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A cycle-based formulation for the Distance
Geometry Problem

Leo Liberti, Gabriele Iommazzo, Carlile Lavor, and Nelson Maculan

Abstract The distance geometry problem consists in finding a realization of a
weighed graph in a Euclidean space of given dimension, where the edges are realized
as straight segments of length equal to the edge weight. We propose and test a new
mathematical programming formulation based on the incidence between cycles and
edges in the given graph.

1 Introduction

The Distance Geometry Problem (DGP), also known as the realization problem
in geometric rigidity, belongs to a more general class of metric completion and
embedding problems.

DGP. Given a positive integer K and a simple undirected graph G = (V, E) with an edge
weight function d : E → R≥0, establish whether there exists a realization x : V → RK of
the vertices such that Eq. (1) below is satisfied:

∀{i, j} ∈ E ‖xi − xj ‖ = di j, (1)

where xi ∈ RK for each i ∈ V and di j is the weight on edge {i, j} ∈ E .
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In its most general form, the DGP might be parametrized over any norm. In
practice, the `2 norm is themost usual choice. TheDGPwith the `2 norm is sometimes
called the Euclidean DGP (EDGP). For the EDGP, Eq. (1) is often reformulated to:

∀{i, j} ∈ E ‖xi − xj ‖22 = d2
i j, (2)

which is a system of quadratic polynomial equations with no linear terms.
The EDGP is motivated by many scientific and technological applications. The

clock synchronization problem, for example, aims at establishing the absolute time
of a set of clocks when only the time difference between subsets of clocks can
be exchanged [29]. The sensor network localization problem aims at finding the
positions of moving wireless sensor on a 2D manifold given an estimation of some
of the pairwise Euclidean distances [2]. The Molecular DGP (MDGP) aims at
finding the positions of atoms in a protein, given some of the pairwise Euclidean
distances [15, 16]. In general, the DGP is an inverse problem which occurs every
time one can measure some of the pairwise distances in a set of entities, and needs
to establish their position.

The DGP is weakly NP-hard even when restricted to simple cycle graphs and
strongly NP-hard even when restricted to integer edge weights in {1, 2} in general
graphs [27]. It is in NP if K = 1 but not known to be in NP if K > 1 for general
graphs [4], which is an interesting open question [19]. More information about the
DGP can be found in [22].

There are many approaches to solving the DGP. Generally speaking, application-
specific solution algorithms exploit some of the graph structure, if induced by the
application. For example, a condition often asked when reconstructing the positions
of sensor networks is that the realization should be unique (as one would not know
how to choose between multiple realizations), a condition called global rigidity
[7] which can, at least generically, be imposed directly on the unweighted input
graph. For protein structures, on the other hand, which are found in nature in several
isomers, one is often interested in finding all (incongruent) realizations of the given
protein graph [20]. Since such graphs are rigid, one can devise an algorithm (called
Branch-and-Prune) which, following a given vertex order, branches on reflections
of the position of the next vertex, which is computed using trilateration [21, 18].
In absence of any information on the graph structure, however, one can resort to
Mathematical Programming (MP) formulations and corresponding solvers [23, 8].

The MP formulation which is most often used reformulates Eq. (2) to the mini-
mization of the sum of squared error terms:

min
x

∑
{i, j }∈E

(‖xi − xj ‖22 − d2
i j)

2. (3)

This formulation describes an unconstrained polynomial minimization problem. The
polynomial in question has degree 4, is always nonnegative, and generally nonconvex
and multimodal. Each solution x∗ having global minimum value equal to zero is a
realization of the given graph.
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As far as we know, all existing MP formulations for the EDGP are based on the
incidence of edges and vertices. In this paper we discuss a new MP formulation for
the EDGP based on the incidence of cycles and edges instead, some variants, and a
computational comparison with a well-known edge-based formulation.

2 A new formulation based on cycles

In this section we propose a new formulation for the EDGP. The basic idea stems
from the fact that the quantities xik − xjk sum up to zero over all edges of any
cycle in the given graph for each dimensional index k ≤ K . This idea was used in
[27] for proving weak NP-hardness of the DGP on cycle graphs, by reduction from
partition. For a subgraph H of a graph G = (V, E), we useV(H) and E(H) to denote
vertex and edge set of H explicitly; given a set F of edges we use V(F) to denote the
set of incident vertices. Let m = |E | and n = |V |. For a mapping x : V → RK we
denote by x[U] the restriction of x to a subset U ⊆ V .

Lemma 1 Given an integerK > 0, a simple undirected weighted graphG = (V, E, d)
and a mapping x : V → RK , then for each cycle C in G, each orientation of the
edges in C given by a closed trail W(C) in the cycle, and each k ≤ K we have:∑

(i, j)∈W (C)

(xik − xjk) = 0. (4)

Proof We renumber the vertices in V(C) to 1, 2, . . . , γ = |V(C)| following the walk
order in W(C). Then Eq. (4) can be explicitly written as:

(x1k − x2k) + (x2k − x3k) + · · · + (xγk − x1k) =

= x1k − (x2k − x2k) − · · · − (xγk − xγk) − x1k = 0,

as claimed. �

We introduce new decision variables yi jk replacing the terms xik − xjk for each
{i, j} ∈ E and k ≤ K . Eq. (2) then becomes:

∀{i, j} ∈ E
∑
k≤K

y2
i jk = d2

i j . (5)

We remark that for the DGP with other norms this constraint changes. For the `1 or
`∞ norms, for example, we would have:

∀{i, j} ∈ E
∑
k≤K

|yi jk | = di j or max
k≤K
|yi jk | = di j . (6)

Next, we adjoin the constraints on cycles:
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∀k ≤ K,C ⊂ G
(
C is a cycle⇒

∑
{i, j }∈E(C)

yi jk = 0
)
. (7)

We also note that the feasible value of a yi jk variable is the (oriented) length of
the segment representing the edge {i, j} projected on the k-th coordinate. We can
therefore infer bounds for y as follows:

∀k ≤ K, {i, j} ∈ E − di j ≤ yi jk ≤ di j . (8)

We now prove our main result, i.e. that Eq. (5) and (7) are a valid MP formulation
for the EDGP.

Theorem 1 There exists a vector y∗ ∈ RKm which satisfies Eq. (5) and (7),
parametrized on K,G, if and only if (K,G) is a YES instance of the EDGP.

Proof (⇐) Assume that (K,G) is a YES instance of the EDGP. Then G has a
realization x∗ ∈ RnK in RK . We define y∗

i jk
= x∗

ik
− x∗

jk
for all {i, j} ∈ E and k ≤ K .

Since x∗ is a realization of G, by definition it satisfies Eq. (2), and, by substitution,
Eq. (5). Moreover, any realization of G satisfies Eq. (4) over each cycle by Lemma
1. Hence, by replacement, it also satisfies Eq. (7).

(⇒) Assume next that (K,G) is a NO instance of the EDGP, and suppose that
Eq. (5) and (7) have a non-empty feasible set Y . For every y ∈ Y we consider the K
linear systems

∀k ≤ K ∀{i, j} ∈ E xik − xjk = yi jk, (9)

each with n variables and m equations. We square both sides then sum over k ≤ K
to obtain

∀{i, j} ∈ E
∑
k≤K

(xik − xjk)2 =
∑
k≤K

y2
i jk .

By Eq. (5) we have
∑

k≤K y2
i jk
= d2

i j , whence follows Eq. (2) contradicting the
assumption that the EDGP is NO. So we need only show that there is a solution x to
Eq. (9) for any given y ∈ Y .

We first consider the case where G is a tree. In this case, for each fixed k ≤ K
system Eq. (9) has n vertices and n − 1 edges. Let A be the set of vertices incident
to a single edge and B the set of vertices incident to two edges (clearly A ∪ B = V).
If i ∈ A then xi occurs in a single equation; if i ∈ B then xi occurs in exactly two
equations. Thus the linear dependence condition

∑
{i, j }∈E λi jk(xik − xjk) = 0 (†)

requires all of the λi jk involving i ∈ A to be zero, which implies j ∈ A too (if j ∈ B
there would be an xj term left in (†)): this implies λ = 0, showing that the system
has rank n − 1. Thus Eq. (9) has uncountably many solutions. This is repeated for
every k ≤ K to yield a realization of the tree in RK .

Now we assume WLOG that G is biconnected, since any pendant trees can be
easily treated separately as shown above, and proceed by induction on the simple
cycles of G. For the base case, we consider a cycleC with corresponding y satisfying
Eq. (5) and (7). Since C is a cycle, it has the same number of vertices and edges,
say q. This implies that, for any fixed k ≤ K , Eq. (9) is a linear system of equations
M x = y with a q × q matrix M as follows:
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M =

©­­­­­­­­«

1 −1
1 −1

1
. . .

. . . −1
−1 1

ª®®®®®®®®¬
.

By Eq. (4) and by inspection it is clear that the rank of M is exactly q − 1: then
Eq. (7) ensures that Eq. (9) has uncountably many solutions. Repeating this for every
k ≤ K we obtain a realization x of C with K degrees of freedom.

Since any cycle basis generates the set of all cycles in a graph, for the induction
step we consider a cycle basis B of G that is fundamental, see Sect. 3. We assume
that G′ is a union of fundamental cycles in B with realization x ′ satisfying Eq. (9),
and that C is another fundamental cycle in B with realization xC . We aim at proving
that Eq. (9) has a solution for G′ ∪ C. Since G is biconnected, the induction can
proceed by ear decomposition [25], which means that G′ is also biconnected, and
that C is such that E(G′) ∩ E(C) = F is a non-empty path in G′. We want to show
that C can be realized so the edges in F are realized according to x ′: we argue that
there is x̃ : V(C)rV(F) → RK such that x̄C = (x ′[V(F)], x̃) is a realization of C. It
suffices to assume that E(C)rF consists of a single edge, say {u, v}, since any more
edges can be considered as a pendant path attached to G′ (easily dealt with as we saw
above since paths are trees) and a single edge. This means that u, v ∈ V(F), i.e. x ′

already mapsV(G′)∪V(C) to RK . Thus we only need to check that x ′
uk
− x ′

vk
= yuvk

for each k ≤ K .
By Eq. (4) applied to C = F ∪ {{u, v}} and the facts that (a) C is a cycle in G and

(b) x ′ realizes G′, which contains F, we have

∀k ≤ K
∑
{i, j }∈C

(x ′ik − x ′jk) = 0. (10)

By Eq. (7) applied to C and the fact that Y , ∅ we have

∀k ≤ K
∑
{i, j }∈C

yi jk = 0. (11)

By induction hypothesis x ′ satisfies Eq. (9), whence

∀k ≤ K, {i, j} ∈ F x ′ik − x ′jk = yi jk . (12)

We replace Eq. (12) in Eq. (11), obtaining

∀k ≤ K
∑
{i, j }∈F

(x ′ik − x ′jk) = −yuvk . (13)

Subtracting Eq. (13) from Eq. (10) finally yields x ′
uk
− x ′

vk
= yuvk for all k ≤ K ,

which concludes the proof. �
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The issuewith Thm. (1) is that it relies on the exponentially large family of constraints
Eq. (7). While this is sometimes addressed by algorithmic techniques such as row
generation, we shall see in the following that it suffices to consider a polynomial set
of cycles (which, moreover, can be found in polynomial time) in the quantifier of
Eq. (7).

3 The cycle vector space and its bases

We recall that incidence vectors of cycles (in a Euclidean space having |E | dimen-
sions) form a vector space over a field F, which means that every cycle can be
expressed as a weighted sum of cycles in a basis. In this interpretation, a cycle in G is
simply a subgraph of G where each vertex has even degree: we denote their set by C.
This means that Eq. (7) is actually quantified over a subset of C, namely the simple
connected cycles. Every basis has cardinality m − n + a, where a is the number of
connected components of G. If G is connected, cycle bases have cardinality m−n+1
[28].

Our interest in introducing cycle bases is that we would like to quantify Eq. (7)
polynomially rather than exponentially in the size of G. Our goal is to replace “C
a simple connected cycle in C” by “C in a cycle basis of G”. In order to show that
this limited quantification is enough to imply every constraint in Eq. (7), we have to
show that, for each simple connected cycle C ∈ C, the corresponding constraint in
Eq. (7) can be obtained as a weighted sum of constraints corresponding to the basis
elements.

Another feature of Eq. (7) to keep in mind is that edges are implicitly given a
direction: for each cycle, the term for the undirected edge {i, j} in Eq. (7) is (xik−xjk).
Note that while {i, j} is exactly the same vertex set as { j, i}, the corresponding term
is either positive or not, depending on the direction (i, j) or ( j, i). We deal with this
issue by arbitrarily directing the edges in E to obtain a set A of arcs, and considering
directed cycles in the directed graph Ḡ = (V, A). In this interpretation, the incidence
vector of a directed cycle C of Ḡ is a vector cC ∈ Rm satisfying [14]:

∀ j ∈ V(C)
∑
(i, j)∈A

cCij =
∑
(j,`)∈A

cCj` . (14)

A directed circuit D of Ḡ is obtained by applying the edge directions from Ḡ
to a connected subgraph of G where each vertex has degree exactly 2 (note that a
directed circuit need not be strongly connected, although its undirected version is
connected). Its incidence vector cD ∈ {−1, 0, 1}m is defined as follows:

∀(i, j) ∈ A cDij ,


1 if (i, j) ∈ A(D)
−1 if ( j, i) ∈ A(D)

0 otherwise
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where we have used A(D) to mean the arcs in the subgraph D. In other words,
whenever we walk over an arc (i, j) in the natural direction i → j we let the (i, j)-th
component of cD be 1; if we walk over (i, j) in the direction j → i we assign a −1,
and otherwise a zero.

3.1 Constraints over cycle bases

The properties of undirected and directed cycle bases have been investigated in a
sequence of papers by many authors, culminating with [14]. We now prove that it
suffices to quantify Eq. (7) over a directed circuit basis of the cycle space.

Proposition 1 Let B be a directed cycle basis of Ḡ over Q. Then Eq. (7) holds if and
only if:

∀k ≤ K, B ∈ B
∑

(i, j)∈A(B)

cBij yi jk = 0. (15)

Proof Necessity (7)⇒ (15) follows because Eq. (7) is quantified over all cycles: in
particular, it follows for any undirected cycle in any undirected cycle basis.Moreover,
the signs of all terms in the sum of Eq. (15) are consistent, by definition, with the
arbitrary edge direction chosen for Ḡ.
Next, we claim sufficiency (15) ⇒ (7). Let C ∈ C, and C̄ be its directed version
with the directions inherited from Ḡ. Since B is a cycle basis, we know that there is
a coefficient vector (γB | B ∈ B) ∈ R |B | such that:

cC̄ =
∑
B∈B

γBcB . (16)

We now consider the expression:

∀k ≤ K
∑
B∈B

γB
∑

(i, j)∈A(B)

cBij yi jk . (17)

On the one hand, by Eq. (16), Eq. (17) is identically equal to
∑
(i, j)∈A(C̄) c

C̄
i j yi jk for

each k ≤ K; on the other hand, each inner sum in Eq. (17) is equal to zero by
Eq. (15). This implies

∑
(i, j)∈A(C̄) c

C̄
i j yi jk = 0 for each k ≤ K . Since C is simple and

connected C̄ is a directed circuit, which implies that cC̄ ∈ {−1, 0, 1}. Now it suffices
to replace −yi jk with yjik to obtain

∀k ≤ K
∑

{i, j }∈E(C)

yi jk = 0,

where the edges on C are indexed in such a way as to ensure they appear in order of
consecutive adjacency. 2
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Obviously, if B has minimum (or just small) cardinality, Eq. (15) will be sparsest
(or just sparse), which is often a desirable property of linear constraints occurring in
MP formulations. Hence we should attempt to find short cycle bases B.

In summary, given a basis B of the directed cycle space of Ḡ where cB is the
incidence vector of a cycle B ∈ B, the following:

min
s≥0,y

∑
{i, j }∈E

(s+i j + s−i j)

∀(i, j) ∈ A(Ḡ)
∑

k≤K
y2
i jk
− d2

i j = s+i j − s−i j

∀k ≤ K, B ∈ B
∑

(i, j)∈A(B)
cBij yi jk = 0


(18)

is a valid formulation for the EDGP. The solution of Eq. (18) yields a feasible vector
y∗. We must then exploit Eq. (9) to obtain a realization x∗ for G.

3.2 How to find directed cycle bases

We require directed cycle bases overQ. By [14, Thm. 2.4], each undirected cycle basis
gives rise to a directed cycle basis (so it suffices to find a cycle basis of G and then
direct the cycles using the directions in Ḡ). Horton’s algorithm [12] and its variants
[11, 24] find a minimum cost cycle basis in polynomial time. The most efficient
deterministic variant is O(m3n) [24], and the most efficient randomized variant has
the complexity of matrix multiplication. Existing approximation algorithms have
marginally better complexity.

It is not clear, however, that the provably sparsest constraint system will make
the DGP actually easier to solve. We therefore consider a much simpler algorithm:
starting from a spanning tree, we pick the m−n+1 circuits that each chord (i.e., non-
tree) edge defines with the rest of the tree. This algorithm [26] yields a fundamental
cycle basis (FCB). Finding the minimum FCB is known to be NP-hard [9], but
heuristics based on spanning trees prove to be very easy to implement and work
reasonably well [9] (optionally, their cost can be improved by an edge-swapping
phase [1, 17]).

4 Computational results

The aim of this section is to compare the computational performance of the new
“cycle formulation” Eqns. (18) and (9) with the standard “edge formulation” Eq. (3).
We note that both formulations are nonconvex Nonlinear Programs (NLP), which
are generally hard to solve. We therefore used a very simple 3-iteration multi-start
heuristic based on calling a local NLP solver from a random initial starting point at
each iteration, and updating the best solution found so far as needed.

We remark that we added the centroid constraints:
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∀k ≤ K
∑
i≤n

xik = 0

to the edge formulation Eq. (3). In our experience, these constraints (which simply
remove the degrees of translation freedom) give a slight stability advantage to the
edge formulation when solved with most local NLP solvers.

We evaluate the quality of a realization x of a graph G according to mean (MDE)
and largest distance error (LDE), defined this way:

MDE(x,G) =
1
|E |

∑
{i, j }∈E

��‖xi − xj ‖2 − di j
��

LDE(x,G) = max
{i, j }∈E

��‖xi − xj ‖2 − di j
��.

We remark that these realization quality measures are formally different from the
objective functions of the formulations we benchmarked.

The CPU time taken to find the solution may also be important, depending on
the application. In real-time control of underwater vehicles [3], for example, DGP
instances might need to be solved every second. In other applications, such as finding
protein structure from distance data [5], the CPU time is not so important.

Our tests were carried out on a single CPU of a 2.1GHz 4-CPU 8-core-per-CPU
machine with 64GB RAM running Linux. We used AMPL [10] to implement our
formulations and solution algorithms, and the local NLP IpOpt solver [6] to solve
each formulation locally.

Our first benchmark contains a diverse collection of randomly generated weighted
graphs of small size and many different types (Table 2), realized in R2. The cycle
formulation finds better MDE values, while the edge formulation generally finds
better LDE values and is faster. The instance names in Table 2 label the graph
type and some random generation parameters: almostreg-k-n are almost k-regular
graphs on n vertices, bipartite-n-p are bipartite graphs on 2n vertices with edge
density p, cluster-n-k-p-q are k-clustered n-graphs with intercluster density p and
intracluster density q, euclid-n-p are graphs on n random points in the plane with
density p, flowersnark-n are flower snark graphs [13] of order n, hypercube-n
are graphs on 2n vertices connected with a hypercube topology, powerlaw-n-t-a are
degi = ani−t power law graphs on n vertices with biconnectedness guaranteed by the
addition of a Hamiltonian cycle, random-n-p are Erdős-Renyi graphs on n vertices
with density p, rnddegdist-n are biconnected random graphs on n vertices with
a randomly generated degree distribution, tripartite-n-p are tripartite graphs on
3n vertices with edge density p.

Our second benchmark contains medium to large scale protein graph instances
(Table 1), realized in R3. It turns out that the cycle formulation gives generally better
quality solutions (theMDE is better on all instances but two, the LDE is better a little
less than half of the times), but takes more time in order to find them. In our largest
tested instance (il2) the trend is reversed, meaning that the cycle formulation found
a bad quality solution but in a tenth of the time.
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Instance m n mdeC mdeE ldeC ldeE cpuC cpuE
1guu 955 150 0.057 0.061 1.913 1.884 18.18 37.14
1guu-1 959 150 0.035 0.038 2.025 1.824 24.27 5.48
1guu-4000 968 150 0.061 0.060 2.324 2.121 24.24 6.97
pept 999 107 0.104 0.161 3.367 2.963 34.67 10.89
2kxa 2711 177 0.053 0.155 3.613 3.936 169.95 35.44
res_2kxa 2627 177 0.131 0.045 3.197 3.442 153.00 32.40
C0030pkl 3247 198 0.009 0.059 2.761 3.965 156.09 76.58
cassioli-130731 4871 281 0.005 0.060 3.447 3.963 376.33 143.31
100d 5741 488 0.146 0.246 4.295 4.090 3024.67 253.56
helix_amber 6265 392 0.038 0.059 3.528 4.578 1573.10 212.68
water 11939 648 0.222 0.422 4.557 4.322 9384.08 3836.23
3al1 17417 678 0.084 0.124 4.165 4.087 4785.91 1467.74
1hpv 18512 1629 0.334 0.338 4.256 4.619 53848.33 6620.70
il2 45251 2084 1.481 0.248 9.510 4.415 2323.90 24321.25

Table 1 Cycle formulation vs. edge formulation performance on protein graphs (realizations in
K = 3 dimensions.

In all cases, finding the cycle basis and solving the auxiliary retrieval problem
Eq. (9) takes a tiny fraction of the total solution time.
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Instance m n mdeC mdeE ldeC ldeE cpuC cpuE
almostreg-3-100 298 100 0 0 0.048 0.041 0.88 0.23
almostreg-3-150 448 150 0 0 0.330 0.282 1.29 0.30
almostreg-3-200 598 200 0 0 0.030 0.020 2.15 0.44
almostreg-3-50 146 50 0 0 0 0 0.31 0.11
almostreg-6-100 591 100 0.077 0.093 0.740 0.410 6.85 0.35
almostreg-6-150 893 150 0.085 0.099 1.030 0.485 16.52 0.68
almostreg-6-200 1192 200 0.076 0.098 0.729 0.501 34.07 1.35
almostreg-6-50 292 50 0.082 0.099 0.648 0.471 1.80 0.13
almostreg-8-100 777 100 0.105 0.131 0.846 0.577 8.89 0.42
almostreg-8-150 1189 150 0.104 0.121 0.805 0.528 34.84 0.83
almostreg-8-200 1581 200 0.104 0.125 0.974 0.654 48.10 1.79
almostreg-8-50 387 50 0.104 0.113 0.670 0.520 2.46 0.13
bipartite-100-03 3044 200 0.206 0.218 0.931 0.790 209.15 7.86
bipartite-100-06 6024 200 0.225 0.234 0.978 0.753 439.74 8.00
bipartite-150-03 6708 300 0.220 0.232 0.951 0.724 582.71 14.37
bipartite-150-06 13466 300 0.231 0.240 0.852 0.808 1904.18 30.79
bipartite-200-03 11906 400 0.223 0.235 0.936 0.812 3183.43 33.06
bipartite-200-06 23963 400 0.235 0.244 0.888 0.741 4885.52 64.03
bipartite-50-03 744 100 0.166 0.185 0.936 0.787 29.27 1.11
bipartite-50-06 1468 100 0.201 0.217 1.011 0.754 80.80 1.38
cluster-120-4-05-01 1495 120 0.191 0.206 0.873 0.838 98.67 1.69
cluster-120-8-05-01 1149 120 0.181 0.196 0.892 0.740 62.29 1.04
cluster-150-2-05-01 3337 150 0.218 0.230 0.901 0.936 605.00 3.66
cluster-150-8-05-01 1750 150 0.190 0.205 0.886 0.831 70.66 2.44
cluster-200-2-05-01 5957 200 0.231 0.241 0.931 0.952 612.82 8.01
cluster-200-4-05-01 4155 200 0.221 0.233 0.924 0.906 397.45 7.67
cluster-200-8-05-01 3046 200 0.206 0.220 0.988 0.851 462.46 5.61
cluster-50-2-05-01 361 50 0.159 0.171 0.742 0.679 7.52 0.20
cluster-50-4-05-01 242 50 0.145 0.167 0.899 0.588 3.63 0.18
cluster-50-8-05-01 187 50 0.113 0.133 0.716 0.500 2.73 0.16
euclid-150-02 2341 150 0 0 0 0 286.09 2.69
euclid-150-05 5678 150 0 0 0 0 991.87 2.86
euclid-150-08 8915 150 0 0 0 0 1507.94 3.88
euclid-200-05 10037 200 0 0 0 0 1881.40 5.47
euclid-200-08 15877 200 0 0 0 0 3114.95 7.96
flowersnark120 720 480 0 0 0.151 0.109 7.86 8.21
flowersnark-150 900 600 0 0 0.101 0.086 36.53 15.50
flowersnark-200 1200 800 0 0 0.141 0.123 18.02 31.04
flowersnark40 240 160 0 0 0.016 0.005 1.92 0.35
flowersnark80 480 320 0 0 0.068 0.059 3.18 1.08
hypercube-10 5120 1024 0.128 0.152 1.004 0.653 4965.30 133.93
hypercube-5 80 32 0.054 0.058 0.401 0.321 0.95 0.10
hypercube-6 192 64 0.075 0.087 0.774 0.426 4.20 0.20
hypercube-8 1024 256 0.104 0.127 0.876 0.631 81.68 2.59
powerlaw-100-2-05 148 100 0.024 0.025 0.338 0.309 1.24 0.38
powerlaw-100-2-08 178 100 0.042 0.042 0.464 0.398 1.64 0.59
powerlaw-150-2-05 223 150 0.034 0.035 0.404 0.360 1.37 1.94
powerlaw-150-2-08 268 150 0.047 0.047 0.471 0.404 2.44 1.73
powerlaw-200-2-05 298 200 0.025 0.026 0.581 0.443 2.64 1.27
powerlaw-200-2-08 358 200 0.037 0.038 0.454 0.376 3.75 1.78
random-100-02 1093 100 0.193 0.203 0.874 0.742 48.43 0.67
random-100-05 2479 100 0.224 0.234 0.938 0.855 168.40 1.48
random-150-02 2394 150 0.209 0.223 0.932 0.809 226.60 3.98
random-150-05 5675 150 0.241 0.250 0.965 0.953 580.59 6.10
random-200-02 4097 200 0.218 0.228 0.930 0.887 271.94 7.68
random-200-05 10023 200 0.248 0.255 0.949 0.952 1024.32 11.43
random-50-02 291 50 0.143 0.161 0.922 0.638 7.03 0.17
random-50-05 665 50 0.195 0.212 0.836 0.953 16.20 0.23
rnddegdist-100 2252 100 0.223 0.235 0.929 0.963 136.74 1.48
rnddegdist-150 5293 150 0.240 0.249 0.939 0.955 819.86 3.91
rnddegdist-30 174 30 0.156 0.179 0.767 0.667 2.26 0.11
rnddegdist-40 221 40 0.156 0.175 0.672 0.628 2.93 0.17
tripartite-100-02 4038 300 0.198 0.213 0.968 0.737 369.77 10.39
tripartite-100-05 10003 300 0.227 0.238 0.917 0.729 1150.35 21.37
tripartite-150-02 9061 450 0.213 0.227 0.956 0.765 2005.30 32.43
tripartite-150-05 22431 450 0.235 0.245 0.876 0.751 4687.28 45.27
tripartite-30-02 359 90 0.106 0.118 0.736 0.547 10.31 0.37
tripartite-50-02 995 150 0.153 0.173 0.958 0.722 38.55 1.00
tripartite-50-05 2519 150 0.208 0.220 0.849 0.736 160.43 2.39

Table 2 Cycle formulation vs. edge formulation performance on various small sized graphs (real-
izations in K = 2 dimensions.


