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Abstract
Feedforward neural networks based on Rectified linear units (ReLU) cannot efficiently ap-
proximate quantile functions which are not bounded, especially in the case of heavy-tailed
distributions. We thus propose a new parametrization for the generator of a Generative
adversarial network (GAN) adapted to this framework, basing on extreme-value theory.
An analysis of the uniform error between the extreme quantile and its GAN approximation
is provided: We establish that the rate of convergence of the error is mainly driven by the
second-order parameter of the data distribution. The above results are illustrated on sim-
ulated data and real financial data. It appears that our approach outperforms the classical
GAN in a wide range of situations including high-dimensional and dependent data.

Keywords: Extreme-value theory, neural networks, generative models

1. Introduction

Context of risks. Analyzing extreme events is an important issue in economics, engi-
neering, and life sciences, among other fields, with significant applications such as actuarial
risks (Asmussen and Albrecher, 2010), communication network reliability (Robert, 2003),
aircraft safety (Prandini and Watkins, 2005), analysis of epidemics, and so forth... In the
last two decades, it has taken even more importance in financial risk management, because
of the increasing number of shocks and financial crises. Among the wide range of exercises
in this field, stress test (European Banking Authority, 2014) has become a main guideline
for the regulator in order to assess the banking system resilience against the realizations of
various categories of risk (market, credit, operational, climate, etc). To this end, numerical
simulation of unfavorable extreme (but plausible) scenarios is a major tool to study the
consequences on these risks. Given a stochastic model of risks, various sampling schemes
are available (for instance, using importance sampling (Bucklew, 2004, Chapter 4), MCMC
with splitting – (Gobet and Liu, 2015), or interacting particles system – (Del Moral and
Garnier, 2005)), with the potential advantage of reducing the statistical fluctuation over a
naive Monte Carlo method. Though presumably more informative for a given number M
of samples, these methods suffer from a higher computational complexity (notably in high
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dimension): Thus, one might wonder how to get extra samples in an efficient way, by leverag-
ing the previous M samples. Somehow, the situation is similar to a case where the previous
samples are viewed as observed data and where we seek a data-driven method able to sample
similarly to that empirical distribution, without necessarily the knowledge of the sampling
method that has generated the observed data. This corresponds to the recent paradigm of
Generative adversarial network (GAN) models initiated by (Goodfellow et al., 2014) or of
Variational autoencoder (VAE) by (Kingma and Welling, 2014). The novelty in our work
is relative to the context of risks, where we are interested in a generative data-based model
able to reproduce – with high-fidelity – specific extreme statistical properties of a data set,
while being fast in the simulation phase. This challenge arises both in the context of true
historical data sets (see experiments in Section 4) or when the learning data set has been
generated by sophisticated Monte Carlo methods.

Background results. Generally speaking, different types of generative models have been
developed lately (Foster, 2019) and in this work, we focus on GANs, which have gained a
tremendous popularity from the original work of (Goodfellow et al., 2014) and its extension
using the Wasserstein distance (Arjovsky et al., 2017). Kuratowski Theorem (Bertsekas and
Shreve, 1978, Chapter 7)-(Villani, 2009, p.8) ensures that any random variable X on Rd
(and more generally on a Polish space) can be obtained by

X
d
= G(Z) (1)

for some measurable function G and some latent random variable Z in dimension d′ (see
Lemma 7 in the Appendix for a constructive proof with Z ∼ U([0, 1]) and d′ = 1) such that
for each mth marginal, m ∈ {1, . . . , d}, one has X̃(m) := G(m)(Z)

d
= X(m). This result is

one key to understand the ability of GANs to simulate realistic samples in a space of high
dimension d, starting from a latent space of moderate dimension d′. In practice, the selection
of this latent dimension is an open problem in the generative neural networks literature. A
GAN scheme is aimed at approximating the unknown G through a parametric family of
neural networks (NN) G = {Gθ : Rd′ → Rd, θ ∈ Θ} and to learn the optimal parameter
θ? from a data set {Xi ∈ Rd, i = 1, . . . , n} of i.i.d samples from an unknown distribution
pX . It is performed by optimizing an objective function which can be interpreted as an
adversarial game between a generator and a discriminator chosen in a parametric family of
functions D = {Dφ : Rd → [0, 1], φ ∈ Φ}. In other words, Dφ(x) represents the probability
that an observation x is drawn from pX . Both the generator and the discriminator are
NNs with opposite objectives: The former tries to mimic real data which seem likely by the
discriminator, while the latter tries to distinguish between the two sources. In (Goodfellow
et al., 2014), this optimization problem is defined as:

min
θ∈Θ

max
φ∈Φ

[EpX (logDφ(X)) + EpZ (log (1−Dφ (Gθ(Z))))] .

Theoretical results on GANs have been established in (Biau et al., 2020a,b; Haas and Richter,
2020), see also (Remlinger et al., 2021; Wiese et al., 2020) for the generation of financial
time-series and (Allouche et al., 2021) for the generation of fractional Brownian motion.

Extreme events generation using GANs has been investigated in Finance (Wiese et al.,
2020), in meteorology (Bhatia et al., 2020), in cosmological analysis (Feder et al., 2020)
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and in anomaly detection (Dionelis et al., 2020). One strategy is to learn a light-tail model
on some transformed data and then transform back the generator outputs for recovering
the heavy-tailed data property. Possible transformations include the Lambert W function
(Wiese et al., 2020). Another approach is to use directly a heavy-tailed latent variable
in the GAN setting (Feder et al., 2020; Huster et al., 2021). It is shown in (Huster et al.,
2021) that generator outputs follow the desired heavy-tailed distribution. Alternative metric
spaces are also introduced to ensure the loss function to be finite. To be effective, the
method however requires the accurate estimation of the tail-index associated with each
heavy-tailed marginal distribution, which is a challenging task in extreme-value theory,
see next paragraph for details: As a main difference, our approach does not require the
estimation of tail-indices. Alternatively, in (Bhatia et al., 2020), a distribution shifting is
first introduced in order to reduce the lack of training data in the extreme tails. Second, a
GAN parametrization conditioned by samples drawn from a generalized Pareto distribution
is fitted to the shifted data. Finally, an additional term representing some distance to a
desired extremeness is added to the loss function. Although numerical results on images
are promising, we do not think that the proposed parametrization gives theoretical support
for generating extreme observations in the sense that no error or complexity bounds are
provided in the NN architecture of the generator.

Our contributions. In a GAN setting, our purpose is to cope with two prominent issues,
that are mostly related to extreme-value theory. First, the number of data available in
extreme regions must be relatively small, by definition (even in the case of data that are
output of sophisticated sampling methods). Second, we restrict to the challenging situation
of heavy-tailed distributions (in the Fréchet maximum domain of attraction), where by
definition, extreme data take very large values. Therefore, the usual GAN approach cannot
work, as we now explain (and as the reader will check from our numerical experiments in
Section 4). Consider for a while the case d = d′ = 1 and say that G in (1) is approximated
by a ReLU NN under the form

Gθ(z) =

J∑
j=1

ajσ(wjz + bj), (2)

where σ(x) := max(x, 0) is the ReLU function, θ = {(aj , wj , bj), j = 1, . . . , J} ∈ Θ = R3J

and J is the number of units in the hidden layer. On the one-hand, if the latent random
variable Z were bounded, the output would be bounded (Huster et al., 2021, Proposition 1)
and by no means, it would be a good candidate for fitting the distribution of the unbounded
random variable X. On the other hand, taking for Z a Gaussian vector as it is often chosen,
for example in (Bhatia et al., 2020), would lead to a light-tailed distribution for Gθ(Z)
(Huster et al., 2021, Theorem 1) since Gθ is sublinear w.r.t. the input (Vladimirova et al.,
2018), whereas we focus on the heavy-tail case. Similar arguments are given in (Wiese
et al., 2019, Theorem 1) to emphasize that the generator cannot generate samples with
heavier distribution than its inputs. Clearly, such a parameterization (2) of the generator
cannot be efficient as far as extreme values are concerned. Note that deeper NN would not
overcome this issue either.

To introduce our new parametrization called Extreme-Value GAN (EV-GAN), consider
first a real random variable X with cumulative distribution function FX defined on R. The
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Figure 1: Quantile function associated with the Burr distribution u ∈ (0, 1) 7→ qX(u)
with tail-index γ ∈ {1/2, 1, 2} and second-order parameter ρ = −1, see Table 4 for the
parameterization.

inversion method by Von Neumann Eckhardt (1987) gives that one can set G(u) := qX(u) :=
inf{x : FX(x) ≥ u} with U ∼ U([0, 1]). Since we shall focus on distributions in the Fréchet
maximum domain of attraction (de Haan and Ferreira, 2006, Theorem 1.2.1) with positive
tail-index γ, the associated survival function F̄X(x) := 1−FX(x) decays at rate x−1/γ when
x → ∞, which implies that qX(u) diverges as u → 1 at rate (1 − u)−γ . The tail-index γ is
thus the main driver of the behavior of extreme quantiles, see Figure 1 for an illustration.
To be in a position to apply results such as the Universal approximation theorem (Cybenko,
1989) (any continuous function on [0, 1] can be approximated with arbitrary precision by a
one hidden layer NN), we shall transform the quantile function to avoid divergence in the
neighborhood of u = 1. To this end, for all (u, y) ∈ [0, 1)× (0,∞), let

Hu(y) = − log(y)
/

(log(1− u2)− log(2)) and fTIF(u) = Hu(qX(u)). (3)

It will appear in the sequel that fTIF is continuous on [0, 1] for all FX in the Fréchet
maximum domain of attraction, with fTIF(u) → γ as u → 1; fTIF is thus referred to as
the Tail-index function (TIF). Therefore, a ReLU NN could well approximate fTIF thanks
to the Universal approximation theorem, but to get even better approximation, we shall
consider a correction of the Tail-index function:

fCTIF(u) = fTIF(u)−
6∑

k=1

κkek (u) , u ∈ [0, 1],

which enjoys higher regularity in the neighborhood of u = 1. See Paragraph 2.2 for a defini-
tion of functions e1, . . . , e6 and coefficients κ1, . . . , κ6: The functions e1, . . . , e6 are universal
(see (19)) and as such, they do not depend on the distribution parameters, only coefficients
κ1, . . . , κ6 may depend on them. Now use a NN to approximate the smooth function fCTIF,
deduce an approximation of fTIF, and of the quantile function by composing with H−1

u for
each u (in view of (3)): All in all, we obtain the so-called EV-GAN parametrization defined
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for all (z, x) ∈ [0, 1]× (0,∞) as

GTIF
ψ (z) = H−1

z

 J∑
j=1

ajσ(wjz + bj) +

6∑
k=1

κkek (z)

 , (4)

with H−1
z (x) :=

(
1− z2

2

)−x
. (5)

In the multidimensional setting d > 1 and d′ > 1, our strategy of approximation consists in
preserving the same parametric form for each marginal component, and in mixing the latent
components to generate dependence between the d coordinates (see Corollary 6): The m-th
coordinate will take the form, with z = (z(1), . . . , z(d)),

G
TIF,(m)
ψ (z(1), . . . , z(d′)) = H−1

z(m)

 J∑
j=1

a
(m)
j σ

(
d′∑
i=1

w
(i)
j z

(i) + bj

)
+

6∑
k=1

κ
(m)
k ek

(
z(m)

) .

(6)

Let us highlight that, in (6), the mth coordinate of the generator GTIF
ψ (z) involves the

mth coordinate of z which is a d′− dimensional vector. The above construction of the EV-
GAN generator thus constraints the latent dimension to be larger than the dimension of
the data: d′ ≥ d. The architecture of the associated NN is illustrated on Figure 2 in the
case d = 2 and d′ = 3. We prove in Theorem 4 that the above EV-GAN parametrization
converges uniformly coordinate-wise, in the log-scale of the H.-transform. Joint convergence
for all coordinates is an open question, which is related to the delicate notion of upper tail
dependence. However, numerical experiments in multidimensional settings fully support the
relevance of this parametrization. We observe that tail dependencies are extremely well
reproduced.

The rest of the paper is organized as follows. The transformation of the quantile function
qX associated with an heavy-tailed distribution FX into a regular function fCTIF is presented
in Section 2: Under a second-order assumption, we show that fCTIF can be uniformly approx-
imated by a one hidden layer NN with some rate depending on the second-order parameter
ρ, which plays a crucial role in extreme-value theory. Auxiliary results and technical proofs
are postponed to the Appendix. The performance of the method is illustrated on simulated
data (Section 4) and real financial data (Section 5). It is shown that, in both experiments,
our approach largely outperforms the classic GAN method. Some conclusions and directions
of future research are discussed in Section 6.

2. Main results

First, the construction of the proposed transformation of the quantile function is developed
and its approximation by a ReLU NN is then investigated.

2.1 TIF regularity

In this section, we discuss the construction and the extension of (3). The objective is to build
a tail-index function which may be well approximated by a NN. Let X be a real random
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Figure 2: Generator of the EV-GAN with one hidden layer, d0 = 3 and d = 2.

2.1 TIF regularity

In this section, we discuss the construction and the extension of (3). The objective is to build
a tail-index function which may be well approximated by a NN. Let X be a real random
variable and denote by FX its cumulative distribution function supposed to be continuous
and strictly increasing. We focus on the case of heavy-tailed distributions, i.e. when FX is
attracted to the maximum domain of Pareto-type distributions with tail-index � > 0. From
Bingham et al. (1987), the survival function F̄X := 1�FX of such a heavy-tailed distribution
can be expressed as

(H1): F̄X(x) = x�1/�`X(x), where `X is a slowly-varying function at infinity i.e. such that
`X(�x)/`X(x) ! 1 as x ! 1 for all � > 0.

In such a case, F̄X is said to be regularly-varying with index �1/� at infinity, which is
denoted for short by F̄X 2 RV�1/� . Similarly, we shall note `X 2 RV0. The tail-index �
tunes the tail heaviness of the distribution function FX . Assumption (H1) is recurrent in
risk assessment, since actuarial and financial data are most of the time heavy-tailed, see for
instance the recent studies Alm (2016); Chavez-Demoulin et al. (2014) or the monographs
Embrechts et al. (1997); Resnick (2007). As a consequence of the above assumptions, the
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variable and denote by FX its cumulative distribution function supposed to be continuous
and strictly increasing. We focus on the case of heavy-tailed distributions, i.e. when FX is
attracted to the maximum domain of Pareto-type distributions with tail-index γ > 0. From
Bingham et al. (1987), the survival function F̄X := 1−FX of such a heavy-tailed distribution
can be expressed as

(H1): F̄X(x) = x−1/γ`X(x), where `X is a slowly-varying function at infinity i.e. such that
`X(λx)/`X(x)→ 1 as x→∞ for all λ > 0.

In such a case, F̄X is said to be regularly-varying with index −1/γ at infinity, which is
denoted for short by F̄X ∈ RV−1/γ . Similarly, we shall note `X ∈ RV0. The tail-index γ
tunes the tail heaviness of the distribution function FX . Assumption (H1) is recurrent in
risk assessment, since actuarial and financial data are most of the time heavy-tailed, see for
instance the recent studies Alm (2016); Chavez-Demoulin et al. (2014) or the monographs
Embrechts et al. (1997); Resnick (2007). The Pareto distribution is the simplest example
of heavy-tailed distribution, since, in this case, `X in (H1) is constant. See Table 4 for
more sophisticated examples. As a consequence of the above assumptions, the tail quantile
function x 7→ qX(1 − 1/x) is regularly-varying with index γ at infinity, see (de Haan and
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Ferreira, 2006, Proposition B.1.9.9), or, equivalently,

qX(u) = (1− u)−γL
(

1

1− u

)
, (7)

for all u ∈ (0, 1) with L ∈ RV0. Without of loss of generality, one can assume that η :=
P(X ≥ 1) 6= 0 and, since, we focus on the upper tail behavior of X, introduce the random
variable Y = X given X ≥ 1. It follows that the quantile function of Y is given by

qY (u) = qX(1− (1− u)η), (8)

for all u ∈ (0, 1). Note that one could also assume X ≥ 1 and set η = 1 in order to simplify
the following derivations. Finally, we consider the Tail-index function (TIF) obtained by
plugging (8) into (3):

fTIF(u) = − log qX
(
1− (1− u)η

)
log(1− u2)− log 2

, (9)

for all u ∈ (0, 1). Extra assumptions on FX , or equivalently on L, are necessary such that
fTIF is differentiable. Consider the Karamata representation of the slowly-varying function
L (de Haan and Ferreira, 2006, Definition B1.6):

L(x) = c(x) exp

(∫ x

1

ε(t)

t
dt

)
, (10)

where c(x)→ c∞ as x→∞ and ε is a measurable function such that ε(x)→ 0 as x→∞.
Our second main assumption then writes:

(H2): c(x) = c∞ > 0 for all x ≥ 1 and ε(x) = xρ`(x) with ` ∈ RV0 and ρ < 0.

The assumption that c is a constant function is equivalent to assuming that L is normalized
(Kohlbecker, 1958) and ensures that L is differentiable. As noted in Bingham et al. (1987),
the normalization assumption is not restrictive since slowly-varying functions are of interest
only to within asymptotic equivalence. The condition ε ∈ RVρ with ρ < 0 entails that
L(x) → L∞ ∈ (0,∞) as x → ∞. The index of regular variation ρ is referred to as the
second-order parameter. It is the main driver of the bias in the estimation of extreme
quantiles from heavy-tailed distributions, see Table 4 for values of ρ associated with usual
distributions. Besides, (H2) entails that FX satisfies the so-called second-order condition
which is the cornerstone of all proofs of asymptotic normality in extreme-value statistics.
Interpretations and examples may be found in Beirlant et al. (2004) and de Haan and
Ferreira (2006). We also refer to Gardes and Girard (2010, 2012) where a similar assumption
is introduced in the framework of conditional extremes. Similarly, we shall also consider the
assumption:

(H3): ` is normalized.

The latter condition ensures that ` is differentiable on (0, 1) and thus that L and qX are
twice differentiable on (0, 1). Regularity properties of the above TIF can then be established,
see Figure 3 for an illustration on the Burr distribution defined in Table 4.
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Figure 3: (a,b): Tail-index function u ∈ (0, 1) 7→ fTIF(u) associated with a Burr distribution
for different values of tail-index γ and second-order parameter ρ, see Table 4 for parameter-
ization details. (c): First derivative of Tail index function u ∈ (0, 1) 7→ ∂uf

TIF(u).

Proposition 1

(i) If (H1) holds, then fTIF is a continuous and bounded function on [0, 1], fTIF(0) = 0 and
fTIF(u)→ γ as u→ 1.

(ii) If, moreover, (H2) holds, then fTIF is continuously differentiable on (0, 1) and

∂uf
TIF(0) =

γ + ε (1/η)

log(2)
,

∂uf
TIF(u) =

3∑
j=0

cjϕj(u)−
ε
(

1
(1−u)η

)
(1− u) log(1− u)

(1 + o(1)) +O
(

(1− u)

log(1− u)

)
, (11)

as u→ 1, where c0 = c3 = β, c1 = −γ/2, c2 = (γ − β)/2, β = γ log η − logL∞,

ϕ0(u) =
1

(1− u) (log(1− u))2 and ϕj(u) =
1

(log(1− u))j
, u ∈ (0, 1), j = 1, 2, 3.
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It appears from Proposition 1(i) that, in contrast to the quantile function, the TIF is
bounded on [0, 1]. Remark that considering the simpler form Hu(·) = − log(·)/ log(1 − u)
in (3) would circumvent the problem as u → 1 but would introduce an artifical singularity
as u→ 0. Let us also highlight that ϕ0(u)→∞ as u→ 1 making the first derivative of fTIF

unbounded as u → 1, see Figure 3c for an illustration on the Burr distribution. Besides,
ϕj(u) → 0 as u → 1 for all j ∈ {1, 2, 3} while the second term in (11) tends to 0 if ρ < −1
or tends to ∞ if ρ > −1. Moreover, it is readily seen that ∂uϕj(u) → ∞ as u → 1 for all
j ∈ {0, . . . , 3}. As a conclusion, in the case where ρ < −1, Proposition 1(ii) suggests to
build a twice differentiable version of fTIF by removing the ϕj components, j ∈ {0, . . . , 3},
in the neighborhood of u = 1. To this end, consider

fCTIF(u) := fTIF(u)− g(u)
3∑
j=0

cjΦj(u)− γg(u)− ∂ufTIF(0)h(u), (12)

with, for all u ∈ (0, 1),

g(u) = −4u5 + 5u4,

h(u) = u3 − 2u2 + u,

Φ0(u) = ϕ1(u),

Φ1(u) = − li(1− u),

Φ2(u) = Φ1(u) + (1− u)ϕ1(u),

Φ3(u) =
(

Φ1(u) + (1− u)(ϕ1(u) + ϕ2(u))
)
/2.

(13)

Here, li(·) denotes the logarithmic integral function defined as li(x) :=
∫ x

0
1

log(t) dt for all
0 < x < 1, with li(0) = 0 and li(x) → −∞ as x → 1. Let us remark that g(·) and
h(·) are two Hermite spline functions and that, by construction, ∂uΦj(u) = ϕj(u), for all
j ∈ {0, . . . , 3}. The second term in (12) thus aims at removing the singular components
in the first and second derivative of the TIF function in the neighborhood of u = 1. The
additional terms γg(u) and ∂fTIF(0)h(u) ensure that the TIF function as well as its first
derivative vanish at u = 0. Regularity properties of fCTIF are established in the next
Proposition and illustrated on Figure 4 in the case of a Burr distribution.

Proposition 2

(i) If (H1) holds, then

lim
u→0

fCTIF(u) = lim
u→1

fCTIF(u) = 0. (14)

(ii) If, moreover, (H2) holds with ρ < −1, then fCTIF is continuously differentiable on [0, 1]
and

lim
u→0

∂uf
CTIF(u) = lim

u→1
∂uf

CTIF(u) = 0. (15)

(iii) If, moreover, (H3) holds, then fCTIF is twice continuously differentiable on [0, 1) and

∂2
uuf

CTIF(u) = 20γ − 2

(
γ + ε(1/η)

log(2)

)
−

(1 + ρ)ε
(

1
η(1−u)

)
(1− u)2 log(1− u)

(1 + o(1)) +O
(

1

log(1− u)

)
,

(16)
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Figure 4: Illustration of the regularity properties of CTIF on a Burr distribution with
γ = 1/2 and ρ ∈ {−3,−3/2,−1}. Corrected tail-index function u ∈ (0, 1) 7→ fCTIF(u)
(dashed line) and its first two derivatives u ∈ (0, 1) 7→ ∂uf

CTIF(u) (dotted line) and u ∈
(0, 1) 7→ ∂2

uuf
CTIF(u) (dash-dot line).

as u→ 1 and

lim
u→0

∂2
uuf

CTIF(u) =
5γ + ε(1/η)

(
5 + ρ+ 1

η
∂`(1/η)
`(1/η)

)
log(2)

− 5β. (17)

(iv) If, moreover, ρ < −2, then fCTIF is twice continuously differentiable on [0, 1] and

lim
u→1

∂2
uuf

CTIF(u) = 20γ − 2

(
γ + ε(1/η)

log(2)

)
. (18)

It appears on Figure 4a that for ρ = −1, property (14) holds while first and second deriva-
tives do not vanish at the boundaries of [0, 1]. When ρ = −2 (Figure 4b) both properties (14)
and (15) are satisfied while the second derivative converges to a finite value in the neigh-
borhood of 0, see (17), and diverges in the neighborhood of 1, see (16). Finally, ρ = −3
(Figure 4c) corresponds to the same situation, except that the second derivative also con-
verges in the neighborhood of 1, see (18).
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Let I ⊂ R. Let us recall that a function f : I 7→ R is Hölder continous with exponent
α ∈ (0, 1] if the following quantity is finite

[f ]α := sup
x 6=y∈I

|f(x)− f(y)|
|x− y|α .

This property is denoted for short by f ∈ Hα(I). The case α = 1 corresponds to Lipschitz
functions. We shall also note Cm(I) the set of m-th continuously differentiable functions
on I, m ∈ N. Finally, for all α ∈ (0, 1] and m ∈ N, we denote by Cm,α(I) the Hölder
space which consists of all functions f ∈ Cm(I) such that ∂mf ∈ Hα(I). In particular,
Cm+1(I) ⊆ Cm,1(I). Using these notations, and focusing on the case where ρ < −1, the
regularity properties of fCTIF provided by Proposition 2 can be simplified as:

Corollary 3 Assume (H1), (H2) and (H3) hold.

(i) If −2 ≤ ρ < −1 then fCTIF ∈ C1,α([0, 1)) for all α ∈ (0,−1− ρ).

(ii) If ρ < −2 then fCTIF ∈ C2([0, 1]).

It is thus clear that, the smaller ρ is, the more regular fCTIF is, and therefore higher
regularities could be obtained at the price of further restrictions on ρ. We are now in a
position to investigate how a NN can approximate such a function.

2.2 Approximation error

Lemma 13 in Appendix B provides the minimum number of ReLU functions to approximate
a C1,α function with a given precision ε. Combining this result with Corollary 3 yields the
uniform approximation error of fCTIF by a NN depending on the number of ReLU functions:

Theorem 4 Assume (H1), (H2) and (H3) hold. Let σ be a ReLU function. For all J ≥ 6,
there exist (aj , wj , bj) ∈ R3, j = 1, . . . , J such that:

sup
u∈[0,1]

∣∣∣∣∣∣fCTIF(u)−
J∑
j=1

ajσ (wju+ bj)

∣∣∣∣∣∣ ≤ [∂tf
CTIF]α
4

⌈
J − 3

3

⌉−α−1

= O
(
J−α−1

)
,

where

1. α ∈ (0,−1− ρ) if −2 ≤ ρ < −1,

2. α = 1 if ρ < −2.

Note that, for α = 1, the above rate cannot be improved in general, owing to (Yarotsky,
2017, Theorem 6). Moreover, the previous approximation result can be interpreted in terms
of Wasserstein-1 distance between the true data distribution and the simulated one. Indeed,
in the univariate case, the Wasserstein-1 distance can be simplified as

W1(qY , q̃Y ) =

∫ 1

0
|qY (u)− q̃Y (u)| du,

where u 7→ q̃Y (u) := H−1
u (G(u)), with H−1

u (·) defined in (5), is the EV-GAN approximation
of the unknown quantile function u 7→ qY (u).

11
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Corollary 5 Assume conditions of Theorem 4 hold with γ < 1 and ρ < −1. Then, the
Wasserstein-1 distance can be controlled as W1(qY , q̃Y ) = O

(
J−α−1

)
.

Note that γ < 1 is a necessary condition for the Wasserstein-1 distance to exist. In view
of (12) and (13), letting

e1(u) = g(u), e2(u) = h(u) and ek+3(u) = g(u)Φk(u) for k = 0, . . . , 3 (19)

in (4), the above approximation bounds on fCTIF can be translated in terms of approxima-
tion bounds on fTIF using the “enriched” NN. Note that the approximation space of TIF
functions can be done for all components of a d-dimensional random variable, by following
the principle (6), with a latent dimension d′ ≥ d. We obtain the final approximation result
whose proof is now an easy combination of Corollary 3 and Theorem 4.

Corollary 6 Let σ be a ReLU function. Let X = (X(1), . . . , X(d))> be a d-dimensional vec-
tor, with each component X(m) fulfilling (H1), (H2) and (H3) with parameters (γ(m), ρ(m)).
Let Gd′,dJ be the approximation space of TIF functions made of J ≥ 6 neurons:

Gd′,dJ :=

{
G : z ∈ [0, 1]d

′ 7→ G(z) = (G(1)(z), . . . , G(d)(z))>,

G(m)(z) =

J∑
j=1

a
(m)
j σ

(
d′∑
i=1

w
(i)
j z

(i) + bj

)
+

6∑
k=1

κ
(m)
k ek

(
z(m)

)
,

a
(m)
j , w

(i)
j , bj ,κ

(m)
k ∈ R

}
.

Then,

inf
G∈Gd′,dJ

sup
m=1,...,d

sup
z∈[0,1]d′

∣∣∣fTIF,(m)(z(m))−G(m)(z)
∣∣∣ = O

(
J−α−1

)
,

where

(i) α ∈ (0,−1−maxm=1,...,d ρ
(m)) if −2 ≤ ρ(m) < −1 for some m = 1, . . . , d,

(ii) α = 1 if ρ(m) < −2 for all m = 1, . . . , d.

Here, we have defined

fTIF,(m)(z(m)) = − log(qX(m)(1− (1− z(m))η(m)))

log
(

1−
(
z(m)

)2)− log 2

as an natural extension of (9). For optimal parameters a(m)
j , w

(i)
j , bj , κ

(m)
k , the generative

model for X is then

X̃ =

(
H−1
Z(m)

(
G(m)(Z)

)
: m = 1, . . . , d

)
with Z

d
= U([0, 1]d

′
). (20)
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In the above, one could restrict G(m)(z) to depend only on them-th coordinate of z: it would
not affect the potential quality of approximation of the m-th marginal of X but it would
lead to a generative model with independent components which would be too restrictive.
Mixing all latent components of z in G(m)(z) allows for generating dependence in the tails,
while ensuring good fit of the marginals, as it will be checked in the subsequent experiments.

Observe that the worst second-order parameter ρ(m), i.e. the closest to −1, tunes the
global accuracy of the EV-GAN through the convergence order α + 1. Obtaining a similar
result on the d-dimensional Wasserstein-1 distance is beyond the scope of this paper.

One may wonder if deeper ReLU NNs would help in better approximating the generative
model for X. From the theoretical point of view, the benefit is unclear, in particular in view
of (Yarotsky, 2017, Theorem 1) which states that a C1,1-function1 can be approximated with
error ε using a ReLU NN with depth O(log(1/ε)) and number of weights O(ε−1/2 log(1/ε)).
Up to the log factor, this is similar to the above result (Theorem 4) by setting ε = J−α−1.
From the numerical point of view, identifying in which circumstances a deep ReLU NN could
be useful is part of our further investigations. Let us highlight that Lemma 13, and thus
the whole analysis, can be adapted to any other non-polynomial activation function in view
of the Universal approximation theorem (Pinkus, 1999).

3. Implementation

3.1 Experimental design

The neural network training is done by alternating generator and discriminator steps. The
ranges of hyperparameters that are explored in order to find the best model for each data
configuration are reported in Table 5. Note that, in order to respect the architecture (6),
the generator is restricted to be a one hidden layer NN. Additionally, we use the optimizer
Adam (Kingma and Ba, 2014) with default parameters β1 = 0.9 and β2 = 0.999 for all tests
performed during 1, 000 iterations. No additional normalization techniques are used. Every
5 iterations, two metrics (see Section 3.2 below) are computed and, for each metric, the NN
parameters associated with the best results among the 200 checkpoints are selected.

3.2 Performance assessment

Recall that from (7), in the heavy-tail model, for all j ∈ {1, . . . , d}, log qX(j)(u) is ap-
proximately proportional to log(1/(1 − u)) when u is close to 1, with the tail-index γ as
proportionality factor. It is therefore common practice to check the heavy-tail assumption
on each margin j ∈ {1, . . . , d} by drawing a log quantile-quantile plot, namely the points
(log((n + 1)/i), logX

(j)
n−i+1,n), for i ∈ {1, . . . , d(1 − ξ)ne}, where ξ ∈ [0, 1) is a given prob-

ability level. The performance of a generator can then be visually assessed by comparing
the pairs (log((n + 1)/i), logX

(j)
n−i+1,n) and (log((n + 1)/i), log X̃

(j)
n−i+1,n). Here, and in the

sequel, {X̃1, . . . , X̃n} denotes the outputs generated either by the EV-GAN model (20) or
by the classic GAN. To further quantify the fit on the tails of the marginal distributions,
we define the Mean squared logarithmic error (MSLE) as the squared distance between the

1. His result does not apply to our possible case α ∈ (0, 1].
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logarithm of the original and generated data:

MSLE(ξ) =
1

dd(1− ξ)ne
d∑
j=1

d(1−ξ)ne∑
i=1

(
log(X

(j)
n−i+1,n)− log(X̃

(j)
n−i+1,n)

)2
,

with ξ ∈ {0.90, 0.95, 0.99}. Thus, a 100% relative error on the marginals corresponds
to MSLE(ξ) = (log(2))2 ' 0.48. Considering the dependence structure, one may also
graphically compare the estimated Kendall’s dependence functions K (or equivalently the
t 7→ λ(t) := t−K(t) functions) on the n observations associated with the original sample and
the generated one. From the quantitative point of view, the fit of the dependence structure
is assessed by the 1-Wasserstein distance between these two Kendall’s dependence functions
which indeed are cumulative distribution functions. The distance can be computed as a L1

norm referred to as the Absolute Kendall error (AKE) in the sequel:

AKE =
1

n

n∑
i=1

∣∣∣Zi,n − Z̃i,n∣∣∣ ,
where Z1,n ≤ · · · ≤ Zn,n (resp. Z̃1,n ≤ · · · ≤ Z̃n,n) are the order statistics associated with
{Z1, . . . , Zn} (resp. {Z̃1, . . . , Z̃n}) and the Z̃i are computed similarly to (21) in Appendix A
on the generated sample. We shall also compare Kendall’s tau estimated on the original
sample τ̂n, on the generated sample τ̃n and the theoretical value τCGµ .

3.3 Computational aspects

The numerical experiments presented in the next two sections have been conducted on the
Cholesky computing cluster from Ecole Polytechnique http://meso-ipp.gitlab.labos.
polytechnique.fr/user_doc/. It is composed by 2 nodes, where each one includes 2 CPU
Intel Xeon Gold 6230 @ 2.1GHz, 20 cores and 4 Nvidia Tesla v100 graphics card. All the
code was implemented in Python 3.8.2 and using the library PyTorch 1.7.1 for the GANs’
training.

4. Validation on simulated data

The data simulation is based on the use of copulas, which allow to model separately the
dependence structure and the margins, see Appendix A for a short overview. We focus
on the Gumbel copula, denoted by CGµ which has been proved to be the only max-stable
Archimedean copula (Genest and Rivest, 1989). The associated generating function is
ψGµ (t) = exp(−t1/µ) defined for all µ ≥ 1 and t ≥ 0. It is easily seen that Kendall’s
dependence function is given by KCGµ

(t) = t − t log(t)/µ for all t ∈ (0, 1] and Kendall’s
tau is τCGµ = 1 − 1/µ. These two above quantities respectively provide a local and global
characterization of the dependence structure induced by the copula. Besides, CG1 = Π the
independence copula, and CGµ → M , the comotonic copula, as µ → ∞. In the following
Section 4.1 we restrict ourselves to the dimension d = 2, while, in Section 4.2, we provide
illustrations in higher dimensions.
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4.1 Bivariate case

Three values of the dependence parameter are investigated: µ ∈ {1.1, 2, 10} leading to
τCGµ ∈ {0.1, 0.5, 0.9}. The two margins are chosen to be Burr distributed, with com-
mon tail-index γ := γ1 = γ2 ∈ {0.1, 0.5, 0.9} and second-order parameters (ρ1, ρ2) ∈
{(−1,−2), (−1,−3), (−2,−3)}, see Table 4 for the parametrization of the Burr distribu-
tion. Finally, n = 10, 000 i.i.d data {X1, . . . , Xn} are simulated from the resulting bivariate
model for the above 3 × 3 × 3 = 27 combinations of parameters. Results are reported on
Table 1 in terms of MSLE(0.99), AKE and Kendall’s tau.

When the tail-index γ increases, the tails of the marginal distributions of the simulated
get heavier and the MSLE criteria of GAN and EV-GAN methods increase for all considered
values of (ρ1, ρ2, µ) with a clear soaring when γ = 1. In this latter case, the expectation of the
simulated distribution does not exist. However, from this marginal point of view, EV-GAN
outperforms GAN in terms of MSLE for all considered configurations of (γ, ρ1, ρ2, µ). This
conclusion remains true from the dependence point of view: EV-GAN outperforms GAN in
terms of AKE for all the considered configurations of (ρ1, ρ2, µ) when γ ∈ {0.5, 0.9}. This
phenomenon is illustrated in Figure 5 in the case where γ = 0.9, ρ1 = −1, ρ2 = −3 and
µ = 10. The log quantile-quantile plots associated with both margins are displayed on the
top panel. It is easily seen that GAN method is not able to generate data in the distribution
tail since the tail heaviness is strongly underestimated. At the opposite, EV-GAN method
yields realistic data generation in both marginal tail distributions. Note that, in this case,
the dependence structure is well captured by both NNs, see the estimated λ(·) functions on
the bottom panel.

Finally, it appears on Table 1 that Kendall’s tau is not a sufficient summary of the
dependence structure: All estimated Kendall’s tau are close to the theoretical ones even
though the AKE is large. This criterion is thus dropped in the real data analysis hereafter
since it might yield misleading conclusions.

4.2 Multivariate case

The ability of EV-GAN to properly scale in high dimension is now investigated. Using the
R package copulas (Kojadinovic et al., 2010), n = 10, 000 samples are simulated from a
d-variate Gumbel copula for increasing dimensions d ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024},
with a unique dependence parameter µ = 2 and where all margins are Burr distributed
with parameters γ = 0.5 and ρ = −1. MSLE results at level ξ ∈ {0.90, 0.95, 0.99} are
reported in Table 2 for both GAN and EV-GAN methods. Here again, EV-GAN clearly
outperforms GAN for all dimensions and levels considered. Indeed, EV-GAN method yields
realistic margins up to dimension 512 for high levels of quantiles ξ ∈ {0.90, 0.95}. In the
case of higher levels (ξ ∈ {0.99}) the dimension is limited to 128. In contrast, the classic
GAN model is limited more or less to dimension 8 for all levels. Figure 6 illustrates the
dependence associated with samples in dimension d ∈ {4, 8, 16, 32, 64, 128}. First, remark
that λ(·) associated with the original data tends toward the independence function t 7→ t−1
as d increases, accordingly to (Garcin et al., 2018, Section 3.3). Second, it appears that
EV-GAN manages to reproduce very well the dependence structure of the original data up
to d = 16, but tends faster to the independence between the margins for higher dimensions.
Removing this trend is part of our future work, see Section 6.
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MSLE(0.99)

γ
(ρ1, ρ2)

µ 1.1 2 10

0.1
(−1,−2) 0.895 0.116 0.545 0.097 0.232 0.037
(−1,−3) 0.923 0.103 0.732 0.082 0.553 0.143
(−2,−3) 0.677 0.190 0.836 0.083 0.700 0.174

0.5
(−1,−2) 3.576 1.058 10.673 1.006 2.567 1.321
(−1,−3) 1.943 0.958 6.913 1.569 3.812 3.252
(−2,−3) 10.809 1.707 10.157 1.201 1.306 1.195

0.9
(−1,−2) 47.742 4.966 - 6.473 - 8.651
(−1,−3) 44.949 3.129 - 4.573 45.900 3.205
(−2,−3) - 3.860 36.304 6.390 44.814 5.922

AKE

γ
(ρ1, ρ2)

µ 1.1 2 10

0.1
(−1,−2) 3.122 2.865 7.385 8.322 2.807 2.855
(−1,−3) 3.102 2.293 5.671 6.958 1.585 2.415
(−2,−3) 2.519 3.244 4.596 7.125 1.823 2.340

0.5
(−1,−2) 3.052 2.234 4.857 1.772 2.265 2.015
(−1,−3) 6.261 2.342 4.538 1.665 2.616 1.301
(−2,−3) 5.772 2.134 12.277 1.408 4.245 1.531

0.9
(−1,−2) 2.555 2.103 - 1.990 - 1.932
(−1,−3) 3.788 1.861 - 1.700 1.623 1.429
(−2,−3) - 1.696 5.632 1.788 1.991 1.181

Kendall’s tau

γ
(ρ1, ρ2)

µ (τCθµ)
1.1 (0.1) 2 (0.5) 10 (0.9)

0.1
(−1,−2) 0.092 0.091 0.514 0.531 0.905 0.895
(−1,−3) 0.093 0.083 0.477 0.500 0.900 0.905
(−2,−3) 0.086 0.083 0.511 0.480 0.899 0.903

0.5
(−1,−2) 0.090 0.088 0.493 0.500 0.903 0.900
(−1,−3) 0.106 0.096 0.506 0.502 0.901 0.900
(−2,−3) 0.093 0.087 0.473 0.502 0.885 0.898

0.9
(−1,−2) 0.088 0.090 - 0.503 - 0.901
(−1,−3) 0.091 0.088 - 0.499 0.899 0.897
(−2,−3) - 0.089 0.487 0.498 0.900 0.900

Table 1: Comparison between the best GAN (left column) and EV-GAN (right column)
results on simulated data for the 27 combinations of parameters using two model selection
criteria. Top: MSLE criterion at level ξ = 0.99, MSLE(ξ) ≥ 0.48 are not reported, all
results are scaled by 102. Center: AKE criterion, the results are scaled by 103. Bottom:
Kendall’s tau (using the same models as the ones based on the AKE criterion). Best results
are emphasized in bold.
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(a) First margin (γ = 0.9, ρ1 = −1)
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(b) Second margin (γ = 0.9, ρ2 = −3)
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(c) Estimated λ(·) functions

Figure 5: Top: log quantile-quantile plots on each margin log((n + 1)/i) 7→ logX
(j)
n−i+1,n,

for i ∈ {1, . . . , d(1 − ξ)ne} and j ∈ {1, 2} on simulated data at probability level ξ = 0.99.
The estimated regression lines are superimposed to each scatter plot. The associated slope
is an estimation of the tail-index γ. Bottom: estimated t ∈ [0, 1] 7→ λ(t) functions. Black:
original simulated data (γ = 0.9, ρ1 = −1, ρ2 = −3 and µ = 10), blue: data generated with
EV-GAN model, orange: data generated with classic GAN model.

5. Illustration on real financial data

Our approach is tested on closing prices of daily financial stock market indices taken from
https://stooq.com/db/h/ on the October 1st, 2020. This database includes 61 world
indices from their first day of quotation. Here, we selected six indices: NKX (Nikkei,
Japan), KOSPI (Korea), HSI (Hong-Kong), CAC (France), AMX (Amsterdam Exchange,
Netherlands), Nasdaq (USA) from three market zones: Asia, Europe, USA.

As a pre-processing step, the daily log-returns are computed for each ticker index. In
case of missing data at a given business day, the next available day is removed from the
dataset. Also, since we are interested in the modeling of synchronous indices, we kept only
the data available at the same date for all selected tickers. Finally, positive returns were
discarded since we focus on the generation of losses.
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(a) d = 4

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

(b) d = 8
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(c) d = 16
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(d) d = 32
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(e) d = 64
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(f) d = 128

Figure 6: Estimated t ∈ [0, 1] 7→ λ(t) functions on multivariate simulated data in dimension
d ∈ {4, 8, 16, 32, 64, 128}. Black: original simulated data (Burr distribution, γ = 0.5, ρ = −1
and µ = 2), blue: data generated with EV-GAN model, dashed purple: independence case
t 7→ λΠ(t) = t− 1.
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dimension d MSLE(0.90) MSLE(0.95) MSLE(0.99) AKE
4 3.134 0.946 5.627 1.726 16.961 5.990 14. 2.
8 11.399 3.391 17.613 5.262 - 12.682 32. 5.
16 47.632 11.294 - 12.288 - 9.515 - 28.
32 47.466 12.519 43.610 10.052 - 32.022 - 49.
64 - 13.455 - 12.746 - 15.278 - 53.
128 - 19.365 - 14.751 - 28.977 - 48.
256 - 18.073 - 30.824 - - - -
512 - 19.390 - 18.863 - - - -
1024 - - - - - - - -

Table 2: Performance comparison between the best GAN (left column) and EV-GAN (right
column) results on simulated d-variate data with respect to four model selection crite-
ria. First three columns: MSLE(ξ) criterion computed at levels ξ ∈ {0.90, 0.95, 0.99},
MSLE(ξ) ≥ 0.48 are not reported, all results are scaled by 102. Last column: AKE crite-
rion, results are scaled by 103. Best results are emphasized in bold.

Figure 7 proposes a graphical summary of the tail and dependence properties associated
with this dataset. First, the log quantile-quantile plots computed on all indices at level
ξ = 0.95 are approximately linear which provides a graphical evidence of the tail heaviness
of all six marginal distributions, with, for all indices, estimated slopes pointing towards a
tail-index γ̂ ' 0.3 and an estimated second order parameter ρ̂ ' −0.7 using the estimator
implemented in the R package evt0 (Manjunath et al., 2013). Second, the λ(·) associated
with all 15 pairs of indices are also displayed together with the two extreme cases λΠ(·)
and λM (·). The strongest dependence is found within the European market zone (pair
AMX,CAC) while weakest dependencies are located between US and Asian market zones.
Let us however note that the dependence between Asian, European and US markets may
be under-estimated due to different time zones.

In the following, the performance of GAN and EV-GAN approaches are compared on
four datasets of increasing dimensions: NKX (d = 1), Europe (AEX, CAC, d = 2), Asia
(NKX, KOSPI, HSI, d = 3) and world (AEX, CAC, NKX, KOSPI, HSI, NDQ, d = 6). The
training procedure described in Section 4 is adopted and results are reported in Table 3.
EV-GAN outperforms GAN both on tail criteria MSLE(ξ), ξ ∈ {0.90, 0.95, 0.99} and on
dependence criterion AKE, even though the condition ρ < −1 may not be fulfilled on this
dataset. These results are illustrated on Figure 8 where it appears that EV-GAN is able to
generate financial indices with realistic marginal tail behaviors. Finally, Figure 9 provides
a comparison of dependence results obtained either using the MSLE or the AKE criteria.
Unsurprisingly, the latter yields better results. Here again, the results associated with EV-
GAN are visually more satisfying than those of the classic GAN. Information on the selected
hyperparameters is provided in Table 5.
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(f) NDQ (γ̂ = 0.299, ρ̂ = −0.734)
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(g) Estimated λ(·) functions

Figure 7: Top panels: Log quantile-quantile plots log((n + 1)/i) 7→ logX
(j)
n−i+1,n, for i ∈

{1, . . . , d(1 − ξ)ne} on the selected financial indices j ∈ {1, . . . , 6} at probability level ξ =
0.95. The estimated regression line is superimposed to each scatter plot. The associated
slope is an estimation of the tail-index. Bottom panel: Estimated t ∈ [0, 1] 7→ λ(t) functions
for all 15 pairs of indices. Functions t ∈ [0, 1] 7→λΠ(t) = t log t and t ∈ [0, 1] 7→λM (t) = 0
respectively associated with independence and comotonic dependence in the bivariate case
(d = 2) are depicted by black dashed lines.
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Figure 8: Log quantile-quantile plots log((n+1)/i) 7→ logX
(j)
n−i+1,n, for i ∈ {1, . . . , d(1−ξ)ne}

and j ∈ {1, . . . , 6} associated with the world market zone at probability level ξ = 0.95.
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ticker NKX Europe Asia World
dimension d 1 2 3 6
sample size n 3173 2504 1378 548
MSLE(0.90) 0.473 0.133 3.860 0.132 2.353 0.677 3.306 0.874

MSLE(0.95) 0.742 0.103 4.925 0.178 1.481 0.579 4.467 1.219

MSLE(0.99) 1.381 0.200 2.792 0.320 1.023 0.538 5.000 1.960

AKE − − 16.807 4.697 9.760 4.872 24.781 3.533

Table 3: Performance comparison between the best GAN (left column) and the EV-GAN
(right column) results on real data with respect to four model selection criteria: using the
MSLE(ξ) criterion computed at levels ξ ∈ {0.90, 0.95, 0.99} and the AKE criteria (results
are multiplied by 103 for the sake of readability).
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Figure 9: Estimated t ∈ [0, 1] 7→ λ(t) functions associated with the World market zone (d =
6). Black: original real data, blue: data generated with EV-GAN model, orange: data
generated with classic GAN model. (a) AKE criterion, (b) MSLE(0.95) criterion.

6. Conclusion

In this work, we have introduced a new generative method called EV-GAN dedicated to tail
events. It relies on a new parametrization of GANs allowing to generate data coming from
a heavy-tailed distribution. From the theoretical point of view, the uniform convergence
rate of the proposed transformed quantile function fTIF by a one hidden-layer ReLU NN is
established within an extreme-value framework. From the practical point of view, we have
illustrated on real and simulated data that EV-GAN outperforms classic GAN both in terms
of tail behavior of the marginal distributions and in terms of dependence structure.

To complete the current theoretical analysis which ensures accurate approximation of
marginals using NN, our further work will be dedicated to investigate mathematically how
dependence structure is preserved, leveraging multivariate extreme-value theory. The anal-
ysis goes far beyond this work since it is known that dependence structure in the tails can
be quite different from one case to another (Coles et al., 1999).
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Finally, we shall investigate the behavior of the proposed EV-GAN corrections in other GAN
architectures, using different distances and alternative criteria to MSLE and AKE.

Distribution (parameters) Density function γ ρ

Pareto (α > 0) αt−α−1 (t > 1) 1/α −∞

Burr (α, β > 0) αβtα−1 (1 + tα)−β−1 (t > 0) 1/(αβ) −1/β

Fréchet (α > 0) αt−α−1 exp (−t−α) (t > 0) 1/α −1

Fisher (ν1, ν2 > 0)
(ν1/ν2)ν1/2

B(ν1/2, ν2/2)
tν1/2−1(1 + ν1t/ν2)−(ν1+ν2)/2 (t > 0) 2/ν2 −2/ν2

Inverse-Gamma (α, β > 0)
βα

Γ(α)
t−α−1 exp(−β/t) (t > 0) 1/α −1/α

Cauchy (σ > 0)
σ

π(σ2 + t2)
1 −2

Student (ν > 0)
1√
νπ

Γ
(
ν+1

2

)
Γ
(
ν
2

) (
1 +

t2

ν

)− ν+1
2

1/ν −2/ν

Table 4: A list of heavy-tailed distributions with the associated values of γ and ρ.
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Hyperparameters ranges
latent dimension batch size neurons G. learning rate G. hidden layers D. neurons D. learning rate D. training loop D.

A [10, 100] [5− 64] [10, 500] [0.0001, 0.01] [1, 4] [10, 500] [0.0001, 0.01] [1, 5]

B [10, 2000] [5− 256] [10, 500] [0.0001, 0.01] [1, 4] [10, 500] [0.0001, 0.01] [1, 5]

1. Selected hyperparameters on bivariate simulated data (setting A)
MSLE(0.90)

EV-GAN 31 (18) 32 (22) 47 (22) 0.0005 (0.0004) 2 (0) 28 (27) 0.0005 (0.0004) 1 (0)

GAN 30 (8) 28 (21) 43 (24) 0.0007 (0.0004) 2 (0) 29 (26) 0.0007 (0.0004) 1 (0)

MSLE(0.95)
EV-GAN 36 (13) 31 (18) 68 (54) 0.0004 (0.0004) 2 (0) 45 (39) 0.0004 (0.0004) 1 (0)

GAN 30 (8) 26 (20) 44 (24) 0.001 (0.0004) 2 (0) 30 (26) 0.0007 (0.0004) 1 (0)

MSLE(0.99)
EV-GAN 31 (13) 33 (22) 46 (22) 0.0005 (0.0005) 2 (0) 26 (27) 0.0005 (0.0005) 1 (0)

GAN 31 (8) 29 (21) 5426 (24) 0.0007 (0.0004) 3 (1) 27 (27) 0.0007 (0.0004) 1 (0)

AKE
EV-GAN 40 (14) 30 (15) 90 (67) 0.0003 (0.0003) 2 (0) 63 (41) 0.0003 (0.0004) 1 (0)

GAN 36 (14) 24 (9) 70 (31) 0.002 (0.0003) 2 (0) 57 (42) 0.003 (0.0003) 1 (0)

2. Selected hyperparameters on multivariate simulated data (setting B)
MSLE(0.90)

EV-GAN 700 (523) 114 (88) 214 (172) 0.0007 (0.0004) 3 (1) 57 (31) 0.0007 (0.0004) 1 (1)

GAN 306 (412) 61 (37) 138 (152) 0.0006 (0.0005) 3 (1) 34 (22) 0.0006 (0.0005) 1 (0)

MSLE(0.95)
EV-GAN 1065 (509) 171 (105) 167 (132) 0.0007 (0.0004) 2 (1) 75 (30) 0.0007 (0.0004) 2 (1)

GAN 306 (412) 61 (37) 138 (152) 0.0006 (0.0005) 3 (1) 34 (22) 0.0006 (0.0005) 1 (0)

MSLE(0.99)
EV-GAN 1065 (509) 171 (105) 167 (132) 0.0007 (0.0004) 2 (1) 75 (30) 0.0007 (0.0004) 2 (1)

GAN 306 (412) 61 (37) 138 (152) 0.0006 (0.0005) 3 (1) 34 (22) 0.0006 (0.0005) 1 (0)

AKE
EV-GAN 345 (394) 51 (33) 120 (65) 0.0003 (0.0004) 3 (1) 35 (12) 0.0003 (0.0004) 1 (0)

GAN 411 (464) 121 (107) 95 (50) 0.0003 (0.0004) 2 (0) 30 (13) 0.0003 (0.0004) 2 (1)

3. Selected hyperparameters on real data (setting A)
MSLE(0.90)

EV-GAN 21 (9) 9 (5) 18 (10) 0.0001 (0) 3 (0) 12 (2) 0.0006 (0.0005) 1 (0)

GAN 28 (5) 8 (0) 28 (5) 0.0001 (0.) 3 (0) 10 (0) 0.0008 (0.0005) 2 (1)

MSLE(0.95)
EV-GAN 19 (9) 15 (13) 13 (5) 0.0003 (0.0005) 3 (1) 14 (4) 0.0006 (0.0005) 1 (0)

GAN 45 (37) 10 (4) 70 (87) 0.0001 (0.) 3 (0) 58 (95) 0.0006 (0.0005) 2 (1)

MSLE(0.99)
EV-GAN 18 (10) 5 (0) 10 (0) 0.0001 (0.) 2 (1) 13 (2) 0.0001 (0.) 1 (0)

GAN 45 (37) 10 (4) 70 (87) 0.0001 (0.) 3 (1) 58 (95) 0.0006 (0.0005) 2 (1)

AKE
EV-GAN 20 (12) 7 (2) 20 (12) 0.0003 (0.0005) 3 (0) 11 (2) 0.0006 (0.0005) 1 (0)

GAN 46 (36) 11 (4) 68 (89) 0.0001 (0.) 3 (1) 58 (94) 0.0006 (0.0005) 1 (0)

Table 5: Hyperparameters ranges used for tuning GANs across the experiments and mean
(standard deviation) of selected hyperparameters in three situations: 1. simulated bivariate
data, selection according to the MSLE(0.99) and AKE criteria, 2. simulated multivariate
data, selection according to MSLE(ξ) for ξ ∈ {0.90, 0.95, 0.99}, 3. real data, selection
according to the MSLE(0.95) and AKE criteria.
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Appendix A collects some statistical tools based on copulas used in experiments (Section 4
and Section 5). Appendix B provides auxiliary results used in Appendix C to prove the
main results of Section 2.

Appendix A. Copulas

Let us consider a d− variate stribution function FX with continuous margins denoted by
F

(j)
X , j ∈ {1, . . . , d}. From Sklar’s Theorem (Sklar, 1959), there exists a unique function C

such that
FX

(
x(1), . . . , x(d)

)
= C

(
F

(1)
X (x(1)), . . . , F

(d)
X (x(d))

)
,

with
(
x(1), . . . , x(d)

)
∈ Rd. The function C is called the copula of FX . Introducing the uni-

form random variables U (j) = F (j)(X(j)) for all j ∈ {1, . . . , d}, the copula C is the d− dimen-
sional distribution function of the random vector

(
U (1), . . . , U (d)

)
with uniform margins on

[0, 1]. Copulas are a flexible tool to impose a given dependence structure on the marginal dis-
tributions of interest, see (Nelsen, 2006) for a detailed account on copulas. The independence
between margins corresponds to the product copula Π(u(1), . . . , u(d)) = u(1) . . . u(d) while co-
motonic dependence corresponds to the Fréchet copulaM(u(1), . . . , u(d)) = min(u(1), . . . , u(d)).

Archimedean copulas. An Archimedean copula Cµ is defined for all (u(1), . . . , u(d)) ∈
[0, 1]d by

Cµ

(
u(1), . . . , u(d)

)
= ψµ

(
ψ−1
µ (u(1)) + · · ·+ ψ−1

µ (u(d))
)
,

where ψµ : [0,∞) → [0, 1] is a parametric function which has to verify certain properties
listed for instance in (McNeil and Nešlehová, 2009).

Kendall’s dependence function. Kendall’s dependence function (Genest and Rivest,
1993) characterizes the dependence structure associated with a copula C and is the univariate
cumulative distribution function defined by KC(t) = P

(
C
(
U (1), . . . , U (d)

)
≤ t
)
for all t ∈

[0, 1]. In the case of an Archimedean copula Cµ, it can be derived as (Garcin et al., 2018):

KCµ(t) = t+
d−1∑
j=1

(−ψ−1
µ (t))j

j!
ψ(j)
µ (ψ−1

µ (t)),

and we shall thus consider λCµ(t) := t−KCµ(t). It is then easily seen that λM (t) = 0 and

λΠ(t) = t

d−1∑
j=1

(− log(t))j

j!

for all t ∈ (0, 1].
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Kendall’s tau (bivariate case). Kendall’s tau (Kendall, 1938) is a measure of depen-
dence between two random variables. Let us then assume d = 2 and let X and X̃ be two
bivariate random vectors from FX . Kendall’s tau is defined as the probability of concordance
minus the probability of discordance of X = (X(1), X(2)) and X̃ = (X̃(1), X̃(2)). It can be
shown (Nelsen, 2006, Theorem 5.1.3) that this quantity only depends on the copula C of
FX and is given by

τC = 4E
[
C(U (1), U (2))

]
− 1 = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1,

with τM = 1 and τΠ = 0 as special cases. In case of an Archimedean copula Cµ, Kendall’s
tau and Kendall’s dependence functions are linked (Genest and MacKay, 1986):

τCµ = 1 + 4

∫ 1

0
λCµ(v) dv,

meaning that τCµ can be interpreted as a summary of the dependence information encoded
in λCµ(·).
Sampling (bivariate case). Sampling a random pair (U, V ) from a bivariate copula
C can be achieved by first simulating independently (U,W ) ∼ U([0, 1]2) and then letting
V = C−1

u (W ) where Cu is the conditional copula defined by

Cu(v) = P(V ≤ v|U = u) = ∂uC(u, v).

In the case of bivariate Archimedean copulas, the conditional copula and its inverse are
given by (Bernard and Czado, 2015):

Cµ,u(v) =
∂u
(
ψ−1
µ

)
(u)

∂u
(
ψ−1
µ

)
(C(u, v))

,

C−1
µ,u(y) = ψµ

(
(∂uψµ)−1

(
y

∂u
(
ψ−1
µ

)
(u)

)
− ψ−1

µ (u)

)
.

We also refer to Wu et al. (2007) and Hofert (2008) for alternative methods based on
Kendall’s dependence function and Laplace transform respectively.

Inference. The estimation of Kendall’s dependence function is based on the pseudo-
observations {Z1, . . . , Zn} from the cumulative distribution function K and computed as

Zi =
1

n− 1

n∑
j 6=i

1

{
X

(1)
j < X

(1)
i , . . . , X

(d)
j < X

(d)
i

}
, (21)

for all i ∈ {1, . . . , n}, see (Genest and Rivest, 1993). The estimator of K is computed using
the associated empirical cumulative distribution function:

K̂n(t) =
1

n

n∑
i=1

1 {Zi ≤ t} ,

and we set λ̂n(t) = t− K̂n(t), for all t ∈ [0, 1]. Similarly, Kendall’s tau is estimated by

τ̂n =
4

n

n∑
i=1

Zi − 1.
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Appendix B. Auxiliary results

We begin with a constructive proof of a particular case of Kuratowski Theorem (Bertsekas
and Shreve, 1978, Chapter 7)-(Villani, 2009, p.8).

Lemma 7 Let X be a random variable on Rd. There exists a measurable function G :

(0, 1)→ Rd such that X d
= G(U) with U ∼ U([0, 1]).

Proof Let Q : Rd → (0, 1)d be the component-wise logistic bijective function defined as
Q(m)(x) = 1/(1 + exp(−x(m))) for all m ∈ {1, . . . , d}. Let us also consider a continuous
surjection S : [0, 1] → [0, 1]d associated with a Space filling curve (like Peano or Hilbert
curves, see (Sagan, 2014)). Define the inverse function S−1(x) := inf {t ∈ [0, 1] : S(t) = x},
for any x ∈ [0, 1]d: it is measurable and is such that S(S−1(x)) = x since S is continuous.
Then, k := S−1 ◦Q is a measurable function from Rd to (0, 1), k−1 = Q−1 ◦S is measurable
too and satisfies k−1(k(x)) = x for any x. Additionally, let Y := k(X) be a random
variable on (0, 1) with cumulative distribution function FY so that F−1

Y (U)
d
= Y , set G(u) =

k−1
(
F−1
Y (u)

)
, for all u ∈ (0, 1). Then, for any bounded test function ϕ : (0, 1)→ Rd we get

E [ϕ(G(U))] = E
[
ϕ
(
k−1

(
F−1
Y (U)

))]
= E

[
ϕ
(
k−1(Y )

)]
= E [ϕ(X)] ,

which proves that X d
= G(U).

The following three lemmas provide asymptotic expansions that will reveal useful to establish
the behavior of the TIF as well as its derivatives in the neighborhood of u = 0 and u = 1.

Lemma 8

(i) The following asymptotic expansions hold, as u→ 1:

1

log
(

1−u2
2

) =
1

log(1− u)
+

1− u
2 (log(1− u))2 +O

(
(1− u)2

(log(1− u))2

)
, (22)

∂u

 1

log
(

1−u2
2

)
 =

1

(1− u) (log(1− u))2 −
1

2 (log(1− u))2 +
1

(log(1− u))3

+O
(

(1− u)

(log(1− u))2

)
, (23)

∂2
uu

 1

log
(

1−u2
2

)
 =

1

(1− u)2 (log(1− u))2 +
2

(1− u)2 (log(1− u))3

− 1

(1− u) (log(1− u))3 +
3

(1− u) (log(1− u))4

+
1

4 (log(1− u))2 +O
(

1

(log(1− u))3

)
. (24)

(ii) Assume (H1) and (H2) hold. Then,

qY (u) = η−γ(1− u)−γL
(

1

(1− u)η

)
, (25)
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∂uqY (u) = η−γ(1− u)−(γ+1)L

(
1

(1− u)η

)(
γ + ε

(
1

(1− u)η

))
, (26)

log qY (u) = −γ log(1− u)− β +
1

ρ
ε

(
1

(1− u)η

)(
1 + o(1)

)
, as u→ 1, (27)

∂u log qY (u) = (1− u)−1

(
γ + ε

(
1

(1− u)η

))
. (28)

(iii) Assume (H1), (H2) and (H3) hold. Then, as u→ 1,

∂2
uuqY (u) = η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)
×
[
γ2 + γ + (1 + 2γ + ρ+ o(1))ε

(
1

(1− u)η

)]
, (29)

∂2
uu log qY (u) = (1− u)−2

(
γ + ε

(
1

(1− u)η

)
(1 + ρ+ o(1))

)
. (30)

Proof (i) The proof of (22)–(24) is straightforward but requires tedious calculations which
can be checked by a formal calculation software (using sympy in Python for instance, see
below). Details are omitted here.

import sympy as spy
u = spy.symbols(’u’)

f = 1 / spy.log((1 - u ** 2) / 2)

# series as u->1
f.series(u, 1, 2, dir="-")

f_first = spy.diff(f, u)
f_first.series(u, 1, 1, dir="-")

f_second = spy.diff(f_first, u)
f_second.series(u, 1, 1, dir="-")

(ii) Under (H1), Equations (7), (8) and (10) entail

qY (u) = η−γ(1− u)−γL
(

1

(1− u)η

)
,

which proves (25) and moreover, owing to (H2),

log qY (u) = −γ log(1− u) + log(c∞)− γ log η +

∫ 1
(1−u)η

1

ε(t)

t
dt. (31)

By differentiating, we get

∂uqY (u)= qY (u)× ∂u(log qY (u)) = η−γ(1− u)−(γ+1)L

(
1

(1− u)η

)(
γ + ε

(
1

(1− u)η

))
,
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and (26) is proved. Now, t 7→ ε(t)/t is regularly varying with index ρ − 1 < −1 and thus,∫∞
1 ε(t)/tdt is finite leading to:

logL∞ = log c∞ +

∫ ∞
1

ε(t)

t
dt.

Replacing in (31) yields:

log qY (u) = −γ log(1− u)− β −
∫ ∞

1
(1−u)η

ε(t)

t
dt.

Moreover, Karamata’s theorem (de Haan and Ferreira, 2006, Equation (B.1.9)) states that∫ ∞
x

ε(t)

t
dt = −1

ρ
ε(x)(1 + o(1)),

as x→∞ so that (27) is proved. Finally, (28) is a direct consequence of (25) and (26).

(iii) From (26), letting U(u) = η−γ(1− u)−(γ+1)L
(

1
(1−u)η

)
, one has

∂2
uuqY (u) = ∂u

[
U(u)

(
γ + ε

(
1

(1− u)η

))]
. (32)

Using the form of L under (H2) and x∂xL(x)
L(x) = ε(x), we obtain

∂uU(u) = η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)(
γ + 1 + ε

(
1

(1− u)η

))
. (33)

In addition, recalling that ε is differentiable under (H3) yields

∂u

[
ε

(
1

(1− u)η

)]
= η−ρ(1− u)−(ρ+1)`

(
1

(1− u)η

)ρ+
1

(1− u)η

∂`
(

1
(1−u)η

)
`
(

1
(1−u)η

)


=
1

(1− u)
ε

(
1

(1− u)η

)ρ+
1

(1− u)η

∂`
(

1
(1−u)η

)
`
(

1
(1−u)η

)
 (34)

=
1

(1− u)
ε

(
1

(1− u)η

)
(ρ+ o(1)) . (35)

Collecting (32), (33) and (35) entails

∂2
uuqY (u) = η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)
×
[(

γ + ε

(
1

(1− u)η

))2

+ γ + (1 + ρ+ o(1))ε

(
1

(1− u)η

)]

= η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)
29
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×
[
γ2 + γ + (1 + 2γ + ρ+ o(1))ε

(
1

(1− u)η

)]
which proves (29). Finally, (28) and (34) entail

∂2
uu log qY (u) = (1− u)−2

(
γ + ε

(
1

(1− u)η

))

+ (1− u)−2ε

(
1

(1− u)η

)ρ+
1

(1− u)η

∂`
(

1
(1−u)η

)
`
(

1
(1−u)η

)
 (36)

and (30) is proved owing to (H3).

Lemma 9 Let li be the logarithmic integral function defined for all u ∈ (0, 1) as

li(u) =

∫ u

0

1

log(t)
dt.

Then, for any p > 0, up li(1− u)→ 0 as u→ 0.

Proof This stems from the convexity inequality log(1/t) ≥ 1− t for t ∈ (0, 1].

Lemma 10 For all u ∈ (0, 1), let Φ(u) =
∑3

j=0 cjΦj(u). One has:

∂2
uu [g(u) (γ + Φ(u))] = −20γ +

c0

(1− u)2 (log(1− u))2 +
2c0

(1− u)2 (log(1− u))3

+
c1

(1− u) (log(1− u))2 +
2c2

(1− u) (log(1− u))3 +
3c3

(1− u) (log(1− u))4

+O
(

1

log(1− u)

)
, as u→ 1, (37)

∂2
uu [g(u) (γ + Φ(u))]→ 5β, as u→ 0. (38)

Proof Differentiating Φ yields for all u ∈ (0, 1),

∂uΦ(u) =
3∑
j=0

cjϕj(u),

∂2
uuΦ(u) =

c0

(1− u)2 (log(1− u))2 +
2c0

(1− u)2 (log(1− u))3 +
c1

(1− u) (log(1− u))2

+
2c2

(1− u) (log(1− u))3 +
3c3

(1− u) (log(1− u))4 .

Besides, for all u ∈ (0, 1),

∂2
uu [g(u) (γ + Φ(u))] = 20u2 (3− 4u) (γ + Φ(u)) + 40u3 (1− u) ∂uΦ(u)
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+ u4 (5− 4u) ∂2
uuΦ(u). (39)

Remarking that Φ(u) = O (1/log(1− u)) and (1 − u)∂uΦ(u) = O
(

1/(log(1− u))2
)

as
u → 1 proves (37). Similarly, Lemma 9 entails that li(1− u) = O (1/u) as u → 0 and thus
Φ(u) = c3/(2u

2)(1 + o(1)), ∂uΦ(u) = −c3/u
3(1 + o(1)) and ∂2

uuΦ(u) = 3c3/u
4(1 + o(1)) as

u→ 0. Replacing in (39) and taking the limit as u→ 0 gives (38).

The next Lemma provides a sufficient condition for a given function to belong to C0,α([0, 1]).

Lemma 11 Let g : [0, 1] → R be a continuous function on [0, 1] and differentiable on
(0, 1) such that |∂ug(u)| ≤ Cuα−1 for all u ∈ (0, 1) with 0 < α ≤ 1 and C > 0. Then,
g ∈ C0,α([0, 1]).

Proof Let 0 ≤ a < b ≤ 1, then

|g(b)− g(a)| ≤
∫ b

a
Cxα−1 dx≤

∫ b

a
C(x− a)α−1 dx =

C

α
(b− a)α,

and the conclusion follows.

Our goal here is to study the uniform convergence rate of the approximation error of a
C1,α ([0, 1]) or C2([0, 1]) function f by a NN. To this end, consider a triangular function
σ̂ : R→ [−1, 1] built using three translated ReLU functions x ∈ R 7→ σ(x) := max(0, x):

σ̂(t) := σ(t+ 1)− 2σ(t) + σ(t− 1) =


1, if t = 0,

1 + t, if − 1 < t < 0,

1− t, if 0 < t < 1,

0, otherwise.

It is then possible to control the uniform error between the function f and its piecewise
linear approximation based on triangular functions, depending on the regularity of f .

Lemma 12 Let σ̂ be a triangular function and f : [0, 1] → R. For all M ∈ N\{0}, let
δ = 1/M and tj = j/M for j = 0, . . . ,M . If f ∈ C1,α ([0, 1]) with α ∈ (0, 1], then

sup
t∈[0,1]

∣∣∣∣∣∣f(t)−
M∑
j=0

f(tj)σ̂

(
t− tj
δ

)∣∣∣∣∣∣ ≤ [∂tf ]α
4

M−α−1. (40)

Proof Clearly,

sup
t∈[0,1]

∣∣∣∣∣∣f(t)−
M∑
j=0

f(tj)σ̂

(
t− tj
δ

)∣∣∣∣∣∣ =: max
i=0,...,M−1

sup
t∈[ti,ti+1]

|∆i(t)| ,

where

∆i(t) := f(t)−
(
f(ti)

(
ti+1 − t

δ

)
+ f(ti+1)

(
t− ti
δ

))
.

31



Allouche, Girard and Gobet

Two first order Taylor expansions yield that there exist t′i ∈ (ti, t) and t′′i ∈ (t, ti+1) such
that

∆i(t) = f(t)−
[(
f(t) + ∂tf(t′i)(ti − t)

)( ti+1 − t
δ

)
+
(
f(t) + ∂tf(t′′i )(ti+1 − t)

)( t− ti
δ

)]
=

(ti+1 − t)(t− ti)
δ

(
∂tf(t′i)− ∂tf(t′′i )

)
.

Remarking (ti+1 − t)(t− ti) is maximum on [ti, ti+1] at t = (ti+1 + ti)/2 entails

|∆i(t)| ≤
δ

4

∣∣∂tf(t′i)− ∂tf(t′′i )
∣∣ ≤ δ

4
[∂tf ]α(t′′i − t′i)α ≤

1

4
[∂tf ]αδ

α+1,

and the result is proved.

Finally, one can determine the minimum number J(ε) of ReLU functions to approximate f
with a given precision ε. The above construction in Lemma 12 involves (M + 1) triangular
functions corresponding to J = 3(M + 1) ReLU functions. Fixing bound (40) to ε provides
M as a function of ε, and we obtain:

Lemma 13 Let σ be a ReLU function and f ∈ C1,α ([0, 1]) with α ∈ (0, 1]. For all ε > 0,
let J(ε) = 3(M(ε) + 1) with M(ε) ∈ N such that

M(ε) ≥
(

[∂tf ]α
4ε

)1/(α+1)

.

Then, there exist (aj , wj , bj) ∈ R3, j = 1, . . . , J(ε) such that

sup
t∈[0,1]

∣∣∣∣∣∣f(t)−
J(ε)∑
j=1

ajσ (wjt+ bj)

∣∣∣∣∣∣ ≤ ε.
The above lemma is not that surprising, a similar result is stated in (Yarotsky, 2017, Theo-
rem 1) up to a log factor but under the condition that 1 + α is an integer.

Appendix C. Proof of main results

Proof of Proposition 1. (i) The continuity of fTIF on (0, 1) is a consequence of the
assumptions on FX . Besides, qX(1− η) = 1 and thus

fTIF(0) = log(qX(1− η))/ log 2 = 0.

From (H1), the cumulative distribution function FX has an unbounded right-hand support,
and thus, from (8), qY (u)→∞ as u→ 1. Thus, replacing in (7) and taking the log yields

log qY (u) = −γ log
(
(1− u)η

)1−
logL

(
1

(1−u)η

)
γ log ((1− u)η)

 .

32



EV-GAN

Since L is slowly varying, logL(v)/log v → 0 as v → ∞ (Bingham et al., 1987, Proposi-
tion 1.3.6) and then,

log qY (u) = −γ log(1− u)(1 + o(1)), as u→ 1.

Similarly, as u→ 1, log
(

1−u2
2

)
= log(1−u)(1+o(1)), which leads to fTIF(u)→ γ as u→ 1.

Finally, fTIF is bounded on [0, 1] and the conclusion follows.
(ii) First, qY (0) = 1 directly yields

∂uf
TIF(0) =

γ + ε (1/η)

log(2)
.

Second, collecting (22) and (28), it follows, as u→ 1,

∂u log qY (u)

log
(

1−u2
2

) =
γ

(1− u) log(1− u)
+

γ

2 (log(1− u))2 +
ε
(

1
(1−u)η

)
(1− u) log(1− u)

+O
(

(1− u)

(log(1− u))2

)

=
γ

(1− u) log(1− u)
+
γ

2
ϕ2(u) +

ε
(

1
(1−u)η

)
(1− u) log(1− u)

+O
(

(1− u)

(log(1− u))2

)
.

In addition, from (23) and (27), we have, as u→ 1,

log qY (u)∂u

 1

log
(

1−u2
2

)
 =

−γ
(1− u) log(1− u)

− β

(1− u) (log(1− u))2 +
γ

2 log(1− u)

− (2γ − β)

2 (log(1− u))2 −
β

(log(1− u))3 +
ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u) (log(1− u))2

+O
(

(1− u)

log(1− u)

)
=

−γ
(1− u) log(1− u)

− βϕ0(u) +
γ

2
ϕ1(u)− (2γ − β)

2
ϕ2(u) + βϕ3(u)

+
ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u) (log(1− u))2 +O
(

(1− u)

log(1− u)

)
.

Summing up the two above expansions and inverting the signs yield

∂uf
TIF(u) = βϕ0(u)− γ

2
ϕ1(u) +

γ − β
2

ϕ2(u) + βϕ3(u)

−
ε
(

1
(1−u)η

)
(1− u) log(1− u)

(
1 +

1

ρ log(1− u)
(1 + o(1))

)
+O

(
(1− u)

log(1− u)

)
,

which proves the result.
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Proof of Proposition 2. For all u ∈ (0, 1), let Φ(u) =
∑3

j=0 cjΦj(u).
(i) First, note that Φ(u) → 0 as u → 1, h(1) = 0 and g(1) = 1. Besides, Proposition 1(i)
shows that fTIF(u)→ γ as u→ 1 and therefore fCTIF(u)→ 0 as u→ 1. Second, Lemma 9
entails that li(1−u) = O (1/u) as u→ 0 and thus Φ(u) = c3/(2u

2)(1+o(1)). It follows that
g(u)Φ(u) → 0 as u → 0. Clearly, one also has g(0) = h(0) = 0. Besides, Proposition 1(i)
shows that fTIF(0) = 0 and therefore fCTIF(u)→ 0 as u→ 0.
(ii) First, differentiating (12) and taking account of g′(1) = h′(1) = 0, Φ(u) → 0 as u → 1
yields

∂uf
CTIF(u) = ∂uf

TIF(u)− ∂uΦ(u)g(u) + o(1) = ∂uΦ(u) (1− g(u)) + o(1),

as u→ 1, since ∂uf(u) = ∂uΦ(u) + o(1) when ρ < −1, in view of (11) in Proposition 1(ii).
Remarking that 1 − g(u) = o(1 − u) and recalling from the proof of Lemma 10 that (1 −
u)∂uΦ(u) = O

(
1/(log(1− u))2

)
as u → 1 prove that ∂ufCTIF(u) → 0 as u → 1. Second,

taking account of g′(0) = 0 and h′(0) = 1 yields

∂uf
CTIF(u) = −g(u)∂uΦ(u)− Φ(u)∂ug(u) + o(1),

as u→ 0. Recall from the proof of Lemma 10 that Φ(u) = c3/(2u
2)(1 + o(1)) and ∂uΦ(u) =

−c3/u
3(1 + o(1)) as u→ 0. Since g(u) = o(u3) and ∂ug(u) = o(u2) as u→ 0, it follows that

∂uf
CTIF(u)→ 0 as u→ 0 and (15) is proved.

(iii) The first part of the proof is based on successive applications of Lemma 8. From (22)
and (30), one has, as u→ 1:

∂2
uu [log qY (u)]

1

log
(

1−u2
2

) =
γ

(1− u)2 log(1− u)
+

γ

2(1− u) (log(1− u))2

+
ε
(

1
(1−u)η

)
(1− u)2 log(1− u)

(1 + ρ+ o(1)) +O
(

1

(log(1− u))2

)
.

Similarly, from (23) and (28), as u→ 1,

∂u [log qY (u)] ∂u

 1

log
(

1−u2
2

)
 =

γ

(1− u)2 (log(1− u))2 −
γ

2(1− u) (log(1− u))2

+
γ

(1− u) (log(1− u))3 +
ε
(

1
(1−u)η

)
(1− u)2 (log(1− u))2

+O
(

1

(log(1− u))2

)
,

and, from (24) and (27),

log(qY (u))∂2
uu

 1

log
(

1−u2
2

)
 = − γ

(1− u)2 log(1− u)
− 2γ + β

(1− u)2 (log(1− u))2
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− 2β

(1− u)2 (log(1− u))3 +
γ

(1− u) (log(1− u))2

− 3γ − β
(1− u) (log(1− u))3 −

3β

(1− u) (log(1− u))4

+
ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u)2( log(1− u))2 +
2ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u)2( log(1− u))3

− γ

4 log(1− u)
+O

(
1

(log(1− u))2

)
.

Collecting the above three asymptotic expansions yields, as u→ 1,

∂2
uuf

TIF(u) =
β

(1− u)2 (log(1− u))2 +
2β

(1− u)2 (log(1− u))3 −
γ

2(1− u) (log(1− u))2

+
γ − β

(1− u) (log(1− u))3 +
3β

(1− u) (log(1− u))4 +
γ

4 log(1− u)

−
(1 + ρ)ε

(
1

(1−u)η

)
(1− u)2 log(1− u)

(1 + o(1)) +O
(

1

(log(1− u))2

)
. (41)

In addition, note that h′′(1) = 2 and ∂ufTIF(0) = (γ + ε(1/η))/ log(2) in view of Proposi-
tion 1(ii), so that collecting (37) in Lemma 10 with (41) proves (16). The second part of the

proof consists in remarking that log qY (0) = 0 by construction and ∂u

[
1

log
(

1−u2
2

)
]

(0) = 0.

Therefore, taking account of (36), it follows:

∂2
uuf

TIF(0) =
∂2
uu [log (qY (u))] (0)

log(2)
=
γ + ε(1/η)

(
1 + ρ+ 1

η
∂`(1/η)
`(1/η)

)
log(2)

. (42)

Finally, note that h′′(0) = −4 and ∂uf
TIF(0) = (γ + ε(1/η))/ log(2) in view of Proposi-

tion 1(ii), so that collecting (38) in Lemma 10 with (42) proves (17).
(iv) is a direct consequence of (iii).

Proof of Corollary 5. Theorem 4 yields, uniformly on u ∈ [0, 1]:∣∣∣∣ log qY (u)− log q̃Y (u)

log((1− u2)/2)

∣∣∣∣ ≤ c(J),

with c(J) := [∂tfCTIF]α
4

⌈
J−3

3

⌉−α−1 → 0 as J →∞. It follows, for all u ∈ [0, 1]:

qY (u)

(
1− u2

2

)c(J)

≤ q̃Y (u) ≤ qY (u)

(
1− u2

2

)−c(J)

.

Substracting qY (u) and integrating, we obtain W1(q, q̃Y ) ≤ max{D(−c(J)),−D(c(J))}
where

D(t) :=

∫ 1

0
qY (u)

((
1− u2

2

)t
− 1

)
du (43)
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is defined for all (γ, t) such that γ − t < 1. Recall that γ < 1 and let us thus consider J
large enough so that γ + c(J) < 1. Expanding (43) as t→ 0 yields

D(t) = t

∫ 1

0
qY (u)log((1− u2)/2) du (1 + o(1)),

and the conclusion follows.

Proof of Corollary 3. (i) When −2 ≤ ρ ≤ −1, Proposition 2(iii) implies fCTIF ∈
C2([0, 1)) and ∣∣∂2

uuf
CTIF(u)

∣∣ ≤ C(1− u)α−1, ∀u ∈ (0, 1),

for any fixed α ∈ (0,−ρ − 1). Thus, applying Lemma 11 to ∂uf
CTIF yields fCTIF ∈

C1,α([0, 1]).
(ii) is a direct consequence of Proposition 2(iv).
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