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1. Data
We start by providing more details on the training

and test data used from the AMASS [3] and Kinovis [6]
datasets. AMASS regroups a large set of MoCap recordings
and fits a parametric body model to all data. When splitting
the AMASS dataset into training and test sets, we treat all
sequences emanating from the same MoCap dataset as one
entity. We leave the MoCap datasets ”MPI mosh”, ”SFU”,
and ”TotalCapture” for testing, and call this dataset AMASS
test set. The Kinovis dataset contains 4D motion sequences
captured using a multi-view platform and allows to evalu-
ate the generalization of the model to densely captured 4D
data. We consider all walking and running sequences, pre-
process the data by fitting SMPL before extracting cyclic
hip motions, and call this dataset Kinovis test set.

Training data We automatically extract 12085 sequences
of motion cycles with various duration and motion types
from the AMASS training set which amounts to approx-
imately 4.5 hours of motion data. To allow for efficient
learning, the sequences are spatially aligned by zeroing the
initial translation and we use the identity rotation as initial
rotation of the root joint to be invariant in the ground plane.

Test data We consider two test datasets. The first one is
called AMASS test set in the following and contains 1027 se-
quences extracted from the AMASS test set which amounts
to approximately 20 minutes of motion data. The second
one, called Kinovis test set in the following, contains 4D
motion sequences captured using a multi-view platform.
This dataset is an extension of [6] and allows to evaluate
the generalization of the model to densely captured 4D data.
We consider all walking and running sequences, and pre-
process the data by fitting SMPL to the 4D sequences be-
fore extracting cyclic hip motions. This results in 37 test
sequences, some of which contain less than 100 frames; we
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augment shorter sequences to 100 frames using linear inter-
polation between the 6D rotations.

2. Implementation Details
In our motion representation χ, we do not consider the

SMPL components related to hands or dynamic compo-
nents available in AMASS. We further discard the two foot
joints because they have constant rotation. This leaves a to-
tal of 20 joints. Our representation χ consists of 100 times-
tamped anchor meshes, each of which is represented by 124
parameters (120 for θ, 3 for γ and 1 for τ ). 100 anchor
meshes are chosen as they provide a good trade-off between
the error introduced by the sampling and the dimensionality
of χ. To normalize the data, we normalize the translation
γ in [−1, 1]3, and the timestamps τ in [0, 1] using minmax
scaling over the training set. We remove the identity rota-
tion [1, 0, 0, 0, 1, 0] from the 6D representation, which leads
to a significant gain in reconstruction accuracy compared to

the classic scaling
θ − µθ
σθ

.

We train for 5000 epochs with Linit, using a learning
rate of 1e−3 and a batch size of 256. Each epoch takes 6 s
for a total training time of 8 hours. We train with L for 200
epochs using a smaller batch size of 16 for memory reasons
and a learning rate of 1e−4. Here epoch time is 8 min for
a total training time of one day. The training is done on
a NVIDIA Quadro RTX8000 with 48G of GPU RAM. We
use ωkl = 0.01 for both steps and chose a latent dimension
for the motion space z of 64, and of 8 for β. Note that mesh
vertex positions are in meters during training. We initialize
all dynamic weights to 1.0 and GradNorm [1] updates the
weights dynamically.

3. Influence of latent space dimension and reg-
ularisation

We now investigate the influence of the latent space di-
mension and regularization on the quality of the model. To
evaluate the model’s quality, we measure its reconstruction
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Figure 1: Influence of latent space dimension and regu-
larisation on reconstruction error. Left: Increasing dimen-
sion of the latent space leads lower reconstruction errors on
AMASS test set. Right: Smaller regularization ωKL leads
lower reconstruction errors on both test sets. Boxes follow
[4].

error, which characterizes the model’s ability to reconstruct
examples unseen during training and is defined as

1

nk

(
M − M̂

)2
, (1)

with
[
M̂, T̂

]
= F(χ̂, β) = F(D(E(χ, ε), β), β), where n

is the number of anchor frames and k the number of vertices
per frame. As second qualitative error measure, we consider
the model’s ability to allow for the generation of plausible
new sequences by sampling in latent space. In practice, we
consider samples that are linearly interpolated between se-
quences of the test set.

Latent space dimension We first study the influence of
the dimensionality of the latent space on the model qual-
ity. Fig. 1a shows the impact of the dimension of z on the
reconstruction error on the AMASS test set. As expected,
the bigger the latent space dimension, the smaller the er-
ror. However, for dim(z) > 64, the error starts to stagnate.
Therefore we set the dimension of the latent space to 64.

Latent space regularisation The regularisation of the la-
tent space has a major impact on the model quality. It
is controlled by coefficient ωKL, which weighs the influ-
ence of latent space regularization at the cost of recon-
struction accuracy. Fig. 1b shows the reconstruction er-
ror on models trained with different values for ωKL. The
smaller ωKL, the smaller the reconstruction error. How-
ever, with ωKL = 0.001, the model no longer allows gener-
ating plausible new sequences and a problematic interpola-
tion is shown in supplementary material. Therefore, we set
ωKL = 0.01 in the following.

4. Motion completion from spatially sparse in-
put

A qualitative comparison for the completion task with
p = 100 and available landmark data is shown in Fig. 2.
Note that our method leads to more plausible wrist and hand
motion than [5] , better temporal coherence than [7], better
leg motion than [7] and [2] and better global translation than
[2].

Input Ours

[7] [5]

[2]

Figure 2: Qualitative comparison of spatial completion on
kick sequence from CHUM with p = 100. Input scans
shown in red, landmarks in green. Visualization shows 6
of 100 completed frames. Note that our motion completion
is plausible and coherent with input.
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