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SOME VARIATIONS ON THE EXTREMAL INDEX

GLORIA BURITICÁ, NICOLAS MEYER, THOMAS MIKOSCH,
AND OLIVIER WINTENBERGER

Abstract. We re-consider Leadbetter’s extremal index for stationary
sequences. It has interpretation as reciprocal of the expected size of
an extremal cluster above high thresholds. We focus on heavy-tailed
time series, in particular on regularly varying stationary sequences, and
discuss recent research in extreme value theory for these models. A
regularly varying time series has multivariate regularly varying finite-
dimensional distributions. Thanks to results by Basrak and Segers [2]
we have explicit representations of the limiting cluster structure of ex-
tremes, leading to explicit expressions of the limiting point process of
exceedances and the extremal index as a summary measure of extremal
clustering. The extremal index appears in various situations which do
not seem to be directly related, like the convergence of maxima and
point processes. We consider different representations of the extremal
index which arise from the considered context. We discuss the theory
and apply it to a regularly varying AR(1) process and the solution to
an affine stochastic recurrence equation.

Some personal words by Thomas Mikosch. During my PhD studies
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1. Leadbetter’s approach to modeling the extremes of a
stationary sequence

The paper by Leadbetter [22] and the book of Leadbetter, Lindgren and
Rootzén [23] provided a first systematic approach to the extreme value the-
ory of dependent stationary sequences. In particular, Leadbetter introduced
mixing and anti-clustering conditions, the conditions D and D′, which are
tailored for the analysis of dependent extremal events. Moreover, [23] prop-
agated the use of the extremal index as a measure for extremal clustering.

The idea of an extremal index originates from [25, 24, 27] who discovered
that the maxima

Mn = max
t=1,...,n

Xt , n > 1 ,

of numerous examples of dependent stationary sequences (Xt) with common
distribution F share the property that

P(Mn 6 un) ≈
[
P(X 6 un)

]n θX =
(
(F (un))n

)θX , n→∞ ,

for some number θX ∈ [0, 1] provided (un) is a sequence of high thresh-
olds converging sufficiently fast to the right endpoint xF of F . Leadbetter
[22] made this notion precise as the expected size of an extremal cluster of
exceedances above high-level thresholds. Since (F (un))n is the distribution
function of the maximum of n iid random variables with common distribu-
tion F at the threshold un, the quantity θX describes the shrinking effect
that the appearance of dependent extremes may have on the distribution of
Mn compared to (F (un))n.

Leadbetter defined the extremal index θX as follows: assume that for
every τ ∈ (0,∞) there exists a sequence (un(τ)) such that

nF (un(τ)) = n (1− F (un(τ)))→ τ,

and there exists a number θX such that

P(Mn 6 un(τ))→ e−τ θX , n→∞ .

If such a number θX exists it belongs to the interval [0, 1] and is independent
of the choice of the sequences (un).

An immediate application is to the convergence in distribution of the
sequence (Mn). Assume that (Xt) belongs to the maximum domain of at-

traction of an extreme value distribution H, i.e., for iid copies (X̃t) of X1,

M̃n = max(X̃1, . . . , X̃n), there exist constants cn > 0, dn ∈ R such that

c−1
n (M̃n− dn)

d→ ξ as n→∞ and ξ has distribution H. Then if (Xt) has an
extremal index θX we have

nF (cn x+ dn︸ ︷︷ ︸
=:un(τ)

)→ − logH(x)︸ ︷︷ ︸
=:τ

, n→∞ , x ∈ suppH .

and

P
(
c−1
n (Mn − dn) 6 x

)
→ HθX (x) , n→∞ , x ∈ suppH .
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In the case of an iid sequence it is easily seen that nF (un(τ))→ τ holds if
and only if P(Mn 6 un(τ))→ e−τ . Hence θX = 1. The extremal index 1 is
not exclusive to iid sequences. Indeed, in the book [23] various examples of
strictly stationary sequences are considered for which θX = 1. For example,
if (Xt) is a Gaussian stationary sequence whose autocovariance function
satisfies cov(X0, Xh) = o(1/ log h) as h→∞, then θX = 1.

2. Sufficient conditions for the existence of the extremal
index

The extremal index is often interpreted as the reciprocal of the expected
size of an extremal cluster for a stationary sequence (Xt). We will give some
justification for this interpretation.

2.1. The method of block maxima. The key is the definition of an ex-
tremal cluster in the sample X1, . . . , Xn: split the sample into kn = [n/rn]
blocks of equal length rn:

X1, . . . , Xrn︸ ︷︷ ︸
Block 1

, Xrn+1, . . . , X2 rn︸ ︷︷ ︸
Block 2

, . . . , X(kn−1) rn+1, . . . , Xkn rn︸ ︷︷ ︸
Block kn

,

we ignore the last block of length less than rn, and we simply call a block
an extremal cluster relative to a high threshold u = un (this means that
un ↑ xF as n → ∞) if there is at least one exceedance of this threshold in
this block. For an asymptotic theory it will be important that r = rn →∞
such that rn is small compared to n, i.e., kn →∞.

In view of the stationarity of (Xt) the expected cluster size of a block is
given by

E
[ rn∑
t=1

11(Xt > un)
∣∣∣Mrn > un

]
=

rn∑
t=1

P(Xt > un ,Mrn > un)

P(Mrn > un)

=

rn∑
t=1

P(Xt > un)

P(Mrn > un)

=
rn P(X > un)

P(Mrn > un)
=:

1

θn
.

Obviously, θn is a number in [0, 1]. Under mild regularity conditions the limit
θ = limn→∞ θn exists, assumes values in (0, 1] and coincides with Leadbet-
ter’s extremal index θX ; see Theorem 2.3 below. For this reason, the ex-
tremal index θX is often referred to as the reciprocal of the expected extremal
cluster size above high thresholds.

2.2. Approximation of θX by θn. The following result can be found in
slightly different forms in [9], proof of Lemma 2.8, [34, 2].

Theorem 2.3. Consider the following conditions:

(1) (Xt) is a real-valued stationary sequence whose marginal distribution F



4 G. BURITICA, N. MEYER, T. MIKOSCH, AND O. WINTENBERGER

0 20 40 60 80 100

−2
0

2
4

6

Time

Tim
e s

eri
es

Figure 2.1. Visualization of the max-moving average Xt = max(Zt, Zt+1, Zt+2),

t = 1, . . . , 100, (blue) for iid student noise Zt, t = 1, . . . , 102, with α = 4 degrees

of freedom (red dots). The values of Xt typically appear in clusters of size 3. The

process (|Xt|) has extremal index θ|X| = 1/3.
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Figure 2.2. The daily log-return series of the Bit Coin USD stock prices from

17 September 2014 until 8 January 2021. We only show the returns below -0.04 or

above 0.04 which we interpret as extreme values. These limits roughly correspond to

the 10% and 90% quantiles of the data. The extremes typically appear in clusters.

does not have an atom at the right endpoint xF .
(2) For a sequence un ↑ xF and an integer sequence r = rn → ∞ such that
kn = [n/rn]→∞ the following anti-clustering condition is satisfied:

lim
k→∞

lim sup
n→∞

P
(
Mk,rn > un | X0 > un

)
= 0 .(2.1)

Here Ma,b = maxi=a,...,bXi for a 6 b such that Mb = Ma,b with a = 1.
(3) A mixing condition holds:

P(Mn 6 un)−
(
P(Mrn 6 un)

)kn → 0 , n→∞ ,(2.2)

where (un), (kn) and (rn) are as in (2).
(4) For all positive τ there exists a sequence (un) = (un(τ)) such that
nF (un)→ τ and (2), (3) are satisfied for these sequences (un).

Then the following statements hold:



SOME VARIATIONS ON THE EXTREMAL INDEX 5

1. If (1) and (2) are satisfied then

lim
k→∞

lim sup
n→∞

∣∣θn − P
(
Mk 6 un | X0 > un

)∣∣ = 0 ,(2.3)

and lim infn→∞ θn > 0.
2. If (1) and (4) are satisfied and θ = limn→∞ θn exists, then θX ∈ (0, 1]
exists and coincides with θ.

Condition (2.2) is satisfied for strongly mixing (Xt) with mixing rate
(αh) if one can find integer sequences (`n) and (rn) such that `n/rn → 0,
rn/n→ 0 and knα`n → 0 as n→∞. Anti-clustering conditions are common
in extreme value theory since Leadbetter introduced the D′ condition which
is much stronger than (2.1) but also easily verified on examples. The goal
of such a condition is to avoid that the stationary sequence stays above a
high threshold for too long.

Relation (2.3) is in agreement with O ’Brien’s [28] characterization of the
extremal index of (Xt) as the limit

θX = lim
n→∞

P(M`n 6 un | X0 > un),(2.4)

for a sequence (`n) with `n/n→ 0, thresholds un ↑ xF such that nF (un)→ 1
as n→∞, provided a mixing condition holds. O’Brien’s condition (2.4) has
the advantage that it avoids the definition of an extremal cluster.

Remark 2.4. Relation (2.3) provides a constructive way of calculating θX :
if we know that the limits f(k) := limn→∞ P

(
Mk 6 un | X0 > un

)
exist for

every k > 1 then we can try to derive θX = limk→∞ f(k). In Section 3 we
will follow this approach in the case of a regularly varying sequence.

3. Regularly varying sequences

3.1. Definition and examples. As a matter of fact, clusters of extremes
are more prominent in stationary sequences with heavy-tailed marginal dis-
tribution. To illustrate this fact, consider a stationary causal AR(1) process
which solves the difference equation Xt = ϕXt−1 +Zt, t ∈ Z, for an iid noise
sequence (Zt). Necessarily, ϕ ∈ (−1, 1) and, if (Zt) is iid standard normal
then (|Xt|) has extremal index θ|X| = 1 (see [23]), while for iid student noise
(Zt) with α degrees of freedom we have θ|X| = 1 − |ϕ|α; see Example 3.4
below. Thus, the smaller α (the heavier the tail) for given ϕ the closer θ|X|
to zero.

An AR(1) process with student noise is an example of a regularly varying
time series. This class of heavy-tailed processes has been studied rather
extensively in the last 15 years; see [31] for some basics about multivari-
ate regular variation, and [21] for a recent textbook treatment. This class
was considered in full generality first by [9]: they required that the finite-
dimensional distributions of the process satisfy a multivariate regular varia-
tion condition; see [30, 31] for the definition of this notion. It is an extension
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of power-law tail behavior from the univariate to the multivariate case de-
fined via the vague convergence of tail measures with infinite limit measures
which have the homogeneity property.

Here we will follow an alternative approach by [2] tailored for stationary
sequences, avoiding the vague convergence concept. They proved that a
real-valued stationary sequence (Xt) is regularly varying with index α > 0
in the sense of [9] if and only if there exists a sequence (Θt) and a Pareto(α)
distributed random variable Y , i.e., P(Y > y) = y−α, y > 1, such that (Θt)
and Y are independent and, for all h > 0,

P
(
x−1(Xt)|t|6h ∈ ·

∣∣ |X0| > x
) w→ P

(
Y (Θt)|t|6h ∈ ·

)
, x→∞ .

In the latter relation x can be replaced by any sequence (an) such that
nP(|X| > an) → 1 as n → ∞. Moreover, by definition, |Θ0| = 1 a.s. The
sequence (Θt) is the spectral tail process of the regularly varying process
(Xt); it describes the propagation of a value |X0| > x for large x through
the stationary sequence (Xt) into its past and future.

Example 3.1. We consider a stationary AR(1) process given as the causal
solution to the difference equation Xt = ϕXt−1 +Zt, t ∈ Z, where (Zt) is iid
regularly varying with index α (e.g. Pareto(α) or student(α)). This means
that a generic element Z satisfies limx→∞ P(±Z > x)/P(|Z| > x) = p± for
non-negative values p± such that p+ + p− = 1, and P(|Z| > x) = L(x)x−α,
x > 0, for some slowly varying function L. Then a generic element X inherits
the regularly varying tail behavior from Z (see [10]):

P(±X > x)

P(|Z| > x)
∼
∞∑
j=0

[
p± (ϕj)α± + p∓ (ϕj)α∓

]
= P(Θ0 = ±1)(1− |ϕ|α) .

But even more is true: (Xt) is a regularly varying time series with spectral
tail process

Θt = ΘZ sign(ϕJ+t) |ϕ|t11(J + t > 0) = Θ0 ϕ
t 11(J + t > 0) , t ∈ Z ,

(3.1)

where P(ΘZ = ±1) = p±, ΘZ is independent of J which has distribution

P(J = j) = (1− |ϕ|α) |ϕ|j α , j > 0 .

In particular, the forward spectral tail process is given by Θt = Θ0 ϕ
t, t > 0.

Example 3.2. We consider the unique causal solution to the affine sto-
chastic recurrence equation Xt = AtXt−1 + Bt, t ∈ Z, for an iid sequence
((At, Bt))t∈Z with generic element (A,B) ∈ R2

+. We assume that the dis-
tribution of (A,B) satisfies the conditions of the Kesten-Goldie theory; see
[20, 13], cf. [6] for a textbook treatment. The most important condition
in this context is the existence of a unique solution α > 0 to the equation
E[Aα] = 1 which yields the tail index α. Under these conditions for a generic
element X, there exists a positive constant c+ such that

P(X > x) ∼ c+ x
−α , x→∞ .
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The forward spectral process is then given by

(Θt)t>0 = (Πt)t>0 , where Πt = A1 · · ·At ,
while the backward spectral tail process (Θt)t6−1 has a rather complicated
structure.

Writing St = log Πt =
∑t

i=1 logAi, t > 1, we observe that (St) constitutes
a random walk with a negative drift. Indeed, by Jensen’s inequality we have
E[log(Aα)] < log(E[Aα]) = 0.

3.2. The extremal index. Following Remark 2.4, we will derive the ex-
tremal index θX of a stationary non-negative regularly varying sequence
(Xt) in terms of its spectral tail process. First, we observe that by virtue of
the continuous mapping theorem, as n→∞ for k > 1,

P
(
a−1
n Mk 6 1

∣∣X0 > an
)

→ P
(
Y max

16t6k
Θt 6 1

)
= P

(
max
16t6k

Θα
t 6 Y

−α)
= E

[(
1− max

16t6k
Θα
t

)
+

]
= E

[
max
06t6k

Θα
t − max

16t6k
Θα
t

]
.

Here we used the fact that Y −α is U(0, 1) uniformly distributed and Θ0 = 1
a.s. Using dominated convergence as k → ∞, we proved under the anti-
clustering condition (2.1) that

lim
n→∞

θn = lim
k→∞

lim
n→∞

P
(
a−1
n Mk 6 1

∣∣X0 > an
)

= lim
k→∞

E
[

max
06t6k

Θα
t − max

16t6k
Θα
t

]
= E

[(
1−max

t>1
Θα
t

)
+

]
.

From Theorem 2.3 we obtain the following result in [2].

Corollary 3.3. Consider a non-negative stationary regularly varying pro-
cess (Xt) with index α > 0. Then the following statements hold:

1. If the anti-clustering condition (2.1) holds for (un) = (x an) and some
x > 0 then the limit θ = limn→∞ θn exists, is positive and has the represen-
tations

θ = P
(
Y sup

t>1
Θt 6 1

)
= E

[(
1− sup

t>1
Θα
t

)
+

]
= E

[
sup
t>0

Θα
t − sup

t>1
Θα
t

]
.

(3.2)

2. If (2.1) and the mixing condition (2.2) hold for (un) = (x an) and all
x > 0 then the extremal index θX exists and coincides with θ.

The representations of θ given in (3.2) only depend on the forward spectral
process (Θt)t>0. In Proposition 3.10 below we provide representations of the
extremal index θ|X| depending on the whole spectral tail process (Θt)t∈Z.

Example 3.4. We consider the regularly varying AR(1) process from Exam-
ple 3.1. It can be shown to satisfy the anti-clustering and mixing conditions
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of Theorem 2.3. We conclude from Corollary 3.3 and the form of the spectral
tail process given in (3.1) that

θ|X| = E
[(

1−max
t>1

Θα
t

)
+

]
= 1−max

t>1
|ϕ|α t = 1− |ϕ|α .

This formula was already achieved in [10] in the wider context of linear
processes.

Example 3.5. We consider the regularly varying solution of an affine sto-
chastic recurrence equation under the conditions and with the notation of
Example 3.2. It can be shown to satisfy the anti-clustering and mixing con-
ditions of Theorem 2.3; see [6]. We conclude from this result that (Xt) has
extremal index

θX = E
[(

1−max
t>1

Πt

)
+

]
= E

[(
1− exp

(
max
t>1

St
))

+

]
,

where St =
∑t

i=1 logAi, t > 1, is a random walk with a negative drift. This
value of θX was derived in [16]. In that paper a Monte Carlo simulation
procedure for the evaluation of θX was proposed. Direct calculation of θX
is difficult; see Example 3.12 for an exception.

3.3. The extremal index and point process convergence toward a
cluster Poisson process.

3.3.1. A useful auxiliary result.

Lemma 3.6. Consider a non-negative stationary regularly varying sequence
(Xt) with index α > 0 and assume that (2.1) holds for (un) = (x an) and all
x > 0. Then

‖Θ‖αα :=
∑
j∈Z

Θα
j <∞ a.s.

In particular, Θt → 0 a.s. as |t| → ∞, and the time T ∗ of the largest record
of (Θt) is finite, i.e., |T ∗| is the smallest integer such that

ΘT ∗ = max
t∈Z

Θt .

Proof. Write (Yt) = Y (Θt) where the Pareto(α) variable Y and the spectral
tail process (Θt) are independent. We start by showing

Yt
a.s.→ 0 , t→∞ .(3.3)

Since (Xt) is regularly varying we have for all x > 0 and integers k > 1,

lim
h→∞

lim
n→∞

P
(
Mk,k+h > xan | X0 > an

)
= lim

h→∞
P
(

max
k6t6k+h

Yt > x
)

= P
(

max
t>k

Yt > x
)
.
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On the other hand, using the anti-clustering condition (2.1) for all x ∈ (0, 1],
we have for fixed k, h > 1,

lim
n→∞

P
(
Mk,k+h > xan | X0 > an

)
6 lim sup

n→∞
P
(
Mk,rn > xan | X0 > xan

)P(X > xan)

P(X > an)

= x−α lim sup
n→∞

P
(
Mk,rn > xan | X0 > xan

)
= x−αεk ,

and the right-hand side term εk vanishes for large k. Hence, letting h→∞,
we obtain for all x > 0,

P
(

max
t>k

Yt > x
)
6 x−αεk ,

and therefore

lim
k→∞

P
(

max
t>k

Yt > x
)
6 lim

k→∞
x−αεk = 0 ,

implying maxt>k Yt
P→ 0 as k → ∞. Since (Yt) = Y (Θt) a.s. and Y > 0 is

independent of (Θt) this is only possible if maxt>k Θt
P→ 0 as k → ∞ but

the latter relation is equivalent to Θt
a.s.→ 0 as t→∞, implying (3.3).

Next we show that

Y−t
a.s.→ 0 , t→∞ .

Since Yt
a.s.→ 0 as t→∞ and Y0 > 1 a.s. the following relation holds

P
(⋃
i>0

{
Yi > 1 > max

t>i
Yt
})

=
∑
i>0

P
(
Yi > 1 > max

t>i
Yt
)

= 1 .

Suppose that P(
∑

j60 11(Yj > ε) = ∞) > 0 for some ε > 0. Then there
exists some i > 0 such that

P
(∑
j60

11(Yj > ε) =∞, Yi > 1 > max
t>i

Yt

)
> 0 .

We recall the time-change formula from [2]:

P((Θ−h, . . . ,Θh) ∈ · | Θ−t 6= 0) = E
[ Θα

t

E
[
Θα
t

]11((Θt−h, . . . ,Θt+h)

Θt
∈ ·
)]
.

(3.4)

In particular, P(Θt 6= 0) = E[Θα
t ] = 1 if and only if for all h > 0,

P((Θ−h, . . . ,Θh) ∈ ·) = E
[ Θα

t

E
[
Θα
t

] 11
((Θt−h, . . . ,Θt+h)

Θt
∈ ·
)]
.
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Therefore

∞ = E
[∑
j60

11(Yj > ε) 11
(
Yi > 1 > max

t>i
Yt
)]

=
∑
j60

P
(
Yj > ε, Yi > 1 > max

t>i
Yt
)

=
∑
j60

∫ ∞
1

E
[
11
(
yΘj > ε , yΘi > 1 > y max

t>i
Θt

)]
d
(
− y−α

)
=

∑
j60

∫ ∞
1

E
[
Θα
−j 11

(
y > εΘ−j , y

Θi−j
Θ−j

> 1 > y max
t>i−j

Θt

Θ−j

)]
d
(
− y−α

)
6 ε−α

∑
j60

E
[ ∫ ∞

1
11
(
z > 1 , zΘi−j > ε

−1 > z max
t>i−j

Θt

)
d
(
− z−α

)]
= ε−α

∑
j60

P
(
Yi−j > ε

−1 > max
t>i−j

Yt
)

= ε−α
∑
k>i

P
(
Yk > ε

−1 > max
t>k

Yt
)

6 ε−α .

In the last step we used the fact that the events {Yk > ε−1 > maxt>k Yt},
k > i, are disjoint. Thus we got a contradiction. This proves that for all

ε > 0 there exist only finitely many j 6 0 such that Yj > ε, hence Yt
a.s.→ 0

and also Θt
a.s.→ 0 as t→ −∞, as desired.

In particular, the time T ∗ of the largest record of the sequence (Θt) is
finite a.s.

Now suppose that P(
∑

j∈Z Θα
j =∞) > 0. Then there exists an i ∈ Z such

that

P
(∑
j∈Z

Θα
j =∞ , T ∗ = i

)
> 0 ,

and an application of the time-change formula (3.4) yields

∞ = E
[∑
j∈Z

Θα
j 11(T ∗ = i)

]
=
∑
j∈Z

E
[
Θα
j 11(T ∗ = i)

]
=

∑
j∈Z

P(T ∗ = i− j) = 1 ,

leading to a contradiction. Thus
∑

j∈Z Θα
j <∞ a.s. This proves the lemma.

�

3.3.2. Point process convergence toward cluster Poisson processes. The fol-
lowing point process result was proved in [9] and re-proved in [2] by using
the terminology of the spectral tail process.

We adapt the mixing condition in [9] tailored for point process conver-
gence. It is expressed in terms of the Laplace functionals of point processes.
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Recall that a point process N with state space E = R0 = R\{0} has Laplace
functional

ΨN (g) = E
[
exp

(
−
∫
E
g dN

)]
for g ∈ C+

K ,

where the set C+
K consists of the continuous functions on E with compact

support. Since 0 is excluded from E this means that g ∈ C+
K vanishes in

some neighborhood of the origin. Moreover, we have the weak convergence

of point processes Nn
d→ N on E if and only if ΨNn → ΨN pointwise; see

[30, 31].

Mixing condition A(an) Consider integer sequences rn → ∞ and kn =
[n/rn]→∞ and the point processes with state space E = R0,

Nn =

n∑
i=1

εa−1
n Xi

and Ñrn =

rn∑
i=1

εa−1
n Xi

, n > 1 ,

where εx denotes Dirac measure at x. The stationary regularly varying
sequence (Xt) satisfies A(an) if there exist (rn) and (kn) such that

ΨNn(g)−
(
Ψ
Ñrn

(g)
)kn → 0 , n→∞ , g ∈ C+

K .(3.5)

Remark 3.7. This condition is satisfied for a strongly mixing sequence (Xt)
with mixing rate (αh) if one can find integer sequences (`n) and (rn) such
that `n/rn → 0, rn/n → 0 and knα`n → 0. This is a very mild condition

indeed. Relation (3.5) ensures that, if Nn
d→ N on the state space E, then

also
∑kn

i=1 Ñ
(i)
rn

d→ N where (Ñ
(i)
rn )i=1,...,kn are iid copies of Ñrn . This fact

ensures that the limit processes considered are infinitely divisible; cf. [19].

Theorem 3.8. Consider a stationary regularly varying sequence (Xt) with
index α > 0. We assume the following conditions:

(1) The mixing condition A(an) for integer sequences rn → ∞ such that
kn = [n/rn]→∞ as n→∞.
(2) The anti-clustering condition (2.2) for the same sequence (rn) .

Then we have the point process convergence on the state space R0

Nn =
n∑
i=1

εa−1
n Xi

d→ N =
∞∑
i=1

∞∑
j=−∞

ε
Γ
−1/α
i Qij

,(3.6)

where

•
∑∞

j=−∞ εQij , i = 1, 2, . . ., is an iid sequence of point processes with state

space R. A generic element Q = (Qj) of the sequence Q(i) = (Qij)j∈Z,
i = 1, 2, . . ., has the distribution of the spectral cluster process

Q =
( Θt

‖Θ‖α

)
t∈Z

.

• (Γi) are the points of a unit rate homogeneous Poisson process on (0,∞).

• (Γi) and (Q(i))i=1,2,... are independent.
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Remark 3.9. In view of Lemma 3.6 we know that ‖Θ‖α < ∞ a.s. Hence
the spectral cluster process Q is well defined.

Since the Poisson points (Γ
−1/α
i ) and the sequence of iid point processes(∑

j∈Z εQij
)

are independent it is not difficult to calculate the Laplace func-
tional of the limit process N :

ΨN (g) = exp
(
−
∫ ∞

0
E
[
1− e−

∑
j∈Z g(y Qj)

]
d(−y−α)

)
, g ∈ C+

K .

Now we apply the change of variables z = y |QT ∗ | in ΨN (g) where

|QT ∗ | =
|ΘT ∗ |
‖Θ‖α

=
maxt∈Z |Θt|(∑
j∈Z |Θj |α

)1/α
.

Then we obtain for g ∈ C+
K ,

ΨN (g) = exp
(
− E[|QT ∗ |α]

×
∫ ∞

0
E
[ |QT ∗ |α
E[|QT ∗ |α]

(
1− e−

∑
j∈Z g(z Qj/|QT∗ |)

)]
d(−z−α)

)
.

According to Proposition 3.10 below, θ|X| = E[|QT ∗ |α]. Now, changing the

measure with the density |QT ∗ |α/E[|QT ∗ |α] and writing Q̃ = (Q̃j)j∈Z for the
sequence Q/|QT ∗ | under the new measure, we arrive at

ΨN (g) = exp
(
−
∫ ∞

0
E
[(

1− e−
∑
j∈Z g(z Q̃j |)

)]
d
(
− (z/θ

1/α
|X|
)−α))

.

However, this alternative expression of the Laplace functional ΨN corre-
sponds to another representation of the point process N :

N =

∞∑
i=1

∞∑
j=−∞

ε
(Γi/θ|X|)

−1/αQ̃ij
,(3.7)

where the Poisson points (Γ
−1/α
i ) are independent of the sequence

(∑
j∈Z εQ̃ij

)
of iid copies of

∑
j∈Z εQ̃j .

We observe that |Q̃j | 6 1 a.s. and |Q̃T ∗ | = 1 a.s. The extremal index
θ|X| plays an important role in representation (3.7). Each Poisson point

(Γi/θ|X|)
−1/α stands for the radius of a circle around the origin, and the

points (Q̃ij)j∈Z are inside or on this circle. In this sense, each Poisson point

(Γi/θ|X|)
−1/α creates an extremal cluster. Therefore we refer to the process

N as a cluster Poisson process.

3.3.3. Equivalent expressions for the extremal index. Based on the results
in the previous subsection we can derive equivalent expressions of θ|X| in
terms of QT ∗ and T ∗.
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Proposition 3.10. Assume the conditions of Theorem 3.8. Then the ex-
tremal index θ|X| of (|Xt|) coincides with the following quantities:

E[|QT ∗ |α] = P(Y |QT ∗ | > 1) = P(T ∗ = 0) .(3.8)

Here Y is a Pareto(α) random variable independent of QT ∗ and T ∗ is the
time of the largest record of (|Θt|).

Remark 3.11. We observe that

E[|QT ∗ |α] = E
[maxt∈Z |Θt|α∑

j∈Z |Θj |α
]

= θ|X| .

Since θ|X| = P(T ∗ = 0) the extremal index θ|X| has the intuitive interpreta-
tion as the probability that (|Θt|) assumes its largest value at time zero.

Example 3.12. We consider the regularly varying solution of an affine
stochastic recurrence equation under the conditions and with the notation
of Example 3.2. An exception where the extremal index has an explicit
solution is the case logAt = Nt − 0.5 for an iid standard normal sequence
(Nt). Then E[At] = 1 and the theory mentioned in Example 3.2 yields
regular variation of (Xt) with index 1. Using the expression P(T ∗ = 0) and
applying some random walk theory (such as the results in [8]), one obtains
an exact expression for θX in terms of the Riemann zeta function ζ; see
Example 3.13. A first order approximation to this formula is given by

θX ≈
1

2
exp

(ζ(0.5)√
2π

)
≈ 1

2
exp(−0.5826) ≈ 0.2792.(3.9)

Example 3.13. Let B(i) = (Bt)t∈R be iid standard Brownian motions inde-
pendent of Γ1 < Γ2 < · · · which are the points of a unit-rate Poisson process
on (0,∞). We consider the stationary max-stable Brown-Resnick [4] process

Xt = sup
i≥1

Γ−1
i e

√
2B

(i)
t −|t| , t ∈ R .

It has unit Fréchet marginals P(Xt 6 x) = Φ1(x) = e−x
−1

, x > 0. Any

discretization X(δ) = (Xδ t)t∈Z for δ > 0 is regularly varying with index 1

and spectral tail process Θ
(δ)
t = e

√
2Bδ t−δ|t|, t ∈ Z. Direct calculation of

−x logP(n−1 max16t6nXδ t 6 x), x > 0, yields the extremal index of X(δ)

as the limit

(3.10) θ
(δ)
X = lim

n→∞
n−1E

[
sup

06t6n
e
√

2Bδ t−δt
]
.

We use the expression θ
(δ)
X = P(T ∗(δ) = 0) where T ∗(δ) is the first record time

of (Θ
(δ)
t )t∈Z; see (3.8). We consider the first ladder height epoch τ+(δ) =

inf{t > 1 :
√

2Bδ t + δt < 0}. Using the symmetry of the Gaussian distri-

bution, (Θ
(δ)
t )t>1

d
= (1/Θ

(δ)
−t )t>1, we obtain θ

(δ)
X = P(T ∗(δ) = 0) = P(τ+(δ) =

∞)2. Combining this with the classical identity P(τ+(δ) =∞) = 1/E[τ−(δ)]



14 G. BURITICA, N. MEYER, T. MIKOSCH, AND O. WINTENBERGER

for τ−(δ) = inf{t > 1 :
√

2Bδ t− δt 6 0}, from random walk theory (see [1])
we get

θ
(δ)
X =

( 1

E[τ−(δ)]

)2
=
( E[Bδ − δ]
E[
√

2Bτ−(δ) − τ−(δ)]

)2
= δ2(E[

√
2Bτ+(δ) + τ+(δ)])−2 ,

where we used Wald’s lemma and the symmetry of the Gaussian distribution.
To be able to apply Theorem 1.1 in [8] we standardize the increments of the

random walk
√

2Bδ t dividing them by
√

2δ, turning the drift into
√
δ/2,

and we get

E[
√

2Bτ+(δ) + τ+(δ)] =
√
δ exp

(
−
√
δ

2
√
π

∞∑
n=0

ζ(1/2− n)

n!(2n+ 1)

(
− δ

4

)n)
.

This implies that

θ
(δ)
X = δ exp

(√ δ

π

∞∑
n=0

ζ(1/2− n)

n!(2n+ 1)

(
− δ

4

)n)
.

We recover the Pickands constant of the Brown-Resnick process (see [29])

as the limit limδ↓0 δ
−1 θ

(δ)
X :

H(0)
X = lim

T→∞

1

T
E
[

sup
06t6T

e
√

2Bt−t
]

= 1.

Proof of Proposition 3.10. Consider the supremum of all points of the limit
process N in Theorem 3.8:

M = sup
i>1

Γ
−1/α
i sup

j∈Z
|Qij | .

The sequences (Γi) and (Q(i)) are independent and M = supi>1 Γ
−1/α
i Vi for

the iid sequence Vi := supj∈Z |Qij |, i = 1, 2, . . . , whose generic element V has
the property E[V α] < ∞. Indeed, V 6 1 a.s. by construction. The points

(Γ
−1/α
i , Vi) constitute a marked Poisson process NΓ,V with state space E =

(0,∞)× [0,∞) and mean measure given by µ((x,∞)× [0, y]) = x−α FV (y),
x > 0, y > 0, where FV is the distribution function of V . For x > 0 we
consider Bx = {(y, v) ∈ E : y v > x}. We observe that

µ(Bx) =

∫ ∞
v=0

∫ ∞
y=x/v

α y−α−1 FV (dv) =

∫ ∞
0

(x/v)−α FV (dv) = x−α E[V α] .

Therefore we have for x > 0,

P(M 6 x) = P
(
Γ
−1/α
i Vi 6 x , i > 1

)
= P (NΓ,V (Bx) = 0)

= e−µ(Bx) = e−x
−α E[V α] .

Thus M is a scaled version of the standard Fréchet distribution, Φα(x) =

e−x
−α

, x > 0:

P(M 6 x) = ΦE[V α]
α (x) , x > 0 .
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On the other hand, Theorem 3.8 and an application of the continuous map-
ping theorem yield as n→∞,

P
(
a−1
n Mn 6 x

)
= P

(
Nn(x,∞) = 0

)
→ P

(
N(x,∞) = 0

)
= P(M 6 x) , x > 0 .

In view of the definition of the extremal index of the sequence (|Xt|) we can
identify

E[V α] = E
[

sup
j∈Z
|Qj |α

]
= E[|QT ∗ |α].

as the value θ|X|. This proves the first part of (3.8). The identity

E[|QT ∗ |α] = P(Y |QT ∗ | > 1) = P(|QT ∗ |α > Y −α).

is immediate since Q and Y are independent, and Y −α is U(0, 1) distributed.
Applying the time-change formula (3.4), shifting k to zero, we obtain

θ|X| = E[|QT ∗ |α]

=
∑
k∈Z

E
[ |Θk|α∑

j∈Z |Θj |α
11(T ∗ = k)

]
=

∑
k∈Z

E
[ |Θ−k|α∑

j∈Z |Θj−k|α
11(T ∗ = 0)

]
= P(T ∗ = 0) .

This proves the last identity in (3.8). �

4. Estimation of the extremal index - a short review and a
new estimator based on the spectral cluster process

First approaches to the estimation of the extremal index are due to [17,
38]. Estimators based on exceedences of a threshold were proposed in [12,
35, 36, 33]. A modern approach to the maxima method was started in [26];
improvements and asymptotic limit theory can be found in [3, 5].

We will consider some standard estimators of θX . For the sake of argu-
ment we assume that (Xt) is a non-negative stationary process with mar-
ginal distribution F , kn = n/rn is an integer sequence such that rn → ∞,
kn →∞, and (un) is a threshold sequence satisfying un ↑ xF .

4.1. Blocks estimator. Recall that θX has interpretation as the reciprocal
of the expected size of extremal clusters. This idea is the basis for inference
procedures from the early 1990s (see [37, 11]). Clusters are identified as
blocks of length r = rn with at least one exceedance of a high threshold

u = un. A blocks estimator θ̂bl is given by the ratio of the number Kn(u)
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of such clusters and the total number of exceedences Nn(u):

θ̂bl
u (r) =

Kn(u)

Nn(u)
:=

∑kn
t=1 11(M(t−1)r+1,t r > u)∑n

t=1 11(Xt > u)
.(4.11)

This method requires the choice of block length r and threshold level u
satisfying rnF (un) → 0; if rn → ∞ does not hold at the prescribed rate

θ̂bl is biased. Estimators using clusters of extreme exceedences were also
considered in [17].

A slight modification of the blocks estimator is the disjoint blocks estima-
tor of [38]:

θ̂dbl =
log(1−Kn(u)/kn)

r log(1−Nn(u)/n)
.

Assuming some weak dependence condition on (Xt), the heuristic idea be-
hind the estimator is the approximations(

P(Mr 6 un)
)kn ≈ P(Mn 6 un) ≈ F θX n(un),

for a suitable sequence (un). Then, taking logarithms and replacing F (un)
and P(Mn > un) by their empirical estimators Nn(u)/n and Kn(u)/kn,
respectively, we obtain

θX ≈ logP(Mn 6 un)

n logF (un)
=

log(1− P(Mn > un))

n log(1− F (un))

≈ log(1−Kn(u)/kn)

rn log(1−Nn(u)/n)
= θ̂dbl .

Assuming that both Kn(u)/kn and Nn(u)/n converge to zero, a Taylor ex-

pansion of log(1 + x) = x(1 + o(1)) as x → 0 shows that θ̂bl ≈ θ̂dbl. [38]

showed that θ̂dbl has a smaller asymptotic variance than θ̂bl. [33] proposed

a sliding blocks version of θ̂dbl with an even smaller asymptotic variance.

θ̂slbl(u, r) =
− log

(
1

n−r+1

∑n−r+1
t=1 11(Mt,t+r 6 u)

)
Nn(u)/kn

.(4.12)

4.2. Runs and intervals estimator. [38] proposed the alternative runs
estimator. It is based on the limit relation (2.4): the probability P(M`n 6
un | X0 > un) is replaced by a sample version for some sequence l = ln →
∞:

θ̂runs
u (l) =

1

Nn(u)

n−l∑
i=1

11(Xi > un ,Mi+1,i+l 6 un) .(4.13)

Clusters are considered distinct if they are separated by at least l obser-
vations not exceeding u. In [12] a complete study of the runs estimator
and the inter-exceedence times is given. The thresholds (un) need to satisfy
rnF (un)→ 1, and ln 6 rn.
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Consider the exceedance times:

S0(u) = 0 , Si(u) = min{t > Si−1(u) : Xt > un} , i > 1 ,

with inter-exceedance times Ti(u) = Si(u) − Si−1(u), i > 1. The sequence
(Ti(u))i>2 constitutes a stationary sequence. If rn F (un) → 1, [12] noticed
that (nT2(u)) converges in distribution to a limiting mixture given by (1−
θX)110(x) + θX (1 − e−θX x), x > 0. Calculation yields to the coefficient of
variation ν of T2(u) whose square is given by

ν2 = var(T2(u))/(E[T2(u)])2 = E[T 2
2 (u)]/(E[T2(u)])2 − 1 = 2/θX − 1 ,

leading to overdispersion ν > 0 if and only if θX < 1. Replacing the mo-
ments on the left-hand side by sample versions and adjusting the empirical
moments for bias, [12] arrived at the intervals estimator

θ̂int(u) = 1 ∧ 2
(∑Nn(u)

i=2 (Ti(u)−1)
)2

(Nn(u)−1)
∑Nn(u)
i=2 (Ti(u)−1)(Ti(u)−2)

.(4.14)

See also [35, 36].

4.3. Northrop’s estimator. Assume for the moment that (Xi) is iid and
F is continuous. Then F (X) is uniform on (0, 1). Hence for r = rn and
x > 0,

P
(
− rn logF (Mr) > x

)
= P(F (Mr) 6 e−x/r)

= P( max
i=1,...,rn

F (Xi) 6 e−x/r)

=
(
P(F (X) 6 e−x/r)

)r
= e−x .

For a weakly dependent sequence (Xi) with marginal distribution F , assume
the existence of the extremal index for (F (Xt)) which, by monotonicity of
F , coincides with θX :

P
(
− rn logF (Mr) > x

)
= P( max

i=1,...,rn
F (Xi) < e−x/r)→ e−θX x , x > 0 .

Thus the random variables (−rn logF (Mr)) are asymptotically Exp(θX)
distributed. For iid Exp(θX) random variables the maximum likelihood es-
timator of θX is given by the reciprocal of the sample mean. These ideas
lead to Northrop’s estimators [26]. Mimicking the maximum likelihood es-
timator of iid Exp(θX) data for a stationary sequence (Xt), one considers
the quantities −rn logF (Mt,t+r), t = 1, . . . , n − rn, and constructs sliding
or disjoint blocks estimators of θX :

θ̂Nsl(r) =
( 1

n− r + 1

n−r+1∑
t=1

(−r logFn(Mt,t+r))
)−1

,(4.15)

θ̂Ndbl(r) =
( 1

[n/r]

[n/r]∑
i=1

(−r logFn(Mr (i−1)+1,r i))
)−1

.(4.16)
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Here Fn is the empirical distribution function of the data. This particular
choice of estimator of F depends on the whole sample, hence introduces
additional dependence. This fact requires an optimal choice of block length
rn for implementation.

4.4. An estimator based on the spectral cluster process. In this sub-
section we consider a stationary non-negative regularly varying process (Xt)
with index α > 0, spectral tail process (Θt) and normalizing sequence (an)
satisfying nP(X > an) → 1. Proposition 3.10 yields the alternative repre-
sentation θX = E[QαT ∗ ] where (Qt) is the spectral cluster process of (Xt).
We will construct an estimator based on this identity.

We consider sums and maxima over disjoint blocks of size r = rn = o(n):

S
(α)
i,r :=

i r∑
t=(i−1) r+1

Xα
t , Mi,r = max

t=(i−1)r+1,...,i r
Xt , i = 1, . . . , kn .

The following limit relation is proved in [7]:

lim
n→∞

E
[
Mα

1,r/S
(α)
1,r |S

(α)
r > aαn

]
= E[QαT ∗ ],(4.17)

which is based on large deviation results for regularly varying stationary
sequences; see for example [7]. Now we build an estimator of θX from an
empirical version of the left-hand expectation. Define the corresponding
estimator by

θ̂scp
v (r) :=

∑kn
i=1

Mα
i,r

S
(α)
i,r

11
(
S

(α)
i,r > v

)
∑kn

i=1 11
(
S

(α)
i,r > v

) .(4.18)

Here we choose v = S
(α)
(s),r, the sth largest among (S

(α)
i,r )i=1,...,kn for an integer

sequence s = sn such that sn = o(kn).

5. A Monte-Carlo study of the estimators

We run a short study based on 1 000 simulated processes (Xt)t=1,...,5000

for comparing the performances of some of the aforementioned estimators.
First, (Xt) is an AR(1) process with parameter ϕ = 0.2 and iid student(1)
noise, resulting in a regularly varying process with index 1 and θ|X| = 0.8.
Second, we consider the regularly varying solution of an affine stochastic
recurrence equation with iid logAt ∼ N(−0.5, 1), Bt ≡ 1, and θX ≈ 0.2792;
see (3.9).

Figures 5.1 and 5.2 show boxplots of the simulation study.

• θ̂bl and θ̂runs are functions of the block and run lengths, respectively.
u is the largest [n0.6]th upper order statistic of the sample.

• θ̂slbl is a function of r. u is the rth upper order statistic of the
sample.

• θ̂int is a function of x. u is the [n/x]th upper order statistic.
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• θ̂Nsl, θ̂scp are functions of r.

• For θ̂scp we choose s = [n0.6/r]. The tail index α is estimated by the
Hill estimator from [14] based on [n0.8] upper order statistics of the
sample.

According to the folklore in the literature, Northrop’s estimator θ̂Nsl out-
performs the classical estimators (runs, blocks); it has smallest variance but

it may be difficult to control its bias. Our experience with θ̂scp shows that
it performs better than the other estimators as regards the bias, especially

when θX is small. The intervals estimator θ̂int is preferred by practitioners
because the choice of the hyperparameter x is robust with respect to dif-
ferent values of θX . This cannot be said about the other estimators with
the exception of θ̂scp. In our experiments with sample size n = 5000, the

choices x = 32 and r = 64 work well for θ̂int and θ̂scp, respectively. We did

not fine-tune the hyperparameter s in θ̂scp in our experiments.
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Figure 5.1. Boxplots based on 1 000 simulations for the estimation of θ|X| = 0.8

in the AR(1) model with ϕ = 0.2 and iid student(1) noise.
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Figure 5.2. Boxplots based on 1 000 simulations for the estimation of θX ≈ 0.2792

for the solution to a stochastic recurrence equation.
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France

Email address: gloria.buritica@sorbonne-universite.fr

Department of Mathematics, University of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen, Denmark

Email address: meyer@math.ku.dk

Department of Mathematics, University of Copenhagen, Universitetsparken
5, DK-2100 Copenhagen, Denmark

Email address: mikosch@math.ku.dk

LPSM, Sorbonne Universités, UPMC Université Paris 06, F-75005, Paris,
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