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Abstract

We examine the problem of generating temporally and spatially dense 4D human
body motion. On the one hand generative modeling has been extensively studied
as a per time-frame static fitting problem for dense 3D models such as mesh rep-
resentations, where the temporal aspect is left out of the generative model. On the
other hand, temporal generative models exist for sparse human models such as
marker-based capture representations, but have not to our knowledge been ex-
tended to dense 3D shapes. We propose to bridge this gap with a generative
auto-encoder-based framework, which encodes morphology, global locomotion
including translation and rotation, and multi-frame temporal motion as a single
latent space vector. To assess its generalization and factorization abilities, we train
our model on a cyclic locomotion subset of AMASS, leveraging the dense surface
models it provides for an extensive set of motion captures. Our results validate the
ability of the model to reconstruct 4D sequences of human locomotions within a
low error bound, and the meaningfulness of latent space interpolation between la-
tent vectors representing different multi-frame sequences and locomotion types.
We also illustrate the benefits of the approach for 4D human motion prediction
of future frames from initial human locomotion frames, showing promising abili-
ties of our model to learn realistic spatio-temporal features of human motion. We
show that our model allows for data completion of both spatially and temporally
sparse data.
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1. Introduction

This work investigates learning models for generating temporally and spa-
tially dense 3D human body motion. That is, the proposed model simultaneously
generates a multi-frame sequence of dense 3D meshes based on a single low-
dimensional latent space.

Such a model is of significant interest for several key reasons. Static genera-
tive models are widely used for 3D morphable shapes such as human faces or bod-
ies [1], because they allow for shapes to be encoded with latent parameterization
spaces that possess a semantically meaningful structure, with orthogonal parame-
ters for morphology and pose that can be individually controlled and interpolated.
Allowing a generative model to additionally encode multi-frame evolution of full
shapes in a single latent vector as proposed, should yield a widely useful gener-
alization of these structural latent space properties to the temporal domain, where
not only single shape poses but full shape-in-motion sequences can be parameter-
ized, interpolated and controlled in a semantically meaningful and concise fash-
ion. This is of broad interest for a wide set of applications where the lightweight
4D representation translates to gains in information processing and transfer, e.g.
virtual reality, computer graphics, or 3D telepresence. But it also opens new pos-
sibilities for a wide set of spatio-temporal completion tasks from temporally or
spatially sparse or incomplete inputs, for shape sequence reconstruction, motion
transfer and retargeting.

Learning a generative model for spatially and temporally dense 3D human
motion data presents two major challenges. First, the amount of data that needs to
be processed for training is large, as typical acquisition systems for dense human
body motions produce 30 − 50 frames per second, with each frame containing
thousands of geometric primitives. Second, the model needs to capture different
factors of variation, including global motion, body pose, temporal evolution of
the motion, and morphology. We demonstrate that the latent space learned by
our model not only captures these variations, but allows to explore them in a
semantically meaningful way.

To address these challenges, we combine the advantages of two existing lines
of work. The first studies temporally dense skeletal data, with the goal of gen-
erating skeletal human body motion sequences [2, 3], and good results can be
achieved for this problem using deep learning based methods (e.g. [4]). Extend-
ing this work to allow for spatially dense data and varying morphology directly is
not straightforward, as the employed algorithms do not scale up to per-frame rep-
resentations containing thousands of vertices. The second line of work considers
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Figure 1: We learn a latent motion space from multi-frame 4D sequences of different types of
cyclic motion performed by different subjects (left). A simple architecture (bottom right) leads to
a single latent space encoding 4D motion that holds semantic structure (top right).

spatially dense static data, with the goal of representing realistic 3D human body
surfaces in a low-dimensional shape space [5, 6]. While this problem has been
studied in the context of shape and pose variations, and even including soft tissue
components learned from dynamic data (e.g. [7]), existing works model motion
as a sequence of per-frame fittings. That is, variation in the temporal dimension,
most notably global displacements and the temporal evolution of the motion, is
not learned by these models, but needs to be provided as per-frame control signal
to generate motion.

We combine the advantages of these two lines of work in an encoder-decoder
architecture that operates directly on multi-frame sequences as input and output of
our architecture, a thorough review of which is provided in §2. In order to over-
come the problem of the increased complexity caused by spatially dense data,
we opt for a low-dimensional shape space parameterization of static human bod-
ies, e.g. [8, 1]. The key difference of our work with the latter methods (details
in §3) is that we present a latent space which encodes a full sequence of these low-
parameter shapes in a single latent space vector, which serves as motion space and
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captures variations in human posture, global locomotion and the temporal evolu-
tion of the motion. To capture the interaction between differences in morphology
and motion, the decoder is conditioned on a low-dimensional representation of
morphology.

To validate our model, we need to characterize on a representative example
set its ability to factor information underlying to the data and generalize it for
unobserved data. For this purpose, we focus our study on cyclic locomotions au-
tomatically selected as a subset of the AMASS dataset [9] of shapes in motion
(§4.1). Importantly, the motions in our data can be of different durations and we
include time stamps in our multi-frame vector, such that the temporal unfolding of
actions can be analyzed and automatically refactored by our model. This allows
us to produce a set of experiments meant to validate the accuracy of the generative
model and the meaningfulness of interpolations between different types of cyclic
locomotion, such as running, walking forward or backward, or sidestepping. We
demonstrate that semantically similar locomotions (e.g. all walking motions or all
running motions) tend to form clusters in the latent space, quantify the general-
ization and specificity of the model, and verify the interpolative property between
motions that differ in temporal unfolding and duration, global translations, and
pose (§4).

We apply our model to two application scenarios. First, we show that our
model allows to successfully predict future frames of spatially dense 3D motion
from a short input motion sequence, significantly outperforming a state of the
art RNN-based method (§5). Second, we use our model to complete both spa-
tially and temporally sparse sequences, with unmatched and temporally incoher-
ent input point data, and show that accurate reconstructions are obtained using
few sparsely sampled frames. For this application, we capture a new test dataset
of cyclic human motion in a multi-camera system.

2. Related Work

There is a vast literature on the generation of human models and motions. We
briefly review works that generate spatially dense 3D bodies, temporally dense 3D
human motion, and first methods that model 4D human motion.

2.1. Generation of spatially dense 3D humans
The analysis and synthesis of the 3D human body surface has been studied ex-

tensively. The first work in this area statistically analyzes static 3D body scans of
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different subjects captured in similar postures using a linear model [10]. Follow-
up works enhanced this model by including different postures. While initial works
in this direction proposed models that are non-linear in the vertex coordinates
(e.g. [5, 11, 12]), multiple linear models are now commonly used [13, 1, 14].
Most of these models have two separate sets of parameters for identity and pose
information, and aim to decouple the two. Different methods focus on enhancing
generative models of 3D human body shape to include additional variations such
as hands and faces [15, 16]. Most related to this work, some methods learn soft-
tissue deformations [6, 14, 17]. Recent works in this area leverage deep learning
techniques to build dense 3D body surface models. These models can decouple
variations due to different factors [18, 19] and include hands, faces and soft-tissue
deformation [7].

These works allow to generate realistic 3D human models, and to learn dy-
namic aspects related to motion. However, the treatment of motion and dynamics
is performed over single or few consecutive frames. Global body motions are
therefore not analyzed. In contrast, our model learns a motion space that cap-
tures full 4D motion sequences in a single latent space. This allows in particular
to generate motions with different global displacements and temporal evolutions
without requiring per-frame input signals.

2.2. Generation of temporally dense 3D humans
The analysis and synthesis of multi-frame 3D human motion sequences is

a long-standing problem. Most existing works operate on spatially sparse data,
such as motion capture (MoCap) markers or skeletal representations, and assume
spatial alignment over time. Early works [20, 2] statistically analyze a dataset
of motion-capture data recorded for different subjects performing a similar mo-
tion (e.g. walking). Motion sequences are spatially and temporally aligned for
analysis, and the resulting model is subsequently used to synthesize gait patterns.
Early work [21] also considers the problem of meaningfully interpolating between
skeletal motions performed under different variations. More recently, deep learn-
ing has been used [22]. Sparse locomotion has also been analyzed toward pre-
dicting future motions based on a sequence captured either sparsely in 3D or as
2D video in various fields, e.g. robotics [23], computer vision [24] and computer
graphics [25]. While traditional approaches include prior knowledge, recent meth-
ods use recurrent networks (e.g. [26, 4]). A recent work [27] completes motion
sequences based on few input frames. While the works discussed so far learn the
motion structure, they are spatially sparse.
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Another line of work aims to generate dense 3D human motion from sparse
MoCap [5, 28, 9] or 2D video data [29, 30]. For MoCap, the first approaches
fit statistical shape models learned from static scans to MoCap data, allowing to
synthesize realistic 3D human motion [5, 28]. More recently, this work has been
extended using a statistical model that includes soft-tissue deformations. This
model was fit to a large corpus of MoCap data [9], which provides the community
access to a semi-synthetic training dataset for deep learning, which we leverage in
this work. Unlike prior works, which require per-frame input signals to generate
sequences, our work models full sequences in a single latent space, thereby al-
lowing for motion generation based on sparse spatial and temporal input. For 2D
video data, methods reconstruct dense 3D body motions from 2D input by fitting
statistical models to individual frames of video data, and predicting short-term
past and future motions from short clips and even static images [31, 29, 30].

2.3. 4D human motion models
The work most closely related to ours has the same goal: generating dense 4D

human motion for arbitrary identities [32]. To achieve this, two linear models are
combined: one capturing static shape data and one capturing MoCap data. The
two models are coupled based on semantic parameters, i.e. the method couples
shape parameters from the first and skeletal motion parameters from the second
linear model that match in terms of their semantic parameters. This allows gener-
ating 4D human motion sequences. In contrast to this method, our model learns
using morphology and motion jointly rather than correlating two separate linear
models. Furthermore, we employ a non-linear model, which allows to capture
non-linear dependencies during training. We show experimentally that our model
generalizes better than a linear one.

Furthermore, methods have been proposed that learn from 4D data (e.g. [33,
34, 35]). Unlike our work, these methods are subject-specific or train even on
a single motion sequence. They can therefore not learn the interplay between
morphology and motion. A recent work proposes a deep latent variable model
for 4D human motion synthesis [36]. Like in our model, 4D motion sequences
are mapped into a latent space, which allows to control the motion with sparse
input. Unlike in our work, the focus is not on capturing the interaction between
morphology and motion, but rather on modeling the probabilistic character of
motion performed by a single subject.

Another recent work proposes using implicitly defined surfaces and correspon-
dences over time to learn from 4D sequences [37]. From a set of 4D input se-
quences, the method learns a temporal flow of occupancy information. While this
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work has been applied successfully to human motion data, it does not allow to
decouple the influence of identity and motion information. Furthermore, while
interpolations between static input frames is possible, interpolation between 4D
sequences is not supported by this model.

3. Generative model of multi-frame sequences

Learning from spatially and temporally dense 4D human motion data is chal-
lenging. First, 4D data are high-dimensional consisting of hundreds of frames
containing thousands of vertices each. In addition, raw capture data is unstruc-
tured, which makes even comparing individual frames difficult, to say nothing of
multi-frame sequences. Learning from unstructured 4D data directly, e.g. using
a network that consumes a sequence of captured scans, would require the net-
work to learn how to compare frames while learning variation in morphology,
pose, global displacement and temporal evolution. Consequently, training would
require significant computational resources, and large datasets, which make this
approach impractical. To overcome this challenge, we choose to leverage exist-
ing shape spaces of static 3D human bodies, which allow for a low-dimensional
representation of multi-frame sequences by concatenating per-frame information.
Unlike existing works that use such per-frame representations, we explicitly in-
clude information on global displacements and temporal information. This allows
the network to learn variations and subsequently generalize along these dimen-
sions. We choose a representation that explicitly decouples different factors of
variation including pose, global displacement and temporal information, thereby
helping the network to learn a structured latent space.

The second challenge when learning to generate multi-frame sequences is that
the model needs to capture the influence of morphology on body motion. We
propose the first solution to this problem based on a simple architecture. In partic-
ular, we propose a modified version of the Conditional Variational Autoencoder
(CVAE) [38] that consumes multi-frame 4D human motion sequences, and condi-
tions the decoder on morphology. This allows to learn a single latent motion space
that encodes multi-frame 4D sequences. We demonstrate experimentally that this
latent space is structured, and allows for meaningful interpolations along different
axes of variation.

The following gives details on the representation, the architecture, and the
training used to learn our model.
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3.1. Representation for multi-frame 4D sequences
We leverage existing static shape spaces developed for 3D human body sur-

faces to reduce the dimensionality of a multi-frame 4D sequence. Note that such a
sequence always shows a single morphology deforming over time. This informa-
tion can be exploited in the representation by building upon models that decouple
the influence of morphology and pose for static data, and by holding morphol-
ogy constant over the multi-frame sequence. Various models with this decoupling
property have been proposed (e.g. [13, 1, 14]). They all represent a static body
surface f using three parameter vectors: morphology β, skeleton joint informa-
tion θ, and global translation γ. The models allow to generate static bodies with
a function that takes input parameters (β, θ, γ). In our implementation, we lever-
age the commonly used SMPL model [14] as the AMASS dataset [9] we use for
training is parameterized by this model.

Let S = [f1, f2, . . . , fn] be a 4D human motion sequence consisting of n
3D frames fi. SMPL allows to represent S using a single morphology vector
β along with per-frame pose and displacement vectors Θ = [θ1, θ2, . . . , θn] and
Γ = [γ1, γ2, . . . , γn], respectively. This representation alone does not include in-
formation on the temporal evolution of the motion. Since we wish to capture this
information in our latent motion space to allow for generalization along this axis,
we additionally include a sequence of per-frame timestamps Φ = [φ1, φ2, . . . , φn]
in our representation. This results in a representation [β, χ] with motion informa-
tion χ = [Θ,Γ,Φ] per sequence S. Note that in contrast to existing works, we
model Γ and Φ in the multi-frame sequence representation to retain variation in
global displacement (e.g. walking backward or forward) and temporal evolution
(e.g. walking or running), with the goal of generalizing along these dimensions.
The time-stamped frames allow the network to place freely and on any time span
length the reconstructed data.

In practice, we represent parameters β and Γ as in the original SMPL model.
We chose to represent the rotations in Θ with a 6D vector that models rotations in
a continuous manner and was shown to outperform other commonly used repre-
sentation like quaternions or axis angles when training neural networks [39].

It remains to outline how to map a given raw motion sequence to this repre-
sentation. To this end, we fit the SMPL model to the sequence, thereby spatially
aligning the data. In our experiments, we use existing solutions to this prob-
lem [40, 9], and more details on the fitting are provided in §4. In the following,
we denote such a sequence of spatially aligned meshes byM = [m1,m2, . . . ,mn].

All sequences used for training need to be comparable in terms of the action
that is performed. To achieve this, all training sequences are segmented and pre-
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processed as described in §4.1. We do not temporally align the training data in
this work, as we found experimentally that an alignment with dynamic time warp-
ing [41] leads to similar results as uniformly sampling the sequences.

3.2. Architecture
Our goal is to generate multi-frame 4D human motion. One interesting as-

pect is to learn the relationship between morphology and spatio-temporal motion
patterns. To build generative models, variational autoencoder architectures were
shown to be highly effective. Furthermore, the Conditional Variational Autoen-
coder (CVAE) architecture [38] allows to condition both encoder and decoder on
input variables, thereby learning conditional distributions.

Our architecture is inspired by CVAE, and shown in Fig. 2. Note that unlike
prior works, our architecture consumes multi-frame sequences, thereby learning
a latent motion space. In particular, the motion vector χ is encoded into a low-
dimensional latent vector z, and the morphology representation β is used as con-
dition. However, unlike the original CVAE, we do not condition the encoder with
β and only learn the distribution of (z | χ), as in a standard VAE. The decoder
takes both β and z as input to reconstruct χ to learn the distribution of (χ | z, β),
as in CVAE. The reason for this change is that conditioning the encoder on β
caused a loss in performance. We believe this is because unlike in CVAE, where
conditions are discrete, our morphology condition is continuous. For training, we
have only few motion sequences for the same β, yet many different values of β,
and hence learning a latent distribution for each β separately is not feasible. The
decoder on the other hand is still conditioned by the morphology information,
thereby allowing to capture the dependencies between χ and β.

As usual for VAEs, encoder outputs are interpreted as mean µ and standard
deviation σ of the prior distribution of the latent space, and the corresponding
latent vector z is randomly sampled as z = µ+ ε× σ, with ε ∼ N (0, 1).

The decoder takes as input z ∈ R64, β ∈ R8, and directly outputs χ̂ =
(Θ̂, Γ̂, Φ̂) which are converted back to a sequence of meshes by applying SMPL
to each frame.

3.3. Training
The network is trained as a classical VAE with a two term loss: a reconstruc-

tion term which represents the difference between the input and output vectors,
and a regularization term to constrain the latent variables to follow a known prior
distribution. The training is divided into two phases. First, we consider a recon-
struction loss on the spatio-temporal representation χ and second, we replace this
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Figure 2: Architecture: Input and output are 4D sequences, mapped to a single latent vector z.
The decoder is conditioned by the morphology β. χ is the concatenation of timestamp φ, joint
rotations Θ and translation Γ. Encoder and decoder are a succession of fully connected layers
with ReLU activations.
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loss by a loss computed directly on the sequence of meshes M in R3. Considering
a reconstruction loss on χ first allows for a fast and memory efficient initialization.

Reconstruction loss on χ. The standard reconstruction term would be the squared
L2 distance between χ and its reconstruction χ̂. To balance the influence of the
different types of information captured by the motion representation, we divide

this loss into three terms: one on pose Lpose =
(

Θ− Θ̂
)2

, one on translation

Ltrans =
(

Γ− Γ̂
)2

, and one on time Ltime =
(

Φ− Φ̂
)2

.
To minimize these three losses, which do not have the same numerical magni-

tude, we use adaptive weights to trade off their relative influence [42]. In particu-
lar, the weights assigned to the partial losses are updated during training based on
the norm of the gradient of the partial loss and a learning rate. This ensures that
the losses are decreasing in similar proportions. This gives a total reconstruction
loss

Lrec = ωposeLpose + ωtransLtrans + ωtimeLtime, (1)

where ωpose, ωtrans and ωtime are the respective adaptive weights for the recon-
struction losses.

Reconstruction loss in 4D. The second reconstruction loss that we consider is the
squared L2 loss between the sequence of meshes M = [m1,m2, . . . ,mn] and its
reconstruction M̂ . Therefore the contributions of the losses Lpose and Ltrans are
merged into one spatial loss :

Lspatial =
(
M − M̂

)2
, (2)

which gives the 4D reconstruction term

Lrec4D = ωspatialLspatial + ωtimeLtime, (3)

where ωspatial is a new adaptive weight of the spatial loss. Optimizing this loss
leads to more accurate reconstruction of the 4D multi-frame sequences because it
uses the full surface information, but it comes at the cost of higher computation
time.

Regularization loss. The regularization term we use is the squared Kullback-
Leibler (KL) divergence between the learned prior distribution N (µ, σ) of our
latent variable z and the standard normal distributionN (0, 1), denoted by LKL in
the following.
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Optimization. A common problem when training VAEs is the weighting of the
regularization loss versus the reconstruction loss. We chose to use a fixed weight
factor ωKL to trade off these losses. In the end, the training first optimizes the loss

Linit = Lrec + ωKLLKL (4)

to provide a good initialization and optimizes

L = Lrec4D + ωKLLKL (5)

in a second phase to refine the model by using surface information.

4. Evaluation

All results are also shown as supplemental videos.

4.1. Data
Training data. Training our model requires a dataset of human motion sequences
densely captured in 4D. Currently, few such datasets exist (e.g. [6, 40]), and they
do not contain enough sequences to train our model. For this reason, we base
our training set on the recently published AMASS data [9]. This dataset regroups
a large set of MoCap recordings and fits the SMPL model with additional soft-
tissue motions to all data. This dataset is semi-synthetic in the sense that while
the data used for training is based on real captures of sparse markers, the dense
3D geometry per frame is synthesized using a model.

In particular, we construct our training dataset as subset of AMASS by extract-
ing subsequences containing at most a cycle of leg motion. We automatically find
segments in the sequences of AMASS that contain a single cycle by considering
the rotation of the hips joints. We manually prepare two reference sequences, a
gait cycle starting with the left foot, and another one starting with the right foot.
We then compare the hip joint rotations from each subsequence of an AMASS
sequence to the reference cycle using dynamic time warping as distance. If the
distance is below a threshold, we consider the subsequence as motion cycle. As
post-processing, we prune segments with a duration above 3 seconds or below 0.3
seconds; they are the results of bad cuts resulting in incomplete or multiple cycles.
This provides us with 13121 sequences of motion cycles of various duration and
motion types. The majority of our motions comes from walking sequences: walk-
ing forward, backwards, turning left or right. But our dataset also encompasses
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sidestep, jogging, running, front slits or dancing motions as the threshold was per-
missive in the segmentation process. As the segmentation does not discriminate
on arm motion, all these motions can have various arm movements like walking
while carrying something on the head or walking using a handrail. Our training
set includes hundreds of different subjects performing different kinds of motions.

To allow for efficient learning, the sequences are spatially aligned by zeroing
the initial translation and we use the identity rotation as initial rotation of the root
joint to be an invariant in the ground plane.

Test data. We consider two test datasets. One called AMASS test set in the follow-
ing, contains 1027 sequences. AMASS originating from a collection of MoCap
datasets, we took care that sequences from a dataset were not included both in
training and testing splits as per author recommendation1, we used ”MPI mosh”,
”SFU”and ”TotalCapture” for testing, all the others for training. The second one,
called Kinovis test set in the following, contains 4D motion sequences captured
using the Kinovis multi-view platform. This dataset is an extension of the dataset
used in [40]. It allows to evaluate the generalization of the model on a dataset
based on densely captured 4D data where SMPL fittings are not obtained solely
from motion capture data. This smaller dataset contains 37 gait cycles extracted
from walking and running sequences. To pre-process this data, we first fit SMPL
to the available 4D sequences and segment individual gait cycles using the tech-
nique described in §4.1. Some sequences from this test set contain less than 100
frames, so we augmented the data to 100 frames using linear interpolation between
the 6D rotations.

4.2. Implementation Details
To build our motion representation χ, we discard the 2 foot joints of the skele-

ton because in AMASS they always have a constant rotation so they carry no
information. It leaves us with a total of 20 joints. Our representation χ consists
of 100 time-stamped frames, each of which is represented by 124 parameters (120
for θ, 3 for γ and 1 for φ). To normalize the data, we normalize the translation γ in
[−1, 1]3, the timestamp φ is normalized in [0, 1] and we remove the identity rota-
tion [1, 0, 0, 0, 1, 0] from the 6D representation. This centering of the rotation lead
to a significant gain in reconstruction accuracy compared to the classic scaling of

data
θ − µθ
σθ

. We believe it is due to some components having low standard devi-

1https://github.com/nghorbani/amass
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ation so centering the data without scaling prevents instabilities due to a division
by a small number.

For both training phases we train respectively for 5000 epoch with Linit and
200 epoch with L. We use ωkl = 0.01 for both steps to weigh the regularization
loss and we chose a latent dimension for the motion space χ of 64, and a dimen-
sion of 8 for β. We argue these choices in section 4.3 , we believe it to be the best
compromise between smooth interpolations and good reconstruction capacity.

We train the network using the pytorch library with the ADAM optimizer.
When optimizing Linit, we use a learning rate of 1e−3 and a batch size of 256.
When optimizing L, we use a batch size of 16 for memory reasons and a learning
rate of 1e−4.

We used the SMPL body model implementation proposed by the AMASS
authors which is an implementation of the SMPL model with hands and dynamic
components (SMPL-H + DMPL 2). However, we did not consider hands joints and
DMPL as we wanted to focus on larger spatio-temporal features of the motion.

4.3. Ablation studies
We now investigate the reconstruction capability and latent space regulariza-

tion of the model. The reconstruction capability of the model characterizes its
ability to reconstruct examples unseen during training. A reconstruction is defined
by the output sequence χ̂ obtained from our model combined with the ground truth
morphology parameters β. The latent space regularization allows for semantically
meaningful interpolations between latent points and the generation of new unseen
sequences.

Reconstruction. The reconstruction capability of the model is mainly controlled
by the latent space dimension.

Fig. 3 shows the impact of the dimension of z on the reconstruction error
on the AMASS test set. As expected, the bigger the latent space dimension, the
smaller the error. However, the error quickly diminishes until dim(z) = 64, then
it starts to stagnate. Therefore we chose to use a latent dimension for z of 64.

Latent space regularisation. The regularisation of the latent space is a major fac-
tor as the model should be able to generalize to interpolations between existing
motions. This regularisation heavily depends on the coefficient ωKL which weighs
the influence of latent space regularization at the cost of reconstruction accuracy.

2https://github.com/nghorbani/human_body_prior/tree/master/
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Figure 3: Plot of the mean vertex error over a sequence on the AMASS test set for models trained
with different z dimension. The boxes show the first, second and third quartiles of the error, the
whiskers are defined following Tukey’s method [43].

Fig. 4 shows the reconstruction error on models trained with different values
for ωKL. Note that the smaller ωKL, the smaller the reconstruction error. However,
with ωKL = 0.001, the model no longer allows for plausible interpolations in
latent space, a problematic interpolation is shown in the supplementary material.

Therefore, we chose ωKL = 0.01 for our final model. Note that this value is
directly connected to the scale of Lrec4D as this coefficient is not dynamic and that
we used the mesh vertex positions in meters during training.

4.4. Comparison to baseline model
We further evaluate the reconstruction performance of our model and compare

it to a linear baseline. The baseline is a principal component analysis (PCA) fitted
on the training data [χ, β]. Note that unlike our model, PCA has access to mor-
phology information in the ”encoder” and reconstructs both χ̂ and β̂. To provide
a fair comparison, we consider the original β instead of β̂ in PCA reconstructions
and set the PCA latent dimension to dim(z) + dim(β).

Fig. 5 shows the statistics of the mean vertex error per motion sequence for
PCA, our model after initialization, and our fully trained model. The PCA pro-
vides good reconstructions results which we did not expect from a linear model
on our data. But our fully trained model leads to lower errors by a large margin on

human_body_prior/body_model
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Figure 4: Plot of the mean vertex error over a sequence for three different models trained with
different ωKL. The boxes are defined like in Fig. 5.

both test sets, demonstrating that a simple non-linear conditional model greatly
outperforms the linear baseline in terms of reconstruction capabilities. Further-
more, our model improves over its initialization, demonstrating that optimizing a
loss in 4D leads to more faithful results than operating on a sparse skeletal repre-
sentation.

4.5. Motion space structure and interpolation
Fig. 1 (top right) visualizes some samples in motion space by linearly reduc-

ing its dimensionality to two. It shows that the learned motion space is strongly
structured. To further evaluate the structure of the learned latent space along with
the quality of generated sequences, we interpolate between different motions cho-
sen manually from the AMASS dataset. Both z and β are interpolated linearly.
To evaluate how the model behaves spatially and temporally, we interpolate along
all the different axes captured by our motion representation χ, namely temporal
information, global displacement, and joint poses. Fig. 6 shows the corresponding
results, where a subset of all frames of the 4D sequence are rendered simultane-
ously and color-coded by the time at which they appear.

Interpolation of temporal information. To inspect the temporal information learned
by our model, we interpolate between a running and a walking motion, which
have both different durations and dynamics. We observe that the duration given
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Figure 5: Plot of the mean vertex error over a sequence. The boxes are defined like in Fig. 3.

Interpolation of temporal information Interpolation of global displacement

    

Interpolation of pose (global) Interpolation of pose (localized)

    

Figure 6: Each figure shows the linear interpolation in motion space (middle) between a start (left)
and a target (right) 4D motion sequence color-coded by the time at which the rendered frames
appear in the sequence. Each sequence corresponds to a single latent vector z in motion space.
Interpolations along all axes lead to semantically meaningful interpolations. Top-Left Interpola-
tion between running and walking along temporal axis. Top-Right Interpolation between walking
backward and forward along global displacement axis. Bottom-Left Interpolation between left
and right turn along pose axis (global). Bottom-Right Interpolation between a walk and a walk
carrying an object on the head. Arm motion is interpolated (localized).
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by
∑100

j=0 φj of the intermediate sequences monotonically decreases when going
from running to walking. The intermediate sequences are realistic in terms of
their dynamic behaviour as shown in Fig. 6 (top left), which shows that the mo-
tion space has captured information on the temporal evolution of the motion and
is able to generate interesting new 4D samples.

Interpolation of global displacement. To inspect global displacement, we inter-
polate between a forward and a backward walk. We observe that an intermediate
sequence corresponds to a really small step as shown in Fig. 6 (top right). There
were no steps this small in the training set. The latent space has captured informa-
tion on Γ and is able to generate interesting new scenarios unseen during training.

Interpolation of pose. To inspect the learned information of pose, we distinguish
between global pose and pose articulation of the body. First, we interpolate be-
tween sequences of turning left and turning right while walking, exhibiting mostly
global pose change. The intermediate sequences gradually change from a left turn
to a right turn as shown in Fig. 6 (bottom left).

Second, we interpolate between a walking motion and a walking motion while
carrying an object on the head. The intermediate sequence gives a realistic inter-
mediate position for the arms, and gradually elevates them to the head level as
shown in Fig. 6 (bottom right). While the interpolated motion is not natural as
there is no reason to walk with the arm half-raised, the result shows that the latent
space has captured information on Θ, and can generate interesting motions not
seen during training.

5. Application to 3D human motion prediction

As application, we propose to use our model for dense 4D human motion
prediction. Note that human motion prediction has received considerable interest
in the case of spatially sparse data (e.g. [26, 4]) and dense predictions from 2D
video [30], as discussed in §2. However, to the best of our knowledge, we are the
first to study this problem for spatially dense 4D human motion data.

Given a short sequence of spatially dense motion data, we leverage our model
to predict the full sequence. We consider an observed sequence of an incom-
plete gait cycle S = [f1, ...fk], and use our model to predict the following frames
[fk+1, ...fn].

The motion prediction optimizes latent vectors [z, β], such that the first k
frames of the sequence Ŝ decoded using [z, β] minimize the Euclidean distance to
the given input sequence S. In this way, the first k frames of the reconstruction Ŝ
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match S, and the remaining frames complete the gait cycle. We perform a simple
gradient-based optimization using the adam optimizer from pytorch and the L2

distance between the the first k frames and their reconstruction.
To the best of our knowledge, no prior work exists on this problem, thus we

adapt a state-of-the-art solution for skeletal human motion prediction [4] to our
scenario as follows. We replace the skeleton used by this method by the SMPL
skeleton, and run the Residual sup. method which is based on a recurrent archi-
tecture. We then combine the predicted skeletal motion with the ground truth
morphology β, and use SMPL to obtain per-frame reconstructions. Note that this
advantages [4] in two ways. First, we extend the method to make densely sam-
pled predictions in space, which the original method does not propose. Second,
we use ground truth morphology information for this extension, while our method
optimizes for β.

Both models use the full training data. To feed the data to the recurrent archi-
tecture, we convert it to a fixed framerate of 100fps. For both models, we give
0.25s of motion as input. Note that this test scenario is adapted for both [4] and
ours, since the recurrent model can only predict future frames while our model
can complete sequences (i.e. add past and future frames) as long as the given in-
put frames are labelled with a consistent set of time-stamps.

Fig. 7 shows the mean vertex error over time between the original and the
reconstructed sequences. The mean at time t is computed over all the vertices
of frame t for all test sequences of length at least t. Our model outperforms the
recurrent model for this application.
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Figure 7: Comparison to Residual Sup. [4] on the AMASS test set. The first 0.25s are given as
input.
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6. Application to motion completion from spatio-temporally sparse input

This section demonstrates our model’s performance for spatio-temporal com-
pletion. Given a set of sparse, unmatched and temporally inoherent set of points,
our model can retrieve a spatio-temporally aligned sequence by leveraging its
learned representation of human surface motion priors.

6.1. Completion dataset
We introduce a new dataset of cyclic human motion (CHUM). The data was

captured using a 4D modeling platform with 68 RGB cameras and a standard
Qualisys motion capture system. Data consists of dense scans of approximately
10000 points acquired at 50 frame per second with synchronised MoCap data for
16 markers.

We recorded 4 actors with different morphologies (2 men and 2 women) per-
forming various cyclic motions like walking, running, side-stepping of skipping.
For each motion, we provide RGB images, 3D textured meshes and synchronised
MoCap data with 16 markers.

For our experiment, we segmented 4 gait cycles manually for each original
sequence and we found an initial 3D transformation (rotation + translation) to
align each segment. Finally, we sampled 100 frames from each sequence. For
sequences with less than 100 frames we uniformly duplicate frames until we reach
100 frames. Note that for this application, we do not need to fit SMPL to the dense
scans.

6.2. Completion methodology
The input considered is an incomplete sequence of frames S = [f1, ..., fn],

where each frame is a (sparse) set of 3D points without any temporal correspon-
dence, with associated time stamps. An optional input can be given in the form
of motion capture markers that provide correspondence information over time.
We wish to find latent vectors (z, β) that describe the observations well, which
automatically completes missing information in space and time.

We follow a similar methodology as in Section 5 and optimize for a latent
vector (z, β) that best fits the available data. To do so, we minimize the loss

Lcompletion = ωdenseLdense + ωmocapLmocap + ωtimeLtime, (6)

where Ldense is the Chamfer distance between the sequence generated by the
model and S, Lmocap is the L2 distance between the captured motion capture
markers and 16 manually selected vertices of the SMPL template, and Ltime is
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the L2 loss on the timestamps. The weights ωdense, ωmocap and ωtime are adap-
tive [42]. The weight ωmocap is set to zero when no markers are available and the
weight ωdense is set to zero when no dense data is available. In the following, this
variation of ωmocap allows to evaluate the benefit of having corresponding points
over time for the completion task.

In the following, we evaluate the accuracy of our model to reconstruct dense
4D data based on partial sparse input data. The reconstruction error is computed
using the Chamfer distance between our result and the densely captured 4D se-
quences.
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Figure 8: Mean chamfer distance between completed sequence and dense scans. In red, MoCap
information and scans are used in Lcompletion, in blue, no MoCap information is used and in
green, no dense information is used. The boxes are defined like in Fig. 3.

Spatial completion. We first evaluate the quality of spatial completion by varying
the number of 3D points used in the loss Ldense and by measuring the influence
of activating the loss Lmocap in Equation 6. To compute Ldense, we randomly
sampled a fixed number of pointsM per captured scan to simulate spatially sparse
data. Note that the sampled points are not in correspondence across time. Fig. 8
shows the evolution of the reconstruction error when varying M . The red plots
show the results obtained when using the loss of Equation 6 for varying numbers
of M . The green plot shows the case for ωdense = 0. The blue plots show the
case where M varies and ωmocap = 0. While the results improve overall for
increasing observations (i.e. larger M ), for M = 50, the reconstruction error is
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already around 25mm. This quality is achieved because our model optimizes for
all frames simultaneously, so few points per scan are sufficient to find a plausible
solution. An example of the completion task with M = 100 is shown in Figure 9.

  

Figure 9: On the left, the sparse scan for M = 100 (red) and the MoCap data (green) are shown,
. On the right, the completed sequence obtained when optimizing Lcompletion is shown. The
original sequence is a kick sequence from CHUM.

Temporal completion. Second, we evaluate the quality of temporal completion
by varying the number of input frames used in all losses. We again measure the
influence of Lmocap in this scenario. To vary the number of input frames, we
uniformly sample a fixed number of frames from each test sequence. Fig. 8 shows
the evolution of the reconstruction error. The 100 frame completion task which
includes all the frames is given as a reference, the model extrapolates with almost
no loss of precision when given only a fifth of the frames (20 frames) and the error
is still low even when extrapolating from a twentieth of the frames (5 frames).
This shows that our spatio-temporal model allows for accurate completions from
captures acquired at low frame rates.

Spatio-temporal completion. Finally, we evaluate our model’s completion quality
for data captured sparsely in both time and space. To this end, we downsample
our test sequences both spatially and temporally, and optimize the losses. Table 1
summarizes the reconstruction errors. For reference, the result when optimizing
with ωdense = 0 is shown in green font, and constant over varying numbers of
M . The result when setting ωmocap = 0 is shown in blue font, and the result
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with the full loss including motion capture markers in red font. Note that even
when completing both spatially and temporally, the model still performs well.
The motion capture information gives useful guidance when there are few points
per scan but this is not necessary for denser scans.

Table 1: Mean error over the test set (in mm) for the different combinations and optimization
losses. In red, Lcompletion was used with dense and mocap data, in blue, ωmocap was set to 0 and
in green, ωdense was set to 0

Points per scan M
Number of frames

5 20 100
0 48 44 43
50 33, 36 26, 27, 26, 26
100 31, 33 25, 25 24, 24
1000 29, 30, 24, 23 24, 23
10000 30, 26 25, 21 24, 21

7. Conclusions and future work

This work presented a first 4D human body motion generator that represents
multi-frame sequences in a single latent space. We demonstrated that this latent
motion space is structured and allows to synthesize meaningful new motions by
interpolation. We further applied this model to motion prediction.

For future work, it will be interesting to study how our model can be leveraged
for different applications. For instance, our model can directly be fit to spatially
and temporally sparse data for completion applications by optimizing using the
learned decoder. Examples include reconstructing dense 4D human motion from
sparse MoCap data available for few frames. Furthermore, as the model captures
the relationship between morphology and motion, it can potentially be leveraged
to advance the state-of-the-art in tasks such as motion transfer.

This study focused on locomotions with cyclic leg movements. In the future,
we would like to investigate the inclusion on a wider variety of action to take full
advantage of the variety of motions available in the AMASS dataset.
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