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Abstract  

 

This paper proposes two algorithms for better controlling the size of time increment in case of 

return-mapping integration scheme for elasto-viscoplastic constitutive models. Computation errors in terms of local 

stress-strain loops in Finite Element Analyses could indeed have a very strong impact on fatigue lifetime estimation 

protocol if time increment size are freely chosen by the FE solver. Proposed algorithm enables both to precisely 

describe the transition between elasticity and viscoplasticity and to avoid too important increase of time step during 

large viscoplasticity evolutions. The precision of the computed mechanical answer has been successfully tested for 

different kinds of multi-axial and anisothermal loading conditions on simple finite element and more complex 

meshed structures. Fatigue lifetime estimation errors have also been investigated for stabilized stress-strain cycle and 

common criteria and the proposed algorithm show very precise results with a limited computation time increase and 

without drastic limitation of the time increment size.  
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1  Introduction 

 

For the past ten years, most of automotive manufacturers have adopted strategies mixing engine downsizing 

and mass reduction to answer to new environmental regulations and to decrease both polluting emission and fuel 



consumption. Engine parts, such as cylinder heads, exhaust manifolds and engine blocks, have therefore experienced 

higher operating temperatures induced by the increase of the combustion fluxes. They are therefore particularly 

sensitive to the superposition of a severe thermal loading and strong mechanical constraints that leads to 

thermal-mechanical fatigue cracks initiation. 

 

Thermal-mechanical fatigue (TMF) design requires not only a good knowledge of the loading and boundary 

conditions [1, 2] or of the thermal and mechanical environment of the studied structures but also advanced 

constitutive models which enable to precisely describe materials elasto-viscoplastic behaviors [3]. These models 

have to cope with various variable loading conditions and to describe complex anisothermal evolutions [4]. 

Consequently a higher level of sophistication and a greater number of parameters are often required to adequately 

represent the response induced by thermal-mechnanical loadings. In the framework of small perturbations and for 

metallic materials, lots of efforts have therefore been made to correctly describe the behavior of classic automotive 

alloys such as aluminiums, cast-irons or stainless steels with models taking into account ageing effects, stresses 

recovery or complex viscous behavior [5, 6, 7, 8, 9]. Moreover, the development of representative fatigue criterion 

remains an important research field as it constitutes the final step of a performant design process. Recent advances 

have been made by taking into account mean-stress effects [10, 11] or by exploring the statistical influence of the 

microstructure [12]. 

 

The use of all of these models is standardly based on a Finite Element description of thermal-mechanical 

problems. Complex constitutive models must most of the time be integrated into commercial computation code as 

Abaqus in order to facilitate fatigue design operations within industrial engineering offices. The related evolution 

problem has received much attention mostly between the late seventies and the eighties, resulting in significant 

advances in the integration schemes [13, 14, 15, 16, 17, 18]. For practical industrial applications and in the case of 

viscoplasticity, return mapping algorithms represent a very common scheme to integrate the rate constitutive 

equations [13, 19, 20, 21, 22, 23]. In this process, associated with a Newton iterative procedure, an elastic predictor 

is first estimated before being corrected onto a suitably updated yield surface. In order to obtain a quadratic rate of 

convergence, a consistent tangent operator [14, 16, 24] must also be used. Even if this class of algorithms has proven 

its numerical performance [25, 2] , it appears to be sensitive to the size of the chosen time increment. Others 



proposals such as substepping algorithms [26] have proved to be more accurate for large time increments but no 

relevant solution is proposed in the literature to efficiently control the increment size within the framework of radial 

return algorithm. 

 

This paper proposes two algorithms for controlling the time step and thus better control both the calculated 

stress-strain loop for elasto-viscoplastic constitutive models [27] in the case of anisothermal thermomechanical loads 

and with a good compromise between CPU time and reliability of results. Drifts in terms of mechanical behavior are 

evaluated for different types of multiaxial loadings first on an volumic finite element and then a more complex 

structure. Constitutive models are developed for design of structures against thermomechanical fatigue and errors in 

terms of dissipated energy density, a commonly used indicator to assess the damage associated with this type of 

fatigue, are also estimated. The contribution of the proposed algorithms in terms of accuracy and computation time 

savings is finally considered in comparison with an excessive limitation of the time increment. 

 

2  Constitutive model and non-linear analysis 

 

In order to describe the behaviour of metallic body-centered cubic alloy over a wide range of strain, strain 

rate and temperature, a constitutive model was proposed by Szmytka et al. ([27]). This model is here taken as 

reference for the proposed algorithms which can easily be extended to other constitutive laws. Basic assumptions are 

small strains, isotropic elastic-viscoplastic behaviour and unified elastic-viscoplasticity thermodynamic framework. 

Consequently, the total strain tensor is divided additively into elastic, inelastic and and thermal parts, 

 

 𝜀 = 𝜀! + 𝜀"#! + 𝜀$% (1) 

 

The thermal strain is: 𝜀$% = 𝛼&%𝑇 − 𝑇'!((1, while the elastic strain is given by Hooke's law, 

 

 𝜀! = ℂ)*: 𝜎 (2) 

 



𝑇 is the temperature, 𝑇'!( a reference temperature, 𝜎 the stress tensor. 𝛼& is the thermal expansion 

coefficient and ℂ the fourth-order elastic tensor. In our isotropic case, ℂ = 𝜆1⊗ 1 + 2𝜇𝕀, with 𝜆 and 𝜇 the 

Lamé constants dependent of the temperature. 1 and 𝕀 are respectively the second and the fourth order unit 

tensors. A viscoplastic equation with back stress is used to describe the evolution of the viscoplastic strain tensor, 

 

 �̇�𝒗𝒑 = -
.
�̇�

/)0

1!(/)0)
 (3) 

 

where (	) denotes the differentiation with respect to time, 𝑠 the deviator of the stress tensor 𝜎 and 𝑋 the 

back stress tensor. 𝐽.(𝑠 − 𝑋) is the second invariant of the tensor 𝑠 − 𝑋 and is defined by using (:) as the inner 

product between second rank tensors, 

 

 𝐽.(𝑠 − 𝑋) = ;-
.
(𝑠 − 𝑋): (𝑠 − 𝑋) (4) 

 

while �̇� is the accumulated viscoplastic strain or viscoplastic multiplier. Its evolution, represented by a 

flow rule, follows the rule proposed by [27]: 
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where 𝜀4̇, 𝐻, 𝐾, 𝑚, 𝛽 are temperature dependent parameters; [. ]9 indicates the positive part. The 

yield function 𝑓 is defined as: 

 

 𝑓(𝑠 − 𝑋, 𝑅) = 𝐽.(𝑠 − 𝑋) − 𝑅 (6) 

 

𝑅 is the isotropic hardening term, and is considered here as following a conventional non-linear rule [28]: 

 



 𝑅 = 𝑅4 + 𝑄(1 − exp(−𝑏𝑝)) (7) 

 

with 𝑅4, 𝑄 and 𝑏 three temperature-dependant parameters. Finally, for the evolution of the kinematic 

hardening term 𝑋, the conventional non-linear Armstrong and Frederick's law is adopted [28], 

 

 𝑋 = .<
-
𝛼 = 𝐶 V.

-
𝜀"#! − =

<
𝑋�̇�W (8) 

 

with 𝐶 and 𝐷 two material parameters. The constitutive model was shown in [27] to accurately 

reproduce the behavior of spheroidal graphite cast iron. 

 

The solution of non-linear evolution problems such as cyclic viscoplasticity is performed, during implicit 

finite element analysis, over discrete sequence of time steps [25]. For each time step, predictor-corrector algorithms 

are used. In fact, the return mapping algorithm uses an operator split approach and an iterative Newton procedure 

consisting in solutions of global linear problem (elastic prediction) followed by local integrations of the constitutive 

model (plastic correction). A fully implicit integration scheme (backward Euler) associated with a radial return is 

adopted by Szmytka et al. [2] to successfully perform the numerical integration of the previous law in a material 

behavior user subroutine UMAT which is written and used in the commercial software Abaqus. 

 

The main assumption of this scheme is that the viscoplastic strains evolution over the increment can be 

calculated from the stress state at the end of the increment. This is however theoretically incorrect as the viscoplastic 

response and in particular the viscoplastic flow direction is a function of the current stress state corrected by the 

kinematic hardening term. If the viscoplastic flow direction does not change over an increment, the return algorithm 

solutions will be accurate. However, although the time step is fixed sufficiently small to avoid viscoplastic direction 

variations, standard commercial finite element software tend to steadily increase it if convergence of the overall 

mechanical problem required only few iterations, introducing computations errors. 

  

In fact, if one considers the evolution of the accumulated viscoplastic strain over a time step between 𝑡# 

and 𝑡#9*: 



 Δ𝑝# = 𝑝#9* − 𝑝# = ∫$"#$$"
�̇�(𝑢)𝑑𝑢 (9) 

 

the flow rule, as a continuous fonction of time, becomes : 

 

 Δ𝜀>? = 𝜀#9*
>? − 𝜀#

>? = ∫$"#$$"
𝜀>?(𝑢)𝑑𝑢 = -

.∫
$"#$
$"

�̇�(𝑢)
/(@))0(@)

1!(/(@))0(@))
𝑑𝑢 (10) 

 = -
.∫

$"#$
$"

�̇�(𝑢)𝑁(𝑢)𝑑𝑢 (11) 

 

with 𝑁(𝑢), the tensor normal to the convex surface of visoplasticity. If 𝑁(𝑢) does not vary over 

[𝑡#; 𝑡#9*], the integration scheme is perfectly accurate and no error are introduced. However, if 𝑁(𝑢) varies during 

the time increment, there is a difference between the continuous definition of Δ𝜀"#! and its discrete value Δ𝜀"#! =

Δ𝑝#
-
.
𝑁(𝑡#9*), which leads to an integration error �̃�: 

 

 �̃� = -
.∫

$"#$
$"

�̇�(𝑢) b𝑁(𝑢) − 𝑁(𝑡#9*)c 𝑑𝑢 (12) 

 

It is then necessary to observe and quantify the errors produced by this integration scheme for various loads 

and for different time increments as performed for example by [29,30] using the concept of iso-error maps. 

While the tested constitutive model is often used for thermal-mechanical fatigue design, errors in terms of dissipated 

energy density will also be investigated with the analyses of the variable Δ𝑊: 

 

 Δ𝑊 = ∫	BCDE"#F		GHGB!	 𝜎: 𝜀 (13) 

 

3  Different loading conditions 

 

In order to estimate errors induced by the integration scheme proposed by [2], several finite element 

simulations are performed on a single 10-node quadratic tetrahedric element (C3D10 in Abaqus). These calculations 

on a Representative Elementary Volume (REV) are identical to those that could be achieved on a test laboratory 



specimen with a gauge area presenting a homogeneous behavior. Using a single element, only the discrepancies 

related to the integration scheme are therefore observed. 

 

Isothermal computations are performed for a SG SiMo cast-iron at 500°C. Model parameters are summed 

up in Table 1 while model accuracy is detailed in [27]. 

   

  E (MPa)   𝜈   C (MPa)   D   𝜀4̇   H 

 135000   0.3   41000   600   9.310)I   340 

  K   R0 (MPa)   Q (MPa)   b   𝛽   m  

 23   89   -40   15   1.8   2 

  Table  1: Model parameters at 500°C 

 

To measure differences in mechanical responses related to the time step, calculations are performed in 

Abaqus first with a time step evolution left free. Thus, the parameters controlling the way time increment size 

increases or decreases are those that are considered standard by the FE solver: 

  

    • If the solution has not converged after 16 iterations of the Modified Newton-Raphson algorithm or if 

the evolution of the residual force vector seems to diverge, the time increment is automatically multiplied by 0.25. 

This modification can be repeated 5 times in a row after which, in the absence of convergence, the computation 

stops. 

 

    • If, for two consecutive time increments, there is a solution convergence in less than 5 iterations, the 

size of the next time increment is automatically increased by 50%. 

 

The initial size of the time increment is requested by the FE solver. In the following, it is arbitrarily set for 

all computations to 0.2s. This first computation (with the time increment evolution set free without any 

limitation) is considered as our reference. Thereafter, a maximum time increment size is included as control 

parameter in the simulation. This maximum time increment is first set to 5s. This value is then decreased until 



obtaining a convergence of the numerical solution, i.e. it no longer evolves even though time step size keeps 

decreasing. Differences in terms of mechanical stress strain loops, dissipated energy densities and CPU time are 

finally investigated, first for 4 types of cyclic loading: 

  

    • on Figure 1.a, an uniaxial tension-compression test with 𝑅J = −1 and 𝜎**,;DK = 350𝑀𝑃𝑎; 

 

    • on Figure 1.b, an in-phase biaxial tension-compression test with 𝑅J = −1 and 𝜎	>C#		L"/!/	,;DK =

210𝑀𝑃𝑎; 

 

    • on Figure 1.c, a pure shear test with 𝑅J = −1 and 𝜎*.,;DK = 125𝑀𝑃𝑎; 

 

    • on Figure 1.d, an out-of-phase thermal-mechanical test where temperature varies between 500°C et 

750°C while mechanical strain 𝜀** varies between 1% and 0%. 

 

Each loading is repeated until a viscoplastic shakedown which occurs after 3 cycles. 



 

Figure  1: Tested loading conditions 

   

 A thermal-mechanical test is also performed on a ``real'' complex structure and not only a REV in order to 

estimate the influence of the time step during complex loading implying thermal and stress gradients. The 

experimental set-up described by Constantinescu et al.[1] is therefore used as it deals with very severe 

thermo-mechanical loadings. In this experimental protocol, axial symmetric clamped specimens are heated by the 

Joule effect. The heating procedure produces a thermal gradient along the specimen axis, which also induces a 

variation of the mechanical fields in the same direction. This experimental machine is presented on Figure 2.  

 



 

Figure  2: Anisothermal fatigue machine from [1] and specimen computed thermal map 

   

 Temperatures vary between 40°C and 700°C with a heating rate of 20°𝐶. 𝑠)*. The maximum temperature 

is obtained in a region of approximately 10 mm in the center of the specimen with a maximum temperature gradient 

of 40°𝐶.𝑚𝑚)*. The clamp value due to the variable stiffness (proportional to the flexural moment of the beams) is 

here fixed at 183 000 N/mm and the dwell time at 700°C at 60s. The thermal load of this experiment was 

numerically estimated by an electric and a thermal FEM computation on Abaqus. The results of the 

thermal-electrical computation is then introduced in a mechanichal computation. The FE model is here constituted of 

43934 nodes and 28805 C3D10 10-node quadratic tetrahedric elements. 

 

4  Time increment control 

  

As the limitation of the time increment is clearly incompatible with achieving fast computation time, two 

simple algorithms are proposed to complete the integration scheme of the constitutive model and to control the 

evolution of the time increment size. The goal is to have a free evolution when the behavior shows little or no 

non-linearity and to automatically reduce the size of the increment and keep it low for evolutions involving strong 

viscoplasticity. In the following, 𝑛 and 𝑛 + 1 index represent a value of a variable (tensor or scalar) at 



respectively 𝑡# and 𝑡#9*. 

 

4.1  From elasticity to visco-plasticity 

 

If a cyclic finite element computation shows long elastic phases (several seconds or stress ranges greater 

than 100 MPa which is for instance very common at low temperature for steels or cast-irons), FE solvers usually 

tends to significantly and logically increase time increments as convergence is easy. This computing strategy 

involves sometimes long time increments when first non-linearities (plasticity) related to the material behavior occur. 

There is therefore a tendency to misjudge the elastic/viscoplastic transition and to generate errors that can later 

increase. Linear elastic analysis can indeed be performed in a single step provided you exactly know the length 

of this step, which is possible for a single finite element but never the case for structures under complex 

loading like thermal-mechanical ones. In this case, complex thermal loadings are combined with strong 

mechanical constraints and the local mechanical response is therefore the result of the combination of several 

factors such as thermal gradient, mechanical constraints, local geometry, etc. In this case, it is fairly 

impossible to a priori estimate the time and the localization of the first element reaching the yield surface. The 

integration scheme proposed by [2] begins with an assumption of elastic evolution of the structure for the time step; 

the internal variables (𝜀#
>?, 𝛼#, 𝑝#) are frozen. Thus at time 𝑡#9*, the hardening parameter 𝑅 is given by 

 

 𝑅#9*∗ = 𝑅4"#$ + 𝑄#9*(1 − exp(−𝑏#9*𝑝#)) (14) 

and the stress tensor by: 

 𝜎#9*∗ = 𝜎# + Δ𝜎!BD/$"G (15) 

with:  

 Δ𝜎!BD/$"G = 𝐶#9*: Δ𝜀 + Δ𝐶: (𝜀# − 𝜀#"#!) (16) 

 

𝑠#9*∗  the deviatoric part of 𝜎#9*∗ , and the yield function 𝑓(𝑠#9*∗ − 𝑋#, 𝑅#9*∗ ) are estimated to check the 

validity of the elastic evolution assumption, more precisely: 

  



    • if 𝑓(𝑠#9*∗ − 𝑋#, 𝑅#9*∗ ) < 0, the evolution is elastic and the internal variables are constant in the 

step;  

    • if 𝑓(𝑠#9*∗ − 𝑋#, 𝑅#9*∗ )�0, the evolution is visco-elastoplastic and an inelastic correction must be 

done.  

 

If it is the first inelastic correction afer an elastic evolution, the first proposed control is activated: 

  

    • The current increment, the size of which is Δ𝑡!BD is stopped as soon as the first element presenting 

the first inelastic evolution is detected.  

 

    • The increment is restarted with an optimized time value, which have to enable to exactly reach the 

moment for the first inelastic occurence. With a simple linear approximation, the proposed new time increment 

becomes: 

 

 Δ𝑡#!N =
6"#$

1!(/"#$∗ )0")
Δ𝑡!BD (17) 

 

This evolution allows completing this new increment just before or just after the first occurrence of 

plasticity. 

 

    • Finally, a new reduced time increment is defined for the following computation step. One chooses to 

take the same increment as the initial one, thereby generating a new artificial calculation stage from the first 

viscoplastic increment. In this way, the time increment during the first viscoplastic increments is mastered and thus 

helps to better represent the behavior transition. Moreover, this method avoids the introduction of too large errors 

associated with the often quick evolution of the normal tensor 𝑁 during the first moments of visco-plasticity.  

4.2  Large viscoplastic evolutions 

  

The calculation of the consistent tangent operator ([16, 24]) is of primary importance in order to assure a 



rapid convergence of the integration scheme and its values tend to change significantly during increment with large 

viscoplastic evolutions. Significant differences in terms of behavior are observed[25, 26] , depending on the time 

step, when drastic changes of material behavior occur. At constant temperature and for uniaxial loadings, these 

evolutions can be easily characterized by the concavity of the stress-strain loop. The variation of the tangent 

operator, as the derivative of the stress increment with respect to the strain, is in fact directly related to the curvature 

of the stress-strain curve and, as it is computed at each increment, can be easily used to control the time increment. 

The second proposed control algorithm is therefore based on the variation of the tangent operator with time. For each 

increment, its curvature is computed following the equation: 

 

 �̃� = *
O$"

<q
POJ"#$

POQ"#$
q − q

POJ"

POQ"
q? − *

O$"&$
<q

POJ"

POQ"
q − q

POJ"&$

POQ"&$
q? (18) 

 

where Δ𝑡# and Δ𝑡#)* are respectively the current and the former time increment. ||. || is the norm of a 

4th-rank tensor 𝔸	defined as 

 

 t|𝔸|t = √𝔸: : 𝔸 (19) 

 

This value is compared to a reference elastic value throughout a criteria: 

  

    • if �̃� < :
O$"

ℂ, the computation step is validated;  

    • if �̃� ≥ :
O$"

ℂ, the current computation step is stopped and begins again with the same time increment 

as the initial one,  

 

with 𝛽, a material-dependant parameter. Its value has been here optimized to obtain the better compromize 

between computation time and accuracy. The complete algorithm for time step control is summarized on Figure 

3. 



 

Figure  3: Algorithm for time step control 

 

5  Results and analysis 

 Figures 4, 5, 6 and 7 sum up the analysis of the the time increment influence for test on REV element. Part 

a. shows the loading condition in terms of stress, strain or even temperature. Part b., c. and d. help to compare results 

obtained with or without time increment control and for a given maximal time increment. 

 



 

Figure  4: Results for uniaxial traction 

    

The uniaxial tension-compression test, presented on Figure 4, implies very severe loading conditions as the 

maximal stress is 350 MPa while the elastic limit of the constitutive model has a stabilized value of 49 MPa. As seen 

on Figure 4.b, if no time increment limit is provided to the FE solver, the corresponding computed strain amplitude is 

2% with a stabilized stress-strain loop centered on 0% of strain. This converged value tends to drastically decrease 

when a maximal value of 5s is imposed for the time increment. In this case, the strain amplitude reaches only 1.4%. 

A maximal value of 0.2s enables the FE solver to reach the numerically converged evolution of strain with an 

amplitude of only 1%. The proposed control algorithm with an optimized value of 0.005 for 𝛽 gives the same 

converged results but with a reduced number of total increment (172 vs 404 for the last cycle) and CPU time as seen 

on Table 2. As seen on Figure 5.c and d, the proposed controls let the time increment size increase during the elastic 



phase while its size is maintained small (0.1/0.2 s) during the non-linear evolutions. 

 

  Computation type   Axial   Biaxial   Shear   TMF   Structure 

 No timestep limit  9s   9s   10s   11s   21503s  

 5s timestep limit  9s   9s   11s     22499s  

 2s timestep limit  10s   10s   11s   33s   30686s  

 0.5s timestep limit    14s   15s      

 0.2s timestep limit  29s   23s   25s   380s   203894s  

 0.1s timestep limit          402296s  

 Control 𝛽 = 0.005  18s   14s   16s   45s   317236s  

 Table  2: CPU time computations 

 

The stabilized stress-strain curve obtained with or without control are very different. Letting the FE solver 

master the increment size leads here to a very bad description of the elastic/viscoplastic transition. Moreover, the 

lack of small increments during a very severe viscoplastic loading implies a strong overestimation of the strain 

amplitude and a poor description of the viscoplastic evolution. The dissipated energy density is here represented by 

the area of the stabilized loop. One can notice that this area is divided by 2 in the case of the converged solution 

compared to the ``free'' time increment computation as seen on Table 3. 

 

  Computation type   Axial   Biaxial   Shear   TMF  

 No timestep limit  6.8   4.9   8.9   1.29  

 5s timestep limit  5.7   5.5   8.4   x  

 2s timestep limit  4.4   4.3   9.1   1.34  

 0.5s timestep limit  x   3.8   8.1   x  

 0.2s timestep limit  3.7   3.7   8.0   1.35  

 Control 𝛽 = 0.005  3.7   3.8   8.0   1.35  

 Table  3: Inelastic energy density (𝒎𝑱.𝒎𝒎)𝟑) during the last cycle(stabilized value) 



Figure  5: Results for biaxial traction 

 

The in-phase biaxial tension-compression test, presented on Figure 5, implies less severe loading condition 

as here the maximal von Mises equivalent stress reaches only 225MPa. As seen on Figure 5.b, differences in 

stabilized strain evolution are also slighter. If no time increment limit is provided to the FE solver, the corresponding 

computed von Mises equivalent strain amplitude is 0.4%. Once again, a maximal value of 0.2s for the time increment 

enables the FE solver to reach the numerically converged evolution of strain with an amplitude of only 0.38%. In this 

loading case, a maximal value of 0.5s also gives very satisfying results. The proposed control algorithms with 

𝛽=0.005 give once again the same converged results but with a computation time 1.6 times shorter than the one 

obtained with a 0.2s maximal time increment as seen on Table 2. Computation time and results with the 0.5 maximal 

value time increment simulations are quite identical. As seen on Figure 6.c and d, the proposed control allows to 



perfectly represent the stabilized stress-strain loop. Differences with non-controlled simulations are here lighter 

which can explain the relative misestimating of the dissipated energy density.  

 

Analysis of shear loading allows to achieve the same conclusions. We note here more limited differences 

between simulations with and without control. As it can be seen on Figure 6 and Table 2 and 3, deviations in terms 

of dissipated energy or CPU times are of the same order as the biaxial loading.  

Figure  6: Results for shear 

 

  Simulation of thermo-mechanical fatigue testing does not generate significant differences between the 

tested kind of calculations. Indeed, as noticed on Figure 7, there are only very slight shifts in the stress evolutions 

between the non-controlled computation and the 2s-limited time increment one. These differences appear for the 



most significant strain levels (in absolute value) and at maximum temperature. One might think that it is the strong 

variations in the mechanical behavior as well as the tendency to present a substantial viscoplastic flow, which are at 

the origin of these gaps. Indeed, in this case, even a small strain increment leads to important stress increments and 

thus implies a higher risk of changing the tensor 𝑁. 

 

Finally, this 2s limitation is sufficient to obtain a numerically-converged solution and no difference exists 

with more severe restrictions, particularly in terms of dissipated energy density as seen on Table 3. Again, control 

algorithms allow to obtain the converged solution with 𝛽=0.005. However, the CPU time is this time slightly higher. 

It should be noted, however, that the control is done automatically without the need for an a priori choice of a 

maximum time increment. 

 

Figure  7: Results for TMF loadings 



   

Figure  8: Results for specimen loadings 

    

The proposed tested structure is a clamped specimen and its loading is meanwhile severe enough to not 

allow a viscoplastic shakedown after 8 cycles of loading. The focus here is to estimate the differences between 

controlled and non-controlled calculations regarding the strain evolutions. On Figure 8.a, it seems as if the first 5 

cycles are quite identical but the initial small shifts tend to increase and lead to significant differences at the 8th 

cycle. Figure 8.b presents the strain evolution on this cycle for a non-controlled computation compared to simulation 

with a maximal time increment of 5s, 0.2s and finally controlled by the proposed algorithms. If strain amplitude is 

very close, the mean strain values differ. Moreover, the strain evolutions are slightly different and lead, as seen on 

Figure 8.c, to very dissimilar stress-strain evolution. Loading here is very severe in terms of stresses and 

pseudo-loops of very different forms are then observed. 

 



These differences, which of course have a significant impact on the mechanical description of the test, are 

mainly due to large variations of the tensor 𝑁 during the quick heating and cooling phases. The numerically 

converged solution is obtained by limiting the time step at 0.1s while the other simulations give only degraded results 

(even 0.2s). In contrast, the proposed algorithms enable a evolution conform to the converged solution with a gain of 

time, however limited to 20% of CPU time. 

 

6  Conclusions 

 

 Two algorithms have been proposed for controlling the time step and thus better estimate the calculated 

stress-strain loop for elasto-viscoplastic constitutive models in the case of thermomechanical loads. Drifts in terms of 

mechanical behavior have been evaluated for different types of multiaxial loadings first on an volume element and 

then on a more complex structure. Implied differences in terms of lifetime have also been investigated. Strong 

differences first appear between problem with strain or stress loading control. Computations errors are much more 

limited when loading conditions are expressed in terms of strain and in these cases, time control seems to be 

unuseful. Very important computations errors appears when forces or stresses are imposed to the volume element or 

to loaded structure. 

 

The proposed algorithms enable to correctly control the time increment size with an accurate description of 

very strong viscoplastic evolutions for different kinds of loading conditions. Their main advantage is to manage to 

avoid a time increment limitation which has a tremendous impact on the computation time, especially for problem 

with a high number of degrees of freedom . In fact, with a limited increase of the computation time, the developed 

control algorithms provide a converged stress-strain solution and a correct lifetime estimation. The proposed control 

strategy however needs both a careful identification of the 𝛽 parameter which seems to depend on the material 

behavior and a smart choice of the size of the first time increment which is taken as a reference for the control.  
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