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Abstract: Quantifying the mass balance of the Antarctic Ice Sheet (AIS), and the resulting sea level rise,
requires an understanding of inter-annual variability and associated causal mechanisms. Very few
studies have been exploring the influence of climate anomalies on the AIS and only a vague estimate
of its impact is available. Changes to the ice sheet are quantified using observations from space-borne
altimetry and gravimetry missions. We use data from Envisat (2002 to 2010) and Gravity Recovery
And Climate Experiment (GRACE) (2002 to 2016) missions to estimate monthly elevation changes
and mass changes, respectively. Similar estimates of the changes are made using weather variables
(surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) as
inputs to a firn compaction (FC) model. Elevation changes estimated from different techniques are in
good agreement with each other across the AIS especially in West Antarctica, Antarctic Peninsula,
and along the coasts of East Antarctica. Inter-annual height change patterns are then extracted using
for the first time an empirical mode decomposition followed by a principal component analysis to
investigate for influences of climate anomalies on the AIS. Investigating the inter-annual signals in
these regions revealed a sub-4-year periodic signal in the height change patterns. El Niño Southern
Oscillation (ENSO) is a climate anomaly that alters, among other parameters, moisture transport, sea
surface temperature, precipitation, in and around the AIS at similar frequency by alternating between
warm and cold conditions. This periodic behavior in the height change patterns is altered in the
Antarctic Pacific (AP) sector, possibly by the influence of multiple climate drivers, like the Amundsen
Sea Low (ASL) and the Southern Annular Mode (SAM). Height change anomaly also appears to
traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning
Maud Land (DML) and Wilkes Land (WL) in 6 to 8 years. This is indicative of climate anomaly
traversal due to the Antarctic Circumpolar Wave (ACW). Altogether, inter-annual variability in the
SMB of the AIS is found to be modulated by multiple competing climate anomalies.

Keywords: Antarctic Ice Sheet; GRACE; Envisat; RACMO2.3p2; firn densification model; ENSO; ACW

1. Introduction

The Antarctic ice sheet (AIS) is the largest reservoir of fresh water on Earth and
has a potential to raise global sea level by 58 m in the worst case, which is if it were to
melt completely [1]. Steig et al. (2009) have pointed towards a warming Antarctica since
the late twentieth century [2]. Since then, observing the AIS has been a priority as it
was found to be a primary contributor to global sea-level rise with high vulnerability [3].
Studies have shown that the AIS contributes nearly 0.60 mm year−1 to the global mean
sea level (GMSL) during 1993–2010 [4]. However, the contribution of the AIS is non
uniform spatially and varies basin-to-basin at differing scales, leading to multiple mass
redistribution patterns [5,6].
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Antarctica is subject to climate driven fluctuations with inter-annual periods [7,8].
Among them, El Niño Southern Oscillation (ENSO) brings along anomalies in sea surface
temperature (SST), sea ice extent, ice shelf thinning rates, and surface melt events in and
around Antarctica [9–11]. ENSO also causes simultaneous high and low pressure systems
leading to larger cloud formation and precipitation. This often leads to fluctuations in the
normal mass change trends [12] and can influence the nominal mass change patterns in
Antarctica [9,13]. Similar anomalies were detected in surface mass and elevation change
estimated from space-borne geodetic techniques which had a periodicity of 4 to 6 years
and circle the AIS in 9 to 10 years [14]. These anomalies may be attributed to ENSO
contributions over the AIS or the Antarctic circumpolar wave (ACW), a large scale co-
varying oceanic and atmospheric anomaly propagating eastward across the Southern
Ocean (SO) on subdecadal time scales [15–17]. Yet, the inter-annual geodetic signal has not
been corroborated by a climate model that could confirm an atmospheric origin.

Due to its large size and extreme climate conditions, more thorough understanding of
the AIS has been possible only using remote sensing techniques. Indeed, remote sensing
has emerged and evolved as a new observer of the AIS since the latter half of the twentieth
century. Remote sensing missions primarily focused on studying the atmosphere and the
oceans. The surface topography is also one of the key parameters that came into prominence
later on [18]. Indeed, it acts as a factor between regional climate and the consequent
response of an ice sheet both in short and long terms. Altimetry, either radar or laser, could
monitor changes of the topography. Since the 1990s, the AIS has been closely monitored
using satellite altimetry missions, such as ERS-1, ERS-2, Envisat, etc. [19,20]. Measurement
of changes in surface elevation of the ice sheets is used to quantify volume changes and
estimate mass changes. The mass change of the AIS is a paramount parameter to monitor
the ice sheet equilibrium [21]. Since 2002, monitoring of the mass change is possible
with the Gravity Recovery And Climate Experiment (GRACE) mission and since 2018,
its successor, the GRACE-Follow On mission [22,23]. These two space-borne gravimetry
missions could retrieve gravity changes that are partly due to surface-mass variations in
Antarctica [24–26]. Global observations of water and ice mass redistribution in the Earth
system at monthly to decadal time scales from GRACE missions played a critical role in
understanding the climate system and investigating its changes [27]. Errors encountered
and uncertainty associated while deriving mass changes from GRACE observations are
already been taken into account comprehensively [28]. Thorvaldsen et al. [29] function as a
necessary complete guide for products available for investigating climate change in the AIS.
Apart from the constrained and limited space-borne observations, weather variables, like
accumulation and temperature, are estimated from climate models, such as RACMO2.3p2,
for Antarctica [30]. The development of such climate models is facilitated by the evolution
of high computing performance together with the availability of long-term observations of
the atmosphere.

Since we have continuous long-term observations of the AIS from three distinct tech-
niques, it is imperative to have a combined analysis using each of them. As Gao et al. (2019) [31]
suggest, combined analysis using multiple data sets give better estimates rather than from
a single technique or data set. Multiple studies talk about the influence of climate pro-
cesses and presence of climate process signature in the ice sheet mass balance at multiple
scales [9,12–14] but have not explored it based on mass balance estimates from a climate
model to establish a possible climate origin. A recent study using surface mass balance
estimates and GRACE data by Zhang et al. (2021) [32] finds correlation between inter-
annual ice mass variations on a regional scale and ENSO index. Therefore, we make three
independent estimate of changes and investigate the inter-annual variability of these esti-
mates by successively applying for the first time an Empirical Mode Decomposition and a
Principal Component Analysis. We characterize these inter-annual signals and investigate
for possible signatures associated with climate driven changes locally. We first introduce
the data sets we use in Section 2 and explain how we derived height changes in Section 3.
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In Section 4, we present our methodology to extract inter-annual signals in Antarctica and
discuss our results in Section 5. Our conclusions are summarized in Section 6.

2. Data

We rely on space-based geodetic observations and a climate model to study surface
changes of the AIS.

2.1. Altimetry Data

The AIS has been closely monitored using satellite altimetry missions since the
1990s [19,20]. Rates of elevation change have been estimated and shown to vary largely be-
tween time intervals and their corresponding missions, such as ERS-1 and ERS-2 missions
during 1992–2003 and Envisat mission during 2002–2010 [33,34]. Variations in these rates
between missions and sudden impulses during shorter periods pinpoints the need to take
regional climatic variables into consideration for analysis. We use altimetric observations
from the Envisat mission, i.e., from August 2002 to October 2010, to estimate monthly
variations of the AIS surface elevation with March 2004 as the reference elevation as it
corresponds to the first cycle with the most complete coverage [25]. We employ along-track
processing that allows a dense data set [34], and grids of 5 km resolution are binned to
0.25◦ × 0.25◦ resolution grids [25].

2.2. GRACE

The GRACE mission was operational between April 2002 and June 2017 and its follow-
on mission, since July 2018. Therefore, monthly mass changes can be estimated from Stokes
coefficients derived from GRACE observations [35]. A quasi-continuous estimate of mass
changes in the AIS is available, since 2002. Due to its sensitivity to mass changes, GRACE-
derived time series are strongly subject to glacial isostatic adjustment (GIA), which is the
readjustment of Earth’s lithosphere and mantle from past ice sheet retreats [36]. Surface-
mass changes in Antarctica are determined using the release 6 (RL06) of the standard
GRACE solutions provided by the University of Texas Center for Space Research (CSR,
http://www2.csr.utexas.edu/grace/ accessed on 30 January 2019), the Jet Propulsion
Laboratory (JPL, http://podaac.jpl.nasa.gov/grace accessed on 30 January 2019), and
the GeoForschungsZentrum (GFZ) Potsdam (http://isdc.gfz-potsdam.de/grace accessed
on 30 January 2019). The solutions provide Stokes coefficients, i.e., fully normalized
spherical harmonic coefficients of the gravity potential, on a 30-day sampling. Using
GRACE solutions in the form of spherical harmonics, we employ GRACE-like processing
homogeneously with both Envisat and RACMO data sets [25]. We use Stokes coefficients
up to the harmonic degree 50, limiting the spatial resolution to about 400 km. This limits
contamination by noise, including meridional stripes. Estimates of monthly variations
in gravity potential were made with respect to that on March 2004 to ensure temporal
consistency with the Envisat observations.

2.3. Climate Models

Various studies have commented upon the limitations of altimetry in quantifying the
exact mass changes in the AIS as varying masses are not purely ice or snow [37]. These
limitations have also surfaced while analyzing differences between the conclusions from
gravimetry technique and altimetry technique [20]. This is largely due to the sensitivity
of the altimetric signal towards the geophysical properties of the snowpack [19,38,39].
The presence of strong and persistent katabatic winds in Antarctica also adds up another
challenge as these winds sculpt the surface of the snow from the centimeter scale (micro-
roughness) to the meter scale (sastrugi), moving significant amounts of snow [40]. These
differences could partly be addressed if we implement a firn densification model with
input parameters from a climate model. The firn densification model is further explained
in Section 3.2.

http://www2.csr.utexas.edu/grace/
http://www2.csr.utexas.edu/grace/
http://podaac.jpl.nasa.gov/grace
http://isdc.gfz-potsdam.de/grace
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Usually, numerical climate models use quantitative methods to simulate the interac-
tions or processes between the important drivers of climate, such as atmosphere, hydro-
sphere, lithosphere, and cryosphere, using physical relations [41]. The Regional Atmo-
spheric Climate Model (RACMO2.3p2) [30] is such a model providing weather data at a
horizontal resolution of 27 km over the AIS and 5.5 km over Antarctica Peninsula (AP)
region between January 1979 and December 2016. This model integrates the atmospheric
dynamics of the High Resolution Limited Area Model (HIRLAM) [42] and the physics
package CY33r1 of the European Center for Medium-Range Weather Forecast (ECMWF)
Integrated Forecast System (IFS) [43]. The parameters that drive the AIS mass balance
include temperature, snowfall, surface mass balance (SMB), surface pressure, wind veloci-
ties, etc. These parameters are widely used in numerous studies exploring the ocean, the
atmosphere, and the cryosphere in the polar regions [20,44].

2.4. Climate Indices

A climate index is a calculated value that can be used to describe the state and the
changes in the climate system. It allows a statistical study of variations of the dependent cli-
matological aspects, such as analysis and comparison of time series, means, extremes, and
trends. Fluctuations associated to ENSO are usually quantified using the Southern Oscilla-
tion Index (SOI), which provides a measure of the strength of the related events [45]. SOI
is defined [46] as the doubly standardized difference in mean sea-level pressure between
Tahiti (131◦ E 13◦ S) and Darwin (210◦ E 18◦ S). It is provided by the Climate Prediction Cen-
ter (CPC) of the National Oceanic and Atmospheric Administration (NOAA) (https://www.
cpc.ncep.noaa.gov/data/indices/ accessed on 30 June 2020). Oceanic Niño Index (ONI) is
another index to measure the strength of a La Niña or an El Niño occurrence. ONI tracks
the 3-month running mean of SST anomalies from the ERSST.v5 (Extended Reconstructed
Sea Surface Temperature) in the east-central tropical Pacific (5◦ N–5◦ S and 120◦ W–170◦ W)
(https://ggweather.com/enso/oni.htm accessed on 30 September 2020) [47]. SOI and ONI
are usually anti-correlated. ONI usually shows positive correlation with height changes on
the occurrence of an ENSO event, and vice versa for SOI. Therefore, we have used ONI for
our studies with the measurements from the AIS in Section 5.

3. Estimation of Height Changes

The methodology we adopt in the study is summarized as a flowchart in Figure 1.
It involves deriving height change patterns from the data and observations. In the next
section, we extract inter-annual signals from the monthly estimates and then characterize it.

3.1. From Space-Borne Observations

Elevation change has been globally regarded as a robust measure to estimate changes
associated with ice sheets. Elevation change data of the AIS exist since the 1990s at a very
good spatial and temporal resolution. In our study, we employ a GRACE-like processing
on this data to derive monthly maps of elevation changes [25]. Due to the inclination of
the orbit, Envisat observations cover the AIS down to 81.5◦ S. We derive monthly maps
of elevation changes on a 1◦ × 1◦ grid providing 2959 time series. We subtract a degree-2
polynomial fit as we focus on understanding the inter-annual signals and their variability.
This degree-2 polynomial represents the trend and the acceleration of present-day ice sheet
mass changes resulting from a combination of changes in the height of snow and ice.

We use the average of the three GRACE solutions for the gravity potential as it
increases the signal-to-noise ratio of the time series [48]. Observations from the GRACE
mission are not only subject to present-day ice-mass loss but also GIA [49]. As for the
altimetry processing, we eliminate those contributions by removing a degree-2 polynomial
fit. The resulting inter-annual variations in the gravity potential can be converted into mass
changes according to the assumption of the thin sheet layer [35]. Mass changes are then
converted into water (WEH), ice (IEH), or snow (SEH) equivalent height [26]. Comparing

https://www.cpc.ncep.noaa.gov/data/indices/
https://www.cpc.ncep.noaa.gov/data/indices/
https://ggweather.com/enso/oni.htm
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these three variables with height changes from altimetry or modeling helps identifing the
nature of the changing mass.

Inter-annual signal

Empirical mode decomposition (EMD) analysis

  Inter-annual height change 
patterns in WEH / SEH

  Inter-annual height change 
patterns

  Inter-annual height change 
patterns

Characterizing inter-annual signal

Principal component analysis (PCA)

GRACE 2002 - 2016
RL 06 from CSR, JPL, GFZ

ENVISAT 2002 - 2010 
(Flament & Rémy, 2012)

RACMO2.3p2 1979 - 2016
(Van Wessem., et al 2018)

GRACE like processing
(Memin., et al 2014)

Conversion to mass 
changes

(Wahr., et al 1998)

Conversion to water equivalent 
height (WEH) / snow equivalent 

height (SEH)

Firn compaction model
(Li & Zwally, 2015)

Monthly height change 
patterns in WEH / SEH

Monthly height change 
patterns

Monthly height change 
patterns

Monthly height change patterns

Figure 1. Flowchart of the study. Parallelogram represents data used and rectangle represents a process. The arrow points
towards direction of data flow.

3.2. From Modeling

Preliminary and most defining development on firn compaction models were based on
data from ice cores from various ice sheets [50]. Most of these models have been developed
based on firn physics and data from ice cores from different ice sheets around the world
which has gone through varying climatic conditions [51,52]. They largely employ heat
transfer equations alongside the firn densification process. It can portray the transition of
snow, with low density, into ice, with high density, over time and depth.
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Height changes of an ice sheet at short time scale and not near the coastal area are
primarily due to changes in accumulation and temperature [52,53]. Therefore, changes
in elevation of an ice sheet can be modeled using accumulation and temperature data
or estimates as inputs to a firn compaction model (FCM). We use accumulation and
temperature changes from RACMO2.3p2 outputs and the model developed by Stevens et al.
(2020) to account for firn compaction [54]. Referring to the implementation by Stevens et al.
(2020), we carried out experiments and tests and successfully replicated the results obtained
by Li and Zwally (2015) [52,54]. Then, we estimate height changes over the AIS since 1992
as follows.

Inputs to the model include rate of accumulation, density of snow, temperature, rate
of melt, etc. We assume a constant snow density across the AIS at 350 kg m−3. The
depth at which firn density is closer to that of the ice varies across the AIS. This depth,
which is referred to as critical depth, depends on the climate conditions including rate of
accumulation and average temperature. Even though critical depth varies across the AIS,
we use a contant firn column of depth 220 m inspired from Verjans et al. (2020) [55]. The
rate of densification depends on accumulation rate and temperature changes; consequently,
it varies across the AIS, along with the climatic conditions. We also assumed the rate of melt
to be nil as it is dominant only close to the coasts, and reliable estimate of it is unavailable.
A GRACE-like processing, following that of Mémin et al. [25], is applied to temperature
and accumulation fields before running the FCM. A fresh firn column is modeled at each
location in which the density at the top will be that of the snow and at the bottom will
be that of the ice. The model is pre-initialized for a period (∼100 years) long enough to
generate the firn column based upon the currently available climate variables.

In summary, we have derived estimates of height change from Envisat mission (Oc-
tober 2002–October 2010), from GRACE solutions (October 2002–June 2016), and from
RACMO outputs combined to a FCM (October 1992–December 2016). Next, we compare
the estimated height changes before extracting the inter-annual changes in Section 4.

3.3. Inter-Comparison between Height Change Estimates

We obtained height changes from three different and independent data sets. Com-
paring each of these estimates with one another is of paramount importance to improve
our understanding of mass changes over the AIS. In order to compare the height changes
estimated from the three data sets we use, we compute the coefficient of linear regression
between time series derived from Envisat and GRACE, Envisat and RACMO, GRACE
and RACMO over the common time interval, 2002–2010. This coefficient reflects how well
time and amplitude variations of a time series are similar to that estimated from another
observation. The coefficient of linear regression, C between two data sets D1 and D2 is
given by:

C[i, j] =

[
C12[i, j] + 1

C21[i,j]

]
2

, (1)

where C12 and C21 represent the coefficient of regression for D1 with respect to D2, and vice-
versa, respectively. i and j stand for the latitude and longitude of the region, respectively.
Uncertainty associated, U is expressed as:

U[i, j] = U12[i, j] +
U21[i, j]

C21[i, j] ∗ C21[i, j]
, (2)

where U12 and U21 represent the uncertainty obtained while calculating C12 and C21,
respectively. These coefficients of linear regression and their corresponding uncertainties
are mapped in Figure 2a–f.
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Figure 2. Coefficient of regression (left) and uncertainty (right) maps between height changes estimated from (a,d) Envisat and
GRACE in SEH, (b,e) Envisat and RACMO, and (c,f) GRACE in SEH and RACMO, during the period 2002–2010. In the coefficient of
regression maps, color indicates the magnitude, and the dark circle refer to regions where the coefficient is negative. Larger uncertainty
values are indicated using dark red.

In an ideal case, the coefficient of regression is close to 1 and the corresponding
uncertainty close to 0. A positive coefficient indicates that both estimates of height change
increase or decrease together, whereas having a negative coefficient implies the other
way around. Along with that, the magnitude of the coefficient characterizes the relation
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between the amplitude of the signal. A coefficient closer to 1 indicates that height estimates
from the two techniques are identical in phase and amplitude. Height changes estimated
from GRACE in SEH and those derived from RACMO are close to this ideal scenario
(Figure 2c,f). We can also locate regions where it is close to ideal in every map. This include
regions in West Antarctica, regions close to Coats Land (CL), Dronning Maud Land (DML),
and Wilkes Land (WL) in East Antarctica (Table 1). Whatever the height-change estimates
combination, the coefficients are the optimal closer to coastal regions than in-lands, more
specifically in East Antarctica where larger uncertainties are present (GRACE—Envisat
and Envisat—RACMO).

Table 1. Regression coefficients between height changes computed using our three data sets at four different locations with
respective coordinates in square brackets. Values in the bracket denotes uncertainty.

Site Envisat and GRACE Envisat and RACMO GRACE and RACMO

PIG [76◦ S 100◦ W] 1.08 (0.29) 0.87 (0.08) 1.16 (0.24)
CL [80◦ S 28◦ W] 1.39 (0.92) 1.66 (0.80) 0.74 (0.20)

DML [71◦ S 30◦ E] 1.57 (0.84) 1.56 (0.48) 0.81 (0.16)
WL [70◦ S 120◦ W] 0.96 (0.36) 1.04 (0.02) 0.86 (0.24)

Height changes for four distant locations (Pine Island Glacier (PIG), CL, DML, WL),
where we have near optimal regression coefficients and minimal uncertainties, are shown
in Figure 3a–d.

Figure 3. Height changes are shown for CL (a), DML (b), PIG (c), and WL (d) with that computed from RACMO in red,
GRACE solutions in green, separating WEH (solid) from SEH (dash), and Envisat observations in blue. The abscissa is the
time. The ordinate shows the amplitude (in cm), which varies in each subplot.
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We compare more closely height changes at CL, PIG, DML, and WL. The largest
variations in height changes happen in regions around PIG compared to DML, WL and
CL. At these four locations, the correlation is between 29 and 63%, 38 and 90%, and 60
and 74% between height changes derived from Envisat and GRACE, Envisat and RACMO,
GRACE and RACMO, respectively (Table 2). The lowest correlation is obtained when using
height changes from Envisat for CL and DML. Indeed, at these two locations, the seasonal
signal in Envisat height changes reaches 10 to 20 cm peak-to-trough and is either lagged
(CL) or too important (DML) compared to changes derived from GRACE and RACMO.
However, in PIG and WL, the three data sets agree remarkably well between 2002 and
2010 (Figure S1). To investigate the role of the density when computing height changes
from GRACE, we convert the changes into WEH and SEH. It indicates that inter-annual
SEH changes are in very good agreement with that from RACMO at CL, DML, and WL.
However, the smaller periods are slightly too large. At PIG, the seasonal amplitude in
SEH changes is slightly smaller than that of RACMO-derived height changes after 2011.
An intermediate density between water and snow would lead to a better agreement for
the inter-annual signal derived from GRACE and RACMO. Height change estimates from
GRACE and RACMO extended to 07/2016 also show a very good correlation at all four
locations. In order to better describe and understand the processes competing in Antarctica,
we focus next on the time interval common to the three data sets.

Table 2. Correlation coefficients between height changes computed using our three data sets at four different locations.

Site Envisat and GRACE Envisat and RACMO GRACE and RACMO

PIG 0.61 0.90 0.74
CL 0.29 0.38 0.60

DML 0.35 0.56 0.70
WL 0.63 0.77 0.67

4. Extraction of Inter-Annual Signals

Several methods have been adopted to extract the inter-annual signal around Antarc-
tica. For example, Cerrone et al. [56] used a band-pass filter applied on climate parameters
above the southern ocean. Autret et al. [57] used an empirical mode decomposition (EMD)
to analyze the automatic weather station data at coast. Here, we first apply the EMD to
all of our time series covering the AIS. Then, we perform a principal component analysis
on time series from selected locations which each represents a 400 km wide area of the
data set.

4.1. Empirical Mode Decomposition

The EMD perform self-adaptive decomposition of the signal on the basis of nonlinear
functions extracted from the signal itself [58]. EMD decomposes the signal into intrinsic
modes which correspond to physical characteristics of the studied signal using a sifting
process. This sifting process consists of defining a local phenomenon or feature considering
the oscillations of the signal between a maxima and a minima. This procedure is applied
iteratively on the original signal to extract constituent modes and their trends.

The EMD applied to height changes in Antarctica during the period 2002–2010 com-
monly yields 4 to 6 modes. The largest group, representing 65% of our time series, has
5 modes. Time series resulting in 4 and 6 modes represent 33% and 2%, respectively. For a
time series with 5 modes, the first mode represents the quasi-monthly disturbances which
is largely referred to as noise (Figure S2). Seasonal cycles and signals with periodicity
less than or up to one year constitute the second mode. The third mode has periodicity
values greater than 1 year. A quasi-4 year cycle dominates the fourth mode. Higher modes
constitute components with longer periods [57]. To extract the inter-annual changes, we
reconstruct the time series by combining modes which are independent of high frequency
changes, seasonal changes and very long-term trends. Therefore, we combine modes 3 and
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4 and modes 4 and 5 to reconstruct the inter-annual changes at locations where we have
5 and 6 modes, respectively. We only use the mode 3 where only 4 modes are obtained
after the EMD. At each location, we will have the inter-annual signal which is the height
change estimates independent of noise, seasonal signal, and very long-term trends. An
example of the EMD is given in the Supplementary Materials (Figure S2). The extracted
inter-annual signal contains an average of 60% energy of the original signal. The mean
contribution is 50%, 56%, and 73% for height changes from Envisat, GRACE, and RACMO,
respectively. Maps of distribution for the whole AIS are included in the Supplementary
Materials (Figure S3). The resulting inter-annual height changes at CL, PIG, DML, and WL
are shown in Figure 4a–d.

Figure 4. Inter-annual height changes after mode reconstruction following the EMD analysis at CL (a), DML (b), PIG (c), WL (d).
Height change estimates are from RACMO (red), GRACE in WEH (green), SEH (dashed green) and Envisat (blue). The abscissa is the
time. The ordinate shows the amplitude of the signal (in cm), which varies in each subplot.

At every selected region, the inter-annual height changes from the three techniques ex-
hibit comparable properties which include period and amplitude. The mean and maximum
coefficient of correlation are 63 and 86%, 72 and 91%, and 65 and 91% between inter-annual
height changes derived from Envisat and GRACE, Envisat and RACMO, GRACE and
RACMO, respectively (Table 3). The inter-annual signal has higher magnitude variations
in PIG, DML, and WL, where it has an amplitude of ∼10 cm. In CL, the amplitude of
the inter-annual signal falls to ∼5 cm. This difference is likely due to the location of the
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investigating regions. Indeed, PIG, WL, DML are coastal regions with no permanent ice
shelf, whereas CL is close to the permanent Ronne-Filchner ice shelf, thus being likely less
subject to ocean influences. Apart from the amplitude, similarities and differences can be
derived in terms of periodic content. Indeed, the inter-annual signal in CL, DML, and WL
shows longer periods than that at PIG. Next, to characterize the inter-annual changes over
the whole of the AIS, we use the reconstructed height changes from the EMD.

Table 3. Correlation coefficients between inter-annual height changes derived using EMD analysis.

Site Envisat and GRACE Envisat and RACMO GRACE and RACMO

PIG 0.26 0.91 0.28
CL 0.86 0.43 0.67

DML 0.71 0.70 0.91
WL 0.67 0.82 0.73

4.2. Characterizing Inter-Annual Changes

To identify the dominant temporal content of our estimated inter-annual changes,
we use the least squares method to fit for the best periodic signal. Given a range of
periods, distributed monthly from 2 to 8 years, we estimate a single-period model that fits
our extracted inter-annual signal. We then compute the Root Mean Square (RMS) of the
difference between the derived height changes and the estimated model and select the
model that leads to the lowest RMS. If S represents our derived inter-annual changes, and
FT represents the periodic fit with a periodicity of T, then:

∆RMS[i, j] = RMS(S[i, j])− RMS(FT [i, j]), (3)

where i and j stand for the latitude and longitude of the region, respectively. To assess the
outputs of the fitting process across the AIS, we compute the RMS reduction %R (in %) of
our derived inter-annual changes after removing the best fit. RMS reduction is computed
using the following relation:

%R[i, j] =
[

1 − ∆RMS[i, j]
RMS(S[i, j])

]
× 100. (4)

%R tends to 100% if the model fits perfectly, and 0% otherwise. It is mapped in Figure 5,
while the period and the amplitude of the best fitting model are mapped in Figure 6.

Using GRACE, RACMO, or Envisat derived height changes, Figure 5 shows that
regions where the RMS reduction is the largest are broadly the same. These regions are
that of PIG, CL, WL, Enderby Land (EL, between 30 and 60◦ E), and Terre Adélie (TA, west
of 150◦ E) (Figure 2). There, the RMS reduction is larger than 50%. It can reach up to 80%
in CL and TA. GRACE derived height changes lead to the lowest RMS reduction, while
that from RACMO are the largest. Similarly, Figure 6a–c show that the periodic signals that
best fit our derived height changes from our three data sets have very similar periods in
similar regions, which are those where the RMS reduction is the largest. The amplitude of
the best periodic signals are also comparable and reach up to 12 cm (Figure 6d–f).
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Figure 5. RMS reduction (in %) of the best single-period fitting model for height changes estimated from Envisat (a), GRACE (b), and
RACMO (c).

We find that identical spatial patterns exist for the periodicity maps from our three
distinctive data sets. We classify the whole AIS into three regions according to the best
fitting periods. These three period classes correspond to areas where periods are: less
than 4 years (class A), between 4 and 6 years (class B), and greater than 6 years (class C).
The class-wise distribution among each data set is shown in Table 4. The class that covers
the largest area is class B, representing 44 to 52% of the total studied area. Regions with
latitudes North of 75◦ S and between 30◦ W and 165◦ E (see the period of inter-annual
signal in Figure 4a,b,d), barring few exceptional regions, like that of Mac Robertson Land,
are dominated by class B. Periods less than 4 years are primarily in West Antarctica (see the
period of inter-annual signal in Figure 4c) and in the Antarctic Peninsula. This class A has
a total coverage of 40 to 47% of the investigated regions. The final class, and the smallest
class, class C, is found at exceptional regions indicating no clear spatial patterns and covers
only 8 to 10% area.

Table 4. Percentage of area covered by each class from each data set.

Class A (<4 Years) Class B (4–6 Years) Class C (>6 Years)

Envisat 45.25 44.32 10.42
GRACE 46.57 45.18 8.25
RACMO 39.82 52.13 8.04

Amplitude maps show quasi-identical patterns across estimates derived from Envisat,
GRACE, and RACMO. The inter-annual signal is the strongest along the coast of the
Antarctic Pacific sector and in EL and WL, even though the estimates seem to vary in
magnitude depending on the data sets. Comparing amplitude maps of GRACE in SEH and
WEH, SEH amplitude map is found comparable in magnitude with that from RACMO and
Envisat rather than WEH. It supports the idea that the inter-annual changes are majorly
driven by changes in density closer to that of snow. It is also worth noting that the inter-
annual signals are greater than an average magnitude along the coasts of the AIS, except
in regions between 60◦ E and 110◦ E, where it seems to have very less magnitude. The
area where the inter-annual signal has significant influence and strength falls within a
buffer of ∼600 km or 5◦ from the AIS coastline. This buffer region shows common periods
across different data sets. To explore the inter-annual signal in this region and extract
common modes of variability from our three data sets, we perform locally a PCA (Principal
Component Analysis) on the height changes.
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Figure 6. Maps of the periods (left) and amplitudes (right) of the best fitting model for height changes estimated from Envisat (a,d),
GRACE in SEH (b,e), and RACMO (c,f) after EMD. The period range is broken down into three classes: A, B, and C.

4.3. Principal Component Analysis

PCA on a multivariate time series is a statistical technique used for deriving the
variance-covariance matrix of a set of m—dimensional variables through a few linear
combinations of these variables [59]. A large m—dimensional data can be sufficiently
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expressed by k−principal components, where k < m and, hence, a reduction of the number
of degrees of freedom of the problem. It also converts a set of correlated variables into a
set of uncorrelated variables through an orthogonal transformation. This technique can be
used on general variables or standardized variables and hence either the covariance matrix
or correlation matrix is used. The goal of the method is to represent a large m—dimensional
process with much smaller k−principal components that would explain a large part of the
variance of the data.

We selected longitudinally equally spaced regions (15◦ apart) along the coast of the
AIS and within the buffer region discussed in the previous section (Figure 7a). We perform
PCA locally on our three independent time series normalized to their standard deviation
and obtained three principal components (PCs): PC1, PC2, and PC3. The first principal
component, PC1 has a mean variance of 76% and a standard deviation of 11%. Means of
the variance of the second and third principal components (PC2 and PC3) are, respectively,
17% and 6%. We study the first principal component (PC1) as it accounts for the largest
part of the variability. Explained variance of PC1 for the whole of the AIS is also shown
in Figure 7a. We can clearly see that regions having high variance for PC1 are the same as
regions where we have near ideal scenario as explained in Section 3.3. PC1 also accounts
for almost equal contributions in the range 0.5 to 0.7 from each of the three data sets
except at few locations which include longitudes 60◦, 75◦, 165◦, and 210◦ E (Table S2 in
Supplementary Materials). PC1 obtained locally is plotted in Figure 7b,c. The shaded
region located between 165◦ and 210◦ E and 285◦ and 330◦ E correspond to regions where
observations are not considered due to the presence of ice shelves.

A detailed time series analysis of the PC1 shows two positive and two negative
anomalies in most of the regions during our period of study. It is consistent with the
conclusions obtained in the previous section from Figure 6. Similar patterns are also
visible in the spatial analysis. We can also notice a shift, gradually eastward, in the time of
occurrence of the positive anomalies in PC1 while circling Antarctica from 15◦ to 285◦ E.
This feature is clearly seen during the spatial analysis as positive anomalies traverse from
0◦ to 285◦ E during the period April 2004–June 2009. Assuming anomalies propagate
eastward around the AIS, with a positive anomaly in July 2004 at 15◦ E and another one in
April 2009 at 285◦ E, the mean propagation rate would suggest that an anomaly takes about
6 years to circle the ice sheet. However, one can notice that the propagation is not constant
across the ice sheet. For example, from Figure 7b,c, we can notice that the positive anomaly
propagation gets delayed during 2003–2005 close to the Ross ice shelf, whereas there is
no such delay during the period 2006–2010. To investigate this further, we estimated
the occurrence time of the positive anomalies that are longitudinally successive at each
locations based on Figure 7b. The results are summarized in Figure 8.

The positive anomaly at 15◦ E longitude from Figure 7b has its first peak in July 2004.
This anomaly shows a smooth trend of propagation up to 285◦ E, in almost 5 years, with 30
and 45◦ E being two exceptions. Between 15 and 30◦ E, the positive anomaly appears to be
lagged by about one year and seems to circle the rest of the AIS at a quasi-constant rate
after 45◦ E. We have estimated the period to traverse the whole AIS by avoiding the regions
where we have explained variance lower than 70% for PC1 (Table S1 in Supplementary
Materials). Longitudes 75◦, 90◦, 165◦, and 210◦ E fall under this category. Therefore, the
mean time for encircling the entire AIS is about 5.5 years (green line in Figure 8). We
observe maximum amplitude for this anomaly at 45◦ E. The anomaly is the weakest at
165◦ E, which is the endpoint of a decreasing trend since 135◦ E. This also coincides with
increasing distance from 65◦ S, which reaches its maximum at 165◦ E. The same feature is
observed at 255◦ E, where we have lesser amplitude compared to other sampling locations
in the AP sector (210 to 285◦ E).
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Figure 7. Explained variance map of the PC1 with locations (black circles) of sites selected to perform the PCA (a). Darker color
indicates larger explained variance. Resulting PC1 height changes ordered by longitude (b) and ordered by time (c). The grey colored
region represents ice shelves. Positive and negative anomalies are in red and blue, respectively.

We repeat the same analysis with the negative anomalies, as indeed we observe a
negative anomaly originating in later half of 2002 at 15◦ E and propagating eastward
till late 2010 at 360◦ E in Figure 7. Similarly another trend is observed between 135
and 360◦ E of positive anomalies during December 2002 to January 2009. Both these
trends take approximately 7.5 to 9.5 years to traverse across the AIS. As we observe, this
phenomenon of propagation of anomalies is a continuous one, and we have not identified
any particular starting point and ending point. These anomalies seem to be enhanced or
diminished regionally.
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Figure 8. Time occurrence of anomalies in PC1 that are longitudinally successive around the AIS. Circles and triangles represent
positive and negative anomalies, respectively. The color depicts the absolute amplitude of the anomaly at each location from PC1.
Linear trends are estimated considering negative anomalies (blue), positive anomalies between 135◦ and 360◦ E (orange), and positive
anomalies between 15◦ and 285◦ E (green), ignoring locations with variance <70%.

5. Discussion

We discuss in this section the possible influence of major climate modes of variability.

5.1. Influence of El Niño Southern Oscillation

ENSO is a climate variability occurring on the timescales of 2–7 years and affecting
both the atmosphere and the ocean globally. It supposedly brings along anomalies in SST,
sea ice extent, ice shelf thinning rates, and surface melt events in and around AIS [9–11].
As it also creates simultaneous high and low pressure systems, leading to larger cloud
formation and precipitation, it should affect the AIS.

Sasgen et al. (2010) have discussed the influence of ENSO in mass change patterns
using SOI, GRACE solutions, and weather model data [13]. They have found that the
inter-annual mass variability along the Antarctic Peninsula and the Amundsen Sea sector,
obtained from GRACE, contains ENSO signatures. These mass estimates are exclusive of
offset, linear trend, and annual harmonic and are found to be mainly a consequence of
accumulation variations governed by changes in precipitation rates. ENSO influence over
Antarctic ice shelves is also well discussed using weather and altimetry data by Paolo et al.
(2018) [60]. They have been able to link ice-shelf height variability in the AP sector with
changes in the regional atmospheric circulation driven by the ENSO with indices including
ONI. Mémin et al. (2015) have detected anomalies with a period of about 4–6 years in
a combined analysis of surface-mass and elevation changes between August 2002 and
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October 2010 [14]. Our results suggest at least 44% of the total studied area have periods
between 4 and 6 years (class B in Table 4). By using climate model driven height change
estimates for our study, we confirm that the inter-annual geodetic anomalies observed
in Antarctica are due to changes in atmospheric conditions. Interestingly, Zhan et al.
(2021) [61] associated climate related events to dominate mass change trends in AIS by
carrying out a complex principal component analysis. The frequency of their primary
component matches with our major period class.

Correlation coefficient maps between the ENSO index and inter-annual height changes
from Envisat, GRACE, and RACMO reveal the influence of ENSO on height change patterns
(Figure 9). Correlation coefficient ranges between −0.7 and 0.7. Positive correlations are
commonly found in the East Antarctica beyond 0◦ up until 130◦ E. This is the same area
where we find inter-annual signals having periods in the range of 4 to 6 years and more
than average amplitudes. Maximum positive correlation is obtained in regions around
DML and WL, especially when height changes are derived from RACMO and GRACE.
Most of the regions in the West Antarctica exhibit negative correlation coefficients, which
is consistent with what we observe in the periodicity maps. Zhang et al. (2021) [32] also
attributed the inter-annual changes in ice mass over the AIS to precipitation related events
associated with ENSO analyzing GRACE data and other mass balance estimates. Even
though they limited studies based on regional estimates, they, too, discussed about varying
characteristics between East Antarctica and West Antarctica. This is further explained in
the upcoming section.

Figure 9. Correlation maps between ONI and inter-annual height changes estimated from (a) ENVISAT, (b) GRACE, and (c) RACMO.
Positive and negative correlation coefficients are in red and blue, respectively.

5.2. Influence of Southern Annular Mode

Apart from the influence of the ENSO, regions in the Pacific sector are subject to other
climate drivers, such as the Southern Annular Mode (SAM) and the Amundsen Sea Low
(ASL) [62,63]. SAM is the dominant mode of atmospheric variability in the Southern Hemi-
sphere (SH) imposing a major shift in the broad-scale climate of the hemisphere influencing
precipitation and temperature on month-to-month and inter-annual timescales [64]. It
is quantified based on the zonal pressure difference between the latitudes of 40◦ S and
65◦ S. Positive values of the SAM index correspond with stronger-than-average wester-
lies over the mid-high latitudes (50◦ S–70◦ S) and weaker westerlies in the mid-latitudes
(30◦ S–50◦ S). The influence of ENSO on the AIS is either enhanced or diminished depend-
ing upon the phase of SAM [65]. ASL is a climatological low pressure system that exerts
considerable influence on the climate of West Antarctica. It influences the wind anomalies,
snowfall, temperature patterns, and sea ice extent. Given the broader frequency content
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of SAM and ASL, these drivers are the likely cause for deviation of period values from
class B (4 to 6 years) in West Antarctica and the Antarctic Peninsula. These regions have
periods less than 4 years (class A), which may be due to the influence of the SAM or the
ASL in phase or out of phase with the ENSO. Depending upon the phase and the time of
occurrence, ASL and SAM either strengthen or weaken the ENSO signature. The influence
of ASL and SAM is strongly felt along the Amundsen Sea sector, as well as in the Antarctic
Pacific sector, which overlaps with above mentioned regions [60].

5.3. Influence of Antarctic Circumpolar Wave

The ACW is a phenomenon where large scale co-varying oceanic and atmospheric
anomalies propagate eastward across the Southern Ocean (SO) on subdecadal time
scales [15–17]. This phenomenon influences weather variables, like SST, sea ice extent,
sea level pressure (SLP), and wind velocities, which is similar to what ENSO does.

ACW is commonly found as a wavenumber-2, wavenumber-3, and the Pacific-South
American (PSA) pattern in studies associated with a combination of oceanic and atmo-
spheric models [66,67]. A zonal or a hemispheric wavenumber refers to the dimensionless
number of wavelengths fitting within a full circle around the globe at a given latitude.
Few studies have tried to interlink both ENSO and ACW together [16]. Prior studies
investigating the characteristics, origin, effects and propagation of the wave in different
time periods summarized the wave as a combination of wave-2 and wave-3 patterns. A
wave-2 pattern is more associated with ENSO’s tropical standing mode while a wave-3
pattern comes into play on weakening of the ENSO [68–72]. A wave-2 pattern usually
takes around 8 to 10 years to circumnavigate and has a periodicity of 4 to 5 years, which is
similar to that of the ENSO phenomenon [15,16].

White and Peterson have found that, in between two ENSO occurrences, the anomalies
in temperature and pressure are propagated eastwards by the ACW into the Atlantic and
Indian ocean portions of the SO [15]. Long-term studies have also shown inter-decadal
changes in the behavior of this wave [56]. These changes are due to tropical and subtropical
ocean warming and ozone depletion and variability of El Nino [73,74]. They also categorize
change in the wave behavior which includes equatorward expansion to a warmer subtropi-
cal south Indian Ocean instead of a warmer subtropical South Pacific Ocean which, with
passage of time, becomes cold. Earlier studies have indicated possibilities of weakening
and decelerating of the anomaly propagation in the Indian Ocean sector of Antarctica (0◦

to 50◦ E) due to topographic meandering where the region gets warmer during winter [75].
Ice core records from DML have exposed a 4- to 5-year quasi-periodic signature in sea

salt aerosol deposition over 2000 years depicting how ENSO and ACW influence climate
in the AIS [71]. This was complemented by a study where an 8-year rotating wave with a
4-year apparent periodicity was observed while analyzing the temperature variations at
10 automatic weather stations around the continent [57]. Anomalies were found in surface
mass and elevation change estimated from space-borne geodetic techniques which had a
periodicity of 4 to 6 years that circle AIS in 9 to 10 years and thereafter attributed to ACW
or ENSO contributions over the AIS [14].

During the characterization phase of the inter-annual signals, we observe above
average amplitude values within a buffer of ∼600 km or 5◦ from the AIS coastline in
Figure 6d–f. This buffer region is sampled at equal gaps (15◦ apart longitudinally) for a
combined analysis using three data sets (Figure 7a). The PC1 obtained after a PCA on
these normalized data sets explains 76% of the variance and mostly equals contribution
from each constituent data set barring a few exceptional regions. A wavenumber-2 pattern
is observed at most of the sampling locations (Figure 7b). Our results show anomalies
with a dominant periodicity across the AIS in the range of 4 to 6 years. These anomalies
show an eastward propagating pattern from 15◦ to 360◦ E. The propagating rate indicates
that the anomaly encircles the AIS in about 8 years with irregular velocities. Variation in
propagation rate can be attributed to local features, including location, topography, and
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wind velocities. Figure 7c, too, points the presence of a rotating wave which propagates
eastwards. These elements favor the effect of the ACW.

6. Conclusions

In this study, we investigated inter-annual variability in the AIS combining multiple
geodetic observations (altimetry and gravimetry) and outputs from the regional climate
model, RACMO2.3p2. In the process, we estimated height changes from gravity changes
based on Wahr et al. (1998) [35] and from weather variables using firn compaction model
of Li and Zwally (2015) [52]. This was then combined with elevation changes from En-
visat mission for the common period 2002–2010 (Section 3.3) [19]. We then employ EMD
technique to extract inter-annual signals which represents an average 60% of the monthly
height changes (Figure S3) [57]. During this process, we isolate inter-annual height change
patterns by removing noise and components with very high (greater than 0.5 year−1) and
very low (less than 0.125 year−1) frequencies. We use the least squares method to find the
best fitting period and amplitude for this inter-annual signals. Class B (4–6 years) covers
the largest portion of the study area, closely followed by class A (<4 years) (Table 4) [14,61].

Period and amplitude maps (Figure 6) indicate the likely influence of inter-annual
climatic processes on the ice sheets. Inter-annual signal in the East Antarctica has periods
similar to that of ENSO and shows positive correlation up to 0.7 (Figure 9), whereas the
trends in West Antarctica and Antarctic Peninsula (Figures 6 and 9) can be explained by the
influence of phenomenon, like SAM and ASL, in the AP sector [60]. A PCA of inter-annual
signals along the coast at equal intervals also revealed a possible influence of the ACW
on the AIS (Figure 7) [14]. ACW seems to carry the climatic anomaly across the AIS,
influencing regions along the coast with varying rates of propagation which is dependent
on local features (Figure 8). A particular anomaly seems to take 6–8 years to encircle AIS as
we observe it in different sectors during our period of study, and its magnitude of influence,
too, varies locally.

Further long-term research into the presence and evolution of climate drivers and
their possible influence on the AIS is very crucial in factoring these components into global
climate models to get better estimates of global mean sea level changes. Quantifying the
influence of multiple competing climate drivers is still open for research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13112199/s1, Figure S1: Coefficient of correlation between height changes estimated from
(a) Envisat and GRACE, (b) Envisat and RACMO, and (c) GRACE and RACMO, during the period
2002–2010. Figure S2: Overview of the empirical mode decomposition (EMD). Figure S3: Energy
ratio of the inter-annual signal extracted from (a) Envisat, (b) GRACE, and (c) RACMO. Table S1:
Explained variance in percentage after Principal Component Analysis (PCA). Table S2: Coefficient of
each data set in PC1.
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Abbreviations
The following abbreviations are used in this manuscript:

AIS Antarctic Ice Sheet
GRACE Gravity Recovery And Climate Experiment
SEH Snow Equivalent Height
FCM Firn Compaction Model
CL Coats Land
DML Dronning Maud Land
WL Wilkes Land
PIG Pine Island Glacier
EMD Empirical Mode Decomposition
RMS Root Mean Square
PCA Principal Component Analysis
ENSO El Niño Southern Oscillation
SOI Southern Oscillation Index
ONI Oceanic Niño Index
SAM Southern Annular Mode
ASL Amundsen Sea Low
ACW Antarctic Circumpolar Wave
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