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ABSTRACT

Optimal Transport (OT) metrics allow for de�ning discrepancies between two
probability measures. Wasserstein distance is for longer the celebrated OT-distance
frequently-used in the literature, which seeks probability distributions to be sup-
ported on thesamemetric space. Because of its high computational complexity,
several approximate Wasserstein distances have been proposed based on entropy
regularization or on slicing, and one-dimensional Wassserstein computation. In
this paper, we propose a novel extension of Wasserstein distance to compare two
incomparable distributions, that hinges on the idea ofdistributional slicing, embed-
dings, and on computing the closed-form Wassertein distance between the sliced
distributions. We provide a theoretical analysis of this new divergence, calledhet-
erogeneous Wasserstein discrepancy (HWD), and we show that it preserves several
interesting properties including rotation-invariance. We show that the embeddings
involved in HWD can be ef�ciently learned. Finally, we provide a large set of
experiments illustrating the behavior of HWD as a divergence in the context of
generative modeling and in query framework.

1 INTRODUCTION

Optimal Transport-based data analysis has recently found widespread interest in machine learning
community, since its signi�cant usefulness to achieve many tasks arising from designing loss func-
tions in supervised learning (Frogner et al., 2015), unsupervised learning (Arjovsky et al., 2017), text
classi�cation (Kusner et al., 2015), domain adaptation (Courty et al., 2017), generative models (Ar-
jovsky et al., 2017; Salimans et al., 2018), computer vision (Bonneel et al., 2011; Solomon et al.,
2015) among many more applications (Kolouri et al., 2017; Peyré & Cuturi, 2019). Optimal Transport
(OT) attempts to match real-world entities through computing distances between distributions, and
for that it exploits prior geometric knowledge on the base spaces in which the distributions are valued.
Computing OT distance equals to �nding the most cost-ef�ciency way to transport mass from source
distribution to target distribution, and it is often referred to as the Monge-Kantorovich or Wasserstein
distance (Monge, 1781; Kantorovich, 1942; Villani, 2009).

Matching distributions using Wasserstein distance relies on the assumption that their base spaces must
be the same, or that at least a meaningful pairwise distance between the supports of these distributions
can be computed. A variant of Wasserstein distance dealing with heterogeneous distributions and
overcoming the lack of intrinsic correspondence between their base spaces is Gromov-Wasserstein
(GW) distance (Sturm, 2006; Mémoli, 2011). GW distance allows to learn an optimal transport-like
plan by measuring how the similarity distances between pairs of supports within each ground space
are closed. It is increasingly �nding applications for learning problems in shape matching (Mémoli,
2011), graph partitioning and matching (Xu et al., 2019), matching of vocabulary sets between
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Figure 1: We measure the discrepancy between two distributions living respectively inRp andRq.
Our approach is based on generating random slicing projections distributions in each of the metric
spacesRp andRq through the mappings� and of a random projection vector sampled from an
optimal distribution� in Rd. As each of the projected distribution results in a 1D distribution, we
can then compute 1D-Wasserstein distance. It enables us to learn the best projection mappings� and
 and to optimize over the distributional part of the generating projection distribution� .

different languages (Alvarez-Melis & Jaakkola, 2018), generative models (Bunne et al., 2019), or
matching weighted networks (Chowdhury & Mémoli, 2018).

Due to the heterogeneity of the distributions, GW distance uses only the relational aspects in each
domain, such as the pairwise relationships to compare the two distributions. As a consequence, the
main disadvantage of GW distance is its computational cost as the associated optimization problem
is a non-convex quadratic program (Peyré & Cuturi, 2019), and as few as thousand samples can be
computationally challenging.

Based on the approach of regularized OT (Cuturi, 2013), in which an entropic penalty is added to
the original objective function de�ning the Wasserstein OT problem, Peyré et al. (2016) propose an
entropic version called entropic GW discrepancy, that leads to approximate GW distance. Another
approach for scaling up the GW distance is Sliced Gromov-Wasserstein (SGW) discrepancy (Vayer
et al., 2019), which leverages on random projections on 1D and on a closed-form solution of the
1D-Gromov-Wasserstein.

In this paper, we take a different approach for measuring the discrepancy between two heteroge-
neous distributions. Unlike GW distance that compares pairwise distances of elements from each
distribution, we consider a method that embeds the metric measure spaces into a one-dimensional
space and computes a Wasserstein distance between the two 1D-projected distributions. The key
element of our approach is to learn two mappings that transform vectors from the unit-sphere of a
latent space to the unit-sphere of the metric space underlying the two distributions of interest, see
Figure 1. In a nutshell, we learn to transform a random direction, sampled under an optimal (learned)
distribution (optimality being made clear later), from ad-dimensional space to a random direction into
the desired spaces. This approach has the bene�t of avoiding an ad-hoc padding strategy (completion
of 0 of the smaller dimension distributions to �t the high-dimensional one) as in SGW method (Vayer
et al., 2019). Another relevant feature of our approach is that the two resulting 1D distributions
are now compared through Wasserstein distance. This point, in conjunction, with other key aspect
of the method, will lead to a relevant discrepancy between two distributions, calledheterogeneous
Wasserstein discrepancy (HWD). Although we lose some properties of a distance, we show that HWD
is rotation-invariant, that it is robust enough to be considered as a loss for learning generative models
between heterogeneous spaces. We also establish that HWD boils down to the recent distributional
sliced Wasserstein distance (Nguyen et al., 2020) if the two distributions live in the same space and if
some mild constraints are imposed on the mappings.

In summary, our contributions are as follows:

• we propose HWD, a novel slicing-based discrepancy for comparing two distributions living
in different spaces. Our chosen formulation is based on comparing 1D random-projected
versions of the two distributions using a Wasserstein distance;
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• The projection operations are materialized by optimally mapping from one common space
to the two spaces of interest. We provide a theoretical analysis of the resulting discrepancy
and exhibit its relevant properties;

• Since the discrepancy involves several mappings that need to be optimized, we depict an
alternate optimization algorithm for learning them;

• Numerically, we validate the bene�ts of HWD in terms of comparison between heteroge-
neous distributions. We show that it can be used as a loss for generative models or shape
objects retrieval with better performance and robustness than SGW on those tasks.

2 BACKGROUND OFOT DISTANCES

For the reader's convenience, we provide here a brief review of the notations and de�nitions, that
will be frequently used throughout the paper. We start by introducing Wasserstein and Gromov-
Wasserstein distances with their sliced versions SW and SGW, where

we consider these distances in the speci�c case of Euclidean base spaces(Rp; k � k) and(Rq; k � k).
We denoteP (X ) and P (Y) the respective sets of probability measures whose supports are
contained on compact setsX � Rp and Y � Rq. For r � 1, we denoteP r (X ) the sub-
set of measures inP (X ) with �nite r -th moment(r � 1), i.e., P r (X ) =

�
� 2 P (X ) :�

X kxkr d� (x) < 1
	

: For � 2 P (X ) and � 2 P (Y), we write �( �; � ) � P (X � Y )
for the collection of joint probability distributions with marginals� and� , known as couplings,
�( �; � ) =

�

 2 P (X � Y ) : 8A � X ; B � Y ; 
 (A � Y ) = � (A); 
 (X � B ) = � (B )

	
:

2.1 OTDISTANCES FOR HOMOGENEOUS DOMAINS

We here assume that the distributions� and� lie in the same base space, for instancep = q. Taking
this into account, we can de�ne the Wasserstein distance and its sliced variant.

Wasserstein distance Ther -th Wasserstein distance is de�ned onP r (X ) by

Wr (�; � ) =
�

inf

 2 �( �;� )

�

X �Y
kx � ykr d
 (x; y)

� 1
r
: (1)

The quantityWr (�; � ) describes the least amount effort to transform one distribution� into another
one� . Since the cost distance used between sample supports is the Euclidean one, the in�mum in(1)
is attained (Villani, 2009), and any probability
 which realizes the minimum is called anoptimal
transport plan.In a �nite discrete setting, Problem(1) can be formulated as a linear program, that
is challenging to solve algorithmically as its computational cost is of orderO(n5=2 logn) (Lee &
Sidford, 2014), wheren is the number of sample supports.

Contrastingly, for the 1D case (i.e.p = 1 ) of continuous probability measures, ther -th Wasser-
stein distance has a closed-form solution (Rachev & Rüschendorf, 1998), namely,Wr (�; � ) =
(
� 1

0 jF � 1
� (u) � F � 1

� (u)jr dt)
1
r

whereF � 1
� andF � 1

� are the quantile functions of� and� . For empirical distributions, the 1D-
Wasserstein distance is simply calculated by sorting the supports of the distributions on the real line,
resulting to a complexity of orderO(n logn). This nice computational property motivates the use of
sliced-Wasserstein (SW) distance (Rabin et al., 2012; Bonneel et al., 2015), where one calculates
an (in�nity) of 1D-Wasserstein distances between linear projection pushforwards of distributions in
question and then computes their average.

To precisely de�ne SW distance, we consider the following notation. LetSp� 1 := f u 2 Rp :
kuk = 1g be the unit sphere inp dimension iǹ 2-norm, and for any vector� in Sp� 1, we de�ne
P� the orthogonal projection onto the real lineR� = f �� : � 2 Rg, that isP� (x) = h�; x i ; where
h�; �i stands for the Euclidean inner-product. Let� � = P� # � the measure on the real line called
pushforward of� by P� , that is� � (A) = � (P � 1

� (A)) for all Borel setA � R: We may now de�ne
the SW distance.
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Sliced Wasserstein distance Ther -th order sliced Wasserstein distance between two probability
distributions�; � 2 P r (X ) is given by

SWr (�; � ) =
� 1

Ap

�

Sp � 1
W r

r (� � ; � � )d�
� 1

r
; (2)

whereAp is the area of the surface ofSp� 1, i.e.,Ap = 2� p= 2

�( p=2) with � : R ! R, the Gamma function

given as�( u) =
� 1

0 tu� 1e� t dt:

Thanks to its computational bene�ts and its valid metric property (Bonnotte, 2013), the SW distance
has recently been used for OT-based deep generative modeling (Kolouri et al., 2019; Deshpande et al.,
2019; Wu et al., 2019). Note that the normalized integral in(2) can be seen as the expectation for
� � � p� 1, the uniform surface measure onSp� 1, that isSWr (�; � ) = ( E � � � p � 1 [W r

r (� � ; � � )])
1
r :

Therefore, the SW distance can be easily approximated via a Monte Carlo sampling scheme
by drawing uniform random samples fromSp� 1: SWr

r (�; � ) � 1
K

P K
k=1 W r

r (� � k ; � � k ) where

� 1; : : : ; � K
i:i:d:� � p� 1 andK is the number of random projections.

2.2 OTDISTANCES FOR HETEROGENEOUS DOMAINS

To get bene�t from the advantages of OT in many machine learning applications involving heteroge-
neous and incomparable domains (p 6= q), the Gromov-Wasserstein distance (Mémoli, 2011) stands
for the basic OT distance dealing with this setting.

Gromov-Wasserstein distance Ther -th Gromov-Wasserstein distance between two probability
distributions� 2 P r (X ) and� 2 P r (Y) is de�ned by

GWr (�; � ) = inf

 2 �( �;� )

Jr (
 ) def.=
1
2

� �

X 2 �Y 2

jkx � x0k � k y � y0kjr d
 (x; y)d
 (x0; y0)
� 1

r
: (3)

Note thatGWr (�; � ) is a valid metric endowing the collection of all isomorphism classes metric
measure spaces ofP r (X ) � P r (Y), see Theorem 5 in (Mémoli, 2011). The GW distance learns an
optimal transport-like plan which transports samples from a source metric spaceX into a target metric
spaceY, by measuring how the similarity distances between pairs of samples within each space are
close. Furthermore, GW distance enjoys several geometric properties, particularly translation and
rotation invariance. However, its major bottleneck consists in an expensive computational cost, since
problem(3) is non-convex and quadratic. A remedy to such a heavy computational burden lies in an
entropic regularized GW discrepancy (Peyré et al., 2016), using Sinkhorn iterations algorithm (Cuturi,
2013). This latter needs a large regularization parameter to guarantee a fast computation, which,
unfortunately, entails a poor approximation of the true GW distance value.

Another approach to scale up the computation of GW distance is sliced-GW discrepancy (Vayer et al.,
2019). The de�nition of SGW shows 1D-GW distances between projected pushforward of an artifact
zero padding of� or � distribution. We detail this representation in the following paragraph.

Sliced Gromov-Wasserstein discrepancy Assume thatp < q and let� be an artifact zero padding
from X ontoY, i.e. �( x) = ( x1; : : : ; xp; 0; : : : ; 0) 2 Rq: Ther -th order sliced Gromov-Wasserstein
discrepancy between two probability distributions� 2 P r (X ) and� 2 P r (Y) is given by

SGW� ;r (�; � ) =
�

E � � � q � 1

�
GWr

r ((�# � ) � ; � � )
� � 1

r
: (4)

It is worthy to note thatSGW� ;r is depending on the ad-hoc operator� , hence the rotation invariance
is lost. Vayer et al. (2019) propose a variant of SGW that does not depend on the choice of� , called
Rotation Invariant SGW (RI-SGW) forp = q, de�ned as the minimizer ofSGW� ;r over the Stiefel
manifold, see (Vayer et al., 2019, Equation 6). In this work, we are interested in calculating an
OT-based discrepancy between distributions over distinct domains using the slicing technique. Our
approach is different from the SGW one in many points, speci�cally (and most importantly) we use a
1D-Wasserstein distance between the projected pushforward distributions and not a 1D-GW distance.
In the next section, we detail the setup of our approach.
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3 HETEROGENEOUSWASSERSTEIN DISCREPANCY

Despite the computational bene�t of sliced-OT variant discrepancies, they have an unavoidable
bottleneck corresponding to an intractable computation of the expectation with respect to uniform
distribution of projections. Furthermore, the Monte Carlo sampling scheme can often generate an
overwhelming number of irrelevant directions; hence, the larger number of sample projections, the
more accurate approximation of sliced-OT values. Recently, Nguyen et al. (2020) have proposed
thedistributional-SW distance allowing to �nd an optimal distribution over an expansion area of
informative directions. This performs the projection ef�ciently by choosing an optimal number of
important random projections needed to capture the structure of distributions. Our approach for
comparing distributions in heterogeneous domains follows a distributional slicing technique combined
with OT metric measure embedding (Alaya et al., 2020).

Let us �rst introduce additional notations. Fixd � 1 and consider twononlinear mappings
� : Sd� 1 ! Sp� 1 and  : Sd� 1 ! Sq� 1: For any constantsC� ; C > 0, we de�ne the fol-
lowing probability measure sets:M C � =

�
� 2 P (Sd� 1) : E �;� 0� � [jh� (� ); � (� 0)ij ] � C�

	
and

M C  =
�

� 2 P (Sd� 1) : E �;� 0� � [jh (� );  (� 0)ij ] � C 
	

: We say thatC� , C are (�;  )-
admissibleconstants if the intersection setsM C � \ M C  is not empty. We hereafter denote
� �;� = P� ( � ) # � and�  ;� = P ( � ) # � the pushforwards of� and� by projections over unit sphere
P� ( � ) andP ( � ) , respectively.

Informal presentation While the distributions� and� are valued in different spaces,X � Rp and
Y � Rq; any projected distributions will live in real line, enabling the computation of 1D-Wasserstein
distance (Figure 1, right). In order to generate random 1D projections in each of the spaces, we
map a common random projection distribution fromSd� 1 into each of the projection spacesSp� 1

andSq� 1; through the mappings� and (see Figure 1, left). Hence, the main components of the
heterogeneous Wasserstein discrepancywill be the distribution� 2 P (Sd� 1),

and the two embeddings� and which will be wisely chosen. The resulting directions� (� ) and (� )
form the projectionsP� ( � ) andP ( � ) (see Figure 1, center) used to compute several 1D-Wasserstein
distances.

3.1 DEFINITION AND PROPERTIES

Herein we state the formulation of the proposed discrepancy and exhibit its main theoretical properties.

De�nition 1 The heterogeneous Wasserstein discrepancy(HWD ) of order r � 1 between� 2
P r (X ) and� 2 P r (Y) reads as

HWD r (�; � ) = inf
�; 

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r (� �;� ; �  ;� )
� � 1

r
: (5)

HWD belongs to a family of projected OT works (Paty & Cuturi, 2019; Rowland et al., 2019; Lin
et al., 2021) with a particularity for seeking nonlinear projections minimizing a sliced-OT variant.

HWD further inherits the distributional slicing bene�t by �nding an optimal probability mea-
sure� of slices on the unit sphereSd� 1 coupled with an optimum couple(�;  ) of embeddings.
Note that this optimal� veri�es the double conditionsE �;� 0� � [j cos(� (� ); � (� 0)) j] � C� and
E �;� 0� � [j cos( (� );  (� 0)) j] � C . This gives thatC� ; C � 1, hence the setsM C � andM C  

belong toM 1 = f � 2 P (Sd� 1)g the set of all probability measures of the unit sphereSd� 1. It is
worthy to note that for small regularizing(�;  )-admissible constants, the measure� is forced to
distribute more weights to directions that are far from each other in terms of their angles (Nguyen
et al., 2020).

Now, in order to guarantee the existence of(�;  )-admissible constants, we assume that the
couple(�;  )-embeddings areapproximately angle preserving.

Assumption 1 (Approximately angle preserving property) For any couple(�;  )-embeddings ,
assume that there exists two non-negative constantsL � andL  ; such that the following holds

jh� (� ); � (� 0)ij � L � jh�; � 0ij andjh (� );  (� 0)ij � L  jh�; � 0ij ; for all �; � 0 2 Sd� 1:
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In Proposition 1, we deliver lower bounds of the regularizing(�;  )-admissible constantsC� and
C , depending on the dimension of the latent spaced and on thelevels(L � ; L  ) of approximately
angle preserving property. These bounds ensure the non-emptiness of the setsM C � andM C  .

Proposition 1 Let Assumption 1 hold and consider regularizing(�;  )-admissible constants such
thatC� � L � �( d=2)p

� �(( d+1) =2) andC � L  �( d=2)p
� �(( d+1) =2) . Then the setsM C � andM C  contain the uniform

measure� d� 1 and �� =
P d

k=1
1
d � � k , wheref � 1; : : : ; � dg forms any orthonormal basis inRd. Note

that by Gautschi's inequality (Gautschi, 1959) for the Gamma function, we have thatC� � L �

d and
C � L  

d .

Proof of Proposition 1 is presented in Appendix A.2. Together the admissible constants, the levels of
angle preserving property, and the dimensiond of the latent space form the hyperparameters set of
HWD problem. For settings of larged, the admissible constants could take smaller values, that force
the measure� to focus on far-angle directions. However, for smallerd, we may lose the control on
the distributional part, the setM C tends toM 1 the entire set of probability measure onSd� 1, hence
it boils down on a standard slicing approach that needs an expensive number of projections to get an
accurate approximation. Next, we give a set of interesting theoretical properties characterizing HWD.

Proposition 2 For anyr � 1, HWD satis�es the following properties:

(i) HWD r (�; � ) is �nite, that isHWD r (�; � ) � 2
r � 1

r (M r (� ) + M r (� )) whereM r (�) is the

r -th moment of the given distribution, i.e.M r (� ) =
� �

X kxkr d� (x)
� 1

r :

(ii) HWD r (�; � ) is non-negative, symmetric and veri�esHWD r (�; � ) = 0 .

(iii) HWD r (�; � ) has a discrepancy equivalence given by

� 1
d

� 1
r inf

�; 
max

� 2 Sd � 1
Wr (� �;� ; �  ;� ) � HWD r (�; � ) � inf

�; 
max

� 2 Sd � 1
Wr (� �;� ; �  ;� ):

(iv) For p = q, HWD is upper bounded by the distributional sliced Wasserstein distance.

(v) HWD r is rotation invariant, namely,HWD r (R# �; Q # � ) = HWD r (�; � ), for any
R 2 O p = f R 2 Rp� p : R> R = I pg andQ 2 O q = f Q 2 Rq� q : Q> Q = I qg, the
orthogonal group of rotations of orderp andq, respectively.

(vi) Let T� andT� be the translations fromRp into Rp and fromRq into Rq with vectors� and
� , respectively. Then

HWD r (T� # �; T � # � ) � 2r � 1
�
HWD r (�; � ) + k� k + k� k)

�
:

Proof of Proposition 2 is given in Apprendix A.1. From property(i ) HWD is �nite provided that the
distributions in question have a �niter -th moments. Note that the supremum over the probability
measure setsM C � andM C  guarantees the propertyHWD r (�; � ) = 0 . Forp = q, if the in�mum
over the couple(�;  )-embedding in(iii ) is realized in the identity mappings, then HWD veri�es a
metric equivalence with respect to the max-sliced Wasserstein distance (Deshpande et al., 2019).

The property(v) highlights a rotation invariance of HWD, which is well veri�ed by the GW distance.

3.2 ALGORITHM

Computing HWD requires a resolution of an optimization problem as given in(5). In what follows,
we propose an algorithm for computing an approximation of this discrepancy based on samples
X = f x i gn

i =1 from � and samplesY = f yj gm
j =1 from � . At �rst, let us note that we have min-max

optimization to solve; the minimization occuring over the embeddings� and and the maximization
over the distributions on the unit-sphere. This maximization problem is challenging due to both
the constraints and because we optimize over distributions. Similarly to Nguyen et al. (2020), we
approximate the problem by replacing the constraints with regularization terms and by replacing the
optimization over distributions by an optimization over a push-forward of the uniform probability
measure� d� 1 by a Borel measurable functionf : Sd� 1 ! Sd� 1. Hence, assuming that we have
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drawn from a uniform distributionK directionsf � k gK
k=1 , the numerical approximation of HWD is

obtained by solving the following problem:

min
�; 

max
f

n
L 1

def.=
� 1

K

KX

k =1

W r
r

�
X > � [f (� k )]; Y >  [f (� k )]

� � 1=r o

+ min
f

� C

n
L 2

def.=
X

k;k 0

� [f (� k )]> � [f (� k 0)] +
X

k;k 0

 [f (� k )]>  [f (� k 0)]
o

+ min
f

� a

n
L 3

def.=
X

k;;k 0

�
� [f (� k )]> � [f (� k 0)] � � >

k � k 0
� 2 +

X

k;k 0

�
 [f (� k )]>  [f (� k 0)] � � >

k � k 0
� 2

o

where the �rst term in the optimization is related to the sliced Wasserstein, the second term is related
to the regularization term associated toE �;� 0� � [jh� (� ); � (� 0)ij ]; andE �;� 0� � [jh (� );  (� 0)ij ]; and
the third term is the angle-preserving regularization term. Note that themin term with respect to
f is due to the fact that we want those regularizers to be small. Two hyperparameters� C and� a
control the impact of these two regularization terms. In practice,� ,  andf are parametrized as
deep neural networks and the min-max problem is solved by an alternating optimization scheme : (a)
optimizing overf with  and� �xed then (b) optimizing over and� with f �xed. Some details of
the algorithms are provided in Algorithm 1.

Regarding computational complexity, if we assume that the mappingf; �;  are already trained, that
we haveK projections, and that� [f (� k )],  [f (� k )] are precomputed, then the computation of HWD
(line 25 of Algorithm 1) is inO(K (n logn + np + nq)) , wheren is the number of samples inX
andY . When taking into account the full optimization process, then the complexity depends on the
number of times we compute the full objective function we are optimizing. Each evaluation requires
the computation of the sum inL 1 which isO(K (n logn + np + nq)) and the two regularization
termsL 2 andL 3 require bothO(K 2(p + q + 2d)) . Note that in terms of computational complexity,
SGW isO(Kn log n) whereas HWD isO(TNKn logn), with T � N being the global number of
objective function evaluations. Hence, complexity is in favor of SGW. However, one should note that
in practice, because we optimize over the distribution of the random projections, we usually need less
slices than SGW and thus depending on the problem,TNK can be of the same magnitude than the
number of slices involved in SGW (similar �ndings have been highlighted for Sliced Wasserstein
distance (Nguyen et al., 2020)).

4 NUMERICAL EXPERIMENTS

In this section, we analyze HWD, exhibit its rotation-invariant property, and compare its performance
with SGW in a generative model context.

Translation and Rotation We have used two simple datasets for showing the behavior of HWD
with respect to translation and rotation. For translation, we consider two 2D Gaussian distributions
one being �xed, the other with varying mean. For rotation, we use two 2D spirals from Scikit-Learn
library, one being �xed and the other being rotated from0 to �= 2. For these two cases, we have
drawn500samples, used100random directions for SGW and RI-SGW. For our HWD, we have used
only 10slices

andT = 50; N = 5 iterations for each of the alternate optimization. The results we obtain are
depicted in Figure 2. From the �rst panel, we remark that both SGW and RI-SGW are indeed
insensitive to translation while HWD captures this translation, which is also veri�ed by property(vi )
in Proposition 2. For the spiral problem, as expected HWD and RI-SGW are indeed rotation-invariant
while SGW is not.

Generative models For checking whether our distribution discrepancy behaves appropriately, we
have used it as a loss function in a generative model. Our task here is to build a model able to generate
a distribution de�ned on a space having a different dimensionality from the target distribution space.
As such, we have considered the same toy problems as in Bunne et al. (2019) and investigated
two situations: generating 2D distributions from 3D data and the other way around. The 3D target
distribution is a Gaussian mixture model with four modes while the 2D ones are5-mode. Our
generative model is composed of a fully-connected neural network with ReLU activation functions.
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Algorithm 1 COMPUTING HETEROGENEOUSWASSERSTEINDISCREPANCY(SEE(5))
1: Input: Source and target samples:(X; � ) and(Y; � ); order r ; the set of random direction

f � k gK
k=1 ; T number of global iterations;N number of iterations for each of the alternate scheme;

2: Output: HWD
3: function COMPUTE LOSSES(X , Y , � [f (� k )] ,  [f (� k )])
4: compute the average of 1D-WassersteinL 1 betweenX > � [f (� k )] andY >  [f (� k )]
5: compute the inner-product penaltyL 2
6: compute the angle-preserving penaltyL 3
7: end function
8: for t = 1 ; � � � ; T do
9: �x � and 

10: for i = 1 ; � � � ; N do
11: compute� [f (� k )] and [f (� k )]
12: L 1; L 2; L 3  Compute Losses (X , Y , � [f (� k )] ,  [f (� k )]))
13: L = � L 1 + L 2 + L 3
14: f  f � 
 k r L
15: end for
16: �x f
17: for i = 1 ; � � � ; N do
18: compute� [f (� k )] and [f (� k )]
19: L 1; L 2; L 3  Compute Losses (X; Y , � [f (� k )] ,  [f (� k )])
20: L = L 1 + L 2 + L 3
21: �  � � 
 k r L
22:    � 
 k r L
23: end for
24: end for
25: HWD  compute the average overf � k gK

k=1 of closed-form 1D Wasserstein between
X > � [f (� k )] andY >  [f (� k )]

26: Return: HWD

Figure 2: Examples of distance computation
between (left) two-translating Gaussian distri-
butions. (right) two spirals.
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Figure 3: Examples of target distribu-
tions for our generative models (left) 3D
4-mode. (right) 2D5-mode.

We have considered3000samples in the target distributions and batch size of300: For both HWD
and SGW, we have run the algorithm for30000iterations with an Adam optimizer, stepsize of0:001
and default� parameters. For the4-mode problem, the generator is a MLP with2 layers while for
the5-mode, as the problem is more complex, it has3 layers. In each case, we have256units on
the �rst layer and then128. For the hyperparameters, we have set� C = 1 and� a = 5 or � a = 50
depending on the problem. Note that for SGW, we have also added a`2-norm regularizer on the
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output of the generator in order to avoid them to drift (see Figures 8 and 9 in Appendix C), as the loss
is translation-invariant. Examples of generated distributions are depicted in Figure 4. We remark that
our HWD is able to produce visually correct distributions whereas SGW struggles in generating the 4
modes and its 3D5-mode is squeezed on its third dimension.

4 2 0 2
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iteration 10

4 2 0 2
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1
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2 1 0 1 2
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1
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1

2

x2

iteration 20000

3 2 1 0 1 2 3

x1

2

1

0

1

2

x2

iteration 30000

Figure 4: Examples of generated distributions across iterations(10; 10000; 20000; and30000)for
two targets.From top to bottom (�rst-row) HWD for the4-mode. (second-row) SGW for the4-mode
(third-row) HWD for 3D5-mode. (fourth-row) SGW for5-mode. For each row, the last panel shows
the evolution of the loss over the30000iterations.

Scalability We consider the non-rigid shape world dataset (Bronstein et al., 2006) which
consists of 148 three-dimensional shapes from12 classes. We draw randomlyn 2
f 100; 250; 500; 1000; 1500; 2000g verticesf x i 2 R3gn

i =1 on each shape and use them to measure the
similarity between a pair of shapesf x i 2 R3gn

i =1 andf yj 2 R3gn
j =1 . Figure 5 reports the average

time to compute on a single core such a similarity for100pairs of shapes using respectively GW,
SGW and HWD. As expected GW exhibits a slow behavior while the computational burden of HWD
is on par with SGW.

Figure 5: Computation time with respect ton, the number of vertices on each shape. (Left-panel)
Instances of 3D objects. (Right-panel) Running time.

Figure 6: Classi�cation perfor-
mance under transformations.

Classi�cation under various transformations This experiment,
whose details are provided in Appendix B.2, aims to evaluate the ro-
bustness of SGW and HWD (the computationally ef�cient methods)
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to different transformations in terms of classi�cation accuracy. To
that purpose we employ the Shape Retrieval Contest (SHREC'2010)
correspondence dataset, see Bronstein et al. (2010). It includes high
resolution (10K-50K) triangular meshes. The shapes are of3 classes
(see Figure 10 in Appendix C) with9 different transformations and
the null shape (no transformation). Each transformation is applied
up to �ve strength levels (weak to strong). Along with the null shape,
we consider all strengths of the "isometry", "topology", "scale",
"shotnoise" transformations leading to63 samples. We perform a
1-NN classi�cation.

Obtained performances over10 runs are depicted in Figure 6. They highlight the ability of HWD to
be robust to perturbations. HWD achieves slightly better mean classi�cation accuracy than SGW
with a competitive computation time (see Figure 5). Notice that GW and RISGW are unable to run
under reasonable time-budget constraint.

5 CONCLUSION

We introduce in this paper HWD a novel OT-based discrepancy between distributions lying in different
spaces. It takes computational bene�ts from distributional slicing technique, which amounts to �nd an
optimal number of random projections needed to capture the structure of data distributions. Another
feature of this discrepancy consists in projecting the distributions in question through a learning
of embeddings enjoying the same latent space. We showed a nice geometrical property veri�ed
by the proposed discrepancy, speci�cally a rotation-invariance. We illustrated through extensive
experiments the applicability of this discrepancy on generative modeling and shape objects retrieval.
We argue that the implementation part faces the standard deep learning bottleneck of tuning the
model's hyperparameters. A future extension line of this work is to deliver theoretical guarantees
regarding the regularizing parameters, both of distributional and angle preserving properties.

ACKNOWLEDGMENTS

The works of Maxime Bérar, Gilles Gasso and Alain Rakotomamonjy have been supported by the
OATMIL ANR-17-CE23-0012 Project of the French National Research Agency (ANR).

REFERENCES

M. Z. Alaya, M. Bérar, G. Gasso, and A. Rakotomamonjy. Theoretical guarantees for bridging metric
measure embedding and optimal transport.arxiv preprint 2002.08314, 2020.

D. Alvarez-Melis and T. Jaakkola. Gromov–Wasserstein alignment of word embedding spaces. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
1881–1890. Association for Computational Linguistics, 2018.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Doina
Precup and Yee Whye Teh (eds.),Proceedings of the 34th International Conference on Machine
Learning, volume 70 ofProceedings of Machine Learning Research, pp. 214–223, International
Convention Centre, Sydney, Australia, 2017. PMLR.

N. Bonneel, M. van de Panne, S. Paris, and W. Heidrich. Displacement interpolation using lagrangian
mass transport.ACM Trans. Graph., 30(6):158:1–158:12, 2011.

N. Bonneel, J. Rabin, G. Peyré, and H. P�ster. Sliced and Radon Wasserstein barycenters of measures.
Journal of Mathematical Imaging and Vision, 51(1), 2015.

N. Bonnotte.Unidimensional and Evolution Methods for Optimal Transportation. Theses, Université
Paris Sud - Paris XI ; Scuola normale superiore (Pise, Italie), December 2013.

A. Bronstein, M. Bronstein, U. Castellani, B. Falcidieno, A. Fusiello, A. Godil, L. Guibas, I. Kokkinos,
Z. Lian, M. Ovsjanikov, G. Patane, M. Spagnuolo, and R. Toldo. SHREC 2010: robust large-scale
shape retrieval benchmark. Eurographics Workshop on 3D Object Retrieval(2010), Norrköping, -1,
2010-05-02 2010.

10



Preprint. Under review.

A. M Bronstein, M. M. Bronstein, and R. Kimmel. Ef�cient computation of isometry-invariant
distances between surfaces.SIAM Journal on Scienti�c Computing, 28(5):1812–1836, 2006.

C. Bunne, D. Alvarez-Melis, A. Krause, and S. Jegelka. Learning generative models across incompa-
rable spaces. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),Proceedings of the 36th
International Conference on Machine Learning, volume 97 ofProceedings of Machine Learning
Research, pp. 851–861, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

S. Chowdhury and F. Mémoli. The Gromov–Wasserstein distance between networks and stable
network invariants.CoRR, abs/1808.04337, 2018.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation.
IEEE transactions on pattern analysis and machine intelligence, 39(9):1853–1865, 2017.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (eds.),Advances in Neural Informa-
tion Processing Systems 26, pp. 2292–2300. Curran Associates, Inc., 2013.

I. Deshpande, Y.-T. Hu, R. Sun, A. Pyrros, N. Siddiqui, S. Koyejo, Z. Zhao, D. Forsyth, and A. G.
Schwing. Max-sliced Wasserstein distance and its use for gans. In2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10640–10648, 2019.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Coren�os,
K. Fatras, N. Fournier, L. Gautheron, N. T.H. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko,
A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer. Pot: Python
optimal transport.Journal of Machine Learning Research, 22(78):1–8, 2021.

C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio. Learning with a Wasserstein loss. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.),Advances in Neural
Information Processing Systems 28, pp. 2053–2061. Curran Associates, Inc., 2015.

W. Gautschi. Some elementary inequalities relating to the gamma and incomplete gamma function.
Journal of Mathematics and Physics, 38(1-4):77–81, 1959.

L. Kantorovich. On the transfer of masses (in russian).Doklady Akademii Nauk, 2:227–229, 1942.

S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde. Optimal mass transport: Signal
processing and machine-learning applications.IEEE Signal Processing Magazine, 34(4):43–59,
July 2017.

S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced Wasserstein auto-encoders. In
International Conference on Learning Representations, 2019.

M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From word embeddings to document distances. In
Francis Bach and David Blei (eds.),Proceedings of the 32nd International Conference on Machine
Learning, volume 37 ofProceedings of Machine Learning Research, pp. 957–966, Lille, France,
07–09 Jul 2015. PMLR.

Y. T. Lee and A. Sidford. Path �nding methods for linear programming: Solving linear programs in
Õ(vrank) iterations and faster algorithms for maximum �ow. InProceedings of the 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, FOCS '14, pp. 424–433, Washington,
DC, USA, 2014. IEEE Computer Society.

N. Lerner.A Course on Integration Theory. Springer Basel, 2014.

T. Lin, Z. Zheng, E. Chen, M. Cuturi, and M. Jordan. On projection robust optimal transport:
Sample complexity and model misspeci�cation. In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Arti�cial Intelligence and Statistics, volume
130 ofProceedings of Machine Learning Research, pp. 262–270. PMLR, 13–15 Apr 2021.

F. Mémoli. Gromov–Wasserstein distances and the metric approach to object matching.Foundations
of Computational Mathematics, 11(4):417–487, 2011.

11



Preprint. Under review.

G. Monge. Mémoire sur la théotie des déblais et des remblais.Histoire de l'Académie Royale des
Sciences, pp. 666–704, 1781.

K. Nguyen, N. Ho, T. Pham, and H. Bui. Distributional sliced-Wasserstein and applications to
generative modeling.arxiv preprint 2002.07367, 2020.

F.-P. Paty and M. Cuturi. Subspace robust Wasserstein distances. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.),Proceedings of the 36th International Conference on Machine Learning,
volume 97 ofProceedings of Machine Learning Research, pp. 5072–5081, Long Beach, California,
USA, 2019. PMLR.

G. Peyré, M. Cuturi, and J. Solomon. Gromov–Wasserstein averaging of kernel and distance matrices.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML'16, pp. 2664–2672. JMLR.org, 2016.

G. Peyré and M. Cuturi. Computational optimal transport.Foundations and Trends® in Machine
Learning, 11(5-6):355–607, 2019.

J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its application to texture
mixing. In A. M. Bruckstein, B. M. ter Haar Romeny, A. M. Bronstein, and M. M. Bronstein
(eds.),Scale Space and Variational Methods in Computer Vision, pp. 435–446, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

S.T. Rachev and L. Rüschendorf.Mass Transportation Problems: Volume I: Theory. Mass Trans-
portation Problems. Springer, 1998.

M. Rowland, J. Hron, Y. Tang, K. Choromanski, T. Sarlos, and A. Weller. Orthogonal estimation
of Wasserstein distances. In Kamalika Chaudhuri and Masashi Sugiyama (eds.),Proceedings of
the Twenty-Second International Conference on Arti�cial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 186–195. PMLR, 16–18 Apr 2019.

T. Salimans, H. Zhang, A.Radford, and D. Metaxas. Improving GANs using optimal transport. In
International Conference on Learning Representations, 2018.

J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and L. Guibas.
Convolutional Wasserstein distances: Ef�cient optimal transportation on geometric domains.ACM
Trans. Graph., 34(4):66:1–66:11, 2015.

K. T. Sturm. On the geometry of metric measure spaces. ii.Acta Math., 196(1):133–177, 2006.

T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty. Fused Gromov–Wasserstein distance for
structured objects: theoretical foundations and mathematical properties.CoRR, abs/1811.02834,
2018.

T. Vayer, R. Flamary, N. Courty, R. Tavenard, and L. Chapel. Sliced Gromov–Wasserstein. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 32, pp. 14726–14736. Curran Associates, Inc.,
2019.

C. Villani. Optimal Transport: Old and New, volume 338 ofGrundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg, 2009.

Jiqing Wu, Zhiwu Huang, Dinesh Acharya, Wen Li, Janine Thoma, Danda Pani Paudel, and Luc Van
Gool. Sliced wasserstein generative models. InProceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3713–3722, 2019.

H. Xu, D. Luo, and L. Carin. Scalable Gromov–Wasserstein learning for graph partitioning and
matching. InAdvances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, pp. 3046–3056, 2019.

12



Preprint. Under review.

A PROOFS

A.1 PROOF OFPROPOSITION1

We use the following result:

Lemma 1 [Theorem 3 in (Nguyen et al., 2020)] For uniform measure� d� 1 on the unit sphereSd� 1,
we have �

Sd � 1 � Sd � 1
jh�; � 0ij d� d� 1(� )d� d� 1(� 0) =

�( d=2)
p

� �(( d + 1) =2)
:

Hence,
�

Sd � 1 � Sd � 1
jh� (� ); � (� 0)ij d� d� 1(� )d� d� 1(� 0)

(Assumption 1)
� L �

�

Sd � 1 � Sd � 1
jh�; � 0ij d� d� 1(� )d� d� 1(� 0)

(Lemma 1)
�

L � �( d=2)
p

� �(( d + 1) =2)
:

Therefore, as long as the(�;  )-admissible constantsC� � L � �( d=2)p
� �(( d+1) =2) andC � L  �( d=2)p

� �(( d+1) =2) ,

we have� d� 1 2 M C � \ M C  : Now using a Gautschi's inequality (Gautschi, 1959) for the Gamma

function, it yields that �( d=2)p
� �(( d+1) =2) � 1p

� (d+1) =2
� 1=d:Let �� =

P d
l =1

1
d � � l , wheref � 1; : : : ; � dg

form an orthonormal basis inRd. We then have

E �;� 0� ��
�
jh� (� ); � (� 0)ij

�
=

X

1� k;l � d

� 1
d

� 2
jh� (� k ); � (� 0

l )ij
(Assumption 1)

� L �

X

1� k;l � d

� 1
d

� 2
jh� k ; � 0

l ij =
L �

d
:

Therefore we get the lower bounds for the(�;  )-admissible constantsC� andC given in Proposi-
tion 1, that guarantee� d� 1; �� 2 M C � \ M C  :

A.2 PROOF OFPROPOSITION2

Let us �rst state the two following lemmas: Lemma 2 writes an integration result using push-forward
measures; it relates integrals with respect to a measure� and its push-forward under a measurable
mapf : X ! Y : Lemma 3 proves that the admissible set of couplings between the embedded
measures are exactly the embedded of the admissible couplings between the original measures.

Lemma 2 [See Lerner (2014) p. 61] Letf : S ! T be a measurable mapping, let� be a measurable
measure onS, and letg be a measurable function onT. Then

�
T gdf # � =

�
S (g � f )d� .

Lemma 3 [Lemma 6 in Paty & Cuturi (2019)] For all�;  and� 2 P (X ); � 2 P (Y), one has
�( � # �;  # � ) = f (� 
  )# 
 s.t. 
 2 �( �; � )g;

where� 
  : X � Y ! X � Y such that(� 
  (x; y) = ( � (x);  (y)) for all x; y 2 X � Y :

� (i ) HWD r (�; � ) is �nite. In one hand, we assume that� 2 P r (X ) and� 2 P r (Y), hence itsr -th

moments are �nite, i.e.,M r (� ) =
� �

X kxkr d� (x)
� 1=r

< 1 andM r (� ) =
� �

Y kykr d� (y)
� 1=r

<
1 . In the other hand, the following holds for all parameter� 2 Sd� 1 and a couple(�;  )-embeddings,

W r
r (� �;� ; �  ;� ) = inf

� 2 �( P � ( � ) # �; ( � )# � )

�

R� R
ju � u0jr d� (u; u0)

(Lemma 3)
= inf


 2 �( �;� )

�

X �Y
j� (� )> x �  (� )> yjr d
 (x; y)

� 2r � 1 inf

 2 �( �;� )

�

X �Y

�
j� (� )> xjr + j (� )> yjr

�
d
 (x; y)

= 2 r � 1 inf

 2 �( �;� )

� �

X
j� (� )> xjr d� (x) +

�

Y
j (� )> yjr d� (y)

�
;
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where we use the facts that(s + t)r � 2r � 1(sr + t r ); 8s; t 2 R+ and that any
 transport plan has
marginals� onX and� onY. By Cauchy–Schwarz inequality, we get

W r
r (� �;� ; �  ;� ) � 2r � 1

� �

X
k� (� )kr kxkr d� (x) +

�

Y
k (� )kr kykr d� (y)

�
= 2 r � 1�

M r
r (� ) + M r

r (� )
�
:

Then,
�
E � � �

�
W r

r (� �;� ; �  ;� )
�� 1=r

� 2
r � 1

r
�
M r

r (� ) + M r
r (� )

� 1=r
� 2

r � 1
r

�
M r (� ) + M r (� )

�
:

Finally, one has thatHWD r (�; � ) � 2
r � 1

r
�
M r (� ) + M r (� )

�
:

� (ii ) Non-negativity and symmetry.Together the non-negativity, symmetry of Wasserstein distance
and the decoupling property of iterated in�ma (or principle of the iterated in�ma)

yield the non-negativity and symmetry of the distributional sliced sub-embedding distance.

� (ii ) HWD r (�; � ) = 0 . Let � and � 0 two embeddings for projecting the same distribution� .
Without loss of generality, we suppose that the corresponding(�; � 0)-admissible constantsC0

� � C� ,
henceM C � 0 � M C � . Using the fact thatsup(A \ B ) � supA ^ supB; (with a ^ b) = min( a; b)) ,
se have, straightforwardly,

HWD r (�; � ) = inf
�;� 0

sup
� 2 M C � \ M C � 0

�
E � � �

�
W r

r (� �;� ; � � 0;� )
� � 1

r

� inf
�;� 0

�
sup

� 2 M C �

�
E � � �

�
W r

r (� �;� ; � � 0;� )
� � 1

r
^ sup

� 2 M C � 0

�
E � � �

�
W r

r (� �;� ; � � 0;� )
� � 1

r

�

= inf
�

inf
� 0

�
sup

� 2 M C �

�
E � � �

�
W r

r (� �;� ; � � 0;� )
� � 1

r
^ sup

� 2 M C � 0

�
E � � �

�
W r

r (� �;� ; � � 0;� )
� � 1

r

�

� inf
�

�
sup

� 2 M C �

�
E � � �

�
W r

r (� �;� ; � �;� )
� � 1

r
^ sup

� 2 M C � 0

�
E � � �

�
W r

r (� �;� ; � �;� )
� � 1

r

�

� inf
�

sup
� 2 M C �

�
E � � �

�
W r

r (� �;� ; � �;� )
� � 1

r

= 0 :

� (iii ) One has
�

1
d

� 1
r inf �; max� 2 Sd � 1 Wr (� �;� ; �  ;� ) � HWD r (�; � ) � inf �; max� 2 Sd � 1 Wr (� �;� ; �  ;� ):

SinceM C � \ M C  � M 1 andW r
r (� �;� ; �  ;� ) � max� 2 Sd � 1 W r

r (� �;� ; �  ;� ) we �nd that

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r (� �;� ; �  ;� )
� � 1

r
� sup

� 2 M 1

�
E � � �

�
W r

r (� �;� ; �  ;� )
� � 1

r

�
�

max
� 2 Sd � 1

W r
r (� �;� ; �  ;� )

� 1=r

� max
� 2 Sd � 1

Wr (� �;� ; �  ;� );

which entails thatHWD r (�; � ) � inf �; max� 2 Sd � 1 Wr (� �;� ; �  ;� ). Moreover, since the(�;  )-
admissible constantsC� andC satisfyC� � U �

d andC � U 

d hence�� =
P d

l =1
1
d � � l 2 M C � \

M C  , where we set� 1 = argmax � 2 Sd � 1 Wr (� �;� ; �  ;� ). We then obtain

HWD r (�; � ) � inf
�; 

�
E � � ��

�
W r

r (� �;� ; �  ;� )
� � 1

r

= inf
�; 

� dX

l =1

1
d

W r
r (� �;� l ; �  ;� l )

� 1
r

�
� 1

d

� 1=r
inf
�; 

Wr (� �;� 1 ; �  ;� 1 )

=
� 1

d

� 1=r
inf
�; 

max
� 2 Sd � 1

Wr (� �;� ; �  ;� ):
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� (iv ) For p = q, HWD is upper bound by the distributional Wasserstein distance (DSW) .Let us �rst
recall the DSW distance: letC > 0 and setM C = f � 2 P (Sd� 1) : E �;� 0� � [jh�; � 0ij ] � Cg:

DSW r (�; � ) = sup
� 2 M C

�
E � � �

�
W r

r (� � ; � � )
� � 1

r
:

We have that the case of a identity couple of embeddings,� = Id;  = Id , the probability measure
setM C � ; M C  = M C ; then it is trivial thatHWD r (�; � ) � DSW r (�; � ):

� (v) Rotation invariance.Note that(R# � ) �;� = P� ( � ) #( R# � ) = ( P� ( � ) � R)# �;

and for allx 2 Rp; using the adjoint operatorR� , (R� = R� 1), (P� ( � ) � R)(x) = h� (� ); R(x)i =
hR� (� (� )) ; xi = PR � � � ( � ) (x):

Then,(R# � ) �;� = ( PR � � � ( � ) )# � . Analogously, one has(Q# � ) ;� = ( PQ � �  ( � ) )# � . Moreover,

M C � =
�

� 2 P (Sd� 1) : E �;� 0� � [jh� (� ); � (� 0)ij ]
	

=
�

� 2 P (Sd� 1) : E �;� 0� � [jh(R� � � )( � ); (R� � � )( � 0)ij ]
	

= M CR � � � :

Then we have similarlyM C  = M CQ � �  . This implies

HWD r (R# �; Q # � ) = inf
�; 

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r ((R# � ) �;� ; (Q# � ) ;� )
� � 1

r

= inf
�; 

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r ((PR � � � ( � ) )# �; P Q � �  ( � ) )# � )
� � 1

r

= inf
�; 

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r (� R � � �;� ; � R � � �;�
� � 1

r

= inf
�; 

sup
� 2 M C R � � �

\ M C Q � �  

�
E � � �

�
W r

r (� R � � �;� ; � Q � � �;�
� � 1

r

= inf
�; 

sup
� 2 M C R � � �

\ M C Q � �  

�
E � � �

�
W r

r (� R � � �;� ; � Q � �  ;�
�� 1

r

= inf
� 0= R � � �; 0= Q � �  

sup
� 2 M C � 0 \ M C  0

�
E � � �

�
W r

r (� � 0;� ; �  0;�
� � 1

r

= HWD r (�; � ):

� (vi ) Translation quasi-invariance.We have

HWD r (T� # �; T � # � ) = inf
�; 

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r ((T� # � ) �;� ; (T� # � ) ;� )
� � 1

r
:
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By Lemmas 3 and 2 , we have

W r
r ((T� # � ) �;� ; (T� # � ) ;�

= inf

 2 �(( T � # � ) �;� ;(T � # � )  ;� ))

�

R2
ju � vjr d
 (u; v)

= inf

 2 �(( P � ( � ) � T � )# �; (P  ( � ) � T � )# � )

�

R2
ju � vjr d
 (u; v)

= inf

 2 �( �;� )

�

X �Y
jP� ( � ) � T� (x) � P ( � ) � T� )(y)jr d
 (x; y)

= inf

 2 �( �;� )

�

X �Y
j(P� ( � ) (x) � P ( � ) (y)) + ( P� ( � ) (� ) � P ( � ) (� )) jr d
 (x; y)

� 2r � 1
�

inf

 2 �( �;� )

�

X �Y
j(P� ( � ) (x) � P ( � ) (y)) jr d
 (x; y) + jP� ( � ) (� ) � P ( � ) (� )) jr

�

� 2r � 1
�

inf

 2 �( �;� )

�

X �Y
j(P� ( � ) (x) � P ( � ) (y)) jr d
 (x; y) + ( k� k + k� k)r

�
:

Thanks to Minkowski inequality,

sup
� 2 M C � \ M C  

�
E � � �

�
W r

r ((T� # � ) �
� ; (T� # � ) 

� )
� � 1

r

� 2r � 1 sup
� 2 M C � \ M C  

�
E � � �

h
inf


 2 �( �;� )

�

X �Y
j(P� ( � ) (x) � P ( � ) (y)) jr d
 (x; y)

i� 1
r

+ 2 r � 1(k� k + k� k) sup
� 2 M C � \ M C  

�
�( Sd� 1)

� 1
r

� 2r � 1 sup
� 2 M C � \ M C  

�
E � � �

�
W r

r (� �;� ; �  ;� )
� � 1

r
+ 2 r � 1(k� k + k� k):

Therefore, we getHWD r (T� # �; T � # � ) � 2r � 1HWD r (�; � ) + 2 r � 1(k� k + k� k):

B IMPLEMENTATION

This section graphically describes the learning procedure in Algorithm 1. It also provides the training
details not exposed in the main body of the paper.

B.1 LEARNING SCHEME

We present in Figure 7 the updated graphics of our approach, highlighting the main components :
the distributional part is ensured by a �rst deep neural network as is each of the mappings. As each
of the networks should be learned, we included the part of the loss functions associated with each
network (blue fonts correspond to minimization, whereas red fonts correspond to maximization, see
Algorithm section).

B.2 TRAINING DETAILS

Our experimental evaluations on shape datasets for scalability contrast GW, SGW and HWD. Re-
garding or classi�cation under isometry transformations, we additionnally consider RI-SGW. Used
hyper-parameters for those experiments are detailed below. Notice that SGW, RI-SGW and HWD
rely onK , the number of projections sampled uniformly over the unit sphere. ThisK may vary from
a method to another.

1. SGW:K .

2. RI-SGW:� RI-SGW , the learning rate andT, the maximal number of iterations for solving 4
over the Stiefeld manifold.
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Figure 7: The implemented approach. Both the distributional and mappings parts are achieved by
deep neural networks. A numberK of projections is used to compute 1D-Wasserstein distances.

3. HWD: beyondK and the latent space dimensiond, it requires the parametrization of� ,  
andf as deep neural networks and their optimizers. For solving the min-max problem by an
alternating optimization scheme we useN inner loops andT number of epochs.

For SGW and RI-SGW we use the code made available by their authors and cite the related reference
Vayer et al. (2018) as they require. We use POT toolbox Flamary et al. (2021) to compute GW
distance.

Scalability This experiment measures the average running time to compute OT-based distance
between two pairs of shapes made ofn 3D-vertices. 100 pairs of shapes were considered andn varies
in f 100; 250; 500; 1000; 1500; 2000g.

We chooseK SGW = 1000 (as a default value).

For HWD, the mapping functionf is designed as a deep network with 2 dense hidden layers of
size 50. Regarding both� and , they have also the same architecture asf (with adapted input and
output layers) but the hidden layers are 10-dimensional. Adam optimizers with default parameters
are selected to train them. Finally we considerK HWD = 10, d = 5 , T = 50, N = 1 as default values.
Notice also that the regularization parameters� C and� a are set to 1.

The used ground cost distance for GW distance is the geodesic distance.

Classi�cation under transformations invariance For this experiment, we consider the same set
of hyper-parameters as forScalability evaluation on shape datasets. Besides, the supplementary com-
petitor RI-SGW was trained by settingK RI-SGW = 1000 = K SGW = 1000, � RI-SGW = 0 :01,
TRI-SGW = 500. Notice that due to the high-resolution of the meshes (more than 19K three-
dimensional vertices), RI-SGW and GW were not able to produce the pairwise-distance matrix
used in 1NN classi�cation after several hours.
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Figure 8: Comparing (top) HWD and (bottom) SGW on generating 2D distributions from 3D target.
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Figure 9: Comparing (top) HWD and (bottom) SGW on generating 3D distributions from 2D target.

Figure 10: Instances of the shape dataset with null and isometry transformations. The classes
are respectivelyhuman,dog andhorse . For the experiments of Figure 6 we also consider the
"topology", "scale", "shotnoise" transformations that respectively amount to deform, to upscale and
to add noise to the shapes of each class.
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C ADDITIONAL EXPERIMENTAL RESULTS
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