xj‖2 ≥ L2
ijyij (eL)

∀{i, j} ∈ E ‖xi − xj‖2 ≤ U2
ij +M(1− yij) (eU)

y ∈ {0, 1}m

xL ≤ x ≤ xU .

(10)

The correctness of Eq. (10) is easy to establish: constraints (eL) and (eU) ensure
that ‖xi−xj‖ is in the desired interval [Lij , Uij] as long as yij = 1, i.e. the {i, j}-th
constraint is imposed. Otherwise ‖xi − xj‖ ∈ [0,M], meaning that the constraint

6 Maurizio Bruglieri et al.

is relaxed. The objective function ensures that as many constraints as possible are
imposed.

Moreover, according to [8], the fraction p of wrong distances can be estimated
statistically a priori. We can encode this knowledge by means of the additional
cardinality constraint: ∑

{i,j}∈E

yij ≥ (1− p)m, (11)

which makes Eq. (10) infeasible whenever Eq. (11) is not satisfied.
Eq. (10) is a nonconvex Mixed-Integer Nonlinear Program (MINLP), which

represents one of the hardest classes in MP. MINLP is an uncomputable class, in
general [26]. For bounded decision variables (such as in Eq. (10)) it is computable,
but NP-hard [22].

The state of the art in MINLP solution is not as advanced as for Mixed-Integer
Linear Programming (MILP), for which, despite the hardness, relatively large scale
instances can be solved either to optimality or at least to feasibility. Preliminary
tests on Eq. (10)-(11) showed that no feasible solutions can be found in a given
maximum CPU time limit. Removing Eq. (11) simply yielded the trivial solution
with yij = 0 for all {i, j} ∈ E, again, with a given maximum CPU time limit.

In the rest of the paper we shall investigate reformulations of many types in
order to obtain “solver-friendlier” MP formulations for the MaxFSDGP. This inves-
tigation involves MINLP relaxations in the original nK-dimensional space of real-
izations (Sect. 3), as well as MILP approximations in a larger n(n+1)

2 -dimensional
space of symmetric matrices (Sect. 4).

The order of presentation of these formulations is dictated by a “mathematical
programmer’s common sense” regulated by computational experience: we believe
that a certain reformulation might solve the issues of the preceding formulation;
then, during preliminary testing, we discover new issues. Thus, while the whole
reformulation sequence explains how we came to the one that actually works in
practice, we do not systematically test every formulation we present. Specifically,
in the computational results Sect. 5 we only solve Eq. (16) and test a solution
method based on the pair (Eq. (23), Eq. (26)).

3 Primal relaxations and approximations

The fact that solving Eq. (10) with a CPU time limit yields a solution where all
y variables are set to zero is a witness to the empirical observation that feasi-
bility is harder to achieve than optimality. Setting yij = 0 and xi = xj for all
{i, j} ∈ E yields a feasible solution with the worst possible objective function
value. Obviously, the major contributors to the feasibility issue are the constraints
(eL) and (eU) in Eq. (10). We note that, when the integrality of the y variables
is relaxed, (eL) is nonconvex and (eU) is convex. We shall discuss relaxations and
approximations of (eL) in Sect. 4.1. In this section, we introduce a method for
approximating (eU).

First, we replace U2
ij by U2

ijyij , and M(1−yij) by an additional variable rij ≥ 0,
for {i, j} ∈ E. We then make sure that rij = 0 whenever yij = 1. This yields:

∀{i, j} ∈ E ‖xi − xj‖2 ≤ U2
ijyij + rij (12)

∀{i, j} ∈ E 0 ≤rij ≤ M(1− yij). (13)

Maximum feasible subsystems of distance geometry constraints 7

This is an exact reformulation whose only difference with Eq. (10) is that the
systematic error w.r.t. Uij is represented by rij for each edge {i, j} ∈ E.

3.1 Bi-objective relaxation

Some preliminary experiments on the exact formulation based on Eq. (12)-(13)
above presented us with the following unusual issue: our Branch-and-Bound (BB)
solver of choice failed to find any feasible solution using the value of M given
by Prop. 2.2, which meant that the BB algorithm could never prune by bound,
which then resulted in a rapid exponential growth of the BB tree. Setting M to
unreasonably large values allowed the solver to find a feasible solution rapidly.
While, as is well known, a large M yields a slacker bound, it is obviously better
to prune by bound ineffectively than not at all. The issue, however, is now that
of finding good values of M , which — in our preliminary experiments at least —
appeared to vary considerably by instance.

This motivated us to construct a formulation where Eq. (13) is turned from a
hard constraint into a soft one, making sure that rij remains small. We achieve this
by introducing a second objective function min

∑
ij rij . This yields a bi-objective

MINLP relaxation

max
∑
{i,j}∈E

yij (14)

min
∑
{i,j}∈E

rij (15)

subject to Eq. (12), (eL), and the other constraints in Eq. (10) aside from (eU).
Note that Eq. (13) is relaxed. Moreover, Eq. (14) addresses the systematic error
and Eq. (15) addresses the experimental error. We denote this formulation by (B).

While bi-objective programs can hardly be considered exact reformulations of
single-objective ones, in the following we give some limited sufficient and necessary
conditions linking optimality in Eq. (10) and Pareto optimality in (B).

Note that any solution (x∗, y∗) feasible in Eq. (10) can be extended to a solution
of (B) by setting r∗ij = 0 iff y∗ij = 1 and r∗ij = ‖x∗i − x

∗
j‖

2 otherwise. Whenever
(x∗, y∗) is feasible in Eq. (10) and the existence of r∗ is implicitly referred to in
the text, we assume it was computed from x∗, y∗ as above. For a binary vector
y ∈ {0, 1}m we denote by supp(y) the set of indices e = (i, j)∈ E for which yij = 1.

3.1.1 Sufficient optimality conditions

We first prove that Pareto optimal values of (B) are good candidate optima for
Eq. (10) as long as one knows the optimal value.

Lemma 3.1 Suppose (x′, y′, r′) is such that: (i) it is feasible in (B); (ii) it has r′ij = 0
for all {i, j} ∈ E with y′ij = 1. Then (x′, y′) is feasible in Eq. (10).

Proof This follows by inspection of Eq. (13), which is the only constraint equivalent
to (eU) in Eq. (10) which is relaxed in (B). ut

8 Maurizio Bruglieri et al.

Proposition 3.2 Suppose (x′, y′, r′) is such that: (i) it is Pareto optimal in (B); (ii)

the value of Eq. (14) is optimal for Eq. (10). Then (x′, y′) is optimal in Eq. (10).

Proof Consider any edge {h, `} ∈ E with y′h` = 1, and suppose r′h` > 0. Define r̂
s.t. r̂ij = r′ij for all {i, j} 6= {h, `}, and r̂h` = 0. By Eq. (12) the solution (x′, y′, r̂)
is feasible in (B) and dominates (x′, y′, r′) since∑

{i,j}∈E

r̂ij =
∑
{i,j}∈E
{i,j}6={h,`}

r′ij <
∑
{i,j}∈E

r′ij ,

against the assumption. Therefore r′h` = 0, which, by Lemma 3.1, implies that
(x′, y′) is feasible in Eq. (10). Optimality follows by (ii). ut

3.1.2 Necessary optimality conditions

Next, we give a support-dependent characterization of Pareto dominance in (B)
w.r.t. optimality in Eq. (10).

Theorem 3.3 No optimal solution (x∗, y∗) of Eq. (10) can be dominated in (B) by a

Pareto solution (x′, y′, r′) of (B) where supp(y∗) ⊆ supp(y′).

Proof Suppose first that (x∗, y∗) is dominated by (x′, y′, r′) w.r.t. the objective
function Eq. (15), i.e.

∑
ij r
′
ij <

∑
ij r
∗
ij . For all {i, j} with y∗ij = 1 we have r∗ij = 0

by Eq. (13) (and also y′ij = 1 since supp(y∗) ⊆ supp(y′)). So, no decrease in Eq. (15)
can be achieved over the edges {i, j} for which y∗ij = y′ij = 1. For all {i, j} with

y∗ij = y′ij = 0 we have r∗ij = ‖x∗i − x
∗
j‖

2 by definition. Note that the relaxation
of Eq. (13) does not change the feasible region restricted to yij = 0, so we can
assume without loss of generality that x∗ = x′ over edges {i, j} ∈ E for which
y∗ij = y′ij = 0, whence r′ij ≥ ‖x

′
i−x

′
j‖

2 = ‖x∗i−x
∗
j‖

2 = r∗ij by Eq. (12). Because of the
optimization direction of Eq. (15), we have r′ij = r∗ij for all {i, j} s.t. y∗ij = y′ij = 0.
So, again, no decrease in Eq. (15) can be achieved over these edges. The only
possible decrease in the value of Eq. (15) must therefore occur over edges {i, j} ∈ E
where 0 = y∗ij < y′ij = 1. But then this means that (x∗, y∗) is dominated w.r.t. the
objective Eq. (14).

We therefore assume that (x∗, y∗) is dominated by (x′, y′, r′) w.r.t. Eq. (14).
Then

∑
ij y
′
ij >

∑
ij y
∗
ij . By optimality of (x∗, y∗) in Eq. (10), (x′, y′) cannot be

feasible in Eq. (10), which means that (x′, y′, r′) does not satisfy Eq. (13), i.e. r′h` >
0 for some edge {h, `} ∈ E where y′h` = 1. Since supp(y∗) ⊆ supp(y′), and r∗ij = 0
whenever y∗ij = 1, we have ∑

{i,j}∈E
{i,j}6={h,`}

r∗ij ≤
∑
{i,j}∈E
{i,j}6={h,`}

r′ij

⇒
∑
{i,j}∈E

r∗ij <
∑
{i,j}∈E

r′ij .

Thus, (x′, y′, r′) does not dominate (x∗, y∗), as claimed. We therefore must have∑
ij y
∗
ij =

∑
ij y
′
ij . Moreover, since supp(y∗) ⊆ supp(y′), we also have y′ = y∗,

yielding
∑

ij r
∗
ij =

∑
ij r
′
ij . ut

Maximum feasible subsystems of distance geometry constraints 9

3.2 Scalarized approximation

Finally, we derive a weighted scalarization of Eq. (14)-(15), with Eq. (14) weighing
more than Eq. (15). In summary, we obtain the formulation:

max
∑

{i,j}∈E
yij − α

∑
{i,j}∈E

rij

∀{i, j} ∈ E ‖xi − xj‖2 ≥ L2
ijyij

∀{i, j} ∈ E ‖xi − xj‖2 ≤ U2
ijyij + rij

y ∈ {0, 1}m
r ∈ Rm

≥0

xL ≤ x ≤ xU ,

(16)

where α ≥ 0. Eq. (16) is still a nonconvex MINLP, and thus remains very chal-
lenging to solve. However, it has no “big-M” constraint.

4 Matrix relaxations and rank reduction

In this section we look at a Mixed-Integer Semidefinite Programming (MISDP) re-
laxation, followed by a Mixed-Integer Diagonally Dominant Programming (MIDDP)
restriction thereof, which provides a Mixed-Integer Linear Programming (MILP)
approximation of Eq. (16). We then show how to reduce the rank of the n × n
matrix solution of these formulations to an n × K matrix representation of the
realization we look for.

4.1 MISDP relaxation

The standard derivation of a Semidefinite Programming (SDP) relaxation from
MPs involving Euclidean distance terms consists in writing them as

‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xi · xj ,

and then linearizing the nonlinear terms ‖xi‖2 and xi · xj by added variables Xii,
Xij respectively, resulting in ‖xi − xj‖2 being replaced by

Xii +Xjj − 2Xij ,

which is linear in X. The effect of this replacement yields an exact reformulation
as long as the constraints

X = xx> (17)

are satisfied. Note that Eq. (17) are nonconvex constraints. We relax them by

X � xx>,

which define a convex set. We remark that, if the x variables appear nowhere else
in the formulation, it suffices to enforce X � 0 (see e.g. [13]). In order to eliminate
x from the formulation, we can relax the bounds xL, xU in Eq. (16), which are
inessential by translation invariance.

10 Maurizio Bruglieri et al.

The application of the above reformulation to Eq. (16) yields

max
∑

{i,j}∈E
yij − α

∑
{i,j}∈E

rij

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ L2
ijyij

∀{i, j} ∈ E Xii +Xjj − 2Xij ≤ U2
ijyij + rij

y ∈ {0, 1}m
r ∈ Rm

≥0

X � 0,

(18)

which is a MISDP formulation.

4.2 MIDDP approximations

Diagonally Dominant Programming (DDP) was proposed in [2,3] as an MP-based
approximation technique for the positive semidefinite (PSD) cone, yielding both
inner and outer approximating formulations in the Linear Programming (LP) or
Second-Order Cone Programming (SOCP) classes. Since MILP solvers are more
technologically advanced than their conic counterparts, in this section we only
discuss the LP approximation.

A matrix A = (Aij) is diagonally dominant (DD) whenever

∀i Aii ≥
∑
j 6=i

|Aij |. (19)

DDP rests on the observation that all DD matrices are PSD, a fact which follows
easily by Gershgorin’s circle theorem [14]. Since Eq. (19) can be represented by a
set of linear inequalities, solving LPs over the DD cone D instead of the PSD cone
S+ yields a PSD matrix solution at the cost of solving a LP problem.

On the other hand, not all PSD matrices are DD, which implies that D (S+:
the feasible region of an SDP problem might be non-empty while the corresponding
(inner) DDP problem is infeasible. In such cases, one may resort to the outer DDP
problem, which is derived using the dual DD cone D∗. On the other hand, S+ (D∗,
so the matrix solution of the outer DDP problem may not be PSD. More details
about applying DDP to the DGP are given in [13,23].

4.2.1 Inner restriction

We focus on the inner approximation first, since, if it is feasible, it provides a
PSD matrix as a solution, which is crucial to further processing. For the MISDP
problem in Eq. (18), we simply replace X � 0 with “X is DD”, i.e.

∀i ∈ V Xii ≥
∑
j 6=i

|Xij |. (20)

This is easily reformulated to a linear form by introducing a linearizing n × n

symmetric matrix T for the nonlinear term |X|. We then obtain:

∀i ∈ V Xii ≥
∑
j 6=i

Tij (21)

−T ≤ X ≤ T. (22)

Maximum feasible subsystems of distance geometry constraints 11

The exact reformulation proof between Eq. (20) and (21)-(22) is hinted at in [2]
to proceed by projection of the T variables. A more direct argument (by con-
tradiction of optimality) can be obtained by considering the objective function
min

∑
ij Tij (a corresponding term −

∑
ij Tij may optionally be added to the ob-

jective of Eq. (23)). In summary, we have the following MILP:

max
∑

{i,j}∈E
yij − α

∑
{i,j}∈E

rij

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ L2
ijyij

∀{i, j} ∈ E Xii +Xjj − 2Xij ≤ U2
ijyij + rij

∀i < j ≤ n Xij = Xji

∀i ≤ V
∑
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T

T,X ∈ Rn×n

y ∈ {0, 1}m
r ∈ Rm

≥0.

(23)

4.2.2 Outer relaxation

An outer relaxation of the MISDP formulation Eq. (18) can be obtained using
DDP techniques and the dual DD cone D∗.

The formulation replaces the implicit constraint X ∈ D by X ∈ D∗. We remark
that the PSD cone S+ is contained in D∗, and that the latter is a polyhedral
relaxation of the former. We also recall that S+ can be characterized by means of
the uncountably infinite set of constraints v>Xv ≥ 0 for all v ∈ Rn. Moreover, by
[6], D is finitely generated by the set V of its extreme rays, which consists of the

matrices eie
>
i , (ei + ej)(ei + ej)

>, (ei − ej)(ei − ej)
> for all i < j ≤ n.

It is well known that if a cone is finitely generated, its dual cone is also finitely
generated. By [23, Thm. 3], the polyhedral representation of D∗ is

∀v ∈ V trace(v>Xv) ≥ 0, (24)

which also shows that S+ ⊆ D∗. Thus, an explicit formulation of X ∈ D∗ is as
follows:

∀i ≤ n Xii ≥ 0
∀i < j ≤ n Xii +Xjj − 2Xij ≥ 0
∀i < j ≤ n Xii +Xjj + 2Xij ≥ 0.

We can therefore derive a dual DDP formulation for the outer relaxation of
Eq. (18):

max
∑

{i,j}∈E
yij − α

∑
{i,j}∈E

rij

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ L2
ijyij

∀{i, j} ∈ E Xii +Xjj − 2Xij ≤ U2
ijyij + rij

∀i < j ≤ n Xij = Xji

∀{i, j} 6∈ E Xii +Xjj − 2Xij ≥ 0
∀i < j ≤ n Xii +Xjj + 2Xij ≥ 0
∀i ≤ n Xii ≥ 0

X ∈ Rn×n

y ∈ {0, 1}m
r ∈ Rm

≥0.

(25)

12 Maurizio Bruglieri et al.

Since S+ (D∗, the optimal matrix solution X∗ of Eq. (25) may (and in practice
usually does) have negative eigenvalues, which makes it a poor candidate for the
further rank reduction processing discussed below. On the other hand, it provides
a guaranteed bound to the optimal objective function value of Eq. (18) in the
optimization direction.

4.3 Rank reduction

If Eq. (23) is feasible, solving it yields a symmetric n × n PSD matrix X which
has the property that Xii + Xjj − 2Xij is the Euclidean distance between two
points x̄i, x̄j , in some Euclidean space, such that x̄i · x̄i = Xii, x̄j · x̄j = Xjj and
x̄i · x̄j = Xij . In other words, X is the Gram matrix of a realization x̄ of the given
graph G.

Since X is square symmetric, we can use spectral decomposition to write X

as X = PΛP>, where P is a matrix of eigenvectors, and Λ a diagonal matrix of
eigenvalues λ1, . . . , λn which we shall assume ordered largest to smallest. Since X
is PSD, we have λn ≥ 0 which implies that

√
Λ is a real matrix. Hence we can

decompose X as (P
√
Λ)(P

√
Λ)
>

, which means that we can take x̄ = P
√
Λ as the

realization of G.

We now recall that the DGP asks for a realization in RK for a given integer
K. The realization x is an n × n matrix, so it can be taken as a realization in
Rn. The intrinsic dimension of x is actually given by rank(x). In practice, rank(x)
is usually n or very close to n, whereas K is usually much smaller than n. Thus,
given x̄ ∈ Rn×n, we would like to find a reduced rank realization x′ ∈ Rn×K .

We consider two rank reduction methods: the first is Principal Component
Analysis (PCA) [18]. The second is Barvinok’s naive algorithm [7], extended to
consider arbitrary ranks [27].

4.3.1 Principal Component Analysis

With the notation of the previous section, we define

Λ(K) = diag(λ1, . . . , λK , 0, . . . , 0),

and then we let x′ = P
√
Λ(K). Although x′ is still technically speaking an n × n

matrix, all of the columns from the K + 1-st to the n-th are zero vectors. This
means that they can be ignored, and x′ can be considered an n × K realization
matrix, such that its i-th row xi is the position of vertex i.

Since λ1 ≥ · · · ≥ λK are the K largest eigenvalues of X, the approximate real-
ization x′ is the “closest” to x̄ (with respect to the Schatten norm [10] considering
a subset of K eigenvalues in Λ) which minimizes∑

i6=j

| ‖x̄i − x̄j‖2 − ‖x′i − x
′
j‖

2 |,

for otherwise a contradiction would ensue with λ1, . . . , λK being the K largest
eigenvalues.

Maximum feasible subsystems of distance geometry constraints 13

4.3.2 Barvinok’s naive algorithm

The “naive algorithm” published by Barvinok in [7] is a lesser known, but effec-
tive, dimensionality reduction technique applicable to solutions of SDPs. Consider
the quadratic feasibility problem of determining whether the set {x ∈ Rn | ∀i ≤
m x>Qix = ai} is non-empty. Let X̄ be a solution of the corresponding SDP set
{X ∈ Rn×n | ∀i ≤ m trace(QiX) = ai}. Barvinok’s naive algorithm performs the
following steps:

1. let T be a factor of X̄, so X̄ = TT>

2. sample each component of a vector w ∈ Rn from the normal distributionN (0, 1)
3. let x′ = Tw.

A concentration of measure argument shows that

Prob

(
∀i ≤ m dist(x′, {x | x>Qix = ai}) ≤ C

√
‖X̄‖ ln(n)

)
≥ 0.9,

where C is a positive universal constant, and dist(p, S) is the Euclidean distance
between a point p and a set S. In other words, Barvinok’s naive algorithm ensures
that x′ is “not too far” from the feasible set of the quadratic equations.

An extension of Barvinok’s naive algorithm to the iDGP was proposed in [27].
Starting from a solution X̄ of the SDP relaxation of the iDGP, it is as follows:

1. let T be a factor of X̄, so X̄ = TT>

2. sample each component of an n × K matrix w from the normal distribution
N (0, 1/

√
K)

3. let x′ = Tw.

Then

Prob

(
∀{i, j} ∈ E dist(x′, {x | Lij ≤ ‖xi − xj‖ ≤ Uij}) ≤ C

√
‖X̄‖ ln(|E|)

)
≥ 0.9.

Again, x′ is close to being an iDGP realization of the graph G with high probability.

4.4 Refinement

Both of the rank reduction methods sketched above produce an approximate real-
ization x′ which is close to being feasible for the given iDGP instance. We therefore
propose a “refinement step” where x′ is given as a starting point for a local descent
consisting in locally solving the following variant of Eq. (6):

min
∑

{i,j}∈E
sij

∀{i, j} ∈ E′ ‖xi − xj‖2 ≥ L2
ij − sij

∀{i, j} ∈ E′ ‖xi − xj‖2 ≤ U2
ij

∀{i, j} ∈ E′ sij ≥ 0

xL ≤ x ≤ xU ,

(26)

where E′ = {{i, j} ∈ E | ȳij = 1}, with ȳ ∈ {0, 1}m given by any of the mixed-
integer formulations in this section.

We remark that the problematic reverse-convex constraint was relaxed in Eq. (26)
by means of a slack variable to be minimized. Solving Eq. (26) yields a solution
x∗ ∈ Rn×K improved w.r.t. x′.

14 Maurizio Bruglieri et al.

5 Computational results

In this section we present some computational results concerning the formulations
presented in the previous sections. More precisely, we test the following solution
methods:

1. Algorithm sBB is a global spatial Branch-and-Bound (sBB) based solver de-
ployed on the formulation in Eq. (16) for a given CPU time;

2. Algorithm DDP consists in: (i) solving an inner MIDDP restriction Eq. (23)
(Sect. 4.2.1) to yield a solution (X̄, ȳ), (ii) reduce the rank of X̄ to K (Sect. 4.3)
to yield a realization x̄ ∈ Rn×K , (iii) use x̄ as a starting point for a local NLP
solver deployed on Eq. (26), to obtain a realization x∗ ∈ Rn×K .

The reason why we do not consider solving the exact MINLP formulation in
Eq. (10) is that preliminary tests showed that sBB solvers cannot even find a
locally optimal solution of our smallest instance. We do not consider the MISDP
relaxation in Eq. (18) due to the fact that we could not find an off-the-shelf MISDP
solver we could deploy on our computational platform.

5.1 Solution quality measures

Let x∗ be a realization of G, and y∗ ∈ {0, 1}m describe the activation of the m

constraints of the iDGP. We consider the following quality measures:

– the support cardinality |supp(y)| =
∑
{i,j}∈E y

∗
ij of y, which is equal to the

number of satisfied distance constraints, and evaluates the systematic errors;
– the mean and largest distance error (MDE, LDE) measures computed on the

support (i.e., for {i, j} ∈ E with yij = 1):

MDE(x, y,G) =
1

m

∑
{i,j}∈E

max(Lij − ‖xi − xj‖2, ‖xi − xj‖2 − Uij)yij (27)

LDE(x, y,G) = max
{i,j}∈E

max(Lij − ‖xi − xj‖2, ‖xi − xj‖2 − Uij)yij , (28)

which evaluate the realization error w.r.t. the given (interval) distances;
– the CPU time taken to solve the instance.

We also employ a comparative measure between two realizations x, y ∈ Rn×K

called Root Mean Square Deviation (RMSD), defined as
√∑

i≤n ‖xi − yi‖2/n.

According to [12], the RMSD is not overly meaningful on protein realizations unless
one also normalizes w.r.t. partial reflections, which, however, appears hard. Along
with RMSD scores between the realizations found by our method and reference
realizations with zero systematic and experimental errors, we also show the plots
with realization aligned according to Procrustes analysis [16] (but not w.r.t. partial
reflections, see [12]).

5.2 Test set

We perform our tests on a set of small to medium-sized protein instances. We note
that K is fixed to the constant 3. For a given protein x with known realization
x̂ ∈ Rn×3, the instance corresponding to x was generated as follows:

Maximum feasible subsystems of distance geometry constraints 15

1. the n× n Euclidean distance matrix D = (dij) of x̂ was computed;
2. all distances between atoms i and j ∈ {i+1, i+2} on the backbone were kept as

exact distances, namely [Lij , Uij] = [dij , dij], for each i ≤ n−2 (these distances
are known as discretization distances);

3. all distances between atoms i and i+ 3 on the backbone were kept as interval
distances, namely [Lij , Uij] = [dij − ηdij , dij + ηdij], for each i ≤ n − 3 (these
distances are also known as discretization distances [30]);

4. all other distances shorter than 5Å in D were kept as interval distances, namely
[Lij , Uij] = [dij−ηdij , dij +ηdij] (these distances are known as pruning distances

[30]);
5. a given fraction σ of the pruning distances, chosen randomly, were reassigned

randomly to a different pair of atoms;
6. any other distance was discarded from D.

In our experiments, we set η = σ = 0.1.
Most of the instances in Table 1 were extracted in the Protein Data Bank

(PDB) [9]; a few are modifications of instances from the PDB.

Name m n
tiny 335 37
1guu 955 213
1guu-1 959 150
1guu-4000 968 150
pept 999 107
res 2kxa 2627 177
2kxa 2711 177
C0030pkl 3247 198
100d 5741 488
helix amber 6265 392

Table 1 The protein instances in the test set, with the corresponding number of edges and
vertices in their graphs.

5.3 Computational set-up

The sBB algorithm was implemented by the Baron solver [32,34]. As for the DDP

algorithm, solutions of Eq. (23) were obtained using CPLEX 12.10 [19]. Solutions
of the refinement step subproblems (Sect. 4.4) were obtained using IPOPT 3.11
[11].

In practice, the α coefficient, appearing in the scalarized formulation Eq. (16)
and in the derived MIDDP formulation Eq. (23), depends on the instance. In
general, we found that values of α over 0.2 often yielded trivial solutions where
yij = 0 for every {i, j} ∈ E. After some preliminary experimentation, we set
α = 0.15 for both sBB and DDP.

Our implementation uses a mixture of Python3 and AMPL (using the AmplPy
Python interface). The experiments were carried out on a server with four Intel
Xeon E5-2620 v4 CPUs with eight cores per CPU at 2.1GHz with 64GB RAM
running CentOS Linux.

16 Maurizio Bruglieri et al.

5.4 Experiments

In this section we discuss the results obtained from the experiments.

5.4.1 The sBB algorithm

The sBB algorithm was able to solve none of the instances in Table 1 to guaranteed
global optimality within one hour of CPU time. Moreover, it failed to find feasible
solutions for any instance other than tiny.

On the tiny instance, sBB found, within one hour of CPU time, a realization
x∗ with |supp(y)| = 335, MDE = 0.056, LDE = 3.352. Since m = 335 = |supp(y)|,
this solution neglects all systematic errors, considering them as experimental in-
stead. This is noticeable in Fig. 1, which shows x∗ optimally aligned to a reference
realization without any error at all. The RMSD value for this pair is 0.084. Each

Fig. 1 Realization of tiny obtained using sBB compared with a correct reference realization
(left). The systematic error (center). Error derived from a wrong partial reflection (right). The
scaling on the axes is arbitrary.

picture in Fig. 1 shows two realizations of tiny aligned optimally using Procrustes
analysis. One of them, labelled x∗ in the left picture, was found by sBB; the other,
labelled “Reference”, is a realization of tiny without errors (experimental or sys-
tematic). We remark that the two clusters on the left appear to be well aligned. In
the center picture we emphasize an edge {i, j} in x∗ which should clearly add to
the systematic error rather than to the experimental one: it shows that yij should
have been zero rather than one (we recall that, instead, sBB found a solution with
yij = 1). On the right picture, we emphasize a flipped partial reflection, which
contributes to the overall RMSD error, but is not an actual error, as explained in
[12].

5.4.2 The DDP algorithm

The DDP algorithm was configured with a maximum CPU time of 3600s for the
MILP solver deployed on the inner MIDDP formulation of Eq. (23), while the
local NLP solver in the refinement phase was allowed to terminate naturally. The
DDP algorithm was able to find reasonable realizations for all of the instances.
The results are reported in Table 2. The columns report: the instance name, the
rank reduction algorithm (PCA, denoted “pca”, or Barvinok’s naive algorithm,
denoted “bvk”), the number m of edges in the instance, the number |supp(y)| of

Maximum feasible subsystems of distance geometry constraints 17

Name RkRed m |supp(y)| MDE LDE RMSD UB NegEv CPU

tiny pca 335 317 0.124 2.862 0.143 335 0.343 3619.34
tiny bvk 335 317 0.109 3.034 0.136 335 0.343 3622.70
1guu pca 955 949 0.002 0.224 0.047 955 0.391 3629.33
1guu bvk 955 949 0.001 0.292 0.047 955 0.391 3683.10
1guu-1 pca 959 952 0.014 1.294 0.081 959 0.382 3618.80
1guu-1 bvk 959 952 0.022 0.854 0.078 959 0.382 3616.69
1guu-4000 pca 968 967 0.025 1.443 0.080 968 0.379 3623.35
1guu-4000 bvk 968 967 0.036 1.537 0.079 968 0.379 3636.38
pept pca 999 999 0.149 2.578 0.092 999 0.387 3624.22
pept bvk 999 999 0.170 3.794 0.094 999 0.387 3632.36
res 2kxa pca 2627 2626 0.133 2.975 0.053 2627 0.399 3658.31
res 2kxa bvk 2627 2626 0.106 3.818 0.054 2627 0.399 3898.28
2kxa pca 2711 2708 0.139 3.607 0.052 2711 0.399 3684.55
2kxa bvk 2711 2708 0.165 3.336 0.053 2711 0.399 3662.43
C0030pkl pca 3247 3243 0.275 4.118 0.068 3247 0.405 3770.95
C0030pkl bvk 3247 3243 0.249 5.330 0.070 3247 0.405 3705.82
100d pca 5741 5741 0.202 3.686 0.045 5741 0.397 4488.31
100d bvk 5741 5741 0.209 3.628 0.045 5741 0.397 4521.80
helix amber pca 6265 6265 0.273 3.704 0.050 6265 0.404 4229.80
helix amber bvk 6265 6263 0.264 4.176 0.050 6265 0.404 3963.57

Table 2 Results from the DDP algorithm.

edges with experimental error only, the MDE and LDE measures, the RMSD value
between the realization found and a reference realization without any error, the
upper bound UB found by the outer MIDDP relaxation in Eq. (25), the ratio
NegEv of negative to total eigenvalue weight of the corresponding outer MIDDP
solution, and the CPU time.

Table 2 allows us to make a few observations.

1. Overall, the methodology we propose is able to derive approximate solutions
to small and medium-scaled instances of the MaxFSDGP problem in acceptable
times.

2. The MDE quality measures are acceptable with respect to results obtained
in the DGP literature on proteins with solution methods taken from MP (see
e.g. [20,13,12,27,24]). The LDE measures, on the other hand, appear excessive,
and may be a sign that the balance α between systematic and experimental
error needs further tuning.

3. The time spent on the refinement phase can vary greatly. While this is not
necessarily troublesome when finding the shape of proteins (which is rarely a
real-time affair), it may help to set a time limit on the refinement phase too.

4. It is unclear whether PCA or Barvinok’s naive algorithm is the best rank
reduction method. They clearly yield different approximate realizations, which
is important in view of the choice of starting point for the refinement phase.
A possible idea would be to deploy them in parallel until termination of the
fastest refinement phase.

5. The upper bound UB obtained by the outer MIDDP relaxation is always equal
to the number of edges of the instance. Further analysis shows that every
outer MIDDP was always solved by the presolver, which further strengthens
the possibility that this upper bound may be always trivial. We do not know
whether setting yij = 1 for each {i, j} ∈ E always yields a feasible solution in

18 Maurizio Bruglieri et al.

Eq. (25) with
∑

ij rij = 0; neither do we know whether such a property might
be established for specific values of α.

A further methodological inquiry can be made by computing the RMSD be-
tween solutions of the MIDDP formulation Eq. (23) after projection (by PCA or
by Barvinok’s algorithm), and the solution after the refinement phase using the
local NLP solver. This statistic gives us an idea of whether the refinement phase
is effective. As can be seen from Table 3, this is indeed the case.

Name pca bvk
tiny 0.137 0.158
1guu 0.041 0.045
1guu-1 0.080 0.080
1guu-4000 0.080 0.081
pept 0.094 0.095
res 2kxa 0.048 0.053
2kxa 0.048 0.053
C0030pkl 0.068 0.071
100 0.045 0.045
helix amber 0.050 0.050

Table 3 RMSD values between partial solutions obtained by MIDDP after dimensionality
reduction, and final solutions after the refinement phase.

6 Conclusion

This paper is about the problem of finding a maximum feasible subsystem of dis-
tance geometry constraints, which models well the dual nature of the errors arising
from finding protein conformations from NMR distance data. We discussed mathe-
matical programming formulations of many different types for this problem: exact,
approximate, relaxation, restrictions. We proposed a solution methodology based
on a mixed integer diagonally dominant programming restriction of the original
mixed-integer nonlinear programming problem. We tested our methodology on a
set of protein instances of small and medium sizes obtaining reasonable solutions
in acceptable CPU times.

Data availability statement

The datasets generated and analysed in this paper are available upon request from
the corresponding author.

References

1. D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard
optimization problems. Nature, 435(9):759–764, 2005.

Maximum feasible subsystems of distance geometry constraints 19

2. A. Ahmadi and G. Hall. Sum of squares basis pursuit with linear and second order
cone programming. In H. Harrington, M. Omar, and M. Wright, editors, Algebraic and
Geometric Methods in Discrete Mathematics, volume 685 of Contemporary Mathematics,
pages 27–54. AMS, Providence, RI, 2017.

3. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: More tractable alternatives
to sum of squares and semidefinite optimization. SIAM Journal on Applied Algebra and
Geometry, 3(2):193–230, 2019.

4. E. Amaldi, M. Bruglieri, and G. Casale. A two-phase relaxation-based heuristic for the
maximum feasible subsystem problem. Computers and Operations Research, 35:1465–
1482, 2008.

5. E. Amaldi, M. Pfetsch, and L. Trotter. On the maximum feasible subsystem problem, iiss
and iis-hypergraphs. Mathematical Programming, 95:533–554, 2003.

6. G. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific Journal of
Mathematics, 57(1):15–32, 1975.

7. A. Barvinok. Measure concentration in optimization. Mathematical Programming, 79:33–
53, 1997.

8. B. Berger, J. Kleinberg, and T. Leighton. Reconstructing a three-dimensional model with
arbitrary errors. Journal of the ACM, 46(2):212–235, 1999.

9. H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I.N. Shindyalov,
and P. Bourne. The protein data bank. Nucleic Acid Research, 28:235–242, 2000.

10. R. Bhatia. Matrix Analysis, New York, 1997.
11. COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and using

IPOPT, 2006.
12. C. D’Ambrosio, Ky Vu, C. Lavor, L. Liberti, and N. Maculan. New error measures and

methods for realizing protein graphs from distance data. Discrete and Computational
Geometry, 57(2):371–418, 2017.

13. G. Dias and L. Liberti. Diagonally dominant programming in distance geometry. In
R. Cerulli, S. Fujishige, and R. Mahjoub, editors, International Symposium in Combina-
torial Optimization, volume 9849 of LNCS, pages 225–236, New York, 2016. Springer.

14. S. Gerschgorin. Über die abgrenzung der eigenwerte einer matrix. Izvestia Akademii Nauk
USSR, 6:749–754, 1931.

15. D. Gonçalves, A. Mucherino, C. Lavor, and L. Liberti. Recent advances on the interval
distance geometry problem. Journal of Global Optimization, 69:525–545, 2017.

16. C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society B, 53(2):285–339, 1991.

17. R. Greer. Trees and hills: methodology for maximizing functions of systems of linear
relations, volume 22 of Annals of Discrete Mathematics. Elsevier, Amsterdam, 1984.

18. H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6):417–441, 1933.

19. IBM. ILOG CPLEX 12.9 User’s Manual. IBM, 2019.
20. C. Lavor, L. Liberti, and N. Maculan. Computational experience with the molecular

distance geometry problem. In J. Pintér, editor, Global Optimization: Scientific and En-
gineering Case Studies, pages 213–225. Springer, Berlin, 2006.

21. C. Lavor, L. Liberti, and A. Mucherino. The interval Branch-and-Prune algorithm for
the discretizable molecular distance geometry problem with inexact distances. Journal of
Global Optimization, 56:855–871, 2013.

22. L. Liberti. Undecidability and hardness in mixed-integer nonlinear programming. RAIRO-
Operations Research, 53:81–109, 2019.

23. L. Liberti. Distance geometry and data science. TOP, 28:271–339, 2020.
24. L. Liberti, G. Iommazzo, C. Lavor, and N. Maculan. A cycle-based formulation of the

Distance Geometry Problem. In C. Gentile et al., editor, Proceedings of 18th Cologne-
Twente Workshop, volume 4 of AIRO, New York, 2020. Springer.

25. L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and
applications. SIAM Review, 56(1):3–69, 2014.

26. L. Liberti and F. Marinelli. Mathematical programming: Turing completeness and appli-
cations to software analysis. Journal of Combinatorial Optimization, 28(1):82–104, 2014.

27. L. Liberti and K. Vu. Barvinok’s naive algorithm in distance geometry. Operations Re-
search Letters, 46:476–481, 2018.

28. P. Luisi. Molecular conformational rigidity: An approach to quantification. Naturwis-
senschaften, 64:569–574, 1977.

20 Maurizio Bruglieri et al.

29. T. Malliavin, A. Mucherino, C. Lavor, and L. Liberti. Systematic exploration of protein
conformational space using a distance geometry approach. Journal of Chemical Informa-
tion and Modeling, 59:4486–4503, 2019.

30. A. Mucherino, D.S. Gonçalves, L. Liberti, J-H. Lin, C. Lavor, N. Maculan. MD-JEEP: a
New Release for Discretizable Distance Geometry Problems with Interval Data Annals of
Computer Science and Information Systems, Sep 2020, Sofia, Bulgaria., 1–7, 2020.

31. M. Nilges, M. Macias, S. O’Donoghue, and H. Oschkinat. Automated NOESY interpre-
tation with ambiguous distance restraints: The refined NMR solution structure of the
Pleckstrin homology domain from β-spectrin. Journal of Molecular Biology, 269:408–422,
1997.

32. N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual, 2005.

33. J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings
of 17th Allerton Conference in Communications, Control and Computing, pages 480–489,
1979.

34. M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed integer nonlinear
programs: A theoretical and computational study. Mathematical Programming, 99:563–
591, 2004.

