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Abstract

We propose a framework to learn a structured latent
space to represent 4D human body motion, where each
latent vector encodes a full motion of the whole 3D hu-
man shape. On one hand several data-driven skeletal an-
imation models exist proposing motion spaces of tempo-
rally dense motion signals, but based on geometrically
sparse kinematic representations. On the other hand many
methods exist to build shape spaces of dense 3D geom-
etry, but for static frames. We bring together both con-
cepts, proposing a motion space that is dense both tempo-
rally and geometrically. Once trained, our model gener-
ates a multi-frame sequence of dense 3D meshes based on
a single point in a low-dimensional latent space. This la-
tent space is built to be structured, such that similar mo-
tions form clusters. It also embeds variations of dura-
tion in the latent vector, allowing semantically close se-
quences that differ only by temporal unfolding to share
similar latent vectors. We demonstrate experimentally the
structural properties of our latent space, and show it can
be used to generate plausible interpolations between differ-
ent actions. We also apply our model to 4D human motion
completion, showing its promising abilities to learn spatio-
temporal features of human motion. Code is available at
https://github.com/mmarsot/A structured latent space.

1. Introduction

This work investigates learning a structured latent space
to represent and generate temporally and spatially dense
4D human body motion, where a single point of a low-
dimensional latent space represents a multi-frame sequence
of dense 3D meshes. Recently, several works have proposed
to learn such motion priors for 4D human body sequences
of arbitrary motion by capturing information about pose
changes over time [16, 41, 17], in the case of fixed sequence
duration. Here, we investigate an orthogonal scenario which
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models sequences of varying duration, by considering mo-
tions sufficiently similar to allow temporal alignment.

Learning a generative model of 3D human motion of
varying duration with structured latent space is of inter-
est for a wide set of applications in computer vision and
graphics, where a lightweight 4D representation translates
to gains in information processing. By capturing a spatio-
temporal motion prior, the model opens new directions
for many completion tasks given temporally, geometrically
sparse or incomplete inputs, as it allows to reason within a
restricted plausible spatio-temporal solution space.

Learning this space is a difficult task with two major
challenges. First, the model needs to capture the intertwined
variations of different factors, e.g. morphology, global mo-
tion, body pose, and temporal evolution of the motion, and
do so for motions that differ in duration. In particular, while
it is known that morphology impacts the way a motion is
performed [35, 39], it remains challenging to take this cor-
relation into account during motion generation. Second,
the amount of data that needs to be processed for train-
ing is large, as typical acquisition systems for dense human
body motions produce 30−50 frames per second, with each
frame containing thousands of geometric primitives.

To address these challenges, we take inspiration from
two existing lines of work. The first studies temporally
dense skeletal data, with the goal of generating skeletal hu-
man motion sequences that capture the temporal evolution
of the global motion [37, 33, 21]. These do not address
dense surfaces. The second line of work represents real-
istic 3D human body surfaces in a low-dimensional shape
space [3, 26], but do not consider the temporal dimension.

We combine the advantages of both in a data-driven
framework that learns a latent motion representation, which
allows to simultaneously represent temporal motion infor-
mation and detailed 3D geometry at every time instant of
the motion. The learning uses multi-frame sequences as in-
put and output. Inspired by works on morphable body mod-
els [35, 2], we align the training sequences both temporally
and spatially, which leads to comparisons at correspond-
ing instances of the motion and anatomically corresponding
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Figure 1: We learn a latent motion space from multi-frame 4D sequences. Left: Training sequences consist of different
motions performed by different subjects (color-coded as shown in legend). Bottom right: Encoder-decoder architecture
learns a latent motion space that encodes motion sequence χ into latent vector z; the decoder conditions z on morphology β.
Top right: Structured latent space. Plot shows subset of 51 motions, manually labelled by action, in 2D projection of latent
space. Actions form clusters.

points. In particular, we consider motions whose duration
vary significantly while geometrically similar enough to al-
low for temporal alignment, performed by actors in minimal
clothing to allow for effective spatial alignment.

In our experiments, we consider motions during which
the hip performs a cycle, as this includes common motions
such as walking and running, and generalizes to more com-
plex motions such as dancing or jumping jacks, while im-
posing no constraints on the arm movements. The resulting
latent space is verifiably structured, and allows to gener-
ate plausible interpolations between different types of loco-
motion that outperform linear and per-frame interpolation
baselines. As illustrated in Fig. 1, our motion space also
learns the interaction between morphology and motion, as
generating motions with the same point in latent space con-
ditioned on different representations of morphology leads
to motion differences that confirm findings in prior studies
conducted on sparse motion data [35].

Our model can serve as prior to complete both spatially
and temporally sparse sequences. Given as input unmatched
and temporally incoherent point clouds sparsely sampled in
space or time, accurate complete 4D reconstructions are ob-
tained. For spatio-temporal completion, our method out-
performs state of the art motion priors that encode human
motion sequences of fixed duration [16, 41] with sufficient
temporal samples, in spite of being trained on significantly
less data. It also outperforms a state of the art spatial com-

pletion baseline when few samples are available [44].
In summary, we make the following major contributions.

First, we present a latent motion space that allows repre-
senting and generating multi-frame sequences of dense 3D
meshes of varying duration, which accounts for interaction
between morphology and motion. Second, we demonstrate
that this latent space is structured: similar motions form
clusters, and linear interpolation in latent space outperforms
baselines. Third, when using our motion space as prior,
we outperform state of the art for the application of motion
completion from sparsely sampled data in space or time.

2. Related Work
The vast literature on generation of human models and

motions can be roughly divided into three categories. Tem-
porally dense encompasses methods that learn the structure
of human motion on a representation that is sparse in 3D
space. Spatially dense encompasses methods that generate
realistic 3D human models without treating long-term mo-
tion or dynamic effects. Full 4D methods combine long-
term motion models with dense 3D shapes per frame.

The first two lines of work have been studied for the past
two decades. Studies on temporally dense human motion
models proposed different data-driven methods to synthe-
size motion patterns of skeletal representations or sparse
marker positions e.g. [30, 36, 37, 10, 17]. These works ef-
fectively learn the structure of human motion over durations



of multiple seconds. Studies on spatially dense human mod-
els proposed a variety of data-driven methods to synthesize
geometrically detailed 3D models e.g. [2, 3, 22, 25, 19].
Some models have been extended to learn soft-tissue de-
formations [26, 18, 31]. Recent works in this area leverage
deep learning techniques, and can decouple variations due
to different factors e.g. [11, 7, 45] or include hands, faces
and soft-tissue deformation, e.g. [40]. These works gener-
ate realistic and geometrically detailed 3D human models.

Over the past few years, a number of works proposed
studying 4D human motion data that is densely sampled in
space and time. Some work aims to generate dense 3D hu-
man motion from sparse MoCap [3, 18, 20, 9] or 2D video
data [13, 43]. Given as input marker points or a 2D image
per frame of the motion, these works reconstruct dense 4D
motion data. Of particular interest for our work is that sta-
tistical body models learned on static data have been fitted
to MoCap data, providing a large corpus of semi-synthetic
dense 4D data [20]. This provides the community access to
a large 4D dataset, which we leverage in our work.

The works most related to ours learn spatially and tem-
porally dense 4D motion models of bodies in a data-driven
way. The first work to tackle this problem [14] combines
two linear models: one capturing dense static 3D shape data
and one capturing the motion of MoCap markers. The two
linear models are coupled based on semantic parameters in-
cluding weight and height, which allows generating 4D hu-
man motion sequences. Inspired by this idea, our model
learns a non-linear model from 4D data, which includes
both morphology and motion. We show experimentally that
our model generalizes better than a linear one.

With 4D data becoming increasingly available in recent
years, a number of studies propose data-driven methods
trained on 4D data. First methods including [1, 5, 27, 28]
train on either a single motion sequence or multiple se-
quences showing the same subject performing different mo-
tions. A recent work that studies motions of a single subject
proposes a deep latent variable model for 4D human motion
synthesis [8] to model the probabilistic character of motion.

Recently, 4D motion priors of different subjects perform-
ing different motions have received considerable attention.
One line of work uses implicitly defined surfaces over time
to learn from raw 4D sequences [23, 12], and successfully
process human motion data. However, the high dimension-
ality of the 4D data constrains the sequences to few frames.

To consider longer temporal spans, other works build
motion priors from sequences of pose parameters of tem-
plate aligned meshes. These works include methods that
consider a set of labeled actions to learn motion generation
based on action labels [24] and methods that model motion
as a sequence of transitions between poses [29, 15]. Most
similar to our work are methods that build motion priors
of unlabeled 4D human motion data [16, 41]. These meth-

ods consider motions of a fixed duration and encode them
in a motion space, which captures information about pose
changes over time. In contrast, we investigate learning a
motion space for 4D sequences of varying duration. We
demonstrate experimentally that our motion space outper-
forms [16] and [41] for motion completion.

3. Generative model of multi-frame sequences

Two previously identified major challenges need to be
tackled in our model: first the very large dimensionality of
the problem as is concerns temporally dense sequences of
dense 3D meshes; second the modeling of intertwined vari-
ations in the generation of 4D sequences, between subject
shape, morphology, motion, and temporal unfolding.

To address them, we first need to ensure that we produce
a compact and structured motion representation. Our gen-
eral strategy for this is to extend the static shape space rep-
resentations (e.g. SCAPE) to the spatio-temporal domain,
with a similar low-dimensionality characteristic, as detailed
in Section 3.1. Second, we articulate our data-driven strat-
egy around an encoder-decoder architecture (Section 3.2).
Notably, to explicitly model the interaction between mor-
phology and motion, we choose to condition the motion
generation on a representation of morphology. Third, we
build our experimental demonstration in a use case that ben-
efits from these choices, focusing our effort on a database
of 4D human motion sequences that perform a cyclic mo-
tion of the hip joint. This allows to evidence the intended
behaviour for this space, which is to group similar loco-
motions (e.g. all walking motions) in clusters. Section 3.3
explains how the model is trained.

3.1. Representation of motion sequences

Fig. 2 (top left) shows our representation for 4D se-
quences. A 4D human motion sequence is parameterized
by a single point z in motion space and a identity parameter
β representing the morphology of the moving person.

Anchor frames To represent motion data, we align an
unstructured spatio-temporal motion signal. Temporally,
we uniformly sample n frames from the motion signal,
which we call anchor frames in the following. These an-
chor frames allow representing motions of various duration
with the same number of frames. Spatially, we build on 3D
morphable body models to align the frames e.g. [22, 25, 19].
These models represent static 3D human body surfaces us-
ing a common mesh template. This results in n aligned an-
chor meshes, making motion comparison practical.

Representing temporal evolution The resulting an-
chor mesh sequence M = [m1, . . . ,mn] does not rep-
resent the temporal evolution of a motion. The tempo-
ral sampling causes an information loss, as it is invari-
ant to similar motions with different temporal unfolding



like walking and running. Therefore, we associate to an-
chor mesh mi a timestamp τi, and call the timestamp
vector T = [τ1, . . . , τn]. The representation [M, T ] is
high-dimensional. To simplify processing and disentan-
gle the influence of morphology on motion, we leverage
3D morphable body models that decouple the influence of
morphology and pose. By holding morphology constant
over M , we can represent each mi using parameter vec-
tors for morphology β, pose θi, and global translation γi.
While any decoupled static model can be used, e.g. [11,
7, 45], in our implementation we chose the commonly
used SMPL model [19] as the AMASS dataset [20] is pa-
rameterized by SMPL. We denote the model function by
SMPL such that mi = SMPL(θi, γi, β) and thus M =
[(SMPL(θ0, γ0, β), . . . , SMPL(θn, γn, β)]. By denoting
the pose and global translation vectors by Θ = [θ1, . . . , θn]
and Γ = [γ1, . . . , γn], respectively, [Θ,Γ, β, T ] is a low di-
mensional representation of [M, T ]. To retain variation in
global displacement (e.g.walking backward or forward) and
temporal evolution (e.g.walking or running), we model Γ
and T in the multi-frame sequence representation. τi al-
low to place freely and on any time span length the anchor
meshes, thereby allowing to represent motions with various
duration using a constant number of meshes.

Notation To emphasize the difference between motion
and morphology parameters, we denote χ = [Θ,Γ, T ]
the motion parameters and introduce function F such that
[M, T ] = F([χ, β]). As pre-processing for training, we
map a raw motion sequence to the SMPL mesh template
using existing solutions [42, 20]. Let SMPL−1 denote
the mapping function which associates a single raw motion
frame to its representation parameters θ, γ, β.

Numerical representation In practice, we represent β
and Γ as in SMPL. Pose features Θ are joint rotations of
a skeleton, represented by a continuous 6D rotation [46]
that was shown to outperform other rotation representations
when training neural networks.

3.2. Architecture

To learn the interaction between morphology and mo-
tion patterns, we condition motion generation on β using an
architecture based on conditional variational auto-encoders
(CVAE) [34], as shown in the bottom of Fig. 2. Our ar-
chitecture encodes motion vector χ into a low-dimensional
latent vector z, and β is used as condition for the decoder,
thereby allowing to capture dependencies between χ and β.
We assume z and β to be independent and learn a disentan-
gled representation. Therefore, the encoder models poste-
rior distribution p(z|χ), and is not conditioned on β.

The encoder outputs are interpreted as mean µ and stan-
dard deviation σ of the posterior distribution of the latent
space. The corresponding latent vector z is sampled as
z = µ + ε × σ, with ε ∼ N (0, 1). We denote the prob-
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Figure 2: Overview of motion representation and archi-
tecture. Top: representation. Left: pre-processing during
training samples n anchor frames and extracts per-frame
representations of pose θ, translation γ and morphology β
with their timestamp τ to obtain motion representation χ
and morphology β. Right: illustration of the function F .
Bottom: our architecture consists of a probabilistic encoder
E and a decoder D, and learns a mapping from χ to a
single latent vector z. At inference time, D conditions z on
β to generate sequence features χ̂ (green box).

abilistic encoding function by E : χ, ε 7→ z, and the de-
coding function as D : z, β 7→ χ̂. The decoder takes
(z, β) as input, and outputs χ̂ = [Θ̂, Γ̂, T̂ ] which are con-
verted back to a sequence of timestamped anchor meshes
[M̂, T̂ ] = F(χ̂, β). To go from a reconstructed sequence
M̂ to a temporally continuous motion, we assume constant
motion between anchor meshes.

3.3. Training

The network is trained with a reconstruction term to min-
imize the difference between the input and output vectors,
and a regularization term to constrain the latent variables to
follow a known prior distribution. The training is divided
into two phases. First, we consider a reconstruction loss
on χ to allow for fast and memory efficient initialization.
Second, we replace it by a loss computed directly on the
sequence of anchor meshes M in R3.

Reconstruction loss on χ The standard reconstruction
term would be (χ̂ − χ)2. To balance the influence of the
different types of information captured by χ, we divide this
loss into three terms operating on pose Lpose = (Θ − Θ̂)2

translation Ltrans = (Γ−Γ̂)2, and time Ltime = (T −T̂ )2.
This gives a total reconstruction loss

Lrec = ωposeLpose + ωtransLtrans + ωtimeLtime, (1)

where ωpose, ωtrans and ωtime are the respective weights
of the partial reconstruction losses. To minimize Lrec, we
use adaptive weights to trade off the relative influence of
Lpose,Ltrans and Ltime [6], which do not have the same
order of magnitude. Adaptive weights are initialized at 1.0



and updated automatically during training, which ensures
that the partial losses are decreasing in similar proportions.

Reconstruction loss in 4D The second reconstruction
loss is Lspatial = (M − M̂)2, where M denotes the 3D
coordinate vector or the anchor mesh sequence, resulting in
the 4D reconstruction term

Lrec4D = ωspatialLspatial + ωtimeLtime, (2)

where ωspatial is an adaptive weight.
Regularization loss The regularization term is the

squared Kullback-Leibler (KL) divergence between the
learned posterior distribution N (µ, σ) of the latent variable
z and a normal prior distribution N (0, 1), denoted LKL.

Optimization A common problem when training VAEs
is the weighting of the regularization loss versus the recon-
struction loss. We use a fixed weight ωKL = 0.01 to trade
off these losses. The training optimizes first

Linit = Lrec + ωKLLKL (3)

and subsequently

L = Lrec4D + ωKLLKL. (4)

4. Evaluation
This section presents comparisons to baselines. We in-

vestigate the structure of the learned latent space by visual-
izing labeled motion sequences in latent space and by lin-
early interpolating between pairs of input motion sequence.
Finally, we demonstrate that the proposed model learns in-
formation on the interaction of morphology and motion by
visualizing the motion changes caused by changing β for a
fixed point z. Implementation details, a study of the influ-
ence of the latent space dimension and regularisation, and
video visualizations are in supplementary material.

4.1. Data

We automatically extract motion sequences during
which the hip performs a cycle from a dataset by compar-
ing all subsequences to a set of 4D template motions using
dynamic time warping [4] as distance. Subsequences are
considered if this distance is below a threshold. As post-
processing, we prune segments with a duration above 3s or
below 0.3s. We manually generate two 4D template mo-
tions as gait cycles starting with the left and right foot.

We experiment with AMASS [20] and Kinovis [42]
datasets. AMASS regroups a set of MoCap recordings and
fits SMPL to all data. When splitting AMASS into train-
ing and test sets, we treat all sequences of the same MoCap
dataset as one entity. For training, our cropping results in
12085 sequences corresponding to ≈ 4.5h of motion. We
call the extracted test set AMASS test set. Kinovis dataset
contains 4D motion sequences from a multi-view platform

AMASS test set Kinovis test set
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Figure 3: Comparison to baselines w.r.t. reconstruction er-
ror. Our model (blue) outperforms a linear PCA baseline
(red) and a baseline that considers spatial sampling at skele-
ton level (green). Boxes follow [38].

and allows to evaluate the generalization of our model to
densely captured 4D data. We consider all walking and run-
ning sequences, pre-process the data by fitting SMPL before
extracting cyclic hip motions, and call this dataset Kinovis
test set. Details are in supplementary material.

4.2. Comparison to baseline models

We compare our model to two baselines w.r.t. the recon-
struction error 1

nk (M − M̂)2, with
[
M̂, T̂

]
= F(χ̂, β) =

F(D(E(χ, ε), β), β), where n is the number of anchor
frames and k the number of vertices per frame. The
first baseline applies a linear principal component analy-
sis (PCA) to our representation [χ, β], thereby evaluating
the value of using a non-linear model. PCA has access to
morphology information when projecting the motion rep-
resentation to latent space, and reconstructs both χ̂ and β̂.
To provide a fair comparison, we consider the original β
instead of β̂ in PCA reconstructions and set the PCA la-
tent dimension to dim(z) + dim(β) with dim(z) = 64
and dim(β) = 8. The second baseline considers our model
after optimizing Linit only, which operates on skeleton rep-
resentations, thereby evaluating the value of learning from
data that is densely sampled in space.

Fig. 3 shows reconstruction errors for the different mod-
els. While PCA provides low reconstruction errors, these
are further improved using our model. Our model also im-
proves over its initialization, which shows that considering
densely sampled data significantly impacts performance.

4.3. Motion space structure and interpolation

Fig. 1 illustrates that our model learns a latent space in
which sequences of similar actions are clustered. For the
purpose of visualization, we labeled 51 motions by actions
and assigned a unique color per action. These motions are
then encoded into latent space, which is linearly reduced to
two dimensions. Points of the same action form clusters.

This structured latent space can be exploited to generate
plausible interpolations between input motions using linear
interpolation. Given start and target motion sequences as



(a) Interpolation of duration (b) Interpolation of global displacement

(c) Interpolation of pose (global) (d) Interpolation of pose (localized)

Figure 4: Linear interpolations in latent motion space. Each figure left to right : starting motion, PCA interpolation, SLERP
interpolation, our interpolation, and target motion. Sequence models are rendered with a color-coded frame time. (a) Running
& walking. (b) Walking backward & forward. (c) Left & right turn. (d) Walk & walk carrying an object on the head. All
interpolations with our model are plausible, while baselines fail in (b) and (c).

input, we encode them as (zs, βs) and (zt, βt), and generate
interpolating motion sequences by decoding ((1 − k)zs +
kzt, (1− k)βs + kβt) at intermediate position k ∈ [0, 1].

We compare our results to two baselines. The first uses
the PCA model from the previous section and linearly in-
terpolates in PCA space. This comparison, called PCA,
evaluates the value of using a non-linear model. The sec-
ond baseline operates per anchor frame and interpolates lin-
early between the global displacements, time stamps and
morphology parameters, and with spherical linear interpo-
lation [32] (SLERP) between skeletal poses. This compari-
son, called SLERP, evaluates the value of learning a motion
model instead of operating independently per-frame. For all
interpolations, visualizations show k = 0.5. In the follow-
ing, we interpolate between sequences that differ in each of
the factors encoded in χ.

Interpolating sequences of different duration To in-
spect temporal information learned by our model, we inter-
polate between a running and a walking motion. For our
model, the duration of the intermediate sequences mono-
tonically decreases when going from running to walking,
and the intermediate sequences are realistic as shown in
Fig. 4(a), showing that our motion space has captured in-
formation on the temporal evolution τ . PCA and SLERP
baselines also lead to plausible interpolations.

Interpolating sequences of different global displace-
ment To inspect global displacement, we interpolate be-
tween a forward and a backward walk. Our intermedi-
ate sequence corresponds to a really small step, shown in
Fig. 4(b). There were no steps this small in the training set.

PCA and SLERP baselines fail to interpolate global trans-
lation realistically, resulting in foot skating.

Interpolating sequences of different pose To inspect
the learned information of pose, we consider global and
articulated pose separately. First, we interpolate between
sequences of turning left and turning right while walking,
exhibiting mostly global pose change. The intermediate se-
quences using our model gradually change from a left to a
right turn as shown in Fig. 4(c). PCA and SLERP baselines
fail due to the ambiguity when interpolating between op-
posite rotations, while our model leverages spatio-temporal
information to alleviate this ambiguity. Second, we interpo-
late between walking and walking while carrying an object
on the head, exhibiting mostly articulated pose change. The
intermediate sequence with our model results in realistic in-
termediate positions for the arms, gradually elevating them
to head level as shown in Fig. 4(d). Both baselines lead to
plausible interpolations.

In summary, while our model generates visually plau-
sible interpolations for all parameters encoded in χ, both
baselines exhibit failure cases in some scenarios, which
shows the value of learning a non-linear 4D motion model.

4.4. Interaction between morphology and motion

To examine the influence of morphology β on 4D motion
χ, we consider a fixed jogging motion represented by z∗ in
motion space and visualize χ when setting β to ±3 stan-
dard deviations along the first and second principal com-
ponents. To understand the subtle motion differences, we
further visualize the spatio-temporal gradient ∂D(z∗,β)

∂β at



Figure 5: Interaction between morphology and motion on
1st (left) and 2nd (right) principal components of β. Top:
visualization of our decoder’s normalized gradient w.r.t. β.
Middle: our inferences with fixed latent motion vector and
β taken at ±3 std. deviations. Bottom: baseline per-frame
motion transfer using SMPL for same fixed motion and β
taken at ±3 std. deviations, color coded by per-vertex dis-
tance to our result. Our learnt correlation has significant
impact on motion, which differs up to 10cm from baseline.

β = 0, i.e. we look at the gradient learned by the decoder
w.r.t. morphology at the mean shape.

We compare our result to a baseline that uses the ini-
tial pose parameters and β to reconstruct a dense 3D body
model using SMPL per frame. This evaluates the influence
of learning the interaction between morphology and motion.

Fig. 5 shows the impact of the first (left) and second
(right) principal components of β. The top row shows a
color coding of the gradient learned by our decoder w.r.t. β
on the 4D sequence, and the middle row shows the cor-
responding 4D motions obtained by our model. The bot-
tom row shows the result of the baseline color-coded by
the distance to the result of our model. Changing the first
principal component impacts perceived gender. For our
model, this changes the 4D motion on the right shoulder
and left hip, in agreement with prior studies showing that
shoulder sway and hip motion are statistically gender re-
lated [35]. Changing the second principal component leads
to perceived weight change. For our model, this impacts
the 4D motion at the right arm, head and neck. The spatio-
temporal areas affected by our motion model are the ones
where the baseline leads to significantly different results
with up to 10cm distance. This shows that our model learns
meaningful interactions between morphology and motion.
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5. Application to motion completion from
spatio-temporally sparse input

This section applies our model to spatio-temporal com-
pletion, which has applications ranging from the registra-
tion of a raw spatio-temporally densely scanned 4D se-
quence over computing realistic in-betweenings for a set of
frames sparsely sampled in time to completing full human
body motion from a sparse set of MoCap markers.

5.1. Completion methodology

We consider as input partial motion sequences of un-
ordered dense 3D scans with possibly additional synchro-
nized MoCap for k landmarks and associated time stamps.
Let S = [s1, . . . , sn] denote a sequence of n anchor scans
uniformly sampled in time, L = [l1, . . . , ln] the corre-
sponding synchronized sequence of landmarks, and T =
[τ1, . . . , τn] the corresponding time stamps. Some anchor
frames are empty, and our input consists of a set I of frame
indices i for which si or li and τi are given.

To compute a sequence of anchor meshes M̂ with as-
sociated time stamps T̂ that approximate the input, we
decode a full sequence of anchor frames [M̂, T̂ ] using
F (D(z, β), β) and optimize for latent vectors z∗, β∗ as

z∗, β∗ = argmin
z,β

(Lcompletion(M̂(z, β), T̂ (z, β), S, L, T )), (5)

where

Lcompletion = ωdense
∑
i∈I

Chamfer(m̂i(z, β), si)

+ ωmocap
∑
i∈I

Landmark(m̂i(z, β), li)

+ ωtime
∑
i∈I

(τ̂i(z, β)− τi)2. (6)

The weights ωdense, ωmocap and ωtime are adaptive [6].
When si = ∅, ωdense = 0 and when li = ∅, ωmocap = 0.
Varying ωmocap allows to evaluate the benefit of having
tracked input markers. Chamfer is the Chamfer distance
between two point clouds and Landmark is the squared Eu-
clidean distance between k vertices of the SMPL template,



Table 1: Comparative evaluation of motion completion.
Mean and standard deviation of Chamfer distance in mm,
computed between completions and ground truth anchor
scans from CHUM. N.A. means not applicable.

Points per scan p Frames (f )
0 50 100 1000 10000 5 20 100

Ours (dim(z)=256) 42±48 23±7 21 ±9 20±10 20±10 30±14 20±10 20±10
[44] N.A. 58±0.99 47 ±0.6 21±0.3 10±0.46 N.A. N.A. N.A.
[41] 46 ± 52 26±8 24 ±9 22±10 22±10 22±10 22±11 22±10
[16] 216 ± 41 88±10 69 ±10 36±10 26±11 33±13 26±11 26±11

selected once for all experiments, and the k given land-
marks. This optimization is visualized in Fig. 6.

5.2. Completion dataset

We introduce a new dataset of cyclic human motion
(CHUM), which was captured using a 4D modeling plat-
form with 68 RGB cameras and a Qualisys MoCap system.
Data consists of dense scans of approximately 10000 points
acquired at 50fps with synchronised MoCap for 16 markers.
We recorded 4 actors with different morphologies (2 males
and 2 females) performing various cyclic motions like walk-
ing, running, side-stepping, skipping, boxing and kicking.
For our experiment, we segmented 4 gait cycles manually
for each original sequence and found an initial 3D trans-
formation (rotation + translation) to align each segment at
t = 0. We do not fit SMPL to the dense scans because
Lcompletion does not require correspondence information.

5.3. Results

We compare our results to three state of the art ap-
proaches. The first performs static 3D completion per
frame [44]. Due to its high computational complexity, we
apply the static method to a subset of CHUM while other
methods are applied to the full dataset. This method is
only applicable for spatial completion where observations
are available at every frame. The second and third are mo-
tion spaces for sequences of fixed duration that can serve as
prior [41, 16]. Given a partial motion as input, we optimize
a latent motion vector z, a morphology β and a set of per-
frame translation parameters for [41], as global translation
is not encoded in this motion space. In case of temporally
sparse input, translation parameters are only optimized for
frames in I and the remaining are found using linear inter-
polation between the closest observed frames. For [41] and
[16], we optimize for Lcompletion with ωtime = 0, as these
motion spaces are designed for sequences of fixed dura-
tion and cannot benefit from time stamp information. These
methods are applicable for both spatial and temporal com-
pletion. [41] uses a latent space of 256 dimensions while
[16] uses a total of 36. For fair comparison to the more
precise method, we re-train our model with dim(z) = 256.

Spatial completion We first evaluate the quality of spa-
tial completion by simulating different levels of spatial spar-

sity by varying the number of points p per scan si. The
sampled points are not in correspondence over time. Table 1
shows the evolution of the reconstruction error inmmwhen
varying p. Our method outperforms the static method [44]
for very sparse scans (p < 100), the two methods are on-par
for denser scans (p = 1000), and the static method outper-
forms our method for dense scans (p = 10000). This quality
on sparse scans is achieved because our model optimizes for
all frames simultaneously, so few points per scan suffice to
find a plausible solution. The static method deforms a tem-
plate, and can capture higher levels of geometric detail for
dense scans. Our method further outperforms state of the art
motion spaces [41, 16], in spite of being trained on signifi-
cantly less motion data (4.5h for ours vs. 34h for [41, 16]).
Qualitative results are shown in supplementary material.

Temporal completion Second, we evaluate the quality
of temporal completion by varying the number of observed
frames. To vary this number for each test sequence, we re-
duce I to simulate lower frame rates. Table 1 shows the
evolution of the reconstruction error. The f = 100 frame
completion task includes all frames and is given as refer-
ence. The model extrapolates with almost no loss of pre-
cision with I20 = [5, 10, . . . , 95, 100] (20 frames) and the
error is still low with I5 = [20, 40, 60, 80, 100] (5 frames).
While the motion space for sequences of fixed duration [41]
is better for sparsely sampled temporal data, we outperform
both [41] and [16] for temporally denser data, in spite of
using significantly less training data.

6. Conclusions and future work

This work presents a latent space that allows to repre-
sent and generate multi-frame sequences of human motion
in 4D. This latent space contains information on global mo-
tion, body pose, temporal evolution of the motion, and mor-
phology. We demonstrated that similar motions tend to
form clusters in this latent space and that linear interpola-
tions between pairs of sequences in latent space are plau-
sible. Furthermore, our model to generate 4D motion se-
quences captures the interaction between morphology and
motion. We applied this model to spatio-temporal motion
completion, demonstrating state of the art performance. For
future work, it would be interesting to explore how to syn-
thesize longer term and more general motion.
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