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Abstract
Given a dynamical system Σp with a parameter p taking its values in a fixed interval Q, we
present a simple criterion of set inclusion which guarantees that the Euler approximate solutions
of Σp0 for some value p0 ∈ Q converge to a limit cycle E . Moreover, we characterize a compact
set I containing E which is invariant for the exact solutions of Σp whatever the value of p ∈ Q.
We illustrate the application of our method on the example of a parametric Van der Pol system
driven by a periodic input.
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1. INTRODUCTION

Given a differential system Σ : dx/dt = f(x) of dimension
d, an initial point x0 ∈ Rd, a real ε > 0, and a
ball B0 = B(x0, ε)

1 , we present here a simple method
allowing to find a bounded invariant set of Σ containing the
trajectories starting at B0. This invariant set has the form
of a tube whose center at time t is the Euler approximate
solution x̃(t) of the system starting at x0, and radius is a
function δε(t) bounding the distance between x̃(t) and an
exact solution x(t) starting at B0. The tube can thus be
described as

⋃
t≥0B(t) where B(t) ≡ B(x̃(t), δε(t)).

To find a bounded invariant, we then look for a positive
real T such that B((i + 1)T ) ⊆ B(iT ) for some i ∈ N.
In case of success, the ball B(iT ) is guaranteed to contain
the “stroboscopic” sequence {B(jT )}j=i,i+1,... of sets B(t)
at time t = iT, (i + 1)T, . . . . It follows that the bounded
portion

⋃
t∈[iT,(i+1)T ]B(t) is equal to

⋃
t∈[iT,∞)B(t), and

thus constitutes the sought bounded invariant set.

We apply the finding of such a (forward) invariant set
to the analysis of parameterized time-periodic differential
systems. We illustrate our results on the example of a
parametric Van der Pol system driven by a common
periodic input.

1.0.0.1. Comparison with related work We explain here
some similarities and differences of our method with
several kinds of related work.

• There exists a trend of work on the generation
of torus-shaped invariants using stroboscopic maps
of quasi-periodic systems with possible parameters
(see, e.g., Baresi and Scheeres (2016); Gómez and
Mondelo (2001); Olikara and Scheeres (2012)). A first
difference is that these works consider stroboscopic

1 B(x0, ε) is the set {z ∈ Rd | ‖z − x0‖ ≤ ε} where ‖ · ‖ denotes the
Euclidean distance.

mappings of points of Rd, while our stroboscopic maps
apply to sets of points. A second difference is that
they often use a Fourier analysis in the frequency
domain (using, e.g., the notion of “radii polynomials”
Castelli and Lessard (2013)) while we remain in the
time domain.
• Our method makes use of a rigorous time-integration

method in order to enclose the exact solutions
with tubes, which is similar to what is done using
high order of Taylor method in ODE integration
as proposed by Lohner or Taylor models Lohner
(1987); Zgliczynski (2002). Such methods are used in
Castelli and Lessard (2013); Kapela and Simo (2007)
to rigorously compute the eigenvalues of a so-called
“monodromy matrix”, which allows to determine
the linear stability of the equilibrium points of the
system. Unlike these works, our stability analysis does
not try to compute such eigenvalues of monodromy
matrices.
• Our method shares also some common features with

the works of Aylward et al. (2008); Aminzare and
Sontag (2014); van den Berg and Queirolo (2020),
which aim at proving a contractivity property of
the system (i.e., that any two solutions converge
exponentially to each other). In Aminzare and Sontag
(2014), contractivity amounts to the finding of a
negative definitive quadratic form (which is equivalent
to the existence of a Lyapunov function for the
system). In Aylward et al. (2008), “Squares-of-Sum
programming is used to find ranges of uncertainty
under which a system with uncertain perturbations
is always contracting with the original contraction
metric”. In van den Berg and Queirolo (2020), they
turn the stability problem into the contractivity of
a fixed point operator that is checked with the
assistance of a computer. The difference here is that
we do not try to prove a contractivity property, but
only the existence of two set-valued snapshots, one of



which is included in the other one. This is a much
weaker property and easier to prove.

Our method is simple, efficient, and allows us to construct
a cyclic approximate solution E (using Euler’s method)
together with a (forward) invariant set I around E . Note
however that, even if the approximate and exact solutions
are very close in practice, our method does not guarantee
the formal existence of cyclic exact solutions inside I,
which requires more technical methods such as Poincaré
maps.

1.0.0.2. Plan of the paper In Section 2, we present our
method, then explain how to apply it to the analysis
of parameterized systems in Section 3. We conclude in
Section 4.

2. METHOD

2.1 Euler’s method and error bounds

Let us consider the differential system:

dx(t)

dt
= f(x(t)),

with states x(t) ∈ Rd. We will use x(t;x0) (or sometimes
just x(t)) to denote the exact continuous solution of the
system at time t, for a given initial condition x0. We use
x̃(t; y0) (or just x̃(t)) to denote Euler’s approximate value
of x(t; y0) (defined by x̃(t; y0) = y0 + tf(y0) for t ∈ [0, τ ],
where τ is the integration time-step).

We suppose that we know a bounded region S ⊂ Rd
containing the solutions of the system for a set of initial
conditions B0 and a certain amount of time. We now give
an upper bound to the error between the exact solution of
the ODE and its Euler approximation on S (see Le Coënt
and Fribourg (2019); Le Coënt et al. (2017b)).
Definition 1. Let ε be a given positive constant. Let us
define, for t ∈ [0, τ ], δε(t) as follows:
if λ < 0 :

δε(t) =

(
ε2eλt +

C2

λ2

(
t2 +

2t

λ
+

2

λ2
(
1− eλt

))) 1
2

if λ = 0 :

δε(t) =
(
ε2et + C2(−t2 − 2t+ 2(et − 1))

) 1
2

if λ > 0 :

δε(t) =

(
ε2e3λt +

C2

3λ2

(
−t2 − 2t

3λ
+

2

9λ2
(
e3λt − 1

))) 1
2

where C and λ are real constants specific to function f ,
defined as follows:

C = sup
y∈S

L‖f(y)‖,

where L denotes the Lipschitz constant for f , and λ is the
“one-sided Lipschitz constant” (or “logarithmic Lipschitz
constant” Aminzare and Sontag (2014)) associated to f ,
i. e., the minimal constant such that, for all y1, y2 ∈ S:

〈f(y1)− f(y2), y1 − y2〉 ≤ λ‖y1 − y2‖2, (H0)

where 〈·, ·〉 denotes the scalar product of two vectors of S.

The constant λ can be computed using a nonlinear
optimization solver (e. g., CPLEX Cplex (2009)) or using

the Jacobian matrix of f (see, e. g., Aminzare and Sontag
(2014)).
Proposition 1. Le Coënt et al. (2017b) Consider the
solution x(t; y0) of dx

dt = f(x) with initial condition y0
and the approximate Euler solution x̃(t;x0) with initial
condition x0. For all y0 ∈ B(x0, ε), we have:

‖x(t; y0)− x̃(t;x0)‖ ≤ δε(t).

Proposition 1 underlies the principle of our set-based
method where set of points are represented as balls
centered around the Euler approximate values of the
solutions. This illustrated in Fig. 1: for any initial
condition x0 belonging to the ball B(x̃0, δ(0)) with δ(0) =
ε, the exact solution x1 ≡ x(τ ;x0) belongs to the ball
B(x̃1, δε(τ)) where x̃1 denotes the Euler approximation
x̃0 + τf(x̃0) at t = τ .

Figure 1. Illustration of Proposition 1

2.2 Systems with bounded uncertainty

Let us now show how the method extends to systems with
“disturbance” or “bounded uncertainty”. A differential
system with bounded uncertainty is of the form

dx(t)

dt
= f(x(t), w(t)),

with t ∈ Rd≥0, states x(t) ∈ Rd, and uncertainty w(t) ∈
W ⊂ Rd, whereW is a compact (i. e., closed and bounded)
set. We assume that any possible disturbance trajectory
is bounded at any point in time in the compact set W .
We denote this by w(·) ∈ W, which is a shorthand for
w(t) ∈ W,∀t ≥ 0. The diameter of W (i.e., the maximal
distance between two elements of W) is denoted by |W|.
See Schürmann and Althoff (2017b,a) for details. We now
suppose (see Le Coënt et al. (2017a)) that there exist
constants λ ∈ R and γ ∈ R≥0 such that, for all y1, y2 ∈ S
and w1, w2 ∈ W:

〈f(y1, w1)− f(y2, w2), y1 − y2〉
≤ λ‖y1 − y2‖2 + γ‖y1 − y2‖‖w1 − w2‖ (H1).

This formula can be seen as a generalization of (H0) (see
Section 2.1). Recall that λ has to be computed in the
absence of uncertainty (|W| = 0). The additional constant
γ is used for taking into account the uncertainty w. Given
λ, the constant γ can be computed itself using a nonlinear

2



optimization solver (e. g., CPLEX Cplex (2009)). Instead
of computing them globally for S, it is advantageous
to compute λ and γ locally depending on the subregion
of S occupied by the system state during a considered
interval of time. We now give a version of Proposition 1
with bounded uncertainty w(·) ∈ W, originally proved
in Le Coënt et al. (2017a).
Proposition 2. Le Coënt et al. (2017a) Consider a

system Σ with bounded uncertainty of the form dx(t)
dt =

f(x(t), w(t)) satisfying (H1).

Consider a point x0 ∈ S and a point y0 ∈ B(x0, ε).Let

x(t; y0) be the exact solution of the system dx(t)
dt =

f(x(t), w(t)) with bounded uncertainty W and initial
condition y0, and x̃(t;x0) the Euler approximate solution

of the system dx(t)
dt = f(x(t), 0) without uncertainty

(|W| = 0) with initial condition x0. We have, for all
w(·) ∈ W and t ∈ [0, τ ]:

‖x(t; y0)− x̃(t;x0)‖ ≤ δε,W(t).

with

• if λ < 0,

δε,W(t) =

(
C2

−λ4
(
−λ2t2 − 2λt+ 2eλt − 2

)
+

1

λ2

(
Cγ|W|
−λ

(
−λt+ eλt − 1

)
+ λ

(
γ2(|W|/2)2

−λ
(eλt − 1) + λε2eλt

)))1/2

(1)

• if λ > 0,

δε,W(t) =
1

(3λ)3/2

(
C2

λ

(
−9λ2t2 − 6λt+ 2e3λt − 2

)
+ 3λ

(
Cγ|W|
λ

(
−3λt+ e3λt − 1

)
+ 3λ

(
γ2(|W|/2)2

λ
(e3λt − 1) + 3λε2e3λt

)))1/2

(2)

• if λ = 0,

δε,W(t) =
(
C2
(
−t2 − 2t+ 2et − 2

)
+
(
Cγ|W|

(
−t+ et − 1

)
+
(
γ2(|W|/2)2(et − 1) + ε2et

)))1/2
(3)

We will sometimes write δW(t) and δ(t) instead of δε,W(t)
and δε(t) respectively.

2.3 Correctness

Consider a differential system Σ : dx/dt = f(x,w) with
w ∈ W, an initial point x0 ∈ Rd, a real ε > 0 and
a ball B0 = B(x0, ε). Let BW(t) denote B(x̃(t), δε,W(t))
where x̃(t) is the Euler approximate solution of the system
without uncertainty and initial condition x0

2 . It follows
from Proposition 2 that

⋃
t≥0BW(t) is an invariant set

containing B0. We can make an a stroboscopic map of
this invariant. by considering periodically the set BW(t)
at the moments t = 0, T, 2T , etc., with T = kτ for some k
(τ is the time-step used un Euler’s method).

2 Note that BW (0) = B0 because x̃(0) = x0 and δε,W (0) = ε.

If moreover, we can find an integer i ≥ 0 such that
BW((i + 1)T ) ⊆ BW(iT ), then we have BW(iT ) =⋃
j=i,i+1,...BW(jT ) and

⋃
t∈[iT,(i+1)T ]BW(t) =⋃

t∈[iT,∞)BW(t). The set
⋃
t∈[iT,(i+1)T ]BW(t) is thus a

bounded invariant set which contains all the solutions x(t)
starting at B0, for t ∈ [iT,∞). In the phase space, this
invariant set has a “torus” shape. We have:
Proposition 3. Suppose that there exist T = kτ with
k ∈ N, and i ∈ N such that:

BW((i+ 1)T ) ⊆ BW(iT ).

Then IW ≡
⋃
t∈[0,T ]BW(iT+t) is a compact (i.e., bounded

and closed) invariant set containing, for t ∈ [iT,∞), all
the solutions x(t) of Σ with initial condition in B0.

3. APPLICATION TO PARAMETRIC SYSTEMS

Let us now consider a family {Σp}p∈P of differential
systems Σp of the form dx/dt = fp(x) involving a
parameter p ∈ P (but no uncertainty). It is useful to find
a subset Q of P and a system Σ′ : dx/dt = f(x,w) with
uncertainty such that, for any p ∈ Q, Σp is a particular
form of Σ′ for an appropriate uncertainty function w(·) ∈
W. This is useful to infer certain common properties of
the solutions of {Σp}p∈Q from the analysis of the system
Σ′ with uncertainty (cf. Aylward et al. (2008), Section 5).
Example 1. Consider the Van der Pol system Σp with
parameter p ∈ R driven by a periodic input of the form
0.015cos(t) (see, e.g, Capinski et al. (arXiv:1905.08116,
2020)), with initial condition in B0 = B(x0, ε) for some
given x0 ∈ R2 and ε > 0 (see van den Berg and Queirolo
(2020)):

du1/dt = u2

du2/dt = p(1− u21)u2 − u1 + 0.015cos(t).
Consider now the system Σ′ with uncertainty w(·) ∈ W =
[−0.1, 0.1] (hence |W| = 0.2) and initial condition x0:

du1/dt = u2

du2/dt = (p0 + w(t))(1− u21)u2 − u1 + 0.015cos(t),
with p0 = 0.4. It is easy to see that each solution of Σp
with p ∈ Q = [p0 − 0.1, p0 + 0.1] = [0.3, 0.5] is a particular
solution of Σ′.
Theorem 1. (cyclic approximate solution) Given a
system Σ′ : dx/dt = f(x,w) with uncertainty w ∈ W and
a set of initial conditions B0 ≡ B(x0, ε), suppose that any
solution x(t) of the parametric system Σp : dx/dt = fp(x)
with p ∈ Q = [p0−|W|/2, p0+ |W|/2] and initial condition
x0 is a solution of Σ′ with initial set of conditions B0

for some uncertainty function w(·) ∈ W. Let us suppose
besides that, for Σ′, there exist i ∈ N and T = kτ with
k ∈ N such that:

BW((i+ 1)T ) ⊆ BW(iT ).

Then:

(1) When n → ∞, the sequence {cn ≡ x̃((i + n)T ;x0)}
converges to a limit c∗ ∈ Rd satisfying x̃(T ; c∗) = c∗.

(2) The curve E ≡
⋃
t≥0 x̃(t; c∗) is cyclic with period T ,

i.e.: x̃(t+ T ; c∗) = x̃(t; c∗) for all t ≥ 0.
(3) When t→∞, x̃(t; c0) converges to E. More precisely,

for all s ≥ 0, there exists c∗s ∈ E : ‖x̃(s + nT ; c0) −
c∗s‖ → 0 as n → ∞. This means that E is an

3



attractive limit cycle for the approximate solution
x̃(t; c0) (whence x̃(t;x0)) as t→∞.

(4) The set I0 =
⋃
t≥0 B(x̃(t; c0), δ(iT + t)) includes E

and is (forward) invariant for Σp0 , i.e.: all solution
of Σp0 starting from I0 remains in I0.

(5) For each p ∈ Q, the set IW =
⋃
t∈[0,T ]BW(iT + t)

is (forward) invariant for Σp, i.e.: all solution of Σp
starting from IW remains in IW .

Proof. (sketch) The arguments of the 5 items of the
theorem are as follows:

(1) As the balls BW(i + nT ) are included in each other,
this implies that their radii εn are decreasing and
converge to a limit ε∗. This also implies that the
centers cn of these balls converge to a point c∗ ∈
Rd, and that balls BW(i + nT ) converge to the
ball B(c∗, ε∗). This limit ball is a fixed point of the
function mapping a ball B(c, ρ) to B(x̃(T ; c), δρ,W(T ),
and satisfies: B(x̃(T ; c∗), δε∗,W(T ) = B(c∗, ε∗). In
particular, we have: x̃(T ; c∗) = c∗.

(2) Follows from x̃(T ; c∗) = c∗ (see above) and x̃(t +
T ; c∗) = x̃(t; x̃(T, c∗)) = x̃(t; c∗).

(3) For all s ∈ [0, T ), x̃(s + nT ; c0) = x̃(s; x̃(nT, c0)) =
x̃(s; cn). It follows, that for all s ∈ [0, T ), ‖x̃(s +
nT ; c0) − c∗s‖ = ‖x̃(s; cn) − c∗s‖ → 0 as n → ∞
with c∗s ≡ x̃(s; c∗) (thanks to the continuity of x̃(s; c)
w.r.t. c).

(4) Follows from Proposition 1.
(5) Follows from Proposition 3.

Remark 1. Theorem 1 states the existence of an approximate
cyclic solution E of Σp0 ; in practice, when the integration
time-step τ is sufficiently small, E is very close to the
cyclic exact solution if such a cycle exists. But Theorem 1
does not guarantee by itself the existence of an exact cyclic
solution. Although we know that certain exact solutions
of Σp0 lie in I0 close to E, we do not know a priori if
some of them are cyclic. To prove formally the existence
of an exact cyclic solution, one could have to resort to
specific notions of contractivity (see, e.g. Manchester
and Slotine (2013); Aminzare and Sontag (2014); Capinski
et al. (arXiv:1905.08116, 2020)). 3

The implementation has been done in Python and
corresponds to a program of around 500 lines. The source
code is available at lipn.univ-paris13.fr/~jerray/
parameter/. In the experiments below, the program runs
on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GiB
of memory. Given x0, τ, ε, |W|, the program searches
heuristically for values of i ∈ N and T = kτ (for some
k ∈ N) in order to verify BW((i+ 1)T ) ⊆ BW(iT ). This is
illustrated in the following example.
Example 2. Consider the system Σp of Example 1 and the
system Σ′ with uncertainty |W| = 0.2, and let p0 = 0.4.
Consider the set of initial conditions B(x0, ε) with x0 =
(1.46898897,−1.12538766) and ε = 0.1. For T = 6.368 =
kτ with τ = 10−3, we find:

x̃(0) = (1.46898897,−1.12538766), δW(0) = 0.1

3 In dimension d = 2, the existence of such a cycle is guaranteed by
the Bendixon-Poincaré theorem.

x̃(T ) = (1.45389133,−1.10970492),

δW(T ) = 2.437975771955677

x̃(2T ) = (1.45195751,−1.11004367),

δW(2T ) = 2.637252198149563

x̃(3T ) = (1.45230073,−1.11065593),

δW(5T ) = 2.652749677582014

(· · · )
x̃(13T ) = (1.49176459,−1.09165581),

δW(13T ) = 2.645700321656063

x̃(14T ) = (1.49470193,−1.09069935),

δW(14T ) = 2.644674179178997

x̃(15T ) = (1.49666192,−1.09054882),

δW(15T ) = 2.642640758083935

x̃(16T ) = (1.49747851,−1.09133825),

δW(16T ) = 2.6411743966251087

x̃(17T ) = (1.49699953,−1.09318874),

δW(17T ) = 2.631805337566251

x̃(18T ) = (1.49508659,−1.09620741),

δW(18T ) = 2.6266533499722065

x̃(19T ) = (1.49161476,−1.10048667),

δW(19T ) = 2.621622599187829

x̃(20T ) = (1.48647167,−1.10610402),

δW(20T ) = 2.614143707597656.

We have: BW((i + 1)T ) ⊂ BW(iT ) for i = 14. The
computation took 1120s of CPU time. This shows that the
invariant IW has a torus shape for t ∈ [14T, 15T ], and
contains the solutions of Σp for each p ∈ [p0− |W|/2, p0 +
|W|/2]. Fig. 2 shows the cyclic approximate solution E
of Σp0 in the plane phase (top), and the radius δ(t) of
the invariant I0 of Σp0 (bottom). As δ(t) becomes rapidly
neglectible, the exact solutions of Σp0 and E practically
coincide within I0.

The invariant IW with |W| = 0.2 is depicted in green on
Fig. 3, and it can be seen that IW encloses all the solutions
of Σp for p = p0, p0± |W|/2 (represented in red, cyan and
blue) for t ∈ [15T, 20T ], as stated by Proposition 2.

4. CONCLUSION

Given a parametric differential system parameter Σp (with
a parameter p taking its values in an interval of the
form Q = [p0 − |W|/2, p0 + |W|/2]), we have introduced
a simple condition of inclusion of sets (Euclidean balls)
which guarantees that the approximate Euler solutions
of Σp0 are attracted by a limit cycle E , which is itself
a cyclic approximate solution of Σp0 . Moreover, we have
introduced a toric set I0 around E which is invariant for
Σp0 , and whose radius δ(t) becomes in practice quickly
very small. This shows that the exact solutions of Σp0

4



Figure 2. Top: the approximate Euler solution of Σp0
(p0 = 0.4) in the phase plan near the limit cycle E .
Bottom: the error bound δ(t) for t ∈ [0, 20T ] when
|W| = 0. The invariant I0 is a torus centered around E
(top), and its radius δ(t) becomes rapidly neglectible
(bottom). This shows that the approximate and exact
solutions of Σp0 are rapidly almost identical.

exist in the close neighborhood of the cycle E and have
themselves an almost cyclic behavior. Finally, we have
constructed a compact set ΣW centered also on E , whose
radius δW(t) is now non negligible, which is invariant for
every system Σp (p ∈ Q). We hope that this method,
illustrated on the example of a parametric Van der Pol
system, opens an alternative practical way to the complex
techniques based on contractivity, Lyapunov functions
or Poincare maps that are used presently to show the
existence of attractive limit cycles.
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