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Abstract

This paper focuses on the location of the non-asymptotic zeros of Whittaker and Kummer confluent hypergeo-
metric functions. Based on a technique by E. Hille for the analysis of solutions of some second-order ordinary
differential equations, we characterize the sign of the real part of zeros of Whittaker and Kummer functions and
provide estimates on the regions of the complex plane where those zeros can be located. Our main result is a
slight correction of a previous statement by G. E. Tsvetkov.
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1. Introduction

Confluent hypergeometric functions such as Kummer, Whittaker, Tricomi, or Coulomb (trigonometric) func-
tions are solutions of a class of non-autonomous second-order differential equations which are said to be de-
generate since two of their regular singularities merge into an irregular singularity. In particular, the Kummer
differential equation admits Kummer and Tricomi functions as solutions. However, Whittaker and Coulomb are
solutions of different degenerate differential equations but can be expressed, for instance, in terms of Kummer
degenerate hypergeometric functions. Notice also that such degenerate hypergeometric functions are closely
connected to further special functions such as Bessel functions, and that, in particular, Laguerre and Hermite
polynomials can be explicitly written in terms of Kummer hypergeometric functions. For further discussions on
such topics, the reader is refered to1,2,5,8.

In this note, we are interested in the location of non-asymptotic zeros of Whittaker and Kummer functions.
These families of special functions have been extensively studied in the literature, with a wide range of results
providing asymptotic properties of the distribution of their zeros (see, e.g.,1, Chapter VI of2, and Chapter 13
of5). If the application of hypergeometric functions to the qualitative analysis of some classes of PDEs is
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well-known (see, for instance, Chapter I, Section 4 of1 for the case of wave equations), it has been shown that
the zeros of such degenerate hypergeometric functions are closely related to the spectrum location of linear
functional differential equations of retarded type, see for instance4.

The contribution of this note is twofold: first, we provide a simple counterexample of a result proposed
by Tsvetkov in10 on the location of non-asymptotic zeros of Whittaker functions. Second, we are slightly
correcting Tsvetkov’s result by using an appropriate integral transform (Green–Hille) introduced by Hille in his
paper3, published almost one hundred years ago. The paper is completed by an illustrative example showing
the effectiveness of the derived results.

The remaining of the paper is organized as follows: Some prerequisites, preliminaries as well as Tsvetkov’s
original result are briefly presented in Section 2. The main result is stated in Section 3. Some concluding
remarks in Section 4 end the paper.

2. Prerequisites and preliminaries

This section provides a brief presentation of the definitions and results that shall be of use in the sequel. We
start by recalling the definition of Kummer confluent hypergeometric functions.

Definition 2.1. Let a, b ∈ C and assume that b is not a nonpositive integer. Kummer confluent hypergeometric
function Φ(a, b, ·) : C → C is the entire function defined for z ∈ C by the series

Φ(a, b, z) =
∞
∑

k=0

(a)k
(b)k

zk

k!
, (1)

where, for α ∈ C and k ∈ N, (α)k is the Pochhammer symbol for the ascending factorial, defined inductively as
(α)0 = 1 and (α)k+1 = (α + k)(α)k for k ∈ N.

Remark 2.2. Note that the series in (1) converges for every z ∈ C. As presented in1,2,5, the function Φ(a, b, ·)
satisfies Kummer differential equation

z
∂2Φ

∂z2
(a, b, z) + (b − z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0. (2)

which has a regular singular point at z = 0 and an irregular singular point at z = ∞. It is well known that
(2) admits two linearly independent solutions, which are both usually called Kummer confluent hypergeometric
functions. In the present paper, we are concerned only with the solution given by (1).

Notice that Kummer functions admit the integral representation

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt

for every a, b, z ∈ C such that ℜ(b) > ℜ(a) > 0 (see, e.g.,1,2,5), where Γ denotes the Gamma function. This
integral representation has been exploited to characterize the spectrum of some functional differential equations
in4. Kummer confluent hypergeometric functions have close links with Whittaker functions, defined as follows
(see, e.g.,5).

Definition 2.3. Let k, l ∈ C and assume that 2l is not a negative integer. The Whittaker function Mk,l is the
function defined for z ∈ C by

Mk,l(z) = e−
z
2 z

1
2+lΦ(12 + l − k, 1 + 2l, z). (3)

Remark 2.4. If 1
2 + l is not an integer, the function Mk,l is a multi-valued complex function with branch

point at z = 0. Whenever 2l is not a negative integer, the nontrival roots of Mk,l coincide with those of
Φ(12 + l − k, 1 + 2l, ·) and Mk,l satisfies Whittaker differential equation

ϕ′′(z) =

(

1

4
−

k

z
+

l2 − 1
4

z2

)

ϕ(z). (4)
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Similarly to Kummer differential equation (2), other solutions of Whittaker differential equation (4) are also
known as Whittaker functions in other works, but they will not be used in this paper. Notice also that, since
Mk,l is a nontrivial solution of the second-order linear differential equation (4), any nontrivial root of Mk,l is
necessarily simple.

The roots of Whittaker functions satisfy following immediate symmetry property.

Proposition 2.5. Let k, l ∈ C and assume that 2l is not a negative integer. If z ∈ C \ {0} is a nontrivial root
of Mk,l, then −z is a root of M−k,l.

Proof. Let z be as in the statement. By (3), z is a root of Φ(12 + l−k, 1+2l, ·). Notice also (see, e.g.,5 (13.2.39)),
that, for every a, b, z ∈ C such that b is not a nonpositive integer, we have Φ(a, b, z) = ezΦ(b − a, b,−z). Then
−z is a root of Φ(12 + l+ k, 1 + 2l, ·), which implies, using once again (3), that −z is a root of M−k,l.

In the particular case of real indices k and l, one finds early results on the distribution of complex roots of
Whittaker functions Mk,l in

9,10. The next proposition provides the statement of Theorem 7 of10.

Proposition 2.6. Let k, l ∈ R be such that 2 l + 1 > 0.

(a) If k > 0, then all nontrivial roots z of Mk,l satisfy ℜ(z) > 2 k.

(b) If k < 0, then all nontrivial roots z of Mk,l satisfy ℜ(z) < 2 k.

(c) If k = 0, then all nontrivial roots z of Mk,l are purely imaginary.

Unfortunately, no proofs are provided in the short notes9,10. In8, F. G. Tricomi states that “... the important
but (as far as I know) so far unchecked results of Mr. Tsvetkov about the zeros of the Whittaker function
can be proved, and they can also be represented graphically.” As a matter of fact, Tricomi presented in8

an insightful graphical method which makes comprehensive the count and location of complex roots of both
confluent hypergeometric solutions of Kummer equation, retrieving some results from9,10.

3. Main results

It turns out that the result of interest in our case, Proposition 2.6, does not hold in full generality, since
counterexamples can be found for some particular values of (k, l), as shown below.

Counterexample 3.1. Let l ∈ R be such that 2l+ 1 > 0 and take k = l+ 3
2 . If z is a nontrivial root of Mk,l,

then, by (3), z is a nontrivial root of Φ(−1, 1 + 2l, ·). From (1), we have Φ(−1, 1 + 2l, z) = 1 − z
1+2l , and its

unique root is z = 1+2l. In particular, ℜ(z) = 1+ 2l < 2k = 3+2l, and thus Proposition 2.6(a) is not verified.

Note that, as a consequence of Proposition 2.5, Counterexample 3.1 also provides a counterexample to
Proposition 2.6(b). We also point out that a counterexample to another result of10, its Theorem 11, was given
in7.

Let us consider the root z = 1 + 2l of Mk,l for k = l + 3
2 from Example 3.1. Since this root is real and

simple (as recalled in Remark 2.4), for every l > − 1
2 , there exists an interval Il containing 1 + 2l and a curve

k 7→ zl(k) ∈ R defined on Il such that, for every k ∈ Il, zl(k) is a real root of Mk,l with zl(l +
3
2 ) = 1 + 2l.

These curves were computed numerically1 for l ∈
{

− 1
4 , 0,

1
4 ,

1
2 ,

3
4 , 1

}

and are represented in the (k, z) plane in
Figure 1. The black dots (k, z) correspond to k = l + 3

2 and the root z = 1 + 2l from Example 3.1.
An inspection of Figure 1 leads to the conjecture that the maximal interval Il on which zl is defined is

Il = (l+ 1
2 ,+∞) and that zl(k) → 0 as k → +∞ and zl(k) → +∞ as k → l+ 1

2 . In particular, if this conjecture
is true, then one cannot expect to correct Proposition 2.6(a) by replacing the term 2k by any function of k
which remains lower bounded as k → +∞.

In his note9, Tsvetkov presents further developments of the results of10. Among the scarce indications on
the way to obtain such powerful results, the reader is referred to techniques by Hille3. Using those techniques,
it is possible to obtain the following corrected version of Proposition 2.6.

1Numerical computations were done in Python using the function root scalar from the module scipy.optimize from11.
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Figure 1: Real root z(k) of Mk,l satisfying z(l + 3
2
) = 1 + 2l for six different values of l.

Proposition 3.2. Let k, l ∈ R be such that 2 l − 1 ≥ 0.

(a) If k = 0, then all nontrivial roots z of Mk,l are purely imaginary.

(b) If k > 0, then all nontrivial roots z of Mk,l satisfy ℜ(z) > 0.

(c) If k < 0, then all nontrivial roots z of Mk,l satisfy ℜ(z) < 0.

(d) If k 6= 0, then all nontrivial roots z of Mk,l satisfy 4k2ℑ(z)2 −
(

4(l2 − k2)− 1
)

ℜ(z)2 > 0.

Remark 3.3. If l, k ∈ R are such that 4(l2 − k2) < 1, the inequality in item (d) of Proposition 3.2 is satisfied
for every z ∈ C \ {0}. That item only provides nontrivial information on roots z of Mk,l when 4(l2 − k2) ≥ 1.

Thanks to the connection between Whittaker and Kummer degenerate hypergeometric functions expressed
in (3), an immediate consequence of the above result on the location of zeros of Kummer functions is given in
the following corollary.

Corollary 3.4. Let a, b ∈ R be such that b ≥ 2.

(a) If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are purely imaginary.

(b) If b > 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy ℜ(z) > 0.

(c) If b < 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy ℜ(z) < 0.

(d) If b 6= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy (b − 2a)2ℑ(z)2 − (4a(b− a)− 2b)ℜ(z)2 > 0.

Before turning to the proof of Proposition 3.2, let us comment on Hille’s approach. In3, Hille studies the
distribution of zeros of functions of a complex variable satisfying linear second-order homogeneous differential
equations with variable coefficients, as is the case for the degenerate Whittaker function Mk,l, which satisfies
(4). Thanks to an integral transformation, ensuing from the differential equation, defined there and called
Green–Hille transformation, and some further conditions on the behavior of the function, Hille shows how to
discard regions in the complex plane from including complex roots.
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Consider the general homogeneous second-order differential equation

d

dz

[

K(z)
dϕ

dz
(z)

]

+G(z)ϕ(z) = 0 (5)

where z is the complex variable and the functions G and K are assumed analytic in some region Ω such that
K does not vanish in that region. Equation (5) can be written in Ω as a second-order system on the unknown
functions ϕ1(z) = ϕ(z) and ϕ2(z) = K(z) dϕ

dz
(z), and the Green–Hille transformation consists on multiplying

the equation on ϕ1 by ϕ2(z), that on ϕ2 by ϕ1(z), and integrating on z along a path in Ω, which yields

[ϕ1(z)ϕ2(z)]
z2
z1

−

∫ z2

z1

|ϕ2(z)|
2 dz

K(z)
+

∫ z2

z1

|ϕ1(z)|
2G(z) dz = 0, (6)

where z1, z2 ∈ Ω and both integrals are taken along the same arbitrary smooth path in Ω connecting z1 to z2.
With this preliminary exposition of Hille’s approach, we are in position to provide the proof of Proposition 3.2.

Proof of Proposition 3.2. The Green–Hille transform (6) corresponding to the Whittaker equation (4) is

[ϕ1(z)ϕ2(z)]
z2
z1

−

∫ z2

z1

|ϕ2(z)|
2dz +

∫ z2

z1

|ϕ1(z)|
2GMk,l

(z) dz = 0 (7)

with

GMk,l
(z) = −

(

1

4
−

k

z
+

l2 − 1
4

z2

)

(8)

and (ϕ1(z), ϕ2(z)) = (Mk,l(z), M
′
k,l(z)). As emphasized in3, one can exploit (7) by choosing an appropriate

integration path. Take z1 = 0 and let z2 = x + iω ∈ C \ {0} be a zero of Mk,l; note that, since 2l − 1 ≥ 0, we
have 1

2 + l > 0 and thus z1 = 0 is also a zero of Mk,l. We take as integration path in (7) the segment [z1, z2],
parametrized by the function t 7→ t z2, where t varies in the interval [0, 1], and we consider the real part of the
obtained Green–Hille transform, which reads

∫ 1

0

x |ϕ2(t z2)|
2 dt =

∫ 1

0

|ϕ1(t z2)|
2 ℜ(z2 GMk,l

(t z2)) dt, (9)

where

ℜ(z2 GMk,l
(t z2)) =

−x
(

ω2 + x2
)

t2 + 4 kt
(

ω2 + x2
)

− (2 l− 1) (2 l+ 1)x

4 (ω2 + x2) t2
. (10)

Let us consider first the case k = 0 and assume that ℜ(z2) = x > 0 (respectively x < 0), which implies that
the left-hand side of (9) is positive (respectively negative). But, by taking into account the sign of right-hand
side of equation (10), one arrives at a contradiction in both cases, which proves item (a).

Let us now consider the case k > 0 and assume that x < 0. The integral of the left-hand side of (9) is
necessarily negative, which is inconsistent with the sign of the right-hand side since in that case one easily
checks that ℜ(z2 GMk,l

(t z2)) > 0. This shows that, for k > 0 and l ≥ 1/2, the roots of Mk,l(z) are located
in right half-plane {z ∈ C | ℜ(z) ≥ 0}. If x = 0, then necessarily k = 0 since ℜ(z2GMk,l

(t z2))|z2=iω = k/t.
One concludes that, if k > 0 and l ≥ 1/2 then the roots of Mk,l(z) are located in the open right half-plane
{z ∈ C | ℜ(z) > 0}. Furthermore, for t ∈ (0, 1), the denominator of (10) is strictly positive for all (x, ω) 6= (0, 0)
and the numerator is a second order polynomial in t with a negative leading coefficient, so that the discriminant
of that polynomial has to be positive, that is, 4

((

4 k2 − 4 l2 + 1
)

x2 + 4 k2ω2
) (

ω2 + x2
)

> 0, which is equivalent
to

4k2ω2 −
(

4 (l2 − k2)− 1
)

x2 > 0.

This proves (b) as well as (d) for k > 0. Items (c) and (d) follow immediately from Proposition 2.5, concluding
the proof.
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When 4(l2 − k2) ≥ 1, Proposition 3.2(d) provides a nontrivial bound on the location of nonzero roots of
Mk,l in the complex plane. Figure 2(a) illustrates that bound for the function M 1

2
,2, in which case the bound

from Proposition 3.2(d) reads ℑ(z)2 > 14ℜ(z)2. The region of the complex plane where that bound is satisfied
is represented in light violet in the figure, whereas the roots of M 1

2
,2 are represented by blue circles. It is worth

mentioning that only roots in the rectangle {z ∈ C | |ℜ(z)| ≤ 10, |ℑ(z)| ≤ 80} are represented2.

We also represent, in Figure 2(b), the ratio
(

ℜ(z)
ℑ(z)

)2

for the first two roots (ordered according to their

distance to the origin and considering only once each complex conjugate pair) of Mk,l when l = 2 and k varies

in the interval
(

0,
√
15
2

)

, on which the bound from Proposition 3.2(d) is nontrivial. Proposition 3.2(d) states

in this case that
(

ℜ(z)
ℑ(z)

)2

< 4k2

4(l2−k2)−1 for any root z of Mk,l, and the region described by this inequality is

represented in light violet color in the figure.
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Figure 2: (a) Nontrivial roots of the Whittaker function M 1

2
,2 (blue circles) and region of the complex plane (in light violet) where

the bound from Proposition 3.2(d) is satisfied. (b) Ratio
(

ℜ(z)
ℑ(z)

)2
for the first two roots of Mk,2 as a function of k (solid blue and

dashed orange lines) and region (in light violet) described by the bound from Proposition 3.2(d).

4. Conclusion

In this paper, we have corrected an old but still important result on the distribution of the non-asymptotic
zeros of degenerate Kummer and Whittaker hypergeometric functions with real indices. The importance of this
kind of result has been highlighted in recent works such as4 concerned with the spectrum distribution of linear
functional differential equations.

2Such roots were computed numerically using Python’s cxroots module6.
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