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Abstract

This work investigates learning a structured latent space to represent and generate temporally and spatially dense 4D
human body motion. Once trained, the proposed model generates a multi-frame sequence of dense 3D meshes based
on a single point in a low-dimensional latent space. Learning a generative model of human motion with an underlying
structured latent space is important for a wide set of applications in computer vision and graphics, including virtual
and augmented reality, 3D telepresence, and content generation for entertainment applications. We learn this latent
motion representation in a data-driven framework that builds upon two existing lines of works. The first analyzes
temporally dense skeletal data to capture the global displacement, poses and temporal evolution of the motion, while
the second analyzes static densely captured human scans in 3D to represent realistic 3D human body surfaces in a low-
dimensional space. Building upon the respective advantages of these two concepts allows our model to simultaneously
represent temporal motion information for sequences of varying duration and detailed 3D geometry at every time
instant of the motion. We experimentally demonstrate that the resulting latent space is structured in the sense that
similar motions form clusters in this space, and use our latent space to generate plausible interpolations between
different actions. We also illustrate the benefits of the approach for 4D human motion completion, showing promising

abilities of our model to learn spatio-temporal features of human motion.

1. Introduction

This work investigates learning a structured latent
space that allows to represent and generate temporally and
spatially dense 4D human body motion. Once trained,
the proposed model generates a multi-frame sequence
of dense 3D meshes based on a single point in a low-
dimensional latent space. Recently, several methods have
been proposed to learn such motion priors for 4D hu-
man body sequences of arbitrary motion and fixed du-
ration by capturing information about pose changes over
time [16, 38, 17]. In this work, we investigate an orthog-
onal scenario which models sequences of varying dura-
tion by considering motions that are sufficiently similar
to allow for temporal alignment. We demonstrate exper-
imentally that the resulting latent space is structured in
the sense that similar motions form clusters in this space.
Fig. 1 visualizes the learned model and latent space.

Preprint submitted to Elsevier

Learning a generative model of human motion with an
underlying structured latent space is of interest for a wide
set of applications in computer vision and graphics, where
a lightweight 4D representation translates to gains in in-
formation processing, e.g. virtual and augmented reality,
3D telepresence, and content generation for entertainment
applications. Thanks to capturing a spatio-temporal mo-
tion prior, the model also opens possibilities for a wide
set of completion tasks from temporally sparse, spatially
sparse or incomplete inputs, for shape sequence recon-
struction, motion transfer and retargeting. A structured
latent space has the potential to allow for intuitive control
when generating motion, e.g. by allowing for meaningful
interpolations between pairs of input motions.

Learning a generative model for spatially and tempo-
rally dense 3D human motion data of varying duration
presents two major challenges. First, the model needs to
capture the intertwined variations of different factors, in-
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Figure 1: We learn a latent motion space from multi-frame 4D sequences. Left: Training sequences are different motions performed by different
subjects (color-coded as shown in legend). Bottom right: Encoder-decoder architecture learns a latent motion space that encodes a motion sequence
X into a latent parameter vector z; the decoder conditions z on morphology 8. Top right: Structured latent space. Plot shows a 2D linear projection

of 51 motions in latent space, actions form clusters.

cluding morphology, global motion, body pose, and tem-
poral evolution of the motion, and do so for motions that
differ in duration. In particular, while it is known that
morphology impacts the way a motion is performed [35],
it remains challenging to take this correlation into account
during motion generation. Second, the amount of data
that needs to be processed for training is large, as typ-
ical acquisition systems for dense human body motions
produce 30 — 50 frames per second, with each frame con-
taining thousands of geometric primitives.

To address these challenges, we take inspiration from
two existing lines of work. The first studies temporally
dense skeletal data, with the goal of generating skeletal
human motion sequences that capture global motion and
the temporal evolution of the motion [34, 31], and good
results can be achieved using deep learning based meth-
ods e.g. [21]. The second line of work considers spa-
tially dense static data, with the goal of representing real-
istic 3D human body surfaces in a low-dimensional shape
space [3, 26], which allows for detailed static 3D recon-
structions of body pose and morphology that may even in-
clude soft tissue components learned from dynamic data

e.g. [37]. Both lines of work follow a data-driven strat-
egy and use aligned training data to allow for meaning-
ful comparison as is common in morphable body mod-
els [35, 2].

We combine the advantages of these two concepts in a
data-driven framework that learns a latent motion repre-
sentation, which allows to simultaneously represent tem-
poral motion information and detailed 3D geometry at ev-
ery time instant of the motion. The learning uses multi-
frame sequences as input and output. Inspired by works
on morphable models, we align the training sequences
both temporally and spatially, which leads to comparisons
at corresponding instances of the motion and anatomically
corresponding points. In particular, we consider motions
that vary significantly in duration while being geometri-
cally sufficiently similar to allow for temporal alignment,
performed by actors in minimal clothing to allow for ef-
fective spatial alignment. By building on works for mod-
eling temporally dense skeleton data, our method learns a
motion space that encodes a full motion sequence in a sin-
gle latent space vector. Learning from spatio-temporally
aligned data results in a structured motion space that can



be viewed as a morphable 4D human motion model, and
that captures the intertwined variations of factors con-
tributing to the 4D motion. To address the challenge of
the increased complexity caused by spatially dense data,
we opt for a low-dimensional shape space parameteriza-
tion of static human bodies.

In our experiments, we consider motions performed by
minimally dressed subjects during which the hip performs
a cycle as this includes common motions such as walking
and running, and generalizes to more complex motions
such as dancing or jumping jacks, while imposing no con-
straints on the arm movements. We demonstrate experi-
mentally that our method learns a structured latent space
which allows generating varying motions. We visualize
the structure of our latent space to demonstrate that differ-
ent actions (e.g. walking) form clusters, and use our latent
space to generate plausible interpolations between differ-
ent types of locomotion that outperform linear and per-
frame interpolation baselines. Our motion space learns
the interaction between morphology and motion, as gen-
erating motions with the same point in latent space con-
ditioned on different representations of morphology leads
to motion differences that confirm findings in prior studies
conducted on sparse motion data [35].

Our model can serve as prior to complete both spa-
tially and temporally sparse sequences. Given as input un-
matched and temporally incoherent point clouds sparsely
sampled in space or time, accurate complete 4D recon-
structions are obtained. For spatial and temporal com-
pletion, our method outperforms a state of the art mo-
tion prior that encodes human motion sequences of fixed
duration [38] as long as the data is sufficiently densely
sampled in time, in spite of being trained on significantly
less data. For spatial completion, our method outperforms
a state of the art method when few samples are avail-
able [41].

We make the following major contributions. First, we
propose a latent motion space that allows to represent and
generate multi-frame sequences of dense 3D meshes of
varying duration, while accounting for the interaction be-
tween morphology and motion. Second, we demonstrate
that this latent space is structured: similar motions form
clusters, and linear interpolation in latent space gives intu-
itive results. Third, when using our motion space as prior
we outperform the state of the art for the application of
motion completion from sparsely sampled data in space

or time.

2. Related Work

There is a vast literature on the generation of human
models and motions. Strategies that encode moving hu-
man bodies can be divided into temporally dense, spa-
tially dense and full 4D methods. Temporally dense en-
compasses methods that learn the structure of human mo-
tion on a representation that is sparse in 3D space, while
spatially dense encompasses methods that generate real-
istic 3D human models without treating long-term motion
or dynamic effects. Full 4D methods combine long-term
motion models with dense 3D shapes per frame.

The first two lines of work have been studied for the
past two decades. Studies on temporally dense human
motion models proposed different data-driven methods
to synthesize motion patterns of skeletal representations
or sparse marker positions e.g. [29, 33, 34, 10]. These
works effectively learn the structure of human motion
over durations of multiple seconds. Studies on spatially
dense human models proposed a variety of data-driven
methods to synthesize geometrically detailed 3D mod-
els e.g. [2, 3, 22, 25, 19]. Some models have been
extended to learn soft-tissue deformations [26, 18, 30].
Recent works in this area leverage deep learning tech-
niques, and can decouple variations due to different fac-
tors e.g. [11, 7, 42] or include hands, faces and soft-tissue
deformation, e.g. [37]. These works generate realistic and
geometrically detailed 3D human models.

Over the past few years, a number of works proposed
studying 4D human motion data that is densely sampled
in space and time. Some work aims to generate dense
3D human motion from sparse MoCap [3, 18, 20, 9] or
2D video data [13, 40]. Given as input marker points or
a 2D image per frame of the motion, these works recon-
struct dense 4D motion data. Of particular interest for our
work is that statistical body models learned on static data
have been fitted to MoCap data, providing a large corpus
of semi-synthetic dense 4D data [20]. This provides the
community access to a large 4D dataset, which we lever-
age in our work.

The works most related to ours learn spatially and tem-
porally dense 4D motion models of bodies in a data-driven
way. The first work to tackle this problem [14] com-
bines two linear models: one capturing dense static 3D



shape data and one capturing the motion of MoCap mark-
ers. The two linear models are coupled based on seman-
tic parameters including weight and height, which allows
generating 4D human motion sequences. Inspired by this
idea, our model learns a non-linear model from 4D data,
which includes both morphology and motion information.
‘We show experimentally that our model generalizes better
than a linear one learned with 4D data.

With 4D data becoming increasingly available in recent
years, a number of studies propose data-driven methods
trained on 4D data. First methods including [1, 5, 27]
train on either a single motion sequence or multiple se-
quences showing the same subject performing different
motions. A recent work that studies motions of a single
subject proposes a deep latent variable model for 4D hu-
man motion synthesis [8] to model the probabilistic char-
acter of motion.

Recently, 4D motion priors of different subjects per-
forming different motions have received considerable at-
tention. One line of work uses implicitly defined surfaces
over time to learn from raw 4D sequences [23, 12]. These
works have successfully been applied to human motion
data. However, the high dimensionality of the 4D data
constrains the sequences to few frames.

To consider longer temporal spans, another line of work
build motion priors from sequences of pose parameters
of template aligned meshes. These works include meth-
ods that consider a set of labeled actions to learn mo-
tion generation based on action labels [24] and methods
that model motion as a sequence of transitions between
poses [28, 15]. Most similar to our work are methods
that build motion priors of unlabeled 4D human motion
data [16, 38, 17]. These methods consider motions of a
fixed duration and encode them in a motion space, which
captures information about pose changes over time. In
contrast, we investigate learning a motion space for 4D
sequences of varying duration. We demonstrate experi-
mentally that our motion space outperforms [38] for mo-
tion completion.

3. Generative modelling of multi-frame sequences

This section outlines our method to learn a generative
model of multi-frame human motion sequences. During
training, the method takes as input a database of 4D hu-
man motion sequences that perform a cyclic motion of the

hip joint and learns a latent motion space. Each point in
motion space represents a 4D motion sequence, and we
are interested in learning a motion space with structure,
where similar locomotions (e.g. all walking motions) tend
to form clusters. During inference, our model allows to
reconstruct a 4D human motion sequence from a single
point z in motion space and a parameter vector S rep-
resenting the morphology of the subject performing the
motion.

When building such a model, two major challenges
need to be addressed. First, the amount of data that needs
to be processed for training is large and unstructured.
4D human motion sequences are produced by acquisi-
tion systems that capture hundreds of frames containing
thousands of vertices each. The raw capture data is un-
structured, which makes it difficult to compare individual
frames, let alone multi-frame sequences.

To address this challenge, we propose a new motion
representation that is both compact and structured, as de-
tailed in Section 3.1. We build on existing shape spaces
of static bodies, which allow for a compact representation
of one frame. By enhancing per-frame static shape space
representations with information on the global spatial and
temporal evolution of the motion, our representation ex-
plicitly decouples pose, morphology, global displacement
and temporal information.

The second challenge is modeling the intertwined vari-
ations of the different factors influencing the motion, and
taking their correlation into account when generating 4D
sequences. While it is known that different factors in-
cluding morphology influence the overall 4D motion [34],
modeling these interactions explicitly is not straight for-
ward.

To address this challenge, we propose a data-driven
framework where the model is learned using an encoder-
decoder architecture, as detailed in Section 3.2. The archi-
tecture conditions the motion generation on a representa-
tion of morphology to explicitly model the interaction be-
tween morphology and motion. Section 3.3 outlines how
the model is trained.

3.1. Representation of motion sequences

This section introduces a compact and structured rep-
resentation for 4D sequences, which is illustrated in the
top left of Fig. 2. To represent motion data, we need
to align an unstructured spatio-temporal motion signal.



Temporally, we uniformly sample n frames from the mo-
tion signal, we refer to these n frames as anchor frames
in the following. These anchor frames allow to repre-
sent motions of various duration with the same number
of frames. We experimented with a more complex sam-
pling method using dynamic time warping ([4]) to further
temporally align the data, but this leads to similar results
as the simpler uniform sampling. Spatially, we build on
static shape spaces to align the frames e.g. [22, 25, 19].
Shape space models represent static 3D human body sur-
faces by projecting them on a common mesh template,
thereby providing correspondences over time, as well as
correspondences between motions. By projecting the an-
chor frames on a template, we obtain n spatially aligned
anchor meshes, making motion comparison practical.
However, the resulting anchor mesh sequence M =
[my,...,m,] does not represent the temporal evolution
of a motion. The temporal sampling causes a loss of
information, as it does not discriminate between simi-
lar motions with different temporal unfolding like walk-
ing and running. Therefore, we associate each anchor
mesh m; with a timestamp 7;. We denote the times-
tamp vector by 7 = [1q,...,7,]. The representation
[M, 7] is a high-dimensional representation of a motion.
To make processing easier, and to disentangle the influ-
ence of morphology on motion, we further leverage the
shape space models. Shape spaces provide a low di-
mensional representation of the meshes m; that decou-
ples the influence of morphology and pose for static data.
By holding morphology constant over M, we can rep-
resent each m; using parameter vectors for morphology
B, pose 8;, and global translation y;. While any de-
coupled static model can be used, e.g. [11, 7, 42], in
our implementation we chose the commonly used SMPL
model [19] as the AMASS dataset ([20]) is parameter-
ized by this model. We denote the model function by
SMPL such as m; = SMPL(6;,v;,) and thus M =
[(SMPL(6y,y0,0), . ..,S MPL(6,, yn, B)]. By denoting the
pose and global translation vectors by ® = [6,...,6,]
andI" = [yy,...,y,], respectively, [O,T, 8, 7] gives a low
dimensional representation of [M,7]. To retain varia-
tion in global displacement (e.g. walking backward or for-
ward) and temporal evolution (e.g. walking or running),
we model I and 7~ in the multi-frame sequence represen-
tation. The timestamps allow the network to place freely
and on any time span length the anchor meshes, thereby

encoding the temporal unfolding of the motion in latent
space and allowing to encode motions with various dura-
tion using a constant number of meshes.

To simplify notations and emphasize the difference be-
tween motion and morphology parameters, we denote
by x = [0,I,7] the motion parameters and we in-
troduce the motion representation function ¥ such that
M, 7] = F([x,B]). As pre-processing for training, we
require to map a raw motion sequence to the SMPL mesh
template, and we use existing solutions to solve this prob-
lem [39, 20]. We denote by S MPL™" the mapping func-
tion which associates a single raw motion frame to its rep-
resentation parameters 6, y, 5.

In practice, we represent parameters 8 and I' as in
SMPL. Pose features ® are joint rotations of a skeleton,
and are represented by a 6D rotation representation [43].
This representation models rotations in a continuous man-
ner and was shown to outperform other representations
when training neural networks.

3.2. Architecture

Our goal is to generate multi-frame 4D human mo-
tion. One interesting aspect is to learn the relationship be-
tween morphology and spatio-temporal motion patterns.
Variational autoencoders were shown to be highly effec-
tive generative models. Furthermore, the CVAE architec-
ture [32] allows to condition both encoder and decoder on
input variables, thereby learning conditional distributions.

Our architecture is close to a CVAE, and shown in
the bottom of Fig. 2. Our architecture consumes multi-
frame sequences, thereby learning a latent motion space.
In particular, the motion vector y is encoded into a low-
dimensional latent vector z, and the morphology repre-
sentation 3 is used as condition for the decoder hereby al-
lowing to capture dependencies between y and 5. Unlike
in a classic CVAE we make the assumption that our la-
tent variable z and the condition S are independant, hence
learning a disentangled representation. Therefore we do
not need the encoder to model the posterior distribution
p(zly, B), but the posterior distribution p(z|y). Practically,
this is done by removing the condition S8 from the encoder
input of a classic CVAE.

The encoder outputs are interpreted as mean u and stan-
dard deviation o of the posterior distribution of the latent
space, and the corresponding latent vector z is randomly
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Figure 2: Overview of the motion representation and architecture. Top:
motion representation. Left: pre-processing during training samples
n anchor frames and extracts per-frame representations of pose 6,
translation y and morphology 8 with their timestamp 7 to obtain motion
representation y and morphology S. Right: illustration of the function
. Bottom: our architecture consists of a probabilistic encoder E and
a decoder D, and learns a mapping from y to a single latent vector z.
At inference time, D conditions z on 8 to generate sequence features
(green box).

sampled as z = u + € X o, with ¢ ~ N(0,1). We de-
note the probabilistic encoding function by E : y, € — z.
The decoder takes (z,8) as input, and directly outputs
X = [@, f, T ] which are converted back to a sequence
of timestamped anchor meshes [M, 7] = F (¢, ). We de-
note the decoding function by D : z,8 +— ¥. To go from
the reconstructed sequence M to a temporally continuous
motion, we assume the motion to be constant between an-
chor meshes.

3.3. Training

The network is trained as a classical VAE with a two
term loss: a reconstruction term which represents the dif-
ference between the input and output vectors, and a regu-
larization term to constrain the latent variables to follow a
known prior distribution. The training is divided into two
phases. First, we consider a reconstruction loss on the
spatio-temporal representation y and second, we replace
it by a loss computed directly on the sequence of anchor
meshes M in R3. Considering a first loss on y first allows
for a fast and memory efficient initialization.

Reconstruction loss on y. The standard reconstruction
term would be ({ — x)*>. To balance the influence of the
different types of information captured by y, we divide

this loss into three terms: one on pose L5 = (® - @)2,
one on translation L4,y = (F - f)z, and one on time
L[[mg = (T - 7,\')2

To minimize these 3 losses, which do not have the same
numerical magnitude, we use adaptive weights to trade
off their relative influence [6]. These weights are updated
automatically during training based on the norm of the
gradient of the partial loss and a learning rate. This en-
sures that the partial losses are decreasing in similar pro-
portions. This gives a total reconstruction loss

ey

where wpoge, Wirans and wyiy,e are the respective adaptive
weights of the partial reconstruction losses.

Liee = U)posel:pose + Wirans Lirans + OtimeLtime

Reconstruction loss in 4D. The second reconstruction
loss is the squared L, loss on the 3D coordinates vec-
tors of the anchor mesh sequence M. The contributions
of Lo5e and Ly,4,s are merged into one spatial loss :

o2
Lspatial =M - M), (2)

which gives the 4D reconstruction term
Liecap = wspatial-gspatial + Wrime Ltimes 3)

where w;paiq 18 a new adaptive weight of the spatial loss.
Optimizing this loss leads to more accurate reconstruc-
tion of the 4D multi-frame sequences because it uses the
full surface information, at the cost of higher computation
time.

Regularization loss. The regularization term is the
squared Kullback-Leibler (KL) divergence between
the learned posterior distribution N(u, o) of the latent
variable z and a normal prior distribution N(0, 1), which
is denoted by Lg;.

Optimization. A common problem when training VAEs
is the weighting of the regularization loss versus the re-
construction loss. We use a fixed weight wg;, to trade off
these losses. The training optimizes first

Linit = Lyec + wxrLxr “)
to provide a good initialization and subsequently
L=Lreeap + wrkrLir (5

to refine the model by using surface information.



4. Evaluation

This section presents an evaluation of the model. After
presenting the data and implementation details, we study
the influence of the latent space dimension and regular-
isation, and present a comparison to baselines. Further-
more, we provide experiments to show the structure of
the learned latent space by visualizing labeled motion se-
quences in latent space and by linearly interpolating be-
tween pairs of input motion sequences in latent space.
Finally, we demonstrate that the proposed model learns
information on the interaction of morphology and motion
by visualizing the motion changes caused by changing the
morphology g for a fixed point z in motion space.

4.1. Data

Our model consumes human motion sequences densely
captured in 4D. To learn a structured latent space for un-
labeled sequences of different duration, we consider mo-
tion sequences for which a temporal alignment can be de-
fined. In our experiments, we focus on motion sequences
during which the hip performs a cycle automatically ex-
tracted from a dataset by comparing all subsequences of
the dataset to a set of 4D template motions using dynamic
time warping as distance. Subsequences are considered if
this distance is below a threshold. As post-processing, we
prune segments with a duration above 3 seconds or be-
low 0.3 seconds. We manually generate two 4D template
motions as gait cycles starting with the left and right foot,
respectively.

In this work, we experiment with the AMASS
dataset [20]. AMASS regroups a large set of MoCap
recordings and fits SMPL with additional soft-tissue mo-
tions to all data, resulting in a semi-synthetic dataset. As
recommended, when splitting the AMASS dataset into
training and test set, we split the dataset according to the
original MoCap datasets by treating all sequences emanat-
ing from the same MoCap dataset as one entity. We leave
the data associated with MoCap datasets "MPI_mosh”,
”SFU”and TotalCapture” for testing.

Training data. We automatically extract 12085 se-
quences of motion cycles with various duration and mo-
tion types from the AMASS training set which amounts
to approximately 4.5 hours of motion data. To allow for
efficient learning, the sequences are spatially aligned by

zeroing the initial translation and we use the identity ro-
tation as initial rotation of the root joint to be invariant in
the ground plane.

Test data. We consider two test datasets. The first one
is called AMASS test set in the following and contains
1027 sequences extracted from the AMASS test set which
amounts to approximately 20 minutes of motion data. The
second one, called Kinovis test set in the following, con-
tains 4D motion sequences captured using a multi-view
platform. This dataset is an extension of [39] and allows
to evaluate the generalization of the model to densely cap-
tured 4D data. We consider all walking and running se-
quences, and pre-process the data by fitting SMPL to the
4D sequences before extracting cyclic hip motions. This
results in 37 test sequences, some of which contain less
than 100 frames; we augment shorter sequences to 100
frames using linear interpolation between the 6D rota-
tions.

4.2. Implementation details

In our motion representation y, we do not consider the
SMPL components related to hands or dynamic compo-
nents available in AMASS. We further discard the two
foot joints because they have constant rotation. This
leaves a total of 20 joints. Our representation y con-
sists of 100 timestamped anchor meshes, each of which
is represented by 124 parameters (120 for 6, 3 for y and
1 for 7). 100 anchor meshes are chosen as they provide a
good trade-off between the error introduced by the sam-
pling and the dimensionality of y. To normalize the data,
we normalize the translation y in [—-1, 173, and the times-
tamps 7 in [0, 1] using minmax scaling over the training
set. We remove the identity rotation [1,0, 0,0, 1, 0] from
the 6D representation, which leads to a significant gain in
reconstruction accuracy compared to the classic scaling
0 — o

o

V\Gfe train for 5000 epochs with L;,;;, using a learning
rate of 1e™3 and a batch size of 256. Each epoch takes 6
s for a total training time of 8 hours. We train with £ for
200 epochs using a smaller batch size of 16 for memory
reasons and a learning rate of 1e~*. Here epoch time is 8
min for a total training time of one day. The training is
done on a NVIDIA Quadro RTX8000 with 48G of GPU



RAM. We use wy; = 0.01 for both steps and chose a la-
tent dimension for the motion space z of 64, and of § for 3.
Note that mesh vertex positions are in meters during train-
ing. We initialize all dynamic weights of Eq. 1 and 3 at
1.0 and GradNorm [6] updates the weights dynamically.

4.3. Influence of latent space dimension and regularisa-
tion

We now investigate the influence of the latent space di-
mension and regularization on the quality of the model.
To evaluate the model’s quality, we measure its recon-
struction error, which characterizes the model’s ability to
reconstruct examples unseen during training and is de-
fined as

6)

with [M, 7| = F(¢.8) = F(D(E(x. €).8). ). where n is
the number of anchor frames and k the number of ver-
tices per frame. As second qualitative error measure, we
consider the model’s ability to allow for the generation
of plausible new sequences by sampling in latent space.
In practice, we consider samples that are linearly interpo-
lated between sequences of the test set.

Latent space dimension. We first study the influence of
the dimensionality of the latent space on the model qual-
ity. Fig. 3a shows the impact of the dimension of z on the
reconstruction error on the AMASS test set. As expected,
the bigger the latent space dimension, the smaller the er-
ror. However, for dim(z) > 64, the error starts to stagnate.
Therefore we set the dimension of the latent space to 64.

Latent space regularisation. The regularisation of the la-
tent space has a major impact on the model quality. It is
controlled by coefficient wg;, which weighs the influence
of latent space regularization at the cost of reconstruc-
tion accuracy. Fig. 3b shows the reconstruction error on
models trained with different values for wg;. The smaller
wk1., the smaller the reconstruction error. However, with
wgr, = 0.001, the model no longer allows generating plau-
sible new sequences. Therefore, we set wg; = 0.01 in the
following.
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Figure 3: Influence of latent space dimension and regularisation on re-
construction error. Left: Increasing dimension of the latent space leads
lower reconstruction errors on AMASS test set. Right: Smaller regular-
ization wgy, leads lower reconstruction errors on both test sets. Boxes
follow Tukey’s method [36].

4.4. Comparison to baseline models

We compare our model to two baselines with respect to
the reconstruction error defined in Eq. 6. The first base-
line applies a linear principal component analysis (PCA)
to our motion representation [y, 8], thereby evaluating the
value of using a non-linear model. PCA has access to
morphology information when projecting the motion rep-
resentation to latent space, and reconstructs both ¢ and
B from latent space. To provide a fair comparison, we
consider the original 8 instead of 3 in PCA reconstruc-
tions and set the PCA latent dimension to dim(z) + dim(B).
The second baseline considers our model after initializa-
tion when only loss L;,; is optimized that operates on a
skeleton-level representation over time, thereby evaluat-
ing the value of learning from data that is densely sampled
in space and time.

Fig. 4 shows the reconstruction error for the different
models. While PCA already provides low reconstruction
errors, these are further improved using our non-linear
model. Our model also improves over its initialization,
which shows that considering spatio-temporal data that is
densely sampled significantly impacts the reconstruction
performance of the model.

4.5. Motion space structure and interpolation

We now investigate the structure of the latent motion
space. One novelty of our method is its ability to learn
from sequences of various duration by using as represen-
tation a sequence of time-stamped anchor frames. Fig. 1

T
test set
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Figure 4: Comparison to baseline models in terms of reconstruction er-
ror. Our model outperforms a linear PCA baseline (blue) and a baseline
that considers sparse spatial sampling at skeleton level (red). Boxes fol-
low Tukey’s method [36].

visualizes the latent motion space after linearly reducing
its dimension to two. The space contains 51 motions that
are labeled by actions for the purpose of visualization.
Each action is assigned a color and points corresponding
to the same action tend to form clusters in latent space.
This demonstrates that our motion representation allows
learning a latent space in which sequences showing simi-
lar actions are clustered.

This structure in latent space can be exploited to gen-
erate plausible interpolations between two input motion
sequences using simple linear interpolation. Given a start
and a target motion sequence as input, we encode them as
(z5, Bs) and (z4, B), and generate their interpolating motion
sequence by decoding ((1 — k)z, + kz;, (1 — k)B, + kB;) at
an arbitrary intermediate position k € [0, 1].

We compare our results to two baselines. The first
baseline uses the PCA model from the previous section,
where PCA is applied to our motion representation [y, 3],
which results in a motion model that allows for linear in-
terpolations in its latent space. This comparison, called
PCA in the following, evaluates the value of using a
non-linear model. The second baseline operates per an-
chor frame and interpolates linearly between the global
displacements, time stamps and morphology parameters,
and with spherical linear interpolation (SLERP) between
skeletal poses. This comparison, called SLERP in the fol-
lowing, evaluates the value of learning a motion model
instead of operating independently per-frame. For all in-
terpolations, visualizations show the mid-point at k = 0.5
for all methods.

In the following, we interpolate between input se-
quences that differ in terms of their duration, displace-
ment, and (global and local) pose, i.e. each of the factors
encoded in our motion representation y.

Interpolating sequences of different duration. To inspect
the temporal information learned by our model, we inter-
polate between a running and a walking motion, which
have different duration and dynamics. For our model,
the duration, given by 7,, of the intermediate sequences
monotonically decreases when going from running to
walking, and the intermediate sequences are realistic as
shown in Fig. 5 (top left), proving that our motion space
has captured information on the temporal evolution of the
motion. Both the PCA and SLERP baselines also lead to
plausible interpolations.

Interpolating sequences of different global displacement.
To inspect global displacement, we interpolate between a
forward and a backward walk. We observe that our in-
termediate sequence corresponds to a really small step
as shown in Fig. 5 (top right). There were no steps this
small in the training set. Our latent space has captured
information on I' and is able to generate interesting new
sequences. The PCA and SLERP baselines fail to inter-
polate global translation realistically, which results in foot
skating.

Interpolating sequences of different pose. To inspect the
learned information of pose, we distinguish between
global pose and pose articulation of the body. First, we
interpolate between sequences of turning left and turn-
ing right while walking, exhibiting mostly global pose
change. The intermediate sequences using our model
gradually change from a left turn to a right turn as shown
in Fig. 5 (bottom left), leading to a meaningful interpo-
lation. In this case, both PCA and SLERP baselines fail
due to the ambiguity when interpolating between oppo-
site rotations, while our model is able to leverage spatio-
temporal information to alleviate this ambiguity.

Second, we interpolate between a walking motion and a
walking motion while carrying an object on the head. The
intermediate sequence with our model results in a realistic
intermediate position for the arms, and gradually elevates
them to head level as shown in Fig. 5 (bottom right). This
shows that the latent space has captured information on ®,
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Figure 5: Linear interpolations in latent motion space. Each figure left to right : starting motion, interpolation in PCA space, direct interpolation
using SLERP, interpolation with our model and target motion. Sequences are color-coded by the time at which the rendered frames appear in the
sequence. Top-Left Interpolating running and walking. Top-Right Interpolating walking backward and forward. Bottom-Left Interpolating left
and right turn. Bottom-Right Interpolating a walk and a walk carrying an object on the head. All interpolations with our model are plausible, while

baselines fail when interpolating global displacement or pose.

and can generate interesting motions unseen during train-
ing. Both the PCA and SLERP baselines lead to plausible
interpolations.

In summary, while our model generates visually plau-
sible interpolations for all types of parameters encoded in
the motion representation, both baselines exhibit failure
cases in some scenarios. This demonstrates the value of
learning a non-linear 4D human motion model.

4.6. Interaction between morphology and motion

To allow our model to capture the interaction between
morphology and motion, the decoder conditions a vector
in motion space z with morphology 8 to generate a 4D
motion sequence.

We examine the influence of 8 on the final output 4D
motion y learned by our model. To this end, we con-
sider a fixed jogging motion represented by point z* in
our motion space and investigate y when setting 8 to +3
standard deviations along the first and second principal
components. To understand the subtle motion differences,
we further visualize the spatio-temporal gradient w at
B =0, i.e. we look at the gradient learned by our decoder
with respect to morphology at the mean shape.

10

We compare our result to a baseline that reconstructs a
dense 3D body model at every frame of the jogging mo-
tion independently with the initial pose parameters and 8
using SMPL [19]. This evaluates the influence of learning
the interaction between morphology and motion.

Fig. 6 shows the impact of the first (left) and second
(right) principal components of 8. The top row shows
a color coding of the gradient learned by our decoder
with respect to 8 on the 4D sequence, and the middle
row shows the corresponding 4D motions obtained by our
model. The bottom row shows the result of the per-frame
baseline color-coded by the distance to the result of our
model.

Changing the first principal component impacts the
body shape of the subject to change the perceived gen-
der. For our model, this impacts the 4D motion on the
right shoulder and the left hip (see top row of Fig. 6),
which is in line with prior studies that show that shoulder
sway is statistically gender related and that the movement
of the hips tend to be more pronounced for women [35].
Note that the spatio-temporal areas affected by our motion
model are the ones where the baseline leads to a signifi-
cantly different result with up to 10cm distance.



Normalized
gradient norm

! . A
=
time(s) 0 0.3 0.6 0.9
y A
7, )
&
.

#

Figure 6: Interaction between morphology and motion demonstrated
w.rt. first (left) and second (right) principal components of morphology.
Top: for our method, visualization of the normalized gradient of the 4D
motion w.r.t. the morphology vector. Middle: for our method, inferences
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color coded by per-vertex distance to result of our method. Our learnt
correlation has a significant impact on the motion, which differs up to
10cm from baseline.
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Changing the second principal component leads to a
perceived weight change of the subject. For our model,
this impacts the 4D motion at the right arm and head/neck
poses (see top row of Fig. 6). Again, the spatio-temporal
areas affected by our motion model are the ones where the
baseline leads to a significantly different result with up to
10cm distance.

This allows to conclude that our model learns meaning-
ful interactions between morphology and motion, which
leads to 4D motion sequences that differ significantly
from a baseline that applies S MPL independently per
frame.

5. Application to motion completion from spatio-
temporally sparse input

This section demonstrates our model’s performance
for spatio-temporal completion. Given as input a set
of sparse, unmatched and temporally incoherent point
clouds, our model can retrieve a spatio-temporally aligned
sequence of meshes by leveraging its learned priors of hu-
man surface motion. This is interesting in applications
ranging from the registration of a raw spatio-temporally
densely scanned 4D sequence over computing realistic in-
betweenings for a set of frames sparsely sampled in time
to completing the full human body in motion from a space
set of MoCap markers.

5.1. Completion methodology

We consider as input partial motion sequences of un-
ordered dense 3D scans with possibly additional synchro-
nized MoCap for k landmarks and associated time stamps.
LetS = [sy,...,s,] denote a sequence of n anchor scans
uniformly sampled in time, let L = [[;,...,[,] denote



the corresponding synchronized sequence of landmarks,
and let 7 = [1y,...,7,] denote the corresponding time
stamps. As we consider temporally sparse input, some
anchor frames are empty, and our input consists of a set /
of frame indices i for which s; or /; and 7; are given.

Our goal is to complete this data, i.e. to compute a se-
quence of anchor meshes M with associated time stamps
7 that approximate the input. To achieve this, we de-
code a full sequence of anchor frames [M, 7] using
F (D(z,B), B) and optimize for latent vectors z*, 8" as

Z*7ﬁ* = argz’lin(-gcomplerion([M(Z’ ,3)» ‘f-(z’ ﬁ)]’ [59 L7 T])),
’ )

where

Lcompletion = wdenseLdense + wmocameocap + wtimeLIime

@®)

Laense = ., Chamfer(iin(z,5), 5, ©)
i€l

Linocap = ) Landmark(ii(z,5), 1) (10)
i€l

Lime = ) (Fie.p) =) (1

i€l

The weights Wgense» Winocap and wyime are adaptive [6].
We set Wpocap = 0 when no landmarks are given as in-
put and wgense = 0 when no dense scan is given as in-
put. Varying w,,cqp allows to evaluate the benefit of hav-
ing corresponding points over time for the completion
task. Chamfer is the Chamfer distance between two point
clouds and Landmark is the squared Euclidean distance
between k vertices of the SMPL template, selected once
for all experiments, and the K given landmarks. This op-
timization is visualized in Fig. 7.

5.2. Completion dataset

To evaluate the motion completion, we introduce a new
dataset of cyclic human motion (CHUM), which was cap-
tured using a 4D modeling platform with 68 RGB cameras
and a standard Qualisys MoCap system. Data consists
of dense scans of approximately 10000 points acquired
at 50fps with synchronised MoCap data for 16 mark-
ers. We recorded 4 actors with different morphologies
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(2 males and 2 females) performing various cyclic mo-
tions like walking, running, side-stepping, skipping, box-
ing and kicking. For our experiment, we segmented 4 gait
cycles manually for each original sequence and found an
initial 3D transformation (rotation + translation) to align
each segment at t = 0. We do not fit SMPL to the dense
scans because L ompierion dO€s not require correspondence
information.

5.3. Results

In the following, we evaluate the accuracy of our model
when reconstructing dense 4D data from sparse input.

We compare our results to two state of the art ap-
proaches. The first one is a static 3D completion
method [41] applied per-frame. Note that due to its high
computational complexity, we apply the static method to
a subset of CHUM while our method is applied to the full
dataset. This method is only applicable in case of spa-
tial completion where observations are available at every
frame. The second one is a motion space for sequences
of fixed duration that can serve as prior [38] trained on
approximately 34hours of motion data from the AMASS
dataset. Given a partial motion as input, we optimize a la-
tent vector in motion space along with a morphology pa-
rameter and a set of per-frame translation parameters, as
morphology and global translation are not encoded in this
motion space. The goal is to approximate the input, and
we optimize for Lompierion With wyime = 0, as the motion
space is designed for sequences of fixed duration and can-
not benefit from time stamp information. In case of tem-
porally sparse input, per-frame translation parameters are
only optimized for frames in / and the remaining trans-
lations are found using linear interpolation between the
closest observed frames. This method is applicable for
both spatial and temporal completion The motion prior
we compare to uses a latent space of 256 dimensions. For
fair comparison, we re-train our model with 256 latent di-
mensions for this application.

Spatial completion. We first evaluate the quality of spa-
tial completion by simulating different levels of spatial
sparsity of the data. To do so, we vary the number of
points p per scan s;. The sampled points are not in corre-
spondence across time.

Table 1 shows the evolution of the reconstruction error
in mm when varying p. Our method clearly outperforms



Table 1: Comparative evaluation of motion completion. Mean and stan-
dard deviation of Chamfer distance in mm (the lower the better), com-
puted between completions and ground truth anchor scans from CHUM.
N.A. means not applicable.

Points per scan p Frames (f)
0 50 100 1000 10000 5 20 100
Ours (dim(z)=256) 42+48 23+7 2149 20+10 20+10 30+14 | 20£10 | 20£10
Zhou et al. [41] N.A. 58+0.99 | 47 +0.6 | 21+0.3 | 10+0.46 | N.A. N.A. N.A.
Xu et al. [38] 46 + 52 26+8 24 9 22+10 22+10 22+10 | 22+11 | 22+10

the static method [41] for very sparse scans (p < 100), the
two methods are on-par for denser scans (p = 1000), and
the static method outperforms our method for dense input
data (p = 10000). This quality on sparse scans is achieved
because our model optimizes for all frames simultane-
ously, so few points per scan suffice to find a plausible so-
lution. For dense scans however, the static method, which
deforms a template, can capture higher levels of geomet-
ric detail. Our method further outperforms the motion
space for sequences of fixed duration [38], in spite of be-
ing trained on significantly less motion data (4.5h for ours
vs. 34h for Xu et al. [38]).

A qualitative comparison for the completion task with
p = 100 and available landmark data is shown in Fig. 8.
Note that our method leads to more plausible wrist and
hand motion than Xu et al. [38] and better temporal co-
herence and leg motion than Zhou et al. [41].

Temporal completion. Second, we evaluate the quality of
temporal completion by varying the number of observed
frames. To vary this number for each test sequence, we
reduce / to simulate lower frame rates. Table 1 shows
the evolution of the reconstruction error. The f = 100
frame completion task includes all frames and is given as
reference. The model extrapolates with almost no loss
of precision with I,y = [5,10,...,95,100] (20 frames)
and the error is still low with I5 = [20, 40, 60, 80, 100] (5
frames). While the motion space for sequences of fixed
duration [38] is better for sparsely sampled temporal data,
we outperform this method for temporally denser data, in
spite of using significantly less training data.

6. Conclusions and future work

This work presents a latent space that allows to repre-
sent and generate multi-frame sequences of human mo-
tion in 4D. This latent space contains information on
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Zhou et al. [41]

Xu et al. [38]

Figure 8: Qualitative comparison of spatial completion on kick sequence
from CHUM with p = 100. Input scans shown in red, landmarks in
green. Visualization shows 6 of 100 completed frames. Note that our
motion completion is plausible and coherent with input.

global motion, body pose, temporal evolution of the mo-
tion, and morphology. We demonstrated that similar mo-
tions tend to form clusters in this latent space and that
linear interpolations between pairs of sequences in latent
space are plausible. Furthermore, our model to gener-
ate 4D motion sequences captures the interaction between
morphology and motion. We applied this model to spatio-
temporal motion completion, demonstrating state of the
art performance.

For future work, it would be interesting to explore how
to synthesize longer term and more general motion. This
study focuses on locomotions with cyclic hip movements.
One possible avenue is to investigate the inclusion of
a wider variety of actions with attention-based architec-
tures, which have shown good results in sequence pro-
cessing.
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