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Abstract

Motivated by applications in cybersecurity and epidemiology, we consider the
problem of detecting an abrupt change in the intensity of a Poisson process, char-
acterised by a jump (non transitory change) or a bump (transitory change) from
constant. We propose a complete study from the nonasymptotic minimax testing
point of view, when the constant baseline intensity is known or unknown. The
question of minimax adaptation with respect to each parameter (height, location,
length) of the change is tackled, leading to a comprehensive overview of the vari-
ous minimax separation rate regimes. We exhibit three such regimes and identify
the factors of the two phase transitions, by giving the cost of adaptation to each
parameter. For each alternative hypothesis, depending on the knowledge or not of
each change parameter, we propose minimax or minimax adaptive tests based on
linear statistics, close to CUSUM statistics, or quadratic statistics more adapted
to the L2-distance considered in our minimax criteria and typically more powerful
in practice, as our simulation study shows. When the change location or length
is unknown, our adaptive tests are constructed from a scan aggregation principle
combined with Bonferroni or min-p level correction, and a conditioning trick when
the baseline intensity is unknown.

1 Introduction

As explained in the introduction of the book of Daley and Vere-Jones [32], historically
the theory of point processes seems to emerge with the study of the first life tables
and renewal processes, and of counting problems in the research of Poisson [87]. Since
recently, point processes are largely deployed in the epidemiology, genetics, neuroscience
and communications engineering literature. At the origin of this work, we were actually
interested in some applications in public health and healthcare surveillance, where a point
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process on a bounded interval may represent occurrences of a medical event in a particular
context, and in cyber security, where it may represent a packet or session arrival process
in internet traffic or occurrences of certain cyber attacks or intrusions. In these contexts,
being able to define conditions for abnormal behaviours to be detectable and to detect
such anomalies as efficiently as possible is of particular importance.

Change detection in a Poisson process model Despite rather widespread debates
regarding the real nature of the point process that can model observations in the above
applications, the Poisson process model is the most frequently encountered in the dedi-
cated articles, probably due to its convenient theoretical properties as well as its ability
to fit the data. An abrupt change in the intensity of the Poisson process may reveal a
significant health phenomenon when the process models epidemiological data (see [100]
for a review), malicious activity or intrusion attempt when it models packet or session
arrival processes in internet traffic (see [88], [20], [67], [106] or [99]), or a change of attack
pattern when it models the occurrences of cyber attacks against a cyber system (see [33]
and [61]). Another cyber security problem, considered in [97], [98] and [108], concerns
communication over Poisson packet channels. In such a channel, an authorised transmit-
ter sends packets to an authorised receiver according to a Poisson process, and a covert
transmitter wishes to communicate some informations to a covert receiver on the same
channel without being detected by a watchful adversary. Different models of covert trans-
missions have been studied by authors, treating the cases where the covert transmitter is
restricted to packet insertion or where he or she can only alter the packet timing by slow-
ing down the incoming process to a lower rate to convey the information. The question
of detectability of such covert transmissions, translated as a question of detectability of
a bump in the Poisson process intensity, is clearly related to the testing minimax point
of view adopted here and described below. Considering a Poisson process observed on
a bounded fixed interval, we are thus interested in the problem of detecting an abrupt
change in its distribution, characterised by a jump or a bump in its intensity.
This problem comes within the much more general framework of statistical change-point
analysis. In view of the long history, going back to the 1940-1950’s with the seminal
works of Wald [107], Girshick and Rubin [55], Page [84], Fisher [49], and the extensive
literature on change-point analysis, we can not pretend to present a comprehensive state
of the art. Detailed overviews will be found in the monographs of Basseville and Nikirov
[10], Carlstein et al. [21], Csörgö and Horváth [26], Brodsky and Darkhovsky [16, 15],
Tartakovsky et al. [103], and a structured and annotated bibliography in the paper by
Lee [72].
Statistical change-point problems can essentially be classified into two main classes, de-
pending on whether they are formulated as on-line or off-line change-point problems.
On-line change-point analysis, also referred to as sequential analysis or disorder problems,
generally deals with time sequences of random variables or stochastic processes, and aims
at constructing a stopping time as close as possible to an unknown time of disorder or
change in the distribution. For presentations of the most common performance measures
and optimisation criteria used to this end, see for instance [69], [81] or [88], and references
therein.
Off-line change-point analysis, also referred to as a posteriori change-point analysis, in fact
raises two distinct questions : the one of detecting a given number of change-points or
estimating the change-points number, and the one of estimating some or all the parameters
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of such change-points (jump locations and/or heights), once detected.
Though most of these questions can be, as explained in [83], formulated or interpreted as
single or multiple hypotheses testing problems, since they are usually all treated together,
rather few attention seems to be paid to the testing performances themselves: detection
rates results are not always explicitly stated and well formalised in the literature.

A nonasymptotic minimax testing point of view Our work, which focuses on the
question of detecting a jump or a bump in the intensity of a Poisson process, precisely
aims at proposing a nonasymptotic minimax testing set-up and a guided progressive
approach to construct minimax and minimax adaptive detection procedures. It can thus
also be viewed as a necessary preliminary step towards a further rigorous minimax study
of multiple testing procedures designed for change-point localisation as in [83].
Let us consider a (possibly inhomogeneous) Poisson process N = (Nt)t∈[0,1] observed
on the interval [0, 1], with intensity λ with respect to some measure Λ on [0, 1], and
whose distribution is denoted by Pλ. As in [50] and [51], we assume that the measure
Λ satisfies dΛ(t) = Ldt, where L is a positive number. Note that when L is an integer,
this assumption amounts to considering the Poisson process N as L pooled i.i.d. Poisson
processes with the same intensity λ, with respect to dt: L can therefore be seen as a
growing number when comparisons with asymptotic existing results in other frequentist
models are needed.
Depending on the intended application, and the level of knowledge on the baseline inten-
sity of the process N it induces, the questions of detecting a jump or a bump in λ are here
formulated as problems of testing the null hypothesis (H0 ) ”λ ∈ S0” versus the alterna-
tive (H1 ) ”λ ∈ S1”, where S0 is either the set of a single known constant intensity, or the
set of all constant intensities on [0, 1], and S1 is a set of alternative intensities defined as
positive piecewise constant functions, with one jump or one bump. As mentioned above,
the point of view that we adopt here for our theoretical study is nonasymptotic, based
on minimax criteria in accordance with the Neyman-Pearson principle. So, given a first
kind error level α in (0, 1), any of our (nonrandomised) tests φ, with values in {0, 1} and
rejecting (H0 ) when φ(N) = 1, is primarily required to be of level α, that is to satisfy

sup
λ∈S0

Pλ (φ(N) = 1) ≤ α .

Then, given a second kind error level β in (0, 1), any of our level α tests φα is secon-
darily required to achieve, over the considered set of alternatives S1, the (α, β)-minimax
separation rate defined as follows.
Considering the usual metric d2 of L2([0, 1]), and a level α test φα of (H0 ) versus (H1 ),
the β-uniform separation rate of φα over S1 is defined by

SRβ (φα,S1 ) = inf

{

r > 0, sup
λ∈S1, d2(λ,S0 )≥r

Pλ (φα(N) = 0) ≤ β

}

. (1)

The corresponding (α, β)-minimax separation rate over S1 is defined by

mSRα,β (S1 ) = inf
φα, supλ∈S0

Pλ(φα(N)=1 )≤α
SRβ (φα,S1 ) , (2)

where the infimum is taken over all possible nonrandomised level α tests.
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A level α test φα is said to be β-minimax over S1 if SRβ (φα,S1 ) achieves mSRα,β (S1 ),
possibly up to a multiplicative constant depending on α and β.
These definitions due to Baraud [8] translate, in a nonasymptotic framework, the (asymp-
totic) minimax testing criteria that originate in Ingster’s work [63, 64, 65], and that have
now several variants in the literature, among them the asymptotic minimax testing with
exact separation constants criteria introduced in [74].
For each choice of S0, several sets of alternatives S1 are investigated, according to whether
the jump or bump parameters are known or not. Following the terminology adopted since
Spokoiny’s paper [101], a complete minimax adaptivity study of the problem is therefore
conducted: when one of the alternative parameters is unknown at least, the corresponding
minimax tests are said to be minimax adaptive with respect to this unknown parameter.
After determining lower bounds for the (α, β)-minimax separation rates over all these
alternative sets, we construct nonasymptotic minimax and minimax adaptive detection
tests. To the best of our knowledge, no such minimax results in the present Poisson
process model have already been established.

Change-point detection procedures in Poisson processes models References
dealing with change-point detection in a Poisson process are actually mainly dedicated
to the construction of optimal on-line detection rules (see e.g. [86], [57], [18], and [11] for
Bayesian approaches; [38], [39], [80] or [40, 41] and references therein for non-Bayesian
approaches), or asymptotic off-line detection tests. On the one hand, a few off-line pro-
cedures are derived from the Bayesian perspective, such as the ones in [3], [91] and [90]
dealing with the single change-point case, [56], [112] or [94] dealing with the multiple
change-points case. On the other hand, non-Bayesian off-line procedures are numerous,
due to the variety of Poisson processes convenient properties. Since the earliest procedures
of Neyman and Pearson [82], Sukhatme [102], Maguire, Pearson and Wynn [78], many con-
tributions have been made considering the exponential distribution of the homogeneous
Poisson process inter-arrivals, like in [79], [109], [96], or more recently [4].
Recalling that the Poisson process N is homogeneous if and only if for every positive inte-
ger n, given N1 = n, the points of the process are independent and uniformly distributed
on [0, 1], any test of uniformity on [0, 1] in a density model can be directly applied con-
ditionally to N1, or used as a source of inspiration to obtain a Poisson process adapted
test of homogeneity. Closer to the tests we propose in the present work, many other
existing tests for the single change-point problem are thus based on or inspired from the
historical likelihood ratio, Cramér von-Mises or Kolmogorov-Smirnov statistics, with var-
ious weighting or other transforming strategies, as the ones of Rubin [93], Lewis [75], or
Kendall and Kendall [68]. Deshayes and Picard [35, 36] study the optimality of weighted
Kolmogorov-Smirnov and likelihood ratio tests in the non local asymptotic sense of Ba-
hadur [6] and Brown [17], and their equivalence in the local asymptotic sense of Le Cam
[70]. Asymptotic properties of point and interval change-point estimators deduced from
these tests can be found in [2], [77], and [53] where Galeano also integrates these tests in a
binary segmentation algorithm to further address multiple change-points detection. More
recently, Dachian, Kutoyants and Yang [30] (see also Yang’s [110] PhD thesis, and [31] and
[111] where tests derived from the Bayesian perspective are also proposed) and Farinetto
[46] consider a single change-point detection problem in the more general framework of
inhomogeneous Poisson processes.
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Testing procedures for close purposes in Poisson processes models On related
topics, it may be worth first mentioning the foundational paper by Davies [34], whose
goodness-of-fit test is also discussed in Section 13.1 of [32]. Several procedures for testing
goodness-of-fit or homogeneity of a Poisson process versus the alternative hypothesis that
it has an increasing intensity have then been introduced and explored through experi-
mental comparative studies in a series of papers by Bain et al. [7], Engelhardt et al.
[42], Cohen and Sackrowitz [23], [59], [60]. Although these procedures are not initially
designed to handle the change-point detection problem, they can nevertheless be applied
to this end. Among them, the so-called Laplace and Z tests introduced by Cox [24] and
Crown [25], whose extensions have been proposed in [85], [1], and [13], stand out when
they are used to detect a positive jump. Fazli and Kutoyants [48], Fazli [47], and more
recently Dachian, Kutoyants and Yang [29] consider the goodness-of-fit testing problem
where the null hypothesis corresponds to a given inhomogeneous Poisson process, and the
alternatives correspond to single or one-sided parametric Poisson processes families. The
problem of testing that a point process is a given homogeneous Poisson process versus it
belongs to a stationary self-exciting or stress-release point processes family is treated in
[27] and [28].

Related minimax studies Focusing now on the minimax point of view, one can cite
Ingster and Kutoyants [66] and Fromont et al.’s studies of goodness-of-fit or homogeneity
tests, where the alternative hypotheses [50], corresponding to Poisson processes with non-
parametric intensities in Sobolev and Besov spaces with known and unknown smoothness
parameters respectively, are however not suited for change-points detection problems.
To find minimax tests devoted to change-points detection problems in the existing liter-
ature, it is actually needed to switch to other statistical models.
Using the conditioning trick explained above, which enables to treat change-points de-
tection problems in the Poisson model as particular change-points detection problems in
the classical density model, Rivera and Walther [92] propose two positive bump detection
tests based on scan or average aggregation of likelihood ratio statistics. Though their op-
timality results are not directly transposable to the minimax set-up that we consider here
due to deconditioning difficulties, they nevertheless give preview of possible approaches
towards more Poisson processes-specific minimax tests. In the classical density model,
Dümbgen and Walther [37] had already tackled the problem of detecting local increases
and decreases of the density or the failure rate. The introduced procedures, based on ag-
gregation of local order statistics and spacings, were proved to satisfy asymptotic minimax
adaptation properties.
Of course, the most complete bibliography on jump or bump detection from the minimax
testing point of view lies in the basic Gaussian framework, where the observation is mod-
elled by a Gaussian vector Y = (Y1, . . . , Yn) with variance σ2In. Arias-Castro et al. [5]
first studied the minimax separation rate for the problem of detecting a bump, that is a
change in mean from zero over an interval, when considering the ℓ2 metric on the mean
vectors, related to the L2-distance between the corresponding Gaussian distributions and
also to the signal to noise ratio or signal energy often mentioned in regression models
analysis. When the height and the length of the change are unknown, they exhibited a
minimax separation rate of order

√
log n with an exact constant equal to

√
2. In other

words, they proved that no test can reliably detect Y such that E [Yi ] = δ1{i∈[τ,τ+ℓ[} (with

τ ∈ {1, . . . , n}, ℓ ∈ {1, . . . , n+ 1− τ}) unless the condition |δ|
√
ℓ ≥

√

2(1 + η) logn with
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η > 0 is satisfied, and they introduced minimax adaptive tests based on a scan aggre-
gation of the Neyman-Pearson test statistics ℓ−1/2

∑τ+ℓ−1
i=τ Yi designed to detect non-zero

mean, either over all the possible intervals [τ, τ + ℓ[ or over intervals of dyadic type
[k2j , (k + 1)2j[. Chan and Walther [22] constructed three other tests, based on the
same Neyman-Pearson test statistics, but combined according to different aggregation
schemes. All these tests were proved to be consistent as soon as the refined condition
|δ|

√
ℓ ≥

√

2 log(n/ℓ) + bn with bn → +∞ holds, which slightly improves Arias-Castro
et al.’s lower bound at least when ℓ/n := ℓn/n is allowed to tend to 0 with n tending
to +∞. A nonasymptotic counterpart of this improved lower bound has been very re-
cently provided by Verzelen et al. [105]. But the procedures introduced in this work
go beyond the scope of the present minimax testing study as they further address the
twin problems of detecting and localising multiple change-points. In the case where the
change height is known, equal to 1, Brunel [19] constructed a test based on a scanning of
the shifted test statistic

∑τ+ℓ−1
i=τ Yi − ℓ/2, which is consistent as soon as ℓ/ logn → +∞.

Still considering the ℓ2 metric on the mean vectors, but considering, among piecewise
monotone signals estimation problems, the special problem of detecting a jump from an
unknown constant mean, Gao et al. [54] obtained a lower bound of order

√
log logn. More

precisely, they proved that no test can reliably detect Y such that E [Yi ] = δ1{i∈[τ,n]}
(with τ ∈ {2, . . . , n}) unless |δ|

√

(τ − 1)(n+ 1− τ)/n ≥ c
√

log log(16n). Verzelen et

al. [105] provide a nonasymptotic lower bound equal to
√

2(1− c)(1− n−1/2) log log n
for c in (0, 2/3) and n large enough. As for a corresponding upper bound, Gao et al.
[54] refer to the asymptotic test of Csörgö and Horváth [26], based on the scan statistic
max1≤τ≤n

√

n/ (τ(n− τ))|∑τ
i=1 Yi − (k/n)

∑n
i=1 Yi|, which is proved to be optimal from

asymptotic inequalities in the spirit of the Iterated Logarithm Law. Notice that this scan
statistic is closely related to the well-known CUSUM statistics, which have a long history
in the single change-point analysis literature from Hinkley’s [58] work, as well as in mul-
tiple change-points analysis references, where they are at the core of binary segmentation
approaches. Verzelen et al. [105] introduce a test based on a max penalized CUSUM
statistic, with location-dependent penalties, whose separation rate is of the optimal order√
2 log log n (thus proving, combined with their lower bound, that the exact constant is√
2 as in the bump detection case), with possible refinement when restricting to particular

change locations.
In more complex Gaussian models, with sparse high dimensional, heterogeneous or depen-
dence properties, it is worth mentioning at least the work of Enikeeva and Harchaoui [43],
Enikeeva et al. [45], Liu et al. [76] and Enikeeva et al. [44], addressing bump detection
problems from asymptotic minimax points of view, that are quite close to the one we
adopt here.
Notice that we do not tackle the problem of detecting multiple change-points with more
than two change-points, nor the problem of localising change-points, that we consider as
out of the scope of the present paper and a basis for future work.

Our contribution The present work address the question of detecting a jump or a
bump in the intensity of a Poisson process from the nonasymptotic minimax point of
view described above. At this end, we will determine the minimax separation rates that
correspond to :

- the detection of a change from a known or an unknown constant baseline intensity,
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- the detection of a non transitory change formalised as a jump in the intensity, or a
transitory change formalised as a bump in the intensity,

- the detection of a change with known or unknown height, length and location.

We will thus provide a comprehensive overview of the various minimax separation rate
regimes, with a special focus on the phase transitions, and their determining factors.
Considering each parameter as known or unknown, one by one, indeed enables us to
precisely identify what causes such phase transitions, and the precise cost of minimax
adaptation to each of these parameters. Among the main results of this study, we find a
phase transition from a

√

log logL/L order minimax separation rate for jump detection to

a
√

logL/L order minimax separation rate for bump detection, when the jump or bump
height, the jump or bump location and the bump length are together unknown: this phase
transition is similar to the Gaussian one. But we also exhibit minimax separation rates
that are not even known in the basic Gaussian model, up to our knowledge.
For the bump detection problem, we indeed prove that the minimax separation rate is of
order

√

logL/L when both location and length of the bump are unknown, whether the

height is known or not, of order
√

log logL/L as in the jump detection problem when the

only location of the bump is known (with height and length unknown), of order
√

1/L in
the other cases.
For the jump detection problem, the results could be more easily anticipated: we prove
that the minimax separation rate is of order

√

log logL/L when both height and location

of the jump are unknown, as in the Gaussian model, and of order
√

1/L in the other
cases.
Such minimax separation rates are as usual obtained in two steps. Lower bounds are first
deduced from classical Bayesian arguments, originating from Le Cam’s theory, and clearly
outlined by Ingster [63, 64, 65] and Baraud [8] in an asymptotic and a nonasymptotic
framework respectively. Combined with these Bayesian arguments, the Poisson processes
properties, and mainly Girsanov’s Lemma, are key points of the proofs. Then, matching
upper bounds are derived from the construction of minimax or minimax adaptive tests.
The tests that we propose are based on either linear statistics adapted from the Neyman-
Pearson test in the case where all the bump or jump parameters are known, and close
to the CUSUM like statistics used in the Gaussian framework, or more novel quadratic
statistics that we felt better suitable for the estimation of the distance d2, considered
here, between λ and S0. Our simulation study actually come to support the use of such
quadratic statistics, as the corresponding tests are mostly more powerful than the tests
based on linear statistics, especially when the bump or jump height is negative, that is
especially for depression detection. Minimax adaptation when some change parameters
are unknown is obtained from scan aggregation approaches, that all differ depending on
which parameters are unknown. The critical values involved in the scan aggregation
approaches are also differently adjusted, with an additional crucial conditioning trick
already used in [50] when the baseline intensity is unknown, to lead to a nonasymptotic
level α and nonasymptotic minimax optimality. Upper bounding these critical values
often was the main and most difficult point of the proofs. We had to use a wide variety
of exponential and concentration inequalities, from historical ones due to [89] to very
recent ones due to Le Guével [71] which are specific to suprema of counting processes and
their related square martingales when dealing with detection of a change from a known

7



baseline intensity, plus exponential inequalities for suprema or oscillations of empirical
processes and U -statistics due to Mason, Shorack and Wellner (see [95]) and Houdré and
Reynaud-Bouret [62], or obtained from Bernstein and Bennett’s inequalities as stated in
[12], refined through combination with chaining techniques.

Organisation of the paper Section 2 of the paper is devoted to the problem of de-
tecting a change from a known baseline intensity, while Section 3 deals with the problem
of detecting a change from an unknown intensity. For each problem, all the possible sets
of alternatives according to whether each parameter of the change (height, location and
length) is known or not, including the special case where the change is non transitory
(jump detection), are handled. And for each of the resulting ten sets of alternatives,
lower bounds for minimax separation rates are provided, as a preliminary basis for corre-
sponding upper bounds (when appropriate, that is when at least the height or the length
is unknown). As explained above, these upper bounds are obtained by constructing min-
imax or minimax adaptive tests, which are mainly based on aggregation of either linear
or quadratic statistics, coupled with adjusted critical values. A simulation study is pre-
sented in Section 4, whose aim is to compare linear and quadratic type tests, and also to
compare them with standard tests used to detect nonhomogeneity of Poisson processes
in practice. Proofs of the core results are postponed to Section 5, and proofs of techni-
cal results mostly based on exponential inequalities and devoted to quantiles and critical
values upper bounds are postponed to Section 6, which also contains fundamental and
general results for lower bounds.

Notation Concerning the Poisson Process N = (Nt)t∈[0,1], we use the notation N(τ1, τ2]
for Nτ2−Nτ1 for every τ1, τ2 in [0, 1]. As usual, dN stands for the point measure associated
with N , and Eλ and Varλ respectively stand for the expectation and the variance under
Pλ, that is when N has λ as intensity with respect to dΛ(t) = Ldt. The distance d2 has
been introduced above, and associated with this distance, we consider the usual norm
of L2([0, 1]) denoted by ‖.‖2. For all x and y in R, x ∨ y (resp. x ∧ y) denotes the
maximum (resp. minimum) between x and y, and the sign function sgn is defined by
sgn(x) = 1x>0 − 1x<0.
All along the article, we will introduce some positive constants denoted by C(α, β, . . .)
and L0(α, β, . . .), meaning that they may depend on (α, β, . . .). Though they are denoted
in the same way, they may vary from one line to another. When they appear in the
main results about lower and upper bounds, we do not intend to precisely evaluate them.
However, some possible, probably pessimistic, explicit expressions for them are proposed
in the proofs.

2 Detecting an abrupt, possibly transitory, change in a

known baseline intensity

As a first step of work, and because this also addresses particular applications, we are here
interested in the problem of detecting an abrupt change in the intensity of the Poisson
process N , when its baseline is assumed to be known, equal to a positive constant function
λ0 on [0, 1]. For the sake of simplicity, the constant function λ0 and its value on [0, 1] are
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often confused in the following. The null hypothesis of the present section can therefore be
expressed as (H0 ) ”λ ∈ S0[λ0] = {λ0}”, while the alternative hypothesis varies according
to the height, length and location of the intensity jump or bump knowledge.
In order to further cover the full range of alternatives in a unified notation, we introduce
for δ∗ in (−λ0,+∞) \ {0}, τ ∗ in (0, 1), ℓ∗ in (0, 1 − τ ∗] the set Sδ∗,τ∗,ℓ∗ [λ0] of intensities
with a change of height δ∗, location τ ∗ and length ℓ∗ from λ0:

[Alt.1] Sδ∗,τ∗,ℓ∗ [λ0] = {λ : [0, 1] → (0,+∞), ∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ∗,τ∗+ℓ∗](t)} .
(3)

Testing (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,ℓ∗[λ0]” falls within the scope of the Neyman-Pearson
fundamental lemma and an Uniformly Most Powerful (UMP) test exists, thus achieving
the minimax separation rate over Sδ∗,τ∗,ℓ∗[λ0]. Details are provided below.
Then, when the question of adaptivity with respect to unknown parameters is tackled,
the unknown parameters are replaced by single, double or a triple dots in the notation
Sδ∗,τ∗,ℓ∗ [λ0].
Notice that for any alternative intensity λ = λ0 + δ1(τ,τ+ℓ] with δ in (−λ0,+∞) \ {0},
τ in (0, 1), and ℓ in (0, 1 − τ ], d2(λ,S0[λ0]) = |δ|

√
ℓ. Hence, as soon as λ has a known

change height δ = δ∗ and a known change length ℓ = ℓ∗, the distance d2(λ,S0[λ0]) is
fixed, equal to |δ∗|

√
ℓ∗. The β-uniform separation rate of any level α test over Sδ∗,τ∗,ℓ∗[λ0]

or Sδ∗,··,ℓ∗ [λ0] as defined by (1) is therefore either 0 or +∞ (with the usual convention
inf ∅ = +∞), as well as the minimax separation rate. In these only two cases, studying
our tests from the minimax point of view would have no sense. Nevertheless, once having
ensured that their first kind error rate is at most α, in order to follow the same line as
the minimax results obtained in the other cases, we establish conditions expressed as a
sufficient minimal distance d2(λ,S0[λ0]), guaranteeing that their second kind error rate is
at most equal to some prescribed level β.

2.1 Uniformly most powerful detection of a possibly transitory

change with known location and length

Let us now give more details about the above problem of testing the simple null hy-
pothesis (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus the simple alternative hypothesis (H1 ) ”λ ∈
Sδ∗,τ∗,ℓ∗ [λ0]” with Sδ∗,τ∗,ℓ∗ [λ0] defined by (3). Notice that for any λ in Sδ∗,τ∗,ℓ∗[λ0], then

d2(λ,S0[λ0]) = |δ∗|
√
ℓ∗ .

Given α in (0, 1), Neyman-Pearson tests of (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,ℓ∗[λ0]” of size α
can be constructed. To this end, we recall Girsanov’s lemma (see [14] for a proof).

Lemma 1 (Girsanov). Let N = (Nt)t∈[0,1] be an inhomogeneous Poisson process with
jump locations (Xj)j≥1, with bounded intensity λ with respect to some measure Λ on [0, 1],
and with distribution denoted by Pλ under the probability P. Assume that λ0 is a bounded
nonnegative function such that for every j ≥ 1, λ0(Xj) > 0 P-almost surely. Then

dPλ

dPλ0

(N) = exp

[∫ 1

0

ln

(
λ(t)

λ0(t)

)

dNt −
∫ 1

0

(λ(t)− λ0(t))dΛt

]

.
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From this fundamental lemma, we deduce the likelihood ratio, for λ in Sδ∗,τ∗,ℓ∗ [λ0],

dPλ

dPλ0

(N) = exp

[

ln

(

1 +
δ∗

λ0

)

N(τ ∗, τ ∗ + ℓ∗]− δ∗ℓ∗L

]

, (4)

which leads to the following size α Neyman-Pearson tests:
{
φ−
1,α(N) = 1N(τ∗,τ∗+ℓ∗]<pλ0ℓ∗L(α)

+γ−(α)1N(τ∗,τ∗+ℓ∗]=pλ0ℓ∗L(α)
if δ∗ < 0 ,

φ+
1,α(N) = 1N(τ∗,τ∗+ℓ∗]>pλ0ℓ∗L(1−α) +γ+(1− α)1N(τ∗,τ∗+ℓ∗]=pλ0ℓ∗L(1−α) if δ∗ > 0 ,

(5)
where pξ(u) denotes the u-quantile of the Poisson distribution with parameter ξ, and

γ−(u) =
u− Pλ0(N(τ ∗, τ ∗ + ℓ∗] < pλ0ℓ∗L(u))

Pλ0(N(τ ∗, τ ∗ + ℓ∗] = pλ0ℓ∗L(u))
, γ+(u) = 1− γ−(u) . (6)

Proposition 2 (Second kind error rates control for [Alt.1]). Let α and β be fixed levels
in (0, 1), L ≥ 1, λ0 > 0, δ∗ in (−λ0,+∞) \ {0}, τ ∗ in (0, 1) and ℓ∗ in (0, 1− τ ∗].

(i) If δ∗ > 0, the test φ+
1,α of (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,ℓ∗ [λ0]” is a UMP test of size

α. Moreover Pλ(φ
+
1,α(N) = 0) ≤ β as soon as λ belongs to Sδ∗,τ∗,ℓ∗ [λ0] with

d2 (λ,S0[λ0] ) ≥
(√

(λ0 + δ∗)/β +
√

λ0/α
)

/
√
L . (7)

(ii) If −λ0 < δ∗ < 0, the test φ−
1,α of (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,ℓ∗ [λ0]” is a UMP test

of size α. Moreover, Pλ(φ
−
1,α(N) = 0) ≤ β as soon as λ belongs to Sδ∗,τ∗,ℓ∗ [λ0] with (7).

Comments. Notice first that the same result holds with Pλ(φ
+
1,α(N) = 0) replaced by the

second kind error rate Eλ[1 − φ+
1,α(N)]. Then, as explained above, studying the present

tests from the minimax point is not really relevant. One can however notice that the
uniform separation rate of a UMP test necessarily provides the minimax separation rate
over any set of alternatives. Since for λ in Sδ∗,τ∗,ℓ∗[λ0], d2 (λ,S0[λ0] ) = |δ∗|

√
ℓ∗, the above

proposition implies that if L ≥
(√

(λ0 + δ∗)/β +
√

λ0/α
)2
/
(
δ∗2ℓ∗

)
, then Pλ(φ

+
1,α(N) =

0) ≤ β when δ∗ > 0 and Pλ(φ
−
1,α(N) = 0) ≤ β when −λ0 < δ∗ < 0. Therefore, in this

case, the β-uniform separation rate of φ+
1,α over Sδ∗,τ∗,ℓ∗[λ0] with δ∗ > 0 is equal to 0, as

well as the β-uniform separation rate of φ−
1,α over Sδ∗,τ∗,ℓ∗ [λ0] with −λ0 < δ∗ < 0, and

consequently, the (α, β)-minimax separation rate mSRα,β (Sδ∗,τ∗,ℓ∗[λ0] ).

Let us now consider the question of adaptation with respect to the change height only.
To this end, we introduce, for τ ∗ in (0, 1) and ℓ∗ in (0, 1− τ ∗] the set

[Alt.2] S
·,τ∗,ℓ∗ [λ0] = {λ : [0, 1] → (0,+∞), ∃δ ∈ (−λ0,+∞) \ {0},

∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ∗,τ∗+ℓ∗](t)} , (8)

and we consider the problem of testing (H0 ) versus (H1 ) ”λ ∈ S
·,τ∗,ℓ∗ [λ0]”.

The following result gives a nonasymptotic lower bound for the (α, β)-minimax separa-
tion rate over the set of alternatives S

·,τ∗,ℓ∗[λ0] of the parametric order L1/2, which is
obtained from a now classical Bayesian approach that originates in Le Cam’s theory and
Ingster’s work [65] in an asymptotic perspective, and that has been next adapted to the
nonasymptotic perspective by Baraud [8]. For the sake of clarity and completeness, the
main points of this approach are recalled in Section 6.1, and the complete proof can be
found in Section 5.
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Proposition 3 (Minimax lower bound for [Alt.2]). Let α, β in (0, 1) such that α+β < 1,
λ0 > 0, τ ∗ in (0, 1) and ℓ∗ in (0, 1− τ ∗]. For all L ≥ 1, the following lower bound holds:

mSRα,β (S·,τ∗,ℓ∗ [λ0] ) ≥
√

λ0 logCα,β/L, with Cα,β = 1 + 4(1− α− β)2 .

In order to prove that this lower bound is sharp with respect to L, we introduce two tests,
whose test statistics both derive from the estimation of a certain distance between λ in
S
·,τ∗,ℓ∗ [λ0] and λ0: the L1-distance is used for the first test while the L2-distance is used

for the second test. The first test is therefore based on a linear statistic of the Poisson
process while the second one is based on a more complex quadratic statistic, which may
be more adapted to our chosen performance evaluation criterion based on the L2-distance
d2. Let thus

φ
(1)
2,α(N) = 1{N(τ∗,τ∗+ℓ∗]>pλ0ℓ∗L(1−α1)} + γ+(α1)1{N(τ∗,τ∗+ℓ∗]=pλ0ℓ∗L(1−α1)}

+ 1{N(τ∗,τ∗+ℓ∗]<pλ0ℓ∗L(α2)} + γ−(α2)1{N(τ∗,τ∗+ℓ∗]=pλ0ℓ∗L(α2)} , (9)

where α1 and α2 in (0, 1) are determined by

α1 + α2 = α and Eλ0 [N(τ ∗, τ ∗ + ℓ∗]φ
(1)
2,α(N)] = αEλ0 [N(τ ∗, τ ∗ + ℓ∗]] . (10)

Remark that Eλ0 [N(τ ∗, τ ∗+ℓ∗]φ
(1)
2,α(N)] and Eλ0 [N(τ ∗, τ ∗+ℓ∗]] can be explicitly computed

as functions of the parameters λ0, α, τ
∗, ℓ∗, and that φ

(1)
2,α(N) is the maximum of two UMP

tests when considering the alternatives with δ > 0 and δ < 0 separately.

Since our testing problem amounts to a problem of testing ”δ = 0” versus ”δ 6= 0” in the
exponential model dPλ/dPλ0(N) = exp [ln (1 + δ/λ0 )N(τ ∗, τ ∗ + ℓ∗]− δℓ∗L], applying the

result of Chapter 4.2 in [73] allows to see that φ
(1)
2,α(N) is an Uniformly Most Powerful

Unbiased (UMPU) test of size α.

Let us now deal with the estimation of the L2-distance d2 (λ, λ0 ) when λ ∈ S
·,τ∗,ℓ∗[λ0].

Let for τ1, τ2 such that 0 ≤ τ1 < τ2 ≤ 1, ϕ(τ1,τ2] = 1(τ1,τ2]/
√
τ2 − τ1, Vτ1,τ2 = Vect(ϕ(τ1,τ2]),

and ΠVτ1,τ2
be the orthogonal projection onto Vτ1,τ2 in L2([0, 1]). An unbiased estimator

of ‖ΠVτ1,τ2
(λ− λ0)‖22 is given by the quadratic statistic

Tτ1,τ2(N) =
1

L2(τ2 − τ1)

(
N (τ1, τ2]

2 −N (τ1, τ2]
)
− 2λ0

L
N (τ1, τ2] + λ20(τ2 − τ1) . (11)

We therefore consider the particular statistic Tτ∗,τ∗+ℓ∗(N) which is an unbiased estimator
of d22(λ, λ0) when λ belongs to S

·,τ∗,ℓ∗[λ0], leading to the test

φ
(2)
2,α(N) = 1Tτ∗,τ∗+ℓ∗(N)>tλ0,τ∗,τ∗+ℓ∗(1−α) , (12)

where tλ0,τ1,τ2(u) denotes the u-quantile of the distribution of Tτ1,τ2(N) under (H0 ).

Proposition 4 (Minimax upper bound for [Alt.2]). Let L ≥ 1, α, β in (0, 1), λ0 > 0,

τ ∗ in (0, 1) and ℓ∗ in (0, 1 − τ ∗]. Let φ
(1/2)
2,α be one of the tests φ

(1)
2,α and φ

(2)
2,α of (H0 )

versus (H1 ) ”λ ∈ S
·,τ∗,ℓ∗ [λ0]” defined by (9)-(10) and (12). The test φ

(1/2)
2,α is of level

α, that is Pλ0(φ
(1/2)
2,α (N) = 1) ≤ α (the randomised test φ

(1)
2,α is even of size α, that is

Eλ0 [φ
(1)
2,α(N)] = α). Moreover, there exists C(α, β, λ0, τ

∗, ℓ∗) > 0 such that

SRβ(φ
(1/2)
2,α ,S

·,τ∗,ℓ∗ [λ0]) ≤ C(α, β, λ0, ℓ
∗)/

√
L ,

which entails in particular mSRα,β (S·,τ∗,ℓ∗ [λ0] ) ≤ C(α, β, λ0, ℓ
∗)/

√
L.
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Comments. Both tests φ
(1)
2,α and φ

(2)
2,α are therefore β-minimax (up to a possible multi-

plicative constant) over the set of alternatives S
·,τ∗,ℓ∗ [λ0], where the height of the change

is unknown, with an optimal uniform separation rate of the expected parametric order
1/
√
L.

Notice that the present study involves the particular non transitory change or jump detec-
tion problem, with a known change location, taking ℓ∗ = 1− τ ∗. The study of the general
non transitory change or jump detection problem (of unknown location) is conducted in
Section 2.4.1 as a particular case of change detection problem, with unknown location
and length.

2.2 Minimax detection of a transitory change with known length

The present subsection is dedicated to the problem of testing (H0 ) ”λ ∈ S0[λ0] = {λ0}”
versus alternatives where the length of the change from the baseline intensity is known,
with adaptation with respect to the change location, and with or without adaptation
with respect to the height of the change. We therefore introduce, for ℓ∗ in (0, 1) and δ∗

in (−λ0,+∞) \ {0}, the two following sets:

[Alt.3] Sδ∗,··,ℓ∗ [λ0] =
{
λ : [0, 1] → (0,+∞), ∃τ ∈ (0, 1− ℓ∗),

∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ,τ+ℓ∗](t)
}
, (13)

[Alt.4] S
·,··,ℓ∗ [λ0] =

{
λ [0, 1] → (0,+∞), ∃δ ∈ (−λ0,+∞) \ {0}, ∃τ ∈ (0, 1− ℓ∗),

∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,τ+ℓ∗](t)
}
. (14)

As seen in the above subsection, the knowledge of the change height δ∗ is not necessary
to construct an UMP test of (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,ℓ∗ [λ0]” as the test statistic,
which is the exhaustive statistic in the considered exponential model, does not depend
on the value of δ∗. This enables to directly extend it to an UMPU test of (H0 ) versus
(H1 ) ”λ ∈ S

·,τ∗,ℓ∗[λ0]” based on the same exhaustive statistic N(τ ∗, τ ∗ + ℓ∗].
The only significant question is hence the one of adaptation to the change location τ ∗.
A natural approach to handle this question is to take the same linear and quadratic
statistics as the ones used for testing (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,ℓ∗[λ0]” or (H1 ) ”λ ∈
S
·,τ∗,ℓ∗ [λ0]”, but making τ ∗ varying in the whole set of possible change locations, or an

appropriate restricted set of possible change locations. This approach, known as statistics
scanning in the signal and image processing literature or statistics aggregation in the
minimax testing literature, has close connections with multiple tests that were investigated
in [52] (see Section 2.5), and that will be exploited in a further work dedicated to the
change localisation problem.
We therefore first introduce the following linear statistic based aggregated tests:







φ
(1)−
3,α (N) = 1{

minτ∈[0,1−ℓ∗] N(τ,τ+ℓ∗]<p−
λ0,ℓ

∗(α)
} ,

φ
(1)+
3,α (N) = 1{

maxτ∈[0,1−ℓ∗] N(τ,τ+ℓ∗]>p+
λ0,ℓ

∗(1−α)
} ,

(15)

where p−λ0,ℓ∗(u) and p+λ0,ℓ∗(u) respectively denote the u-quantiles of the distributions of
minτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] and maxτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] under (H0 ).
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From these unilateral tests, we construct the bilateral test

φ
(1)
4,α(N) = φ

(1)−
3,α/2(N) ∨ φ(1)+

3,α/2(N) , (16)

intended to address the change height adaptation issue.
Finally, consideringM = ⌈2/ℓ∗⌉ and uα = α/⌈(1− ℓ∗)M⌉, the test statistic Tk/M,k/M+ℓ∗(N)
defined by (11) and its u-quantile tλ0,k/M,k/M+ℓ∗(u) under (H0 ), we introduce the quadratic
statistic based aggregated test

φ
(2)
3/4,α(N) = 1{

maxk∈{0,...,⌈(1−ℓ∗)M⌉−1}

(

T k
M

, k
M

+ℓ∗(N)−t
λ0,

k
M

, k
M

+ℓ∗( 1−uα )

)

>0

} . (17)

As the set Sδ∗,··,ℓ∗ [λ0] defined in (13) is composed of alternatives with known change
height δ∗ and length ℓ∗, the distance between any of its elements and S0[λ0] = {λ0} is
fixed, equal to |δ∗|

√
ℓ∗. Therefore, it is not discussed from the minimax point of view. We

only provide in the following proposition sufficient conditions for the tests φ
(1)+
3,α , φ

(1)−
3,α and

φ
(2)
3/4,α to have a second kind error rate controlled by a prescribed level β under Pλ when

λ ∈ Sδ∗,··,ℓ∗ [λ0]. The proofs of these results, which are postponed to Section 5, mainly
rely on sharp bounds for the quantiles p−λ0,ℓ∗(α), p

+
λ0,ℓ∗(1− α) and tλ0,k/M,k/M+ℓ∗ (1− uα ),

that are deduced from two very recent exponential inequalities for the supremum and the
oscillation modulus of the square martingale associated with a counting process due to
Le Guével [71]. Recall that the technical proofs of such quantiles bounds are detailed in
Section 6.

Proposition 5 (Second kind error rate control for [Alt.3]). Let L ≥ 1, α and β in
(0, 1), λ0 > 0, δ∗ in (−λ0,+∞) \ {0} and ℓ∗ in (0, 1). Considering the problem of testing

(H0 ) v.s. (H1 ) ”λ ∈ Sδ∗,··,ℓ∗[λ0]”, let φ
(1/2)
3,α be one of the tests φ

(1)+
3,α or φ

(2)
3/4,α if δ∗ > 0,

and one of the tests φ
(1)−
3,α or φ

(2)
3/4,α if δ∗ < 0 (see (15) and (17) for definitions of the

tests). The test φ
(1/2)
3,α is of level α, that is Pλ0(φ

(1/2)
3,α (N) = 1) ≤ α. Moreover, there

exists C(α, β, λ0, δ
∗, ℓ∗) > 0 such that Pλ

(

φ
(1/2)
3,α (N) = 0

)

≤ β as soon as λ belongs to

Sδ∗,··,ℓ∗ [λ0] with

d2 (λ,S0[λ0] ) ≥ C(α, β, λ0, δ
∗, ℓ∗)/

√
L .

Comments. Remarking that for λ in Sδ∗,··,ℓ∗ [λ0], d2 (λ,S0[λ0] ) = |δ∗|
√
ℓ∗, Proposition 5

leads to exhibit a sufficient minimal value L0(α, β, λ0, δ
∗, ℓ∗) for L so that the second kind

error rates of the above tests are controlled by β. Anecdotally, it furthermore shows that
if L ≥ L0(α, β, λ0, δ

∗, ℓ∗), the β-uniform separation rate of the above tests over Sδ∗,··,ℓ∗[λ0]
is equal to 0, as well as the (α, β)-minimax separation rate mSRα,β (Sδ∗,··,ℓ∗[λ0] ).

Turning now to the change height adaptation issue, the lower bound for mSRα,β (S·,τ∗,ℓ∗[λ0] )
given in Proposition 3 directly leads, using the monotonicity property of the minimax sep-
aration rate recalled in Lemma 41, to the following lower bound for mSRα,β (S·,··,ℓ∗ [λ0] ).

Corollary 6 (Minimax lower bound for [Alt.4]). Let α, β in (0, 1) such that α + β < 1,
λ0 > 0 and ℓ∗ in (0, 1). For L ≥ 1,

mSRα,β (S·,··,ℓ∗[λ0] ) ≥
√

λ0 logCα,β/L, with Cα,β = 1 + 4(1− α− β)2 .
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Proposition 7 (Minimax upper bounds for [Alt.4]). Let L ≥ 1, α and β in (0, 1),

λ0 > 0, and ℓ∗ in (0, 1). Let φ
(1/2)
4,α be one of the tests φ

(1)
4,α and φ

(2)
3/4,α of (H0 ) versus

(H1 ) ”λ ∈ S
·,··,ℓ∗[λ0]” defined respectively by (16) and (17). Then φ

(1/2)
4,α is of level α, that

is Pλ0(φ
(1/2)
4,α (N) = 1) ≤ α. Moreover, there exists C(α, β, λ0, ℓ

∗) > 0 such that

SRβ

(
φ
(1/2)
4,α ,S

·,··,ℓ∗ [λ0]
)
≤ C(α, β, λ0, ℓ

∗)/
√
L ,

which entails in particular mSRα,β

(
S
·,··,ℓ∗[λ0]

)
≤ C(α, β, λ0, ℓ

∗)/
√
L.

Comments. The proof of Proposition 7 mainly relies as the proof of Proposition 5 on the
quantile control of Lemma 46 deduced from Theorem 6 in [71]. This result with Corollary 6

means that the tests φ
(1)
4,α and φ

(2)
3/4,α of (H0 ) versus (H1 ) ”λ ∈ S

·,··,ℓ∗[λ0]” are minimax.

Moreover and importantly, regarding the results obtained for [Alt.2], Proposition 7 with
Corollary 6 also means that minimax adaptation with respect to the change location
can be achieved with a minimax separation rate of the parametric order, hence without
any additional price to pay (possibly except multiplicative constants), as soon as the
only change length is known. This may contrast with the common idea (maybe spread
by results in the jump detection problem where adaptation to the change location is
equivalent to adaptation to the change length) that adaptation to the change location
is the main cause of an unavoidable logarithmic cost. Here, by considering all the cases
separately and step by step, we aim at precisely exhibiting the various regimes of minimax
separation rates: this allows us in particular to specify - where relevant - the price to pay
for adaptation to the different alternative parameters.

2.3 Minimax detection of a transitory change with known loca-

tion

In this subsection, we consider the problem of testing the null hypothesis (H0 ) ”λ ∈
S0[λ0] = {λ0}” versus alternative hypotheses where the location of the change from the
baseline intensity is known, with adaptation with respect to the change length, and with
or without adaptation with respect to the height of the change. Contrary to the study of
Section 2.2, while adaptation to the change length only can be done without any incidence
on the minimax separation rate order, adaptation to the change height in addition to the
change length has a non-negligible impact. We therefore examine these two questions in
two separate subsections.

2.3.1 Known change height

Let us first investigate the problem of testing (H0 ) versus (H1 ) ”λ ∈ Sδ∗,τ∗,···[λ0]”, where
the set Sδ∗,τ∗,···[λ0] is defined for δ∗ in (−λ0,+∞) \ {0} and τ ∗ in (0, 1) by

[Alt.5] Sδ∗,τ∗,···[λ0] =
{
λ : [0, 1] → (0,+∞), ∃ℓ ∈ (0, 1− τ ∗),

∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ∗,τ∗+ℓ](t)
}
. (18)

As explained above, we will see that the minimax separation rate over this alternative
set remains unchanged, of the parametric order L−1/2. A lower bound is easily obtained
from the key arguments given in Section 6.1. Therefore the major point here is the
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construction of a minimax adaptive test, which has to take the knowledge of the change
height δ∗ into account. In order to determine the most relevant way to integrate this
knowledge, we have used an exact expression for the probability distribution function as
well as an exponential inequality for the supremum of Poisson processes with shift, both
due to Pyke [89, Equation (6) and Theorem 3]. This has led to a new procedure which
is rather atypical regarding the other tests of this paper, and which can be related to
Brunel’s [19] scan test in the Gaussian set-up.

Proposition 8 (Minimax lower bound for [Alt.5]). Let α, β in (0, 1) such that α+β < 1,
λ0 > 0, δ∗ in (−λ0,+∞) \ {0} and τ ∗ in (0, 1). For all L ≥ λ0 logCα,β/(δ

∗2(1− τ ∗)),

mSRα,β (Sδ∗,τ∗,···[λ0] ) ≥
√

λ0 logCα,β/L, with Cα,β = 1 + 4(1− α− β)2 .

Let us now introduce the aggregated test

φ5,α(N) = 1{
supℓ∈(0,1−τ∗) Sδ∗,τ∗,τ∗+ℓ(N)>s+

λ0,δ
∗,τ∗,L(1−α)

} , (19)

where Sδ∗,τ1,τ2(N) is the statistic defined for 0 ≤ τ1 < τ2 ≤ 1 by

Sδ∗,τ1,τ2(N) = sgn(δ∗)
(

N(τ1, τ2]− λ0L(τ2 − τ1)
)

− |δ∗|L(τ2 − τ1)/2 , (20)

and s+λ0,δ∗,τ∗,L(u) is the u-quantile of supℓ∈(0,1−τ∗) Sδ∗,τ∗,τ∗+ℓ(N) under (H0).

Lemma 48 provides a control of the quantile s+λ0,δ∗,τ∗,L(1−α), which is deduced from Pyke’s
results [89], and which is the main argument to prove that φ5,α has an uniform separation
rate of parametric order L−1/2 and thus show that the lower bound of Proposition 8 is
sharp.

Proposition 9 (Minimax upper bound for [Alt.5]). Let L ≥ 1, α and β in (0, 1), λ0 > 0,
δ∗ in (−λ0,+∞) \ {0} and τ ∗ in (0, 1). Let φ5,α be the test of (H0 ) versus (H1 ) ”λ ∈
Sδ∗,τ∗,···[λ0]” defined by (19). Then φ5,α is of level α, that is Pλ0 (φ5,α(N) = 1) ≤ α.
Moreover, there exists a constant C(α, β, λ0, δ

∗) > 0 such that

SRβ (φ5,α,Sδ∗,τ∗,···[λ0] ) ≤ C(α, β, λ0, δ
∗)/

√
L ,

which entails in particular mSRα,β (Sδ∗,τ∗,···[λ0] ) ≤ C(α, β, λ0, δ
∗)/

√
L.

2.3.2 Unknown change height

Now addressing the question of adaptation to the change height together with the change
length, we consider for τ ∗ in (0, 1) the alternative set

S
·,τ∗,···[λ0] =

{
λ : [0, 1] → (0,+∞), ∃δ ∈ (−λ0,+∞) \ {0}, ∃ℓ ∈ (0, 1− τ ∗),

∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ∗,τ∗+ℓ](t)
}
. (21)

A first preliminary result in fact shows that this set of alternatives is too large to be
relevantly studied from the minimax point of view: the minimax separation rate is infinite
over it.
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Lemma 10. Let α and β in (0, 1) such that α + β < 1, λ0 > 0, and τ ∗ in (0, 1). For
the problem of testing (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus (H1 ) ”λ ∈ S

·,τ∗,···[λ0]”, with
S
·,τ∗,···[λ0] defined by (21), one has mSRα,β (S·,τ∗,···[λ0] ) = +∞.

This preliminary result leads us to consider, for R > λ0, the restricted set of alternatives

[Alt.6] S
·,τ∗,···[λ0, R] =

{
λ : [0, 1] → (0, R], ∃δ ∈ (−λ0, R− λ0] \ {0},
∃ℓ ∈ (0, 1− τ ∗), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ∗,τ∗+ℓ](t)

}
. (22)

For the problem of testing (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus (H1 ) ”λ ∈ S
·,τ∗,···[λ0, R]”,

we then obtain the following lower bound.

Proposition 11 (Minimax lower bound for [Alt.6]). Let α, β in (0, 1) with α + β <
1/2, λ0 > 0, R > λ0, τ

∗ in (0, 1). There exists L0(α, β, λ0, R) > 0 such that for L ≥
L0(α, β, λ0, R),

mSRα,β (S·,τ∗,···[λ0, R] ) ≥
√

λ0 log logL/L .

Let us now assume that L ≥ 3. In order to prove that the above lower bound is of sharp
order (with respect to L), we construct two aggregated tests: a first one based on a linear
statistic and a second one based on quadratic statistic as in Section 2.2.
We thus consider the discrete subset of (0, 1− τ ∗) of the dyadic form

{
ℓτ∗,k = (1− τ ∗ ) 2−k; k ∈ {1, . . . , ⌊log2 L⌋}

}
,

and the corrected level uα = α/⌊log2(L)⌋, which allow to define the two following tests:

φ
(1)
6,α(N) = 1{

maxk∈{1,...,⌊log2 L⌋}
(∣

∣

∣
Sτ∗,τ∗+ℓτ∗,k (N)

∣

∣

∣
−sλ0,τ∗,τ∗+ℓτ∗,k ( 1−uα )

)

>0
} , (23)

where Sτ1,τ2(N) is the linear statistic defined for 0 ≤ τ1 < τ2 ≤ 1 by

Sτ1,τ2(N) = N(τ1, τ2]− λ0(τ2 − τ1)L , (24)

and sλ0,τ1,τ2(u) stands for the u-quantile of
∣
∣Sτ1,τ2(N)

∣
∣ under the null hypothesis (H0 ),

and
φ
(2)
6,α(N) = 1{

maxk∈{1,...,⌊log2 L⌋}
(

Tτ∗,τ∗+ℓτ∗,k (N)−tλ0,τ∗,τ∗+ℓτ∗,k ( 1−uα )
)

>0
} , (25)

where Tτ1,τ2(N) is the quadratic statistic (11), and tλ0,τ1,τ2(u) its u-quantile under (H0 ).

Proposition 12 (Minimax upper bound for [Alt.6]). Let α and β in (0, 1), λ0 > 0,

R > λ0 and τ ∗ in (0, 1). Let φ
(1/2)
6,α be one of the tests φ

(1)
6,α and φ

(2)
6,α of (H0 ) versus

(H1 ) ”λ ∈ S
·,τ∗,···[λ0, R]” respectively defined by (23) and (25). Then φ

(1/2)
6,α is of level α,

that is Pλ0

(

φ
(1/2)
6,α (N) = 1

)

≤ α. Moreover, there exists C(α, β, λ0, R) > 0 such that

SRβ

(

φ
(1/2)
6,α ,S

·,τ∗,···[λ0, R]
)

≤ C(α, β, λ0, R)
√

log logL/L ,

which entails in particular mSRα,β (S·,τ∗,···[λ0, R] ) ≤ C(α, β, λ0, R)
√

log logL/L.
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Comments. The proofs of these upper bounds are mainly based on a sharp control of the
quantile sλ0,τ1,τ2(u) derived from an exponential inequality for the supremum of the mar-
tingale associated with a counting process due to Le Guével [71] (see details in Section 6),
and of the quantile tλ0,τ2,τ2(u) already used in the proof of Proposition 5. This result,
combined with its corresponding lower bound, brings out a first phase transition in the
minimax separation rates orders, from the parametric rate order 1/

√
L to

√

log logL/L.
This means that adaptation with respect to both height and length of the bump has a√
log logL cost, while adaptation to only one of these parameters does not cause any

additional price, nor adaptation to both height and location as noticed above. Though a
comparable phase transition has already been observed in Gaussian models when dealing
with the jump detection problem (where adaptation with respect to the location is equiv-
alent to adaptation with respect to the length), up to our knowledge, such results did not
appear yet in the bump detection literature.

2.4 Minimax detection of a possibly transitory change with un-

known location and length

In this subsection, we address the final problem of testing the null hypothesis (H0 ) ”λ ∈
S0[λ0] = {λ0}” versus alternative hypotheses where both location and length of the change
from the baseline intensity are unknown, distinguishing the case where the change is
transitory from the particular case where it is not transitory.

Still adopting the minimax point of view, we will see that when considering the transitory
change detection problem, adaptation to both change location and length has a minimax
separation rate cost of order

√
logL, and this whether the change height is known or not.

This highly contrasts with the study of the particular non transitory change or jump
detection problem, which makes two different regimes of minimax separation rates appear,
with a maximal cost of order

√
log logL for change height adaptation.

Let us underline that the non transitory change or jump detection problem can be viewed
as perfectly symmetrical to the above transitory change with known location detection
problem (see Section 2.3). In the first problem, one can consider that the length of the
change is unknown but the endpoint of the change is known, while in the second problem
the length of the change is unknown but the starting point of the change is known. The
study of the first non transitory change detection problem will therefore use very similar
arguments as the study of the second transitory change with known location detection
problem, finally leading to the same minimax separation rates. This is why we conduct
it first here.

2.4.1 Non transitory change

In order to investigate the problem of detecting a non transitory change or jump with un-
known location, but known height, we introduce for δ∗ in (−λ0,+∞)\{0} the alternative
set

[Alt.7] Sδ∗,··,1−··
[λ0] = {λ : [0, 1] → (0 +∞), ∃τ ∈ (0, 1), λ(t) = λ0 + δ∗1(τ,1](t)} . (26)

This allows us to formalise the considered detection problem as a problem of testing the
null hypothesis (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus the alternative (H1 ) ”λ ∈ Sδ∗,··,1−··

[λ0]”,
with the corresponding minimax lower bound stated below.
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Proposition 13 (Minimax lower bound for [Alt.7]). Let α and β in (0, 1) such that
α + β < 1, λ0 > 0 and δ∗ in (−λ0,+∞) \ {0}. For all L ≥ λ0 logCα,β/δ

∗2,

mSRα,β (Sδ∗,··,1−··
[λ0] ) ≥

√

λ0 logCα,β/L, with Cα,β = 1 + 4(1− α− β)2 .

Following the study and the notation of Section 2.3, we define the test

φ7,α(N) = 1{
supτ∈(0,1) Sδ∗,τ,1(N)>s+

λ0,δ
∗,L(1−α)

} , (27)

where Sδ∗,τ1,τ2(N) is the statistic defined by (20) and s+λ0,δ∗,L(u) stands for the u-quantile
of supτ∈(0,1) Sδ∗,τ,1(N) under (H0 ).

Proposition 14 (Minimax upper bound for [Alt.7]). Let L ≥ 1, α and β in (0, 1), λ0 > 0
and δ∗ in (−λ0,+∞) \ {0}. Let φ7,α be the test of (H0 ) versus (H1 ) ”λ ∈ Sδ∗,··,1−··

[λ0]”
defined by (27). Then φ7,α is of level α, that is Pλ0 (φ7,α(N) = 1) ≤ α. Moreover, there
exists a constant C(α, β, λ0, δ

∗) > 0 such that

SRβ (φ7,α,Sδ∗,··,1−··
[λ0] ) ≤ C(α, β, λ0, δ

∗)/
√
L ,

which entails in particular mSRα,β (Sδ∗,··,1−··
[λ0] ) ≤ C(α, β, λ0, δ

∗)/
√
L.

Let us now tackle the question of adaptation with respect to the change height and
therefore introduce to this end a preliminary alternative set

S
·,··,1−··

[λ0] = {λ : ∃δ ∈ (−λ0,+∞) \ {0}, ∃τ ∈ (0, 1), λ(t) = λ0 + δ1(τ,1](t)} . (28)

As in Section 2.3, we underline that the minimax separation rate over this set is infinite.

Lemma 15. Let α, β in (0, 1) such that α+β < 1. For the problem of testing (H0 ) ”λ ∈
S0[λ0] = {λ0}” versus (H1 ) ”λ ∈ S

·,··,1−··
[λ0]”, with S

·,··,1−··
[λ0] defined by (28), one has

mSRα,β (S·,··,1−··
[λ0] ) = +∞.

We thus consider for R > λ0 the more suitable set of alternatives bounded by R, defined
by

[Alt.8] S
·,··,1−··

[λ0, R] =
{
λ : [0, 1] → (0, R], ∃δ ∈ (−λ0, R− λ0] \ {0},

∃τ ∈ (0, 1), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,1](t)
}
. (29)

Considering the problem of testing (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus (H1 ) ”λ ∈
S
·,··,1−··

[λ0, R]”, we then obtain the following lower bound.

Proposition 16 (Minimax lower bound for [Alt.8]). Let α, β in (0, 1) with α+ β < 1/2,
λ0 > 0 and R > λ0. There exists L0(α, β, λ0, R) > 0 such that for L ≥ L0(α, β, λ0, R),

mSRα,β (S·,··,1−··
[λ0, R] ) ≥

√

λ0 log logL/L .

Again, following the study and the notation of Section 2.3, we assume now that L ≥ 3,
we consider the discrete subset of (0, 1) of the dyadic form

{
τk = 1− 2−k; k ∈ {1, . . . , ⌊log2 L⌋}

}
,
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and we set uα = α/⌊log2(L)⌋, which allows to define the two following tests:

φ
(1)
8,α(N) = 1{maxk∈{1,...,⌊log2 L⌋}(|Sτk,1(N)|−sλ0,τk,1( 1−uα ))>0} , (30)

where Sτ1,τ2(N) is the linear statistic defined by (24), sλ0,τ1,τ2(u) the u-quantile of |Sτ1,τ2(N)|
under (H0 ), and

φ
(2)
8,α(N) = 1{maxk∈{1,...,⌊log2 L⌋}(Tτk,1(N)−tλ0,τk,1( 1−uα ))>0} , (31)

where Tτ1,τ2(N) is the quadratic statistic (11) and tλ0,τ1,τ2(u) its u-quantile under (H0 ).

Proposition 17 (Minimax upper bound for [Alt.8]). Let α, β in (0, 1) with α + β < 1,

λ0 > 0 and R > λ0. Let φ
(1/2)
8,α be one of the tests φ

(1)
8,α and φ

(2)
8,α of (H0 ) versus (H1 ) ”λ ∈

S
·,··,1−··

[λ0, R]” respectively defined by (30) and (31). Then φ
(1/2)
8,α is of level α, that is

Pλ0

(

φ
(1/2)
8,α (N) = 1

)

≤ α. Moreover, there exists a constant C(α, β, λ0, R) > 0 such that

SRβ

(

φ
(1/2)
8,α ,S

·,··,1−··
[λ0, R]

)

≤ C(α, β, λ0, R)
√

log logL/L ,

which entails in particular mSRα,β (S·,··,1−··
[λ0, R] ) ≤ C(α, β, λ0, R)

√

log logL/L.

2.4.2 Transitory change

In this section, we address the transitory change detection problem, focusing here on the
question of adaptation to unknown location and length.
As explained above, we will see that minimax adaptation to these both parameters has
the most important cost in the present study, whose order is as large as

√
logL, so that

adaptation to the height will have no additional cost.

Let us first give lower bounds for the minimax separation rates, focusing on the case where
the change height is known since the general case where all three parameters, location,
length and height of the change are unknown then follows easily.
Hence, we introduce for δ∗ in (−λ0,+∞) \ {0} the alternative set

[Alt.9] Sδ∗,··,···[λ0] =
{
λ : [0, 1] → (0,+∞), ∃τ ∈ (0, 1), ∃ℓ ∈ (0, 1− τ),

∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ,τ+ℓ](t)
}
. (32)

Proposition 18 (Minimax lower bound for [Alt.9]). Let α, β in (0, 1), λ0 > 0 and δ∗ in
(−λ0,+∞) \ {0}. There exists L0(α, β, λ0, δ

∗) > 0 such that for all L ≥ L0(α, β, λ0, δ
∗),

mSRα,β (Sδ∗,··,···[λ0] ) ≥
√

λ0 logL/(2L) .

Now considering the very general alternative set

S
·,··,··[λ0] =

{
λ : [0, 1] → (0,+∞), ∃δ ∈ (−λ0,+∞) \ {0}, ∃τ ∈ (0, 1),

∃ℓ ∈ (0, 1− τ), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,τ+ℓ](t)
}
, (33)

since it contains S
·,τ∗,···[λ0] defined by (21) for any τ ∗ in (0, 1), Lemma 10 straightforwardly

leads to an infinite minimax separation rate lower bound.
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Corollary 19. Let α, β in (0, 1) such that α+β < 1. For the problem of testing (H0 ) ”λ ∈
S0[λ0] = {λ0}” versus (H1 ) ”λ ∈ S

·,··,···[λ0]”, with S
·,··,···[λ0] defined by (33), one has

mSRα,β (S·,··,···[λ0] ) = +∞.

We therefore restrict the alternative set to the one defined for R ≥ λ0 by

[Alt.10] S
·,··,···[λ0, R] =

{
λ : [0, 1] → (0, R], ∃δ ∈ (−λ0, R− λ0] \ {0}, ∃τ ∈ (0, 1),

∃ℓ ∈ (0, 1− τ), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,τ+ℓ](t)
}
, (34)

and deal with the problem of testing (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus (H1 ) ”λ ∈
S
·,··,···[λ0, R]”. This alternative set S

·,··,···[λ0, R] includes SR−λ0,··,···[λ0] defined by (32)
when R > λ0, and S−λ0/2,··,···[λ0] when λ0 = R. Therefore, Proposition 18 has the
following direct corollary, whose proof as well as the proof of Corollary 19 is omitted for
simplicity.

Corollary 20 (Minimax lower bound for [Alt10]). Let α, β in (0, 1) with α + β < 1,
λ0 > 0 and R ≥ λ0. There exists L0(α, β, λ0, R) > 0 such that for all L ≥ L0(α, β, λ0, R),

mSRα,β (S·,··,···[λ0, R] ) ≥
√

λ0 logL/(2L) .

In order to prove that the above lower bounds are sharp, we secondly construct two novel
minimax adaptive tests according to a scanning aggregation principle again.
As expected, the test named φ

(1)
9/10,α is based on the linear statistic Sτ1,τ2(N) defined by

(24) and the u-quantiles of |Sτ1,τ2(N)| under (H0 ) denoted by sλ0,τ1,τ2(u), while the test

named φ
(2)
9/10,α is based on the quadratic statistic Tτ1,τ2(N) defined by (11) and its u-

quantiles under (H0 ) denoted by tλ0,τ1,τ2(u). Since the lower bound shows an additional
cost for adaptation to change location and length of order

√
logL instead of at most√

log logL when dealing with adaptation to only one of these parameters, we do not
necessarily need to consider a dyadic set of aggregated tests. More precisely, setting
uα = 2α/(⌈L⌉(⌈L⌉ + 1)), we define

φ
(1)
9/10,α(N) = 1{

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(∣
∣S k

⌈L⌉ , k+k′
⌈L⌉

(N)

∣
∣−s

λ0,
k

⌈L⌉ , k+k′
⌈L⌉

( 1−uα )

)

>0

} , (35)

and

φ
(2)
9/10,α(N) = 1{

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(

T k
⌈L⌉ , k+k′

⌈L⌉
(N)−t

λ0,
k

⌈L⌉ , k+k′
⌈L⌉

( 1−uα )

)

>0

} . (36)

Proposition 21 (Minimax upper bound for [Alt.10]). Let α, β in (0, 1), λ0 > 0 and

R ≥ λ0. Let φ
(1/2)
9/10,α be one of the tests φ

(1)
9/10,α and φ

(2)
9/10,α of (H0 ) versus (H1 ) ”λ ∈

S
·,··,···[λ0, R]” respectively defined by (35) and (36). Then φ

(1/2)
9/10,α is of level α, that is

Pλ0

(

φ
(1/2)
9/10,α(N) = 1

)

≤ α. Moreover, there exists a constant C(α, β, λ0, R) > 0 such that

SRβ

(

φ
(1/2)
9/10,α,S·,··,···[λ0, R]

)

≤ C(α, β, λ0, R)
√

logL/L ,

which entails in particular mSRα,β (S·,··,···[λ0, R] ) ≤ C(α, β, λ0, R)
√

logL/L.
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As in particular Sδ∗,··,···[λ0] is included in S
·,··,···[λ0, λ0+δ

∗] for any δ∗ > 0 and S
·,··,···[λ0, λ0]

for any δ∗ in (−λ0, 0), Proposition 21 has the following immediate corollary, which closes
the study of possibly transitory change in a known baseline intensity detection.

Corollary 22 (Minimax upper bound for [Alt.9]). Let α, β in (0, 1), λ0 > 0 and δ∗

in (−λ0,+∞) \ {0}. Let φ
(1/2)
9/10,α be one of the tests φ

(1)
9/10,α and φ

(2)
9/10,α of (H0 ) versus

(H1 ) ”λ ∈ Sδ∗,··,···[λ0]” respectively defined by (35) and (36). Then φ
(1/2)
9/10,α is of level α,

that is Pλ0

(

φ
(1/2)
9/10,α(N) = 1

)

≤ α. Moreover, there exists C(α, β, λ0, δ
∗) > 0 such that

SRβ

(

φ
(1/2)
9/10,α,Sδ∗,··,···[λ0]

)

≤ C(α, β, λ0, δ
∗)
√

logL/L ,

which entails in particular mSRα,β (Sδ∗,··,···[λ0] ) ≤ C(α, β, λ0, δ
∗)
√

logL/L.

Comment. The upper bounds in Proposition 21 and Corollary 22, combined with their
corresponding lower bounds, bring out a second phase transition in the minimax sepa-
ration rate orders, from the rate order

√

log logL/L when considering adaptation with

respect to both bump height and length to
√

logL/L, obtained when dealing with adap-
tation to at least bump location and length (with no additional cost when adapting to the
bump height). As comparable minimax separation rates were already known in Gaussian
models with [5] and [19], these results were more expected that some of the above ones.

2.5 Choice of individual levels for aggregated tests and link with

multiple tests

Except the tests φ−
1,α, φ+

1,α, φ
(1)
2,α and φ

(2)
2,α that are classical single tests derived from the

fundamental Neyman-Pearson Lemma, all the tests introduced in the above study are
based on aggregation principles. Among them, we can essentially distinguish two kinds
of such aggregated tests.
The first aggregated test type is of the form

φagg1,α(N) = 1{supθ∈Θ Sθ(N)>s+λ0
(1−α)} , (37)

where:

• θ is one possible parameter or couple of parameters among the location τ or length
ℓ of the bump/jump in the alternative intensity, and Θ is a subset of possible values
for θ,

• Sθ is a statistic designed to test (H0) "λ = λ0" versus (H1) "λ has a jump or a
bump with parameter or parameters θ", such that supθ∈Θ Sθ(N) has a computable,
exactly or by a Monte Carlo method, (1− α)-quantile s+λ0

(1− α) under (H0).

The tests φ
(1)−
3,α , φ

(1)+
3,α , φ5,α and φ7,α can all be written in this way.

The second aggregated test type is of the form

φagg2,α(N) = 1{supθ∈Θ(Sθ(N)−sλ0,θ(1−uα))>0} , (38)

where:
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• θ is one possible parameter or couple of parameters among the location τ or length
ℓ of the bump/jump in the alternative intensity, and Θ is a finite subset of possible
values for θ,

• Sθ is a statistic designed to test (H0) "λ = λ0" versus (H1) "λ has a jump or a bump
with parameter or parameters θ", with computable (1 − u)-quantiles sλ0,θ(1 − u)
under (H0),

• uα is an individual, adjusted and smaller than α, level of test.

The tests φ
(1)
4,α, φ

(2)
3/4,α, φ

(1)
6,α, φ

(2)
6,α, φ

(1)
8,α, φ

(2)
8,α, φ

(1)
9/10,α, φ

(2)
9/10,α can all be written in this way.

Notice that both φagg1,α and φagg2,α aggregated test types can be expressed as

1{supθ∈Θ(Sθ(N)−cλ0,θ,α)>0} = 1{∃θ∈Θ, Sθ(N)>cλ0,θ,α} ,

where cλ0,θ,α is a critical value such that cλ0,θ,α = s+λ0
(1−α) does not vary with θ in φagg1,α

and cλ0,θ,α = sλ0,θ(1 − uα) varies with θ in φagg2,α. This therefore means that these tests
reject (H0) when, scanning all the parameters or couples of parameters θ in Θ, at least
one single test in the collection

{
1Sθ(N)>cλ0,θ,α

, θ ∈ Θ
}

rejects (H0), which explains the
name of scan aggregation principle. All the single tests 1Sθ(N)>cλ0,θ,α

in the considered
collection are of level α, but they can be in fact, individually, very conservative, otherwise
their aggregation would not preserve the level α property in fine. In the particular case
of φagg2,α, the single tests are of individual level uα, taken here equal to uα = α/|Θ|.
A better choice for uα, leading to a less conservative aggregated test, was first proposed
in another context by Baraud et al. [9]. In our context, this choice corresponds to

u′α = sup

{

u ∈ (0, 1), Pλ0

(

sup
θ∈Θ

(Sθ(N)− sλ0,θ(1− u)) > 0

)

≤ α

}

. (39)

Since uα ≤ u′α, by definition, sλ0,θ(1− u′α) ≤ sλ0,θ(1−uα). Any upper bound for sλ0,θ(1−
uα), such as those used in the proofs of the minimax separation rates upper bounds and
deduced from the quantiles bounds of Section 6.2, therefore remains valid for sλ0,θ(1−u′α).
As a consequence, all the above tests of type φagg2,α but with u′α instead of uα, that we
can denote by φ′

agg2,α, satisfy the same minimax properties as φagg2,α.
The fact that such adjusted aggregated tests φ′

agg2,α are more powerful than φagg2,α is
not discernable in minimax results whereas it is clearly noticeable in practice, is a known
shortcoming of the present nonasymptotic minimax point of view, where exact constants
(making lower and upper bound match, up to a possible negligible term) are not expected,
which is not solved yet up to our knowledge in any testing framework. Our simulation
study presented in Section 4 focuses on the performances of adjusted aggregated tests of
the form φ′

agg2,α.

Let us now turn to the links that can be highlighted between such minimax adaptive,
aggregated tests φagg2,α or adjusted aggregated tests φ′

agg2,α and multiple tests. The
parallel between such aggregated tests and multiple tests has been established in [52], as
the foundation of a minimax theory for multiple tests. Notice that when each single test
1Sθ(N)>cλ0,θ,α

in the collection
{
1Sθ(N)>cλ0,θ,α

, θ ∈ Θ
}

can be interpreted as a test of a null
hypothesis (H0,θ) λ ∈ S0,θ versus (H1,θ) λ 6∈ S0,θ, with S0 ⊂ ∩θ∈ΘS0,θ, it appears that our
first choice of individual level uα = α/|Θ| can be related to a Bonferroni type multiple
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test of the set of hypotheses {(H0,θ), θ ∈ Θ}, while our second choice u′α defined by (39)
can be related to a min-p type multiple test of the same set of hypotheses.
Notice or recall that Sτ1,τ2(N) and Tτ1,τ2(N) defined by (24) and (11) are unbiased esti-
mators of L(τ2 − τ1)ΠVτ1,τ2

(λ − λ0) and ‖ΠVτ1,τ2
(λ − λ0)‖22 respectively (see Section 2.1).

Therefore, for instance, the single tests 1|Sτk,1
(N)|>sλ0,τk,1(1−u) and 1Tτk,1(N)>sλ0,τk,1(1−u) in-

volved in φ
(1)
8,α(N) and φ

(2)
8,α(N) can be viewed as single tests of (H0,τk) ΠVτk,1(λ− λ0) = 0

v.s. (H1,τk) ΠVτk,1(λ−λ0) 6= 0. In the same way, the single tests involved in φ
(1)
9/10,α(N) and

φ
(2)
9/10,α(N) can be viewed as tests of ΠVk/⌈L⌉,(k+k′)/⌈L⌉(λ−λ0) = 0 versus ΠVk/⌈L⌉,(k+k′)/⌈L⌉(λ−
λ0) 6= 0. Our aggregated tests of the form φagg2,α are thus clearly aggregated tests
constructed from Bonferroni multiple tests, while the corresponding adjusted aggregated
tests of the form φ′

agg2,α are constructed from min-p multiple tests of such collections of
hypotheses (see [52] for some detailed study).

2.6 Summary and discussion

We present below a summary of the results stated above in a tabular form. Recall (c.f.
(11), (20) and (24)) that for 0 ≤ τ1 < τ2 ≤ 1,

Tτ1,τ2(N) =
1

L2(τ2 − τ1)

(
N (τ1, τ2]

2 −N (τ1, τ2]
)
− 2λ0

L
N (τ1, τ2] + λ20(τ2 − τ1) ,

Sδ∗,τ1,τ2(N) = sgn(δ∗)(N(τ1, τ2]− λ0L(τ2 − τ1))− |δ∗|L(τ2 − τ1)/2, Sτ1,τ2(N) = N(τ1, τ2]−
λ0(τ2− τ1)L, and that tλ0,τ1,τ2(u) and sλ0,τ1,τ2(u) stand for the u-quantiles of Tτ1,τ2(N) and
|Sτ1,τ2(N)| under (H0 ) respectively.

Transitory change or bump detection

Alternative set mSRα,β Test statistics
Sδ∗,τ∗,ℓ∗[λ0] - N(τ ∗, τ ∗ + ℓ∗]

S
·,τ∗,ℓ∗[λ0] L−1/2 N(τ ∗, τ ∗ + ℓ∗]

Tτ∗,τ∗+ℓ∗(N)
Sδ∗,··,ℓ∗ [λ0] - maxτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗], minτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗]

maxk∈{0,...,⌈(1−ℓ∗)M⌉−1}

(

T k
M

, k
M

+ℓ∗(N)− tλ0,
k
M

, k
M

+ℓ∗ (1− uα )
)

M = ⌈2/ℓ∗⌉
S
·,··,ℓ∗ [λ0] L−1/2 maxτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗], minτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗]

maxk∈{0,...,⌈(1−ℓ∗)M⌉−1}

(

T k
M

, k
M

+ℓ∗(N)− tλ0,
k
M

, k
M

+ℓ∗ (1− uα )
)

M = ⌈2/ℓ∗⌉
Sδ∗,τ∗,···[λ0] L−1/2 supℓ∈(0,1−τ∗) Sδ∗,τ∗,τ∗+ℓ(N)

S
·,τ∗,···[λ0, R]

√
log logL

L
maxk∈{1,...,⌊log2 L⌋}

(∣
∣Sτ∗,τ∗+(1−τ∗ )2−k(N)

∣
∣− sλ0,τ∗,τ∗+(1−τ∗ )2−k (1− uα )

)

maxk∈{1,...,⌊log2 L⌋}
(
Tτ∗,τ∗+(1−τ∗ )2−k(N)− tλ0,τ∗,τ∗+(1−τ∗ )2−k (1− uα )

)

Sδ∗,··,···[λ0]
√

logL
L

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(∣
∣S k

⌈L⌉ ,
k+k′
⌈L⌉

(N)
∣
∣− s

λ0,
k

⌈L⌉ ,
k+k′
⌈L⌉

(1− uα )
)

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(

T k
⌈L⌉ ,

k+k′
⌈L⌉

(N)− t
λ0,

k
⌈L⌉ ,

k+k′
⌈L⌉

(1− uα )
)

S
·,··,···[λ0, R]

√
logL
L

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(∣
∣S k

⌈L⌉ ,
k+k′
⌈L⌉

(N)
∣
∣− s

λ0,
k

⌈L⌉ ,
k+k′
⌈L⌉

(1− uα )
)

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(

T k
⌈L⌉ ,

k+k′
⌈L⌉

(N)− t
λ0,

k
⌈L⌉ ,

k+k′
⌈L⌉

(1− uα )
)
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Non transitory change or jump detection

Alternative set mSRα,β Test statistics
Sδ∗,τ∗,1−τ∗ [λ0] - N(τ ∗, 1]

S
·,τ∗,1−τ∗ [λ0] L−1/2 N(τ ∗, 1]

Tτ∗,1(N)

Sδ∗,··,1−··
[λ0] L−1/2 supτ∈(0,1) Sδ∗,τ,1(N)

S
·,··,1−··

[λ0, R]
√

log logL
L

maxk∈{1,...,⌊log2 L⌋}

(∣
∣S1−2−k ,1(N)

∣
∣− sλ0,1−2−k,1 (1− uα )

)

maxk∈{1,...,⌊log2 L⌋}
(
T1−2−k ,1(N)− tλ0,1−2−k,1 (1− uα )

)

The present overview notably enables to highlight two main phase transitions in minimax
separation rates. A phase transition from the smallest parametric rate order 1/

√
L to the

intermediate rate order
√

log logL/L, due to adaptation to both height and length of the
bump when dealing with the bump detection problem (BDP), or both height and location
of the jump (which is in fact equivalent to adaptation to the bump length here) when
dealing with the jump detection problem (JDP). A similar phase transition was already
known in the independent Gaussian model when dealing with the JDP as explained in the
introduction (see [54] and [105]). But the tools used in this Gaussian model, mainly based
on Law of Iterated Logarithm exponential inequalities could not be used here, which led us
to circumvent the difficulty via new exponential inequalities of Le Guével [71] combined
with a dyadic type scan aggregation approach. Two points which seem important to
us here are: first, in the BDP, adaptation to both bump height and location can be
conducted without any additional cost as soon as the bump length is known; second,
when adaptation to the length in the BDP or the location in the JDP is considered, the
knowledge of the bump or jump height suffices to cancel any price to pay for adaptation.
Up to our knowledge, such results were not known, even in classical Gaussian models.
Constructing minimax adaptive tests actually required a careful analysis of the shifted
Poisson process. Then, a phase transition from the intermediate rate order

√

log logL/L

to the largest rate order
√

logL/L, due to adaptation to both position and length of
the bump when dealing with the BDP. Notice that this rate is so large that additional
adaptation to the height has no supplementary cost. Notice also that similar minimax
separation rates were already known in the independent Gaussian model: Arias-Castro
et al. [5] handled the case where the height is unknown, while Brunel [19] handled the
case where the height is known, equal to 1 (therefore positive) within the asymptotic
perspective, with linear statistics in the spirit of well-known CUSUM statistics. From
this angle, our study provides nonasymptotic and Poisson processes counterparts for the
Gaussian tools used in [5] and [19]. But we furthermore introduce, in the unknown height
case, a novel scan aggregated quadratic statistic: if it leads to the same minimax adaptive
testing properties as the scan aggregated linear one, our simulation study shows that the
corresponding test is often more powerful, especially when the height is negative, that is
in depression detection problems.

3 Detecting an abrupt, possibly transitory, change in

an unknown intensity

We now turn to the problem of detecting an abrupt change in the intensity of the Poisson
process N when its constant baseline is not assumed to be known anymore. This detection
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problem probably more largely fits applications, especially with epidemiological data for
which it is often more realistic not to assume that the baseline intensity of the underlying
Poisson process is known. In the present section, we therefore consider the null hypothesis
expressed as (H0 ) ”λ ∈ Su

0 [R]”, where Su
0 [R] is the set of all possible constant intensities

upper bounded by a given R > 0. As in the above section, we consider various alternative
hypotheses, that are defined according to the persistent or transitory nature of the change,
and its height, location and length knowledge. In order to further cover the full range of
alternatives in a unified notation, we introduce for δ∗ in (−R,R) \ {0}, τ ∗ in (0, 1) and ℓ∗

in (0, 1− τ ∗] the set Su
δ∗,τ∗,ℓ∗ [R] of intensities with a change of height δ∗, location τ ∗ and

length ℓ∗ from an unknown λ0 in Su
0 [R], and still upper bounded by R,

[Alt
u.1] Su

δ∗,τ∗,ℓ∗[R] =
{

λ : [0, 1] → (0, R], ∃λ0 ∈ (−δ∗ ∨ 0, (R− δ∗) ∧ R],

∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ∗,τ∗+ℓ∗](t)
}

. (40)

Though it is not as immediate as in Section 2, testing (H0 ) versus (H1 ) ”λ ∈ Su
δ∗,τ∗,ℓ∗ [R]”

also falls within the scope of Neyman-Pearson tests, and an Uniformly Most Powerful
Unbiased (UMPU) test can be constructed by using a conditioning trick (see details
below). As above, when the question of adaptivity w.r.t. some unknown parameters
is tackled, the unknown parameters are replaced by single, double or triple dots in the
notation Su

δ∗,τ∗,ℓ∗ [R].
Notice that for any intensity λ such that λ(t) = λ0 + δ1(τ,τ+ℓ](t) for δ in (−R,R) \ {0}, τ
in (0, 1), ℓ in (0, 1− τ ] and λ0 in (−δ ∨ 0, (R− δ) ∧R],

d2(λ,Su
0 [R]) = |δ|

√

ℓ(1− ℓ) .

Hence, as soon as an alternative intensity has known change height δ = δ∗ and length
ℓ = ℓ∗, the distance d2(λ,Su

0 [R]) is fixed, equal to |δ∗|
√

ℓ∗(1− ℓ∗). Hence, the β-uniform
separation rate of any level α test over Su

δ∗,τ∗,ℓ∗ [R] or Su
δ∗,·,ℓ∗ [R] is either 0 or +∞, and so

is the (α, β)-minimax separation rate. In these cases, our tests are not studied from the
minimax point of view. As in Section 2, we nevertheless establish conditions, expressed
as a sufficient minimal distance d2(λ,Su

0 [R]), guaranteeing that their second kind error
rate is controlled by β.

3.1 Uniformly most powerful detection of a possibly transitory

change with known location and length

Let us first focus on the problem of testing (H0 ) ”λ ∈ Su
0 [R]” versus (H1 ) ”λ ∈

Su
δ∗,τ∗,ℓ∗ [R]” with Su

δ∗,τ∗,ℓ∗ [R] defined by (40) for δ∗ in (−R,R) \ {0}, τ ∗ in (0, 1) and ℓ∗ in
(0, 1 − τ ∗]. Assume here that λ belongs to {λ : [0, 1] → (0, R], ∃δ ∈ (−R,R), ∃λ0 ∈
(−δ ∨ 0, (R − δ) ∧ R], λ = λ0 + δ1(τ∗,τ∗+ℓ∗]} ⊃ Su

0 [R] ∪ Su
δ∗,τ∗,ℓ∗[R]. In this model

parametrised by (δ, λ0) in {(δ, λ0), δ ∈ (−R,R), λ0 ∈ (−δ ∨ 0, (R− δ) ∧ R]}, the distri-
bution Pλ is dominated by P1 (see Lemma 1), with a Likelihood Ratio given by

dPλ

dP1

(N) = e( log(1+δ/λ0)N(τ∗,τ∗+ℓ∗]+log(λ0)N(0,1]−L(λ0+δℓ∗−1) ) .

Reparametrising the model by θ1 = log (1 + δ/λ0 ) and θ2 = log(λ0), this LR becomes

dPλ

dP1
(N) = e−L(eθ2(1+(eθ1−1)ℓ∗)−1)eθ1N(τ∗,τ∗+ℓ∗]+θ2N(0,1] . (41)
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Our testing problem can then be viewed as a problem of testing (H0 ) ”θ1 = 0” versus
(H1 ) ”θ1 < 0” or (H1 ) ”θ1 > 0” (depending on the sign of δ∗) in an exponential model
with natural parameters θ = (θ1, θ2) and sufficient statistics (N(τ ∗, τ ∗ + ℓ∗], N(0, 1]), and
where θ2 can be interpreted as a nuisance parameter. From (41) and Lemma 2.7.2 of [73]
we can deduce that given N1 = n, the conditional distribution of N(τ ∗, τ ∗ + ℓ∗] defines
an exponential family with respect to some measure νn, with natural parameter θ1, and
is in particular free of θ2. In this conditional framework, one knows that there exists
an UMP test of (H0 ) versus (H1 ) of the Neyman-Pearson form. Recalling that given
N1 = n, N(τ ∗, τ ∗ + ℓ∗] has the same distribution as a binomial random variable Yn,ℓ∗

with parameters (n, ℓ∗), such conditional Neyman-Pearson tests lead us to consider the
unilateral tests defined by

{

φu,−
1,α (N) = 1N(τ∗,τ∗+ℓ∗]<bN1,ℓ

∗(α) +γ−(N1,ℓ∗)
(α)1N(τ∗,τ∗+ℓ∗]=bN1,ℓ

∗(α) if δ∗ < 0

φu,+
1,α (N) = 1N(τ∗,τ∗+ℓ∗]>bN1,ℓ

∗(1−α) +γ+(N1,ℓ∗)
(1− α)1N(τ∗,τ∗+ℓ∗]=bN1,ℓ

∗(1−α) if δ∗ > 0 ,

(42)
where for all n in N, bn,ℓ∗(u) denotes the u-quantile of the distribution of Yn,ℓ∗, and

γ−(n,ℓ∗)(u) =
u− P(Yn,ℓ∗ < bn,ℓ∗(u))

P(Yn,ℓ∗ = bn,ℓ∗(u))
, γ+(n,ℓ∗)(u) = 1− γ−(n,ℓ∗)(u) . (43)

From Theorem 4.4.1 in [73] and the remark below its proof, we obtain the following result.

Proposition 23 (Uniformly Most Powerful Unbiased tests).
Let L ≥ 1, α in (0, 1), δ∗ in (−R,R) \ {0}, τ ∗ in (0, 1) and ℓ∗ in (0, 1 − τ ∗]. The tests
φu,−
1,α and φu,+

1,α of (H0 ) versus (H1 ) ”λ ∈ Su
δ∗,τ∗,ℓ∗ [R]”, defined by (42), satisfy

Eλ

[

φu,+
1,α (N)

∣
∣
∣N1 = n

]

= Eλ

[

φu,−
1,α (N)

∣
∣
∣N1 = n

]

= α ∀λ ∈ Su
0 [R] . (44)

Moreover, φu,−
1,α and φu,+

1,α are UMPU tests.

In order to follow the same line as the minimax results obtained when regarding other
alternative hypotheses with unknown height and/or length change, we further study which
minimal distance d2(λ,Su

0 [R]) guarantees a second kind error rate control.

Proposition 24 (Second kind error rates control for [Alt
u.1]). Let L ≥ 1, α in (0, 1),

δ∗ in (−R,R)\{0}, τ ∗ in (0, 1) and ℓ∗ in (0, 1− τ ∗], and let φu,−
1,α and φu,+

1,α be the tests of
(H0 ) versus (H1 ) ”λ ∈ Su

δ∗,τ∗,ℓ∗ [R]” defined by (42). There exists C(α, β, R, ℓ∗) > 0 such
that
(i) Pλ(φ

u,+
1,α (N) = 0) ≤ β if 0 < δ∗ < R and λ belongs to Su

δ∗,τ∗,ℓ∗[R] with

d2(λ,Su
0 [R]) ≥ C(α, β, R, ℓ∗)/

√
L , (45)

(ii) Pλ(φ
u,−
1,α (N) = 0) ≤ β if −R < δ∗ < 0 and λ belongs to Su

δ∗,τ∗,ℓ∗[R] with (45).

Comments. Noticing that for any λ in Su
δ∗,τ∗,ℓ∗[R], d2 (λ,Su

0 [R] ) = |δ∗|
√

ℓ∗(1− ℓ∗), the
above proposition in particular gives that if L ≥ C2(α, β, R, ℓ∗)/δ∗2ℓ∗(1− ℓ∗) , then
Pλ(φ

u,+
1,α (N) = 0) ≤ β and Pλ(φ

u,−
1,α (N) = 0) ≤ β, respectively when 0 < δ∗ < R and

−R < δ∗ < 0. Therefore, in this case, the β-uniform separation rates of φu,+
1,α and φu,−

1,α
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over Su
δ∗,τ∗,ℓ∗ [R], with 0 < δ∗ < R and −R < δ∗ < 0 respectively, are equal to 0, and so

are the corresponding (α, β)-minimax separation rates mSRα,β(Su
δ∗,τ∗,ℓ∗ [R]).

In order to address the question of adaptation to the change height, we consider the
problem of testing (H0 ) v.s. (H1 ) ”λ ∈ Su

·,τ∗,ℓ∗ [R]”, where for R > 0, τ ∗ in (0, 1) and ℓ∗

in (0, 1− τ ∗],

[Alt
u.2] Su

·,τ∗,ℓ∗[R] =
{

λ : [0, 1] → (0, R], ∃λ0 ∈ (0, R],

∃δ ∈ (−λ0, R− λ0] \ {0} , ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ∗,τ∗+ℓ∗](t)
}

. (46)

Unsurprisingly, with the Bayesian arguments already used to prove Proposition 3, one
obtains a lower bound for the minimax separation rate over Su

·,τ∗,ℓ∗[R] of the parametric

order 1/
√
L.

Proposition 25 (Minimax lower bound for [Alt
u.2]). Let α and β in (0, 1), R > 0, τ ∗

in (0, 1) and ℓ∗ in (0, 1− τ ∗]. For all L ≥ (2 logCα,β/(Rℓ
∗)),

mSRα,β

(
Su
·,τ∗,ℓ∗[R]

)
≥
√

R(1− ℓ∗) logCα,β/ (2L), with Cα,β = 1 + 4(1− α− β)2 .

In order to prove that this lower bound is sharp, we construct two minimax adaptive tests.

The first one is based on the linear statistic N(τ ∗, τ ∗ + ℓ∗] and is very similar in spirit

to the test φ
(1)
2,α defined by (9), except that the associated critical values are based on

the conditional distribution of N(τ ∗, τ ∗ + ℓ∗] given N1 = n under (H0) instead of the
unconditional distribution (which is not free from the unknown constant baseline intensity
under (H0)). Let

φ
u(1)
2,α (N) = 1N(τ∗,τ∗+ℓ∗]>bN1,ℓ

∗(1−α1) + γ+(N1,ℓ∗)
(1− α1)1N(τ∗,τ∗+ℓ∗]=bN1,ℓ

∗(1−α1)

+ 1N(τ∗,τ∗+ℓ∗]<bN1,ℓ
∗(α2) + γ−(N1,ℓ∗)

(α2)1N(τ∗,τ∗+ℓ∗]=bN1,ℓ
∗(α2) , (47)

where γ+(n,ℓ∗) and γ−(n,ℓ∗) are defined by (43), bn,ℓ∗(u) denotes the u-quantile of the binomial

distribution with parameters (n, ℓ∗) for all n in N, and α1 and α2 in (0, 1) are determined
by
{

α1 + α2 = α ,

Eλ

[
N(τ ∗, τ ∗ + ℓ∗]φ

u(1)
2,α (N)

∣
∣N1 = n

]
= αEλ

[
N(τ ∗, τ ∗ + ℓ∗]

∣
∣N1 = n

]
∀λ ∈ Su

0 [R] .

(48)

Theorem 4.4.1 of [73] again (but considering the bilateral test) shows that φ
u(1)
2,α is UMPU.

The second one is based on a quadratic statistic deduced from an estimation of the L2-
distance between λ in Su

·,τ∗,ℓ∗[R] and Su
0 [R]. For 0<τ1<τ2≤1, we define ψ0 = 1[0,1] and

ψτ1,τ2 = −
√

(τ2 − τ1 )/(1− τ2 + τ1 )
(
1(0,τ1]+1(τ2,1]

)
+
√

(1− τ2 + τ1 )/(τ2 − τ1 )1(τ1,τ2]. No-
tice that (ψ0, ψτ1,τ2) is an orthonormal family and set W0 = Vect (ψ0) and Wτ1,τ2 =
Vect (ψ0, ψτ1,τ2). Denoting by ΠW0 and ΠWτ1,τ2

the orthogonal projections onto W0 and
Wτ1,τ2 in L2([0, 1]) respectively, the quadratic statistic

T ′
τ1,τ2(N) =

1

L2

[ τ2 − τ1
1− τ2 + τ1

(
(N(0, τ1] +N(τ2, 1])

2 − (N(0, τ1] +N(τ2, 1])
)

+
1− τ2 + τ1
τ2 − τ1

(
N(τ1, τ2]

2 −N(τ1, τ2]
)
− 2N(τ1, τ2] (N(0, τ1] +N(τ2, 1])

]

, (49)
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is an unbiased estimator of ‖ΠWτ1,τ2
(λ−ΠW0(λ))‖22. We therefore consider the particular

statistic T ′
τ∗,τ∗+ℓ∗(N) which is an unbiased estimator of the squared L2-distance between

λ in Su
·,τ∗,ℓ∗ [R] and the set of constant intensities, leading to the test defined by

φ
u(2)
2,α (N) = 1T ′

τ∗,τ∗+ℓ∗(N)>t′
N1,τ

∗,τ∗+ℓ∗(1−α) , (50)

where t′n,τ1,τ2(u) is the u-quantile of the distribution of T ′
τ1,τ2

(N) given N1 = n under (H0 ).
Since this conditional distribution under (H0) is the distribution of the renormalised
U -statistic L−2

∑n
i 6=j=1 ψτ1,τ2(Ui)ψτ1,τ2(Uj) based on a n-sample (U1, . . . , Un) of i.i.d. uni-

form random variables, we use an exponential inequality for U -statistics of order 2 due
to Reynaud-Bouret and Houdré [62] to control the quantiles t′n,τ1,τ2(u) in theory (see
Lemma 52), and Monte-Carlo methods to evaluate them in practice.

Proposition 26 (Minimax upper bound for [Alt
u.2]). Let L ≥ 1, α, β in (0, 1), R > 0,

τ ∗ in (0, 1) and ℓ∗ in (0, 1 − τ ∗]. Let φ
u(1/2)
2,α be one of the tests φ

u(1)
2,α and φ

u(2)
2,α of (H0 )

versus (H1 ) ”λ ∈ Su
·,τ∗,ℓ∗ [R]” respectively defined by (47)-(48) and (50). Then φ

u(1/2)
2,α is

of level α, that is supλ∈Su
0 [R] Pλ(φ

u(1/2)
2,α (N) = 1) ≤ α (φ

u(1)
2,α is even of size α). Moreover,

there exists C(α, β, R, ℓ∗) > 0 such that

SRβ(φ
u(1/2)
2,α ,Su

·,τ∗,ℓ∗ [R]) ≤ C(α, β, R, ℓ∗)/
√
L ,

which entails in particular mSRα,β(Su
·,τ∗,ℓ∗[R]) ≤ C(α, β, R, ℓ∗)/

√
L.

Comments. This result proves that both tests φ
u(1)
2,α and φ

u(2)
2,α are therefore minimax (up to

a possible multiplicative constant) over the set of alternatives Su
·,τ∗,ℓ∗[R], where the height

of the change is unknown, with an optimal uniform separation rate of the parametric
order 1/

√
L, as expected regarding results for φ

(1)
2,α and φ

(2)
2,α in Section 2.

Notice that this study involves the particular non transitory change or jump detection
problem, with a known change location, taking ℓ∗ = 1− τ ∗. Following the same layout as
in Section 2, we investigate the jump detection problem with unknown location in Section
3.4.1.

3.2 Minimax detection of a transitory change with known length

In this subsection, we deal with the problem of testing the null hypothesis (H0 ) ”λ ∈
Su
0 [R]” versus alternatives where the length of the change from the unknown baseline

intensity is known, with adaptation to the change location, and with or without adaptation
to the change height. We therefore introduce for ℓ∗ in (0, 1) and δ∗ in (−R,R) \ {0} the
two following sets:

[Alt
u.3] Su

δ∗,··,ℓ∗[R] =
{
λ : [0, 1] → (0, R], ∃λ0 ∈ (−δ∗ ∨ 0, (R− δ∗) ∧ R],
∃τ ∈ (0, 1− ℓ∗), ∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ,τ+ℓ∗](t)

}
, (51)

[Alt
u.4] Su

·,··,ℓ∗[R] =
{
λ : [0, 1] → (0, R], ∃λ0 ∈ (0, R], ∃δ ∈ (−λ0, R− λ0] \ {0} ,

∃τ ∈ (0, 1− ℓ∗), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,τ+ℓ∗](t)
}
. (52)
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Adapting the ideas of Section 2.2, we handle the question of adaptation to the change
location τ ∗ by introducing aggregated tests based on the same linear and quadratic statis-
tics as those used for testing (H0 ) versus (H1 ) ”λ ∈ Su

δ∗,τ∗,ℓ∗[R]” above. We thus set on
the one hand

φ
u(1)−
3,α (N) = 1minτ∈[0,1−ℓ∗∧(1/2)] N(τ,τ+ℓ∗∧(1/2)]<b−

N1,ℓ
∗∧(1/2)

(α) , (53)

φ
u(1)+
3,α (N) = 1maxτ∈[0,1−ℓ∗∧(1/2)] N(τ,τ+ℓ∗∧(1/2)]>b+

N1,ℓ
∗∧(1/2)

(1−α) , (54)

φ
u(1)
4,α (N) = φ

u(1)−
3,α/2 (N) ∨ φu(1)+

3,α/2 (N) , (55)

where b−n,ℓ(u) and b+n,ℓ(u) respectively denote the u-quantiles of the conditional distribu-
tions of minτ∈[0,1−ℓ]N(τ, τ + ℓ] and maxτ∈[0,1−ℓ]N(τ, τ + ℓ] given N1 = n under (H0 ), for
all n in N and ℓ in (0, 1/2]. Then, we introduce on the other hand the aggregated test

φ
u(2)
3/4,α(N) = 1{

maxk∈{0,...,⌈(1−ℓ∗)M⌉−1}

(

T ′
k
M

, k
M

+ℓ∗
(N)−t′

N1,
k
M

, k
M

+ℓ∗
( 1−uα )

)

>0

} , (56)

where M = ⌈2/(ℓ∗(1 − ℓ∗))⌉, uα = α/⌈(1− ℓ∗)M⌉, T ′
k/M,k/M+ℓ∗ is defined by (49) and

t′n,k/M,k/M+ℓ∗ (u) is the u-quantile of T ′
k/M,k/M+ℓ∗(N) given N1 = n under (H0 ).

Since the set Su
δ∗,··,ℓ∗[R] of (51) is composed of alternatives with known change height

δ∗ and length ℓ∗, the distance between any of its elements and Su
0 [R] is fixed, equal to

|δ∗|
√

ℓ∗(1− ℓ∗). Hence, for this set, we only provide sufficient conditions for the tests

φ
u(1)+
3,α , φ

u(1)−
3,α and φ

u(2)
3/4,α to have a second kind error rate controlled by a prescribed level

β when λ ∈ Su
δ∗,··,ℓ∗[R]. As in Proposition 5, the key points of the proofs of the following

results for φ
u(1)−
3,α and φ

u(1)+
3,α are sharp lower or upper bounds for the involved quantiles

b−n,ℓ∗∧(1/2)(α) and b+n,ℓ∗∧(1/2)(α), which are deduced from inequalities for oscillations of em-

pirical processes found in [95] (see Lemma 53 for details). The result for φ
u(2)
3/4,α relies on

the control of the quantile t′n,τ1,τ2(uα) obtained in Lemma 52 via the exponential inequality
for U -statistics of order 2 due to Reynaud-Bouret and Houdré [62], as in Proposition 26.

Proposition 27 (Second kind error rate control for [Alt
u.3]). Let L ≥ 1, α and β in

(0, 1), ℓ∗ in (0, 1) and δ∗ in (−R,R) \ {0}, and consider the problem of testing (H0 ) v.s.

(H1 ) ”λ ∈ Su
δ∗,··,ℓ∗ [R]”. Let φ

u(1/2)
3,α be one of the tests φ

u(1)+
3,α or φ

u(2)
3/4,α if δ∗ > 0, and one of

the tests φ
u(1)−
3,α or φ

u(2)
3/4,α if δ∗ < 0 (see (53), (54) and (56)). The test φ

u(1/2)
3,α is of level α,

that is supλ0∈Su
0 [R] Pλ0

(
φ
u(1/2)
3,α (N) = 1

)
≤ α. Moreover, there exists C(α, β, R, δ∗, ℓ∗) > 0

such that Pλ

(
φ
u(1/2)
3,α (N) = 0

)
≤ β as soon as λ belongs to Su

δ∗,··,ℓ∗ [R] with

d2 (λ,Su
0 [R] ) ≥ C(α, β, R, δ∗, ℓ∗)/

√
L .

Comments. Remarking that for λ in Su
δ∗,··,ℓ∗[λ0], d2 (λ,Su

0 [R] ) = |δ∗|
√

ℓ∗(1− ℓ∗), Propo-
sition 27 provides a sufficient value L0(α, β, R, δ

∗, ℓ∗) for L so that the second kind error
rates of the three tests is controlled by β. If L ≥ L0(α, β, R, δ

∗, ℓ∗), their β-uniform
separation rates over Su

δ∗,··,ℓ∗ [R] is equal to 0, as well as the (α, β)-minimax separation
rate.

Now considering the alternative set Su
·,··,ℓ∗ [R], that is the change height adaptation issue,

the following lower bound is directly deduced from the lower bound for mSRα,β

(
Su
·,τ∗,ℓ∗ [R]

)

and the monotonicity property of the minimax separation rate recalled in Lemma 41.
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Corollary 28 (Minimax lower bound for [Alt
u.4]). Let α and β in (0, 1), R > 0 and ℓ∗

in (0, 1). For all L ≥ (2 logCα,β/(Rℓ
∗)),

mSRα,β

(
Su
·,··,ℓ∗[R]

)
≥
√

R(1− ℓ∗) logCα,β/ (2L), with Cα,β = 1 + 4(1− α− β)2 .

Proposition 29 (Minimax upper bounds for [Alt
u.4]). Let L ≥ 1, α, β in (0, 1), R > 0

and ℓ∗ in (0, 1). Let φ
u(1/2)
4,α be one of the tests φ

u(1)
4,α and φ

u(2)
3/4,α of (H0 ) versus (H1 ) ”λ ∈

Su
·,··,ℓ∗ [R]”, defined by (55) and (56). φ

u(1/2)
4,α is of level α, that is supλ0∈Su

0 [R] Pλ0(φ
u(1/2)
4,α (N) =

1) ≤ α, and there exists C(α, β, R, ℓ∗) > 0 such that

SRβ

(
φ
u(1/2)
4,α ,Su

·,··,ℓ∗ [R]
)
≤ C(α, β, R, ℓ∗)/

√
L ,

which entails in particular mSRα,β

(
Su
·,··,ℓ∗[R]

)
≤ C(α, β, R, ℓ∗)/

√
L.

Comments. Proposition 29 and Corollary 28 mean that the tests φ
u(1)
4,α and φ

u(2)
3/4,α are

minimax. Together with the ones obtained for [Alt
u.2], the two above results finally

mean that, as when the baseline intensity is known, adaptation with respect to the change
location can be achieved with a minimax separation rate of the parametric order, that is
without any additional price to pay (possibly except multiplicative constants) as soon as
the only change length is known.

3.3 Minimax detection of a transitory change with known loca-

tion

We consider the problem of testing the null hypothesis (H0 ) ”λ ∈ Su
0 [R]” versus alter-

native hypotheses where the location of the change from the baseline intensity is known,
with adaptation to the change length, and with or without adaptation to the height. As
in Section 2.3, we see that adaptation to the length can be done without any incidence
on the minimax separation rate order, while adaptation to both height and length leads
to a cost factor of order

√
log logL.

3.3.1 Known change height

Let us first investigate the problem of testing (H0 ) versus (H1 ) ”λ ∈ Su
δ∗,τ∗,···[R]”, where

for R > 0, δ∗ in (−R,R) \ {0} and τ ∗ in (0, 1),

[Alt
u.5] Su

δ∗,τ∗,···[R] = {λ : [0, 1] → (0, R], ∃λ0 ∈ (−δ∗ ∨ 0, (R− δ∗) ∧R],
∃ℓ ∈ (0, 1− τ ∗), ∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ∗,τ∗+ℓ](t)} . (57)

As in Section 2.3, the most intricate point here is the construction of a test achieving the
minimax separation rate over Su

δ∗,τ∗,···[R], which will be proved to be of the parametric

order 1/
√
L, and therefore necessarily taking the knowledge of the change height δ∗ into

account. The test we propose is largely inspired from the aggregated test φ5,α defined
by (19), where the test statistic is slightly adapted to compensate for the lack of the
baseline intensity knowledge. Since the critical value can not be taken as a quantile of the
test statistic, whose distribution under the null hypothesis is not free from the unknown
baseline intensity anymore, we use the same conditioning trick as in the above subsections.
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Proposition 30 (Minimax lower bound for [Alt
u.5]). Let α, β in (0, 1) with α + β < 1,

R > 0, δ∗ in (−R,R)\{0}, τ ∗ in (0, 1). For L > ((R− δ∗) ∧R) logCα,β/ (2δ
∗2τ ∗(1− τ ∗)),

mSRα,β

(
Su
δ∗,τ∗,···[R]

)
≥
√

((R− δ∗) ∧R) logCα,β/ (2L), with Cα,β = 1+ 4(1− α− β)2 .

Let us now introduce the test

φu
5,α(N) = 1{

supℓ∈(0,1−τ∗) S
′
δ∗,τ∗,τ∗+ℓ

(N)>s
′+
N1,δ

∗,τ∗,L(1−α)
} , (58)

where S ′
δ∗,τ1,τ2(N) is the statistic defined for 0 ≤ τ1 < τ2 ≤ 1 by

S ′
δ∗,τ1,τ2(N) = sgn(δ∗)

(

N(τ1, τ2]− (τ2 − τ1)N1

)

− |δ∗|L(τ2 − τ1)(1− τ2 + τ1)/2 , (59)

and s
′+
n,δ∗,τ∗,L(u) is the u-quantile of supℓ∈(0,1−τ∗) S

′
δ∗,τ∗,τ∗+ℓ(N) given N1 = n under (H0).

The main argument of the following upper bound is a control of the conditional quantile
s
′+
n,δ∗,τ∗,L(1 − α), provided in Lemma 54, and which is deduced from a refined Bernstein

inequality based on some chaining techniques.

Proposition 31 (Minimax upper bound for [Alt
u.5]). Let L≥1, α, β in (0, 1), R>0, δ∗

in (−R,R)\{0} and τ ∗ in (0, 1). Let φu
5,α be the test of (H0 ) versus (H1 ) ”λ ∈ Su

δ∗,τ∗,···[R]”

defined by (58). φu
5,α is of level α, that is supλ0∈Su

0 [R] Pλ0

(
φu
5,α(N) = 1

)
≤ α. Moreover,

there exists a constant C(α, β, R, δ∗) > 0 such that

SRβ

(
φu
5,α,Su

δ∗,τ∗,···[R]
)
≤ C(α, β, R, δ∗)/

√
L ,

which entails in particular mSRα,β

(
Su
δ∗,τ∗,···[R]

)
≤ C(α, β, R, δ∗)/

√
L.

3.3.2 Unknown change height

Now addressing the question of adaptation to the change height and length together, we
consider for R > 0 and τ ∗ in (0, 1) the alternative set

[Alt
u.6] Su

·,τ∗,···[R] =
{
λ : [0, 1] → (0, R], ∃λ0 ∈ (0, R], ∃δ ∈ (−λ0, R− λ0] \ {0} ,
∃ℓ ∈ (0, 1− τ ∗), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ∗,τ∗+ℓ](t)

}
. (60)

For the problem of testing (H0 ) ”λ ∈ Su
0 [R]” versus (H1 ) ”λ ∈ Su

·,τ∗,···[R]”, we obtain
the following lower bound.

Proposition 32 (Minimax lower bound for [Alt
u.6]). Let α, β in (0, 1) with α+β < 1/2,

R > 0 and τ ∗ in (0, 1). There exists L0(α, β, R, τ
∗) > 0 such that for L ≥ L0(α, β, R, τ

∗),

mSRα,β

(
Su
·,τ∗,···[R]

)
≥
√

Rτ ∗ log logL/ (2L) .

Let us assume now that L ≥ 3. In order to prove that the above lower bound is of sharp
order (with respect to L), we construct two aggregated tests: a first one based on a linear
statistic and a second one based on a quadratic statistic as in Section 3.2.
We thus consider the discrete subset of (0, 1− τ ∗) of the dyadic form

{
ℓτ∗,k = (1− τ ∗ ) 2−k, k ∈ {1, . . . , ⌊log2 L⌋}

}
,
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and uα = α/⌊log2(L)⌋, which allows to define the two following tests:

φ
u(1)
6,α (N) = 1{

maxk∈{1,...,⌊log2 L⌋}

(∣

∣

∣

∣

S′
τ∗,τ∗+ℓτ∗,k

(N)

∣

∣

∣

∣

−s′
N1,τ

∗,τ∗+ℓτ∗,k
( 1−uα )

)

>0

} , (61)

where S ′
τ1,τ2(N) is the linear statistic defined for 0 ≤ τ1 < τ2 ≤ 1 by

S ′
τ1,τ2(N) = N(τ1, τ2]− (τ2 − τ1)N1 , (62)

and s′n,τ1,τ2(u) stands for the u-quantile of
∣
∣S ′

τ1,τ2(N)
∣
∣ given N1 = n under (H0 ), whose

sharp bound is obtained via Bennett’s inequality (see Lemma 55 for details), and

φ
u(2)
6,α (N) = 1{

maxk∈{1,...,⌊log2 L⌋}

(

T ′
τ∗,τ∗+ℓτ∗,k

(N)−t′
N1,τ

∗,τ∗+ℓτ∗,k
( 1−uα )

)

>0

} , (63)

where T ′
τ1,τ2

(N) is the quadratic statistic defined in (49) and t′n,τ1,τ2(u) still denotes the
u-quantile of its conditional distribution given N1 = n under (H0 ).

Proposition 33 (Minimax upper bound for [Alt
u.6]). Let α, β in (0, 1), R > 0, τ ∗

in (0, 1), and let φ
u(1/2)
6,α be one of the tests φ

u(1)
6,α and φ

u(2)
6,α of (H0 ) versus (H1 ) ”λ ∈

Su
·,τ∗,···[R]” respectively defined by (61) and (63). Then φ

u(1/2)
6,α is of level α, that is

supλ0∈Su
0 [R] Pλ0

(

φ
u(1/2)
6,α (N) = 1

)

≤ α. Moreover, there exists C(α, β, R, τ ∗) > 0 such

that
SRβ

(

φ
u(1/2)
6,α ,Su

·,τ∗,···[R]
)

≤ C(α, β, R, τ ∗)
√

log logL/L ,

which entails in particular mSRα,β

(
Su
·,τ∗,···[R]

)
≤ C(α, β, R, τ ∗)

√

log logL/L.

3.4 Minimax detection of a possibly transitory change with un-

known location and length

Let us discuss as final stage the problem of testing the null hypothesis (H0 ) ”λ ∈ Su
0 [R]”

versus alternatives where both location and length of the change from the unknown base-
line intensity are not known, distinguishing as in Section 2.4 the transitory change case
from the non transitory change particular case.
From the minimax point of view, we will emphasize that regardless if the baseline in-
tensity is known or not, adaptation to both location and length of the change has the
same minimax separation rate cost of order

√
logL in the transitory change case, and of

order
√
log logL at most (possibly cancelled by the change height knowledge) in the non

transitory change case.
Since the non transitory change or jump detection problem, that we here study first, can
be viewed as perfectly symmetrical to the transitory change with known location detection
problem, our study uses tools and arguments that are very similar to the ones used in
Section 3.3.

3.4.1 Non transitory change

In order to investigate the problem of detecting a non transitory change with unknown
location, but known height, we introduce for R > 0 and δ∗ in (−R,R)\{0} the alternative
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set

[Alt
u.7] Su

δ∗,··,1−··
[R] =

{
λ : [0, 1] → (0, R], ∃λ0 ∈ (−δ∗ ∨ 0, (R− δ∗) ∧R],

∃τ ∈ (0, 1), ∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ,1](t)
}
. (64)

Considering the problem of testing the null hypothesis (H0 ) ”λ ∈ Su
0 [R]” versus the

alternative hypothesis (H1 ) ”λ ∈ Su
δ∗,··,1−··

[R]”, we obtain the following lower bound.

Proposition 34 (Minimax lower bound for [Alt
u.7]). Let α, β in (0, 1) with α + β < 1,

R > 0 and δ∗ in (−R,R) \ {0}. For all L > 2((R− δ∗) ∧R) logCα,β/δ
∗2,

mSRα,β(Su
δ∗,··,1−··

[R]) ≥
√

((R− δ∗) ∧R) logCα,β/ (2L), with Cα,β = 1 + 4(1− α− β)2 .

Following the study and the notation of Section 3.3, we define the test

φu
7,α(N) = 1{

supτ∈(0,1) S
′
δ∗,τ,1(N)>s

′+
N1,δ

∗,L(1−α)
} , (65)

where S ′
δ∗,τ1,τ2(N) is the statistic defined for 0 ≤ τ1 < τ2 ≤ 1 by (59) and s

′+
n,δ∗,L(u) is

the u-quantile of the conditional distribution of supτ∈(0,1) S
′
δ∗,τ,1(N) given N1 = n under

(H0 ).
Notice that a control of this conditional quantile s

′+
n,δ∗,L(1 − α), provided in Lemma 56,

and deduced from the same chaining trick combined with Bernstein’s inequality as in the
proof of Lemma 54, is the main argument of the following result.

Proposition 35 (Minimax upper bound for [Alt
u.7]). Let L ≥ 1, α and β in (0, 1), R > 0

and δ∗ in (−R,R)\{0}. Let φu
7,α be the test of (H0 ) versus (H1 ) ”λ ∈ Su

δ∗,··,1−··
[R]” defined

by (65). Then φu
7,α is of level α, that is supλ0∈Su

0 [R] Pλ0(φ
u
7,α(N) = 1) ≤ α. Moreover, there

exists a constant C(α, β, R, δ∗) > 0 such that

SRβ

(
φu
7,α,Su

δ∗,··,1−··
[R]
)
≤ C(α, β, R, δ∗)/

√
L ,

which entails in particular mSRα,β

(
Su
δ∗,··,1−··

[R]
)
≤ C(α, β, R, δ∗)/

√
L.

To address the question of adaptation to the change height, we introduce the alternative
set

[Alt
u.8] Su

·,··,1−··
[R] =

{
λ : [0, 1] → (0, R], ∃λ0 ∈ (0, R], ∃δ ∈ (−λ0, R− λ0] \ {0},

∃τ ∈ (0, 1), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,1](t)
}
, (66)

and we consider the problem of testing (H0 ) ”λ ∈ Su
0 [R]” versus (H1 ) ”λ ∈ Su

·,··,1−··
[R]”.

As usual, we start with a lower bound for the corresponding minimax separation rate.

Proposition 36 (Minimax lower bound for [Alt
u.8]). Let α, β in (0, 1) with α+β < 1/2

and R > 0. There exists L0(α, β, R) > 0 such that for all L ≥ L0(α, β, R),

mSRα,β(Su
·,··,1−··

[R]) ≥
√

R log logL/ (4L) .
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Let us assume now that L ≥ 3. In order to prove that the above lower bound is of sharp
order (with respect to L), we consider the discrete subset of (0, 1) of the dyadic form

DL =
{
2−k, k ∈ {2, ..., ⌊log2(L)⌋}

}
∪
{
1− 2−k, k ∈ {1, ..., ⌊log2(L)⌋}

}
,

we set uα = α/(2⌊log2(L)⌋ − 1) and we define the two following tests:

φ
u(1)
8,α (N) = 1{maxτ∈DL(|S′

τ,1(N)|−s′N1,τ,1
( 1−uα ))>0} , (67)

where S ′
τ1,τ2

(N) is the linear statistic defined by (62) and s′n,τ1,τ2(u) stands for the u-
quantile of the conditional distribution of |S ′

τ1,τ2(N)| given N1 = n under (H0 ), and

φ
u(2)
8,α (N) = 1{maxτ∈DL(T

′
τ,1(N)−t′N1,τ,1

( 1−uα ))>0} , (68)

where T ′
τ1,τ2

(N) is the quadratic statistic defined by (49), and t′n,τ1,τ2(u) denotes the u-
quantile of its conditional distribution given N1 = n under (H0 ).

Proposition 37 (Minimax upper bound for [Alt
u.8]). Let α, β in (0, 1), R > 0, and let

φ
u(1/2)
8,α be one of the tests φ

u(1)
8,α and φ

u(2)
8,α of (H0 ) versus (H1 ) ”λ ∈ Su

·,··,1−··
[R]” defined

by (67) and (68). Then φ
u(1/2)
8,α is of level α, that is supλ0∈Su

0 [R] Pλ0

(

φ
u(1/2)
8,α (N) = 1

)

≤ α.

Moreover, there exists a constant C(α, β, R) > 0 such that

SRβ

(

φ
u(1/2)
8,α ,Su

·,··,1−··
[R]
)

≤ C(α, β, R)
√

log logL/L ,

which entails in particular mSRα,β

(
Su
·,··,1−··

[R]
)
≤ C(α, β, R)

√

log logL/L.

3.4.2 Transitory change

Let us investigate now the transitory change detection problem, focusing on adaptation to
unknown location and length. As in Section 2.4.2, we will prove that minimax adaptation
to these two parameters together has a cost of order as large as

√
logL, so that adaptation

to the height will have no additional cost. We therefore treat the two corresponding
alternative sets quasi-simultaneously. For R > 0, δ∗ in (−R,R)\{0}, let

[Alt
u.9] Su

δ∗,··,···[R] =
{
λ : [0, 1] → (0, R], ∃λ0 ∈ (−δ∗ ∨ 0, (R− δ∗) ∧ R],

∃τ ∈ (0, 1), ∃ℓ ∈ (0, 1− τ), ∀t ∈ [0, 1] λ(t) = λ0 + δ∗1(τ,τ+ℓ](t)
}
, (69)

[Alt
u.10] Su

·,··,···[R] = {λ : [0, 1] → (0, R], ∃λ0 ∈ (0, R], ∃δ ∈ (−λ0, R− λ0]\{0},
∃τ ∈ (0, 1), ∃ℓ ∈ (0, 1− τ), ∀t ∈ [0, 1] λ(t) = λ0 + δ1(τ,τ+ℓ](t)} . (70)

As usual, we begin by giving lower bounds for the minimax separation rates over these
two alternative sets, noticing that the case where the change height is known can be
straightforwardly extended (as a simple corollary then) to the general one, where all three
parameters, location, length and height of the change are unknown.

Proposition 38 (Minimax lower bound for [Alt
u.9]). Let α, β in (0, 1) with α + β <

1, R > 0, δ∗ in (−R,R) \ {0}. There exists L0(α, β, R, δ
∗) > 0 such that for L ≥

L0(α, β, R, δ
∗),

mSRα,β

(
Su
δ∗,··,···[R]

)
≥
√

((R− δ∗) ∧ R) logL/ (4L) .
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Since Su
·,··,···[R] includes Su

R/2,··,···[R], Proposition 38 directly leads to the following corol-
lary, whose proof is omitted for simplicity.

Corollary 39 (Minimax lower bound for [Alt
u.10]). Let α, β in (0, 1) with α + β < 1

and R > 0. There exists L0(α, β, R) > 0 such that for all L ≥ L0(α, β, R),

mSRα,β

(
Su
·,··,···[R]

)
≥
√

R logL/(8L) .

In order to prove that the above lower bounds are sharp, we then construct two mini-
max adaptive tests, based on an aggregation principle. In order to customise the tests
developed in Section 2.4.2 to the lack of knowledge of the baseline intensity, we consider
the linear statistic S ′

τ1,τ2(N) defined by (62) and the quadratic statistic T ′
τ1,τ2(N) defined

by (49), combined with the conditional trick already used in the above studies through
the u-quantiles s′n,τ1,τ2(u) and t′n,τ1,τ2(u) of the conditional distributions of |S ′

τ1,τ2
(N)| and

T ′
τ1,τ2(N) given N1 = n under (H0 ) respectively. Introducing ML = ⌈L/ logL⌉,

K(1)
L = {(k, k′), k ∈ {0, . . . , ⌈L⌉ − 1}, k′ ∈ {1, . . . , ⌈L⌉ − k}} ,

K(2)
L = {(k, k′), k ∈ {0, . . . ,ML − 1}, k′ ∈ {1, . . . ,ML − k}} \ {(0,ML)} ,

and the corrected levels u
(1)
α = 2α/(⌈L⌉(⌈L⌉ + 1)) and u

(2)
α = 2α/(ML(ML + 1) − 2), we

can thus propose the two following tests:

φ
u(1)
9/10,α(N) = 1







max
(k,k′)∈K(1)

L

(∣
∣S′

k
⌈L⌉ , k+k′

⌈L⌉
(N)

∣
∣−s′

N1,
k

⌈L⌉ , k+k′
⌈L⌉

(

1−u
(1)
α

)

)

>0







, (71)

φ
u(2)
9/10,α(N) = 1







max
(k,k′)∈K(2)

L



T ′
k

ML
, k+k′
ML

(N)−t′
N1,

k
ML

, k+k′
ML

(

1−u
(2)
α

)



>0







. (72)

Proposition 40 (Minimax upper bound for [Alt
u.9] and [Alt

u.10]). Let α, β in (0, 1),

R > 0 and δ∗ in (−R,R) \ {0}. Let φ
u(1/2)
9/10,α be one of the tests φ

u(1)
9/10,α and φ

u(2)
9/10,α defined

by (71) and (72). Then φ
u(1/2)
9/10,α is of level α for the problems of testing (H0 ) versus

(H1 ) ”λ ∈ Su
δ∗,··,···[R] or (H1 ) ”λ ∈ Su

·,··,···[R]”, that is supλ0∈Su
0 [R] Pλ0

(

φ
u(1/2)
9/10,α(N) = 1

)

≤
α. Moreover, there exist C(α, β, R, δ∗) > 0 and C(α, β, R) > 0 such that

SRβ

(

φ
u(1/2)
9/10,α,Su

δ∗,··,···[R]
)

≤ C(α, β, R, δ∗)
√

logL/L ,

SRβ

(

φ
u(1/2)
9/10,α,Su

·,··,···[R]
)

≤ C(α, β, R)
√

logL/L .

These upper bounds entail both mSRα,β

(
Su
δ∗,··,···[R]

)
≤ C(α, β, R, δ∗)

√

logL/L and mSRα,β

(
Su
·,··,···[R]

)
≤

C(α, β, R)
√

logL/L.

3.5 Adjustment of individual levels for aggregated tests

As in Section 2.5, we discuss here the possibility of adjusting the individual levels of the
single tests involved in our aggregated tests to make them more powerful. Most of the
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tests introduced in the present section are based on aggregation principles coupled with
conditional tricks. Among them, we can again distinguish aggregated tests of the form

φu
agg1,α(N) = 1{supθ∈Θ Sθ(N)>s+N1

(1−α)} , (73)

where s+n (1 − α) is the (1 − α)-conditional quantile of supθ∈Θ Sθ(N) given N1 = n under

(H0) (concerning φ
u(1)−
3,α , φ

u(1)+
3,α , φu

5,α and φu
7,α), from aggregated tests of the form

φu
agg2,α(N) = 1{supθ∈Θ(Sθ(N)−sN1,θ

(1−uα))>0} , (74)

sN1,θ(1 − u) being the (1 − u)-conditional quantile of Sθ(N) under (H0) and uα = α/|Θ|
(as φ

u(1)
4,α , φ

u(2)
3/4,α, φ

u(1)
6,α , φ

u(2)
6,α , φ

u(1)
8,α , φ

u(2)
8,α , φ

u(1)
9/10,α, φ

u(2)
9/10,α). Notice that for any λ0 in Su

0 [R],

when N ∼ Pλ0 , the distribution of Sθ(N) given N1 = n is free from λ0.

We here want to point out that similarly to (39), a better choice than uα can be made
for the levels of the single tests involved in the aggregated tests of the form φagg2,α(N),
namely

u′n,α = sup

{

u ∈ (0, 1), sup
λ0∈Su

0 [R]

Pλ0

(

sup
θ∈Θ

(Sθ(N)− sn,θ(1− u)) > 0
∣
∣
∣N1 = n

)

≤ α

}

.

(75)
Since for all n in N \ {0} uα ≤ u′n,α, by definition, sn,θ(1− u′n,α) ≤ sn,θ(1− uα), therefore
all the above tests of type φu

agg2,α but with uα replaced by u′N1,α
, that we can denote by

φ′u
agg2,α, satisfy the same minimax properties as φu

agg2,α. Our simulation study presented in
Section 4 focuses on the practical performances of these adjusted aggregated tests φ′u

agg2,α.

3.6 Summary and discussion

As in Section 2.6, we present a summary of the results stated above. Recall (c.f. (49),
(59) and (62)) that for 0 ≤ τ1 < τ2 ≤ 1,

T ′
τ1,τ2

(N) =
1

L2

[ τ2 − τ1
1− τ2 + τ1

(
(N(0, τ1] +N(τ2, 1])

2 − (N(0, τ1] +N(τ2, 1])
)

+
1− τ2 + τ1
τ2 − τ1

(
N(τ1, τ2]

2 −N(τ1, τ2]
)
− 2N(τ1, τ2] (N(0, τ1] +N(τ2, 1])

]

,

S ′
δ∗,τ1,τ2(N) = sgn(δ∗)

(

N(τ1, τ2]− (τ2 − τ1)N1

)

− |δ∗|L(τ2 − τ1)(1− τ2 + τ1)/2,

S ′
τ1,τ2(N) = N(τ1, τ2] − (τ2 − τ1)N1, and that t′n,τ1,τ2(u) and s′n,τ1,τ2(u) stand for the u-

quantiles of T ′
τ1,τ2

(N) and |S ′
τ1,τ2

(N)| given N1 = n under (H0 ) respectively.
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Transitory change or bump detection

Alternative set mSRα,β Test statistics
Su
δ∗,τ∗,ℓ∗[R] - N(τ ∗, τ ∗ + ℓ∗]

Su
·,τ∗,ℓ∗[R] L−1/2 N(τ ∗, τ ∗ + ℓ∗]

T ′
τ∗,τ∗+ℓ∗(N)

Su
δ∗,··,ℓ∗ [R] - maxτ∈[0,1−ℓ∗∧(1/2)]N(τ, τ + ℓ∗ ∧ (1/2)],

minτ∈[0,1−ℓ∗∧(1/2)]N(τ, τ + ℓ∗ ∧ (1/2)]

maxk∈{0,...,⌈(1−ℓ∗)M⌉−1}

(

T ′
k
M

, k
M

+ℓ∗
(N)− t′

N1,
k
M

, k
M

+ℓ∗
(1− uα )

)

M = ⌈2/(ℓ∗(1− ℓ∗))⌉
Su
·,··,ℓ∗ [R] L−1/2 maxτ∈[0,1−ℓ∗∧(1/2)]N(τ, τ + ℓ∗ ∧ (1/2)],

minτ∈[0,1−ℓ∗∧(1/2)]N(τ, τ + ℓ∗ ∧ (1/2)]

maxk∈{0,...,⌈(1−ℓ∗)M⌉−1}

(

T ′
k
M

, k
M

+ℓ∗
(N)− t′

N1,
k
M

, k
M

+ℓ∗
(1− uα )

)

Su
δ∗,τ∗,···[R] L−1/2 supℓ∈(0,1−τ∗) S

′
δ∗,τ∗,τ∗+ℓ(N)

Su
·,τ∗,···[R]

√
log logL

L
maxk∈{1,...,⌊log2 L⌋}

(∣
∣S ′

τ∗,τ∗+ 1−τ∗
2k

(N)
∣
∣− s′

N1,τ∗,τ∗+ 1−τ∗
2k

(1− uα )
)

maxk∈{1,...,⌊log2 L⌋}

(

T ′
τ∗,τ∗+ 1−τ∗

2k

(N)− t′
N1,τ∗,τ∗+ 1−τ∗

2k

(1− uα )

)

Su
δ∗,··,···[R]

√
logL
L

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(∣
∣S k

⌈L⌉ ,
k+k′
⌈L⌉

(N)
∣
∣− s

λ0,
k

⌈L⌉ ,
k+k′
⌈L⌉

(1− uα )
)

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(

T k
⌈L⌉ ,

k+k′
⌈L⌉

(N)− t
λ0,

k
⌈L⌉ ,

k+k′
⌈L⌉

(1− uα )
)

Su
·,··,···[R]

√
logL
L

maxk∈{0,...,⌈L⌉−1},k′∈{1,...,⌈L⌉−k}

(∣
∣S ′

k
⌈L⌉ ,

k+k′
⌈L⌉

(N)
∣
∣− s′

N1,
k

⌈L⌉ ,
k+k′
⌈L⌉

(

1− u
(1)
α

))

maxk∈{0,...,ML−1},k′∈{1,...,ML−k}
(k,k′)6=(0,ML)

(

T ′
k

ML
, k+k′
ML

(N)− t′
N1,

k
ML

, k+k′
ML

(

1− u
(2)
α

))

ML = ⌈L/ logL⌉
Non transitory change or jump detection

Alternative set mSRα,β Test statistics
Su
δ∗,τ∗,1−τ∗ [R] - N(τ ∗, 1]

Su
·,τ∗,1−τ∗ [R] L−1/2 N(τ ∗, 1]

T ′
τ∗,1(N)

Su
δ∗,··,1−··

[R] L−1/2 supτ∈(0,1) S
′
δ∗,τ,1(N)

Su
·,··,1−··

[R]
√

log logL
L

maxτ∈DL

(∣
∣S ′

τ,1(N)
∣
∣− s′N1,τ,1

(1− uα )
)

maxτ∈DL

(
T ′
τ,1(N)− t′N1,τ,1

(1− uα )
)

DL =
{
2−k, k ∈ {2, . . . , ⌊log2(L)⌋}

}
∪
{
1− 2−k, k ∈ {1, . . . , ⌊log2(L)⌋}

}

As compared with the above overview in Section 2.6, this one enables to see that the
minimax separation rates do not suffer from the lack of knowledge of the baseline distri-
bution: they indeed remain of the same order as in the problem of detecting a change from
a given intensity, with the same phase transitions. Of course, these results are obtained
at the price of a more important complexity of the test statistics, whether they are of
linear or quadratic nature. This, combined with the need to use conditional quantiles
instead of direct quantiles as critical values, brought in more technical arguments in the
proofs. It can be furthermore noticed that up to our knowledge, except in the work of
Verzelen et al. [105] for the jump detection problem, this specific case of an unknown
baseline distribution is in general not treated in the basic Gaussian model, where the only
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presence of a signal (that is a bump or jump from zero-mean) is tested.

4 Simulation study

We study in this section the performance of our minimax adaptive tests from an ex-
perimental point of view, by giving estimations of their size and their power for various
distributions of the observed Poisson process, characterised by a jump or a bump in its
intensity. Motivated by some applications in epidemiology and in cybersecurity, we check
the feasibility of our new change-points detection procedures in practice and compare
them with existing procedures.
We focus here on the most general problems investigated in this article of detecting a
change (a jump or a bump) in the intensity λ when the change location and height are
unknown. The baseline intensity of λ, denoted by λ0, is taken equal to 1 on [0, 1] in all
the sequel. Recall that this baseline intensity can be considered as a known parameter of
the testing problem as in Section 2 or as an unknown parameter as in Section 3.
For several piecewise constant intensities λ with respect to the measure dΛ(t) = Ldt,
where we have chosen L = 100, we take a level of test α = 0, 05.
We compare the estimated powers of our procedures with more classical conditional tests
previously studied in practice by other authors. For instance Cohen and Sackrowitz [23],
and Bain, Engelhardt and Wright [7] considered six well-known tests in the context of
detecting increasing intensities of a Poisson process. They showed that two of these six
tests, namely the so-called Laplace and Z tests (respectively studied first by Cox [24] and
Crow [25]) are more efficient from a practical point of view. The Laplace test, denoted
by (La) is based on the statistic

T (La)
α (N) =

N1∑

i=1

Xi − q
(La)
N1

(1− α) ,

where (X1, . . . , XN1) are the points of the Poisson process N , and for all n in N, q
(La)
n (1−α)

is the (1−α)-quantile of the sum of n independent random variables uniformly distributed
on [0, 1]. The Z test, denoted by (Z), is based on the statistic

T (Z)
α (N) = 2

N1∑

i=1

log(Xi) + q
(Z)
N1

(α) ,

where for every n in N, q
(Z)
n (α) is the α-quantile of the chi-square distribution with 2n

degrees of freedom. Note that these tests were especially designed to test homogeneity
versus an increasing trend, with rejection of homogeneity when they take positive values.
Therefore, we have had to adapt them to fit our context. More precisely, we decided
to reject the null hypotheses (H0 ) ”λ ∈ S0[λ0] = {λ0}” or (H0 ) ”λ ∈ Su

0 [R]” when

T (La)
α/2 (N) > 0 or T (La)

1−α/2(N) < 0 for the Laplace test (La), and when T (Z)
α/2 (N) > 0 or

T (Z)
1−α/2(N) < 0 for the Z test (Z). Notice that a generalised version of the Laplace and the

Z tests have been studied by Peña [85] and Zenia, Agustin and Peña [1]. A simulation
study has been performed for these generalised procedures, but we have found that they
have very similar estimated powers to the more classical Laplace and Z tests for the
considered alternatives. The results are therefore omitted in this section.
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4.1 Detection of an abrupt change from a known baseline inten-

sity

We first consider the case where λ0 is a known parameter, referring to the theoretical
results of Section 2. The minimax adaptive tests we introduced to detect a change with
unknown parameters from such a known intensity are based on two kinds of statistics.
The first statistic, of linear nature, is defined by Sτ1,τ2(N) = N(τ1, τ2]−λ0(τ2−τ1)L, while
the second statistic, of quadratic nature, is defined by

Tτ1,τ2(N) =
1

L2(τ2 − τ1)

(
N (τ1, τ2]

2 −N (τ1, τ2]
)
− 2λ0

L
N (τ1, τ2] + λ20(τ2 − τ1) .

4.1.1 Detection of a non transitory change or jump

Let us recall that our tests are based on an aggregation principle which involves a scanning
of the above linear and quadratic statistics over a discrete subset of possible values for
the change location on (0, 1). The subset introduced in Section 2.4.1 is of the dyadic form

Θd =
{
1− 2−k, k ∈ {1, . . . , 6}

}
.

Considering the alternative [Alt.8], the test statistic of our first procedure denoted by
(CP1(Θd)) is thus

T (1)
λ0,α

(N) = max
τ∈Θd

(∣
∣Sτ,1(N)

∣
∣− sλ0,τ,1

(
1− u(1)α

) )

,

where sλ0,τ1,τ2(1 − u) is the (1 − u)-quantile of |Sτ1,τ2(N)| under (H0 ) and u
(1)
α is defined

as in (39) by

u(1)α = sup

{

u ∈ (0, 1), Pλ0

(

max
τ∈Θd

(∣
∣Sτ,1(N)

∣
∣− sλ0,τ,1 (1− u)

)

> 0

)

≤ α

}

, (76)

while the test statistic of our second procedure denoted by (CP2(Θd)) is

T (2)
λ0,α

(N) = max
τ∈Θd

(
Tτ,1(N)− tλ0,τ,1

(
1− u(2)α

))
,

where tλ0,τ1,τ2(1− u) is the (1− u)-quantile of Tτ1,τ2(N) under (H0 ) and

u(2)α = sup

{

u ∈ (0, 1), Pλ0

(

max
τ∈Θd

(Tτ,1(N)− tλ0,τ,1 (1− u)) > 0

)

≤ α

}

. (77)

The null hypothesis (H0 ) ”λ ∈ S0[λ0] = {λ0}” is rejected when T (1)
λ0,α

(N) > 0 for

(CP1(Θd)), or when T (2)
λ0,α

(N) > 0 for (CP2(Θd)).

Noticing that the test we use for the bump detection problem (see the following subsection)
and the jump detection procedure studied in [105] are based on regular grids of possible
values of change location instead of the dyadic subset Θd, we also consider the same tests
but replacing Θd by a regular grid, with a cardinality close to the cardinality of Θd, namely

Θr =

{
k

10
, k ∈ {1, . . . , 9}

}

.
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The corresponding tests are then respectively denoted by (CP1(Θr)) and (CP2(Θr)).

For all τ in Θd or Θr, we have estimated the quantities u
(1)
α , sλ0,τ,1(1 − u

(1)
α ), u

(2)
α and

tλ0,τ,1(1 − u
(2)
α ) by classical Monte Carlo methods based on the simulation of 200 000

independent samples of |Sτ,1(N)| or Tτ,1(N) under (H0 ) . The approximations of u
(1)
α and

u
(2)
α were obtained by dichotomy, such that the estimated probabilities occurring in (76)

and (77) are less than α, but as close to α as possible.

4.1.2 Detection of a transitory change or bump

Let us consider the discrete set :

Θ =

{(
k

100
,
k + k′

100

)

, k ∈ {0, . . . , 99}, k′ ∈ {1, . . . , 100− k}
}

.

Considering the alternative [Alt.10], the test statistic of our first procedure denoted by
(TC1) is

T (3)
λ0,α

(N) = max
(τ,τ ′)∈Θ

(
|Sτ,τ ′(N)| − sλ0,τ,τ ′

(
1− u(3)α

))
,

where u
(3)
α is defined, again as in (39), by

u(3)α = sup

{

u ∈ (0, 1), Pλ0

(

max
(τ,τ ′)∈Θ

(|Sτ,τ ′(N)| − sλ0,τ,τ ′ (1− u)) > 0

)

≤ α

}

, (78)

while the test statistic of our second procedure denoted by (TC2) is

T (4)
λ0,α

(N) = max
(τ,τ ′)∈Θ

(
Tτ,τ ′(N)− tλ0,τ,τ ′

(
1− u(4)α

))
,

where u
(4)
α is defined by

u(4)α = sup

{

u ∈ (0, 1), Pλ0

(

max
(τ,τ ′)∈Θ

(
Tτ,τ ′(N)− tλ0,τ,τ ′

(
1− u(4)α

))
> 0

)

≤ α

}

. (79)

The null hypothesis (H0 ) ”λ ∈ S0[λ0] = {λ0}” is rejected when T (3)
λ0,α

(N) > 0 for (TC1),

or when T (4)
λ0,α

(N) > 0 for (TC2).

As above, for all (τ, τ ′) in Θ, the quantities u
(3)
α , sλ0,τ,τ ′(1 − u

(3)
α ), u

(4)
α and tλ0,τ,τ ′(1 −

u
(4)
α ) have been estimated by Monte Carlo methods based on the simulation of 200 000

independent samples of |Sτ,τ ′(N)| or Tτ,τ ′(N) under (H0 ) . The approximations of u
(3)
α

and u
(4)
α have been obtained by dichotomy.

4.1.3 Simulation results

We compare the tests (La) and (Z) with (CP1(Θd)), (CP2(Θd)), (CP1(Θr)) and (CP2(Θr))
when addressing the jump detection problem (described in 4.1.1), and with (TC1) and
(TC2) when addressing the bump detection problem (described in 4.1.2).
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Table 1: Estimated sizes

La Z

0.051 0.049
CP1(Θd) CP2(Θd)
0.049 0.049

CP1(Θr) CP2(Θr)
0.048 0.047
TC1 TC2

0.050 0.049

Estimated sizes We first study the size of each test via simulation of 5 000 independent
homogeneous Poisson processes of intensity λ0 = 1 w.r.t. Λ on [0, 1]. The probabilities
of first kind error of all the considered tests were simply estimated by the number of
rejections divided by 5 000. The results are given in Table 1.
Notice that the estimated sizes of our tests always remain below the target 0.05, as ex-
pected from the definitions of u

(1)
α , u

(2)
α , u

(3)
α and u

(4)
α . It is in particular interesting to

see that the Monte Carlo estimation, which is calibrated according to a balance preci-
sion/running time, does not affect here the first kind error rate control property.

Estimated powers For both testing problems, we study the estimated power of each
test under various alternatives.

Let us start with the jump detection problem. We consider alternative intensities λτ,δ
defined for all t in [0, 1] by

λτ,δ(t) = 1 + δ1(τ,1](t) , (80)

where δ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}, and τ = 0.2 (Table 2), τ = 0.5
(Table 3), τ = 0.8 (Table 4), τ = 0.9 (Table 5) or τ = 0.95 (Table 6). For each alternative,
1 000 independent inhomogeneous Poisson processes with intensity λτ,δ w.r.t. Λ on [0, 1]
have been simulated. The power of the considered tests has then been simply estimated
by the number of rejections divided by 1 000, leading to the results gathered in Tables
2-6.

Table 2: Estimated probability of detecting a jump with τ = 0.2

δ -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.95 0.61 0.27 0.08 0.07 0.15 0.28 0.42
Z 0.96 0.69 0.31 0.08 0.09 0.18 0.38 0.56

CP1(Θd) 1 1 0.69 0.14 0.23 0.65 0.94 0.99
CP2(Θd) 1 1 0.75 0.18 0.20 0.60 0.92 0.99
CP1(Θr) 1 1 0.95 0.31 0.37 0.87 0.99 1
CP2(Θr) 1 1 0.96 0.34 0.35 0.86 0.99 1
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Table 3: Estimated probability of detecting a jump with τ = 0.5

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 1 0.87 0.50 0.15 0.13 0.35 0.61 0.84
Z 0.92 0.62 0.31 0.09 0.11 0.26 0.46 0.72

CP1(Θd) 1 1 0.68 0.14 0.22 0.67 0.94 1
CP2(Θd) 1 1 0.73 0.18 0.18 0.64 0.92 0.99
CP1(Θr) 1 1 0.76 0.22 0.28 0.71 0.96 1
CP2(Θr) 1 1 0.77 0.23 0.25 0.68 0.94 1

Table 4: Estimated probability of detecting a jump with τ = 0.8

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.70 0.43 0.19 0.08 0.08 0.18 0.36 0.53
Z 0.28 0.20 0.09 0.06 0.07 0.11 0.20 0.30

CP1(Θd) 0.92 0.55 0.20 0.07 0.15 0.33 0.59 0.78
CP2(Θd) 0.96 0.63 0.25 0.08 0.14 0.30 0.54 0.74
CP1(Θr) 0.99 0.67 0.27 0.09 0.16 0.37 0.63 0.82
CP2(Θr) 1 0.76 0.33 0.11 0.14 0.36 0.61 0.81

Let us now turn to the bump detection problem. We have considered alternative intensities
λτ,ℓ,δ defined for all t in [0, 1] by

λτ,ℓ,δ(t) = 1 + δ1(τ,τ+ℓ](t) , (81)

where δ ∈ {−0.8,−0.6,−0.4,−0.2, 0.2, 0.4, 0.6, 0.8}, with τ = 0.2 and ℓ ∈ {0.1, 0.4, 0.7},
and then with τ = 0.5 and ℓ = 0.4.
For each alternative, we have simulated 1 000 independent inhomogeneous Poisson pro-
cesses with intensity λτ,ℓ,δ w.r.t. Λ on [0, 1]. The powers have been estimated for each test
by the number of rejections divided by 1 000, and the results are provided in Tables 7-10.

Comments

1. It first arises that our procedures have estimated powers significantly larger than
the Laplace and the Z tests for both testing problems corresponding to alternatives
[Alt.8] and [Alt.10] in most cases. The lower performances of the Laplace and the
Z tests may be due to the fact that their construction does not take the knowledge
of λ0 into account. Moreover, among our testing procedures, it is to note that both
procedures based on the quadratic statistics (CP2) and (TC2) are more worthwhile
to use than the ones based on the linear statistics (CP1) and (TC1). Indeed, in
the case of negative change heights, the procedures (CP2) and (TC2) are distinctly
mostly more powerful than (CP1) and (TC1), whereas the powers are very close when
positive change heights occur.

2. The comparison of the estimated powers of the different testing procedures confirm
the intuition that detecting a bump is harder than detecting a jump. Moreover,
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Table 5: Estimated probability of detecting a jump with τ = 0.9

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.22 0.16 0.08 0.05 0.08 0.11 0.17 0.24
Z 0.10 0.07 0.05 0.04 0.07 0.09 0.10 0.14

CP1(Θd) 0.49 0.22 0.08 0.04 0.10 0.19 0.36 0.55
CP2(Θd) 0.63 0.30 0.11 0.05 0.09 0.18 0.35 0.54
CP1(Θr) 0.50 0.19 0.09 0.06 0.11 0.17 0.34 0.52
CP2(Θr) 0.74 0.30 0.13 0.07 0.10 0.16 0.33 0.51

Table 6: Estimated probability of detecting a jump with τ = 0.95

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.10 0.07 0.06 0.04 0.05 0.07 0.08 0.10
Z 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.06

CP1(Θd) 0.17 0.06 0.04 0.04 0.08 0.12 0.20 0.31
CP2(Θd) 0.19 0.08 0.05 0.04 0.08 0.11 0.19 0.30
CP1(Θr) 0.08 0.06 0.04 0.04 0.07 0.08 0.12 0.21
CP2(Θr) 0.12 0.08 0.05 0.05 0.07 0.07 0.11 0.20

the performances of each test are very different according to the sign of the change
height. In both jump and bump detection problems, it is easier to detect a change
with large negative height than a change with large positive height except for the
cases where ℓ = 0.1 in the bump detection problem (the estimated powers are close
to the size of the tests for small negative change height whatever the values of change
location and length). Note that this capability of our tests to better detect a jump
or a bump with negative height than with positive height can be explained by the
fact that the significant parameter to evaluate the detectability of a (transitory or
not) change is not the change height itself but the ratio between the minimum and
the maximum values of the intensity. In other words, this means that it is easier
to detect an intensity increasing from 1 to 2 than an intensity increasing from 100
to 101 whereas in both cases, the jump height is equal to one. In the same way,
it is hence easier to detect an intensity decreasing from 1 to 0.8 than an intensity
increasing from 1 to 1.2.

3. By comparing the estimated powers of our jump detection procedures based on the
dyadic and regular sets Θd and Θr, one can take note that using the dyadic set is
as expected more relevant when the jump is close to the observation interval ending
point, that is the most difficult to detect.

4. Finally, for the bump detection problem, we have to notice that complementary
experiments showed that the estimated powers of (TC1) and (TC2) are equivalent for
a same value of change length whatever the values of the change location. For the
procedures (La) and (Z), we noticed that this is also true for ℓ = 0.1, but not for
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Table 7: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.1

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.11 0.07 0.06 0.06 0.05 0.06 0.07 0.10
Z 0.08 0.07 0.06 0.06 0.06 0.05 0.04 0.05

TC1 0.06 0.04 0.04 0.04 0.06 0.11 0.18 0.30
TC2 0.10 0.05 0.04 0.04 0.07 0.11 0.18 0.30

Table 8: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.4

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.30 0.17 0.11 0.06 0.06 0.07 0.10 0.13
Z 0.10 0.09 0.07 0.06 0.05 0.04 0.04 0.03

TC1 1 0.71 0.21 0.04 0.15 0.46 0.73 0.94
TC2 1 0.83 0.30 0.06 0.15 0.46 0.74 0.94

ℓ = 0.4 since we observe a larger power for τ = 0.5 than for τ = 0.2.

4.2 Detection of an abrupt change from an unknown baseline

intensity

We now consider the case where λ0 is an unknown parameter, referring to theoretical re-
sults in Section 3. The minimax adaptive tests we introduced to detect a change with un-
known parameters from such an unknown intensity are still based on two kinds of statistics.
The first statistic, of linear nature, is defined by S ′

τ1,τ2(N) = N(τ1, τ2]−N(0, 1](τ2 − τ1),
while the second statistic, of quadratic nature, is defined by

T ′
τ1,τ2(N) =

1

L2

[
τ2 − τ1

1− τ2 + τ1

(
(N(0, τ1] +N(τ2, 1])

2 − (N(0, τ1] +N(τ2, 1])
)

+
1− τ2 + τ1
τ2 − τ1

(
N(τ1, τ2]

2 −N(τ1, τ2]
)
− 2N(τ1, τ2] (N(0, τ1] +N(τ2, 1])

]

.

4.2.1 Detection of a non transitory change or jump

As above, the aggregation approach we used to construct our new tests to detect a jump
from an unknown baseline intensity consists in scanning these linear and quadratic statis-
tics over a discrete subset of possible values for the change location on (0, 1). The subset
introduced in Section 3.4.1 is of the dyadic form

Θu
d =

{
2−k, k ∈ {2, . . . , 6}

}
∪
{
1− 2−k, k ∈ {1, . . . , 6}

}
.

Considering the alternative [Alt
u.8], the test statistic of our first procedure denoted by

(CP1u(Θu
d)) is thus

T (1)
·,α (N) = max

τ∈Θu
d

(∣
∣S ′

τ,1(N)
∣
∣− s′N1,τ,1

(

1− u
(1)
N1,α

))

,
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Table 9: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.7

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.33 0.19 0.11 0.08 0.06 0.07 0.07 0.10
Z 0.70 0.39 0.19 0.10 0.07 0.13 0.20 0.32

TC1 1 0.99 0.54 0.07 0.24 0.70 0.94 1
TC2 1 1 0.63 0.09 0.24 0.71 0.94 1

Table 10: Estimated probability of detecting a bump with τ = 0.5 and ℓ = 0.4

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.74 0.48 0.24 0.09 0.07 0.15 0.31 0.47
Z 0.63 0.37 0.19 0.07 0.07 0.14 0.31 0.44

TC1 1 0.71 0.16 0.04 0.14 0.41 0.75 0.93
TC2 1 0.85 0.28 0.06 0.14 0.43 0.77 0.94

where s′n,τ1,τ2(u) is the u-quantile of the conditional distribution of |S ′
n,τ1,τ2

(N)| given

N1 = n under (H0 ) and u
(1)
n,α is defined for all n in N as in (75) by

u(1)n,α = sup

{

u ∈ (0, 1), sup
λ0∈Su

0 [R]

Pλ0

(

max
τ∈Θu

d

(
|S ′

τ,1(N)| − s′n,τ,1(1− u)
)
> 0

∣
∣
∣N1 = n

)

≤ α

}

.

(82)
The test statistic of our second procedure denoted by (CP2u(Θu

d)) is

T (2)
·,α (N) = max

τ∈Θu
d

(

T ′
τ,1(N)− t′N1,τ,1

(

1− u
(2)
N1,α

))

,

where t′n,τ1,τ2(u) is the u-quantile of the conditional distribution of T ′
τ1,τ2(N) given N1 = n

under (H0 ) and u
(2)
n,α is defined for all n in N by

u(2)n,α = sup

{

u ∈ (0, 1), sup
λ0∈Su

0 [R]

Pλ0

(

max
τ∈Θu

d

(
T ′
τ,1(N)− t′N1,τ,1

(1− u)
)
> 0

∣
∣
∣N1 = n

)

≤ α

}

.

(83)

Then, the null hypothesis (H0 ) ”λ ∈ Su
0 [R]” is rejected when T (1)

·,α (N) > 0 for (CP1u(Θu
d)),

and when T (2)
·,α (N) > 0 for (CP2u(Θu

d)).

As in the known baseline case, we have also considered the same tests, but replacing the
dyadic set Θu

d by the regular set

Θu
r =

{
k

10
, k ∈ {1, . . . , 9}

}

.

The corresponding testing procedures are then denoted by (CP1u(Θu
r )) and (CP2u(Θu

r ))

The quantities u
(1)
n,α, u

(2)
n,α, s′n,τ,1(1 − u

(1)
n,α) and t′n,τ,1(1 − u

(2)
n,α) have been estimated by

Monte Carlo methods based on the simulation of 200 000 samples of n i.i.d. random
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variables with uniform distribution on [0, 1]. These samples were used to estimate the
distribution of |S ′

τ,1(N)| and T ′
τ,1(N) given N1 = n, and therefore to approximate the

conditional probabilities occurring in (82) and (83). The approximations of u
(1)
n,α and u

(2)
n,α

were obtained by dichotomy.

4.2.2 Detection of a transitory change or bump

Let us consider the discrete sets

Θ1 =

{(
k

100
,
k + k′

100

)

, k ∈ {0, . . . , 99}, k′ ∈ {1, . . . , 100− k}
}

,

and

Θ2 =

{(
k

22
,
k + k′

22

)

, k ∈ {0, . . . , 21}, k′ ∈ {1, . . . , 22− k}, (k, k′) 6= (0, 22)}
}

.

Considering the alternative [Alt
u.10], the test statistic of our first procedure denoted by

(TC1u) is

T (3)
·,α (N) = max

(τ,τ ′)∈Θ1

(∣
∣S ′

τ,τ ′(N)
∣
∣− s′N1,τ,τ ′

(

1− u
(3)
N1,α

))

,

where u
(3)
n,α is defined for all n in N by

u(3)n,α = sup

{

u ∈ (0, 1), sup
λ0∈Su

0 [R]

Pλ0

(

max
(τ,τ ′)∈Θ1

(∣
∣S ′

τ,τ ′(N)
∣
∣− s′N1,τ,τ ′ (1− u)

)
> 0

∣
∣
∣N1 = n

)

≤ α

}

,

(84)

while the test statistic of our second procedure denoted by (TC2u) is

T (4)
·,α (N) = max

(τ,τ ′)∈Θ2

(

T ′
τ,τ ′(N)− t′N1,τ,τ ′

(

1− u
(4)
N1,α

))

,

where u
(4)
n,α is defined for all n ∈ N by

u(4)n,α = sup

{

u ∈ (0, 1), sup
λ0∈Su

0 [R]

Pλ0

(

max
(τ,τ ′)∈Θ2

(
T ′
τ,τ ′(N)− t′N1,τ,τ ′ (1− u)

)
> 0

∣
∣
∣N1 = n

)

≤ α

}

.

(85)

The null hypothesis (H0 ) ”λ ∈ Su
0 [R]” is rejected when T (3)

·,α (N) > 0 for (TC1u), and

when T (4)
·,α (N) > 0 for (TC2u). The quantities u

(3)
n,α, s′n,τ,τ ′(1 − u

(3)
n,α), u

(4)
n,α and t′n,τ,τ ′(1 −

u
(4)
n,α) have been estimated by Monte Carlo methods based on the simulation of 200 000

independent samples of
∣
∣S ′

τ,τ ′(N)
∣
∣ and of T ′

τ,τ ′(N) given N1 = n under (H0 ), obtained
from the simulation of 200 000 samples of n i.i.d. random variables uniformly distributed
on [0, 1]. These samples have been used to estimate the distribution of

∣
∣S ′

τ,τ ′(N)
∣
∣ and

T ′
τ,τ ′(N) given N1 = n, and to approximate the conditional probabilities occurring in (84)

and (85) . The approximations of u
(3)
n,α and u

(4)
n,α have been obtained by dichotomy.
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4.2.3 Simulation results

We compare the tests (La) and (Z) with (CP1u(Θu
d)), (CP2u(Θu

d)), (CP1u(Θu
r )), and (CP2u(Θu

r ))
when addressing the jump detection problem (described in 4.2.1), and with (TC1u) and
(TC2u) when addressing the bump detection problem (described in 4.2.2).

Estimated sizes We first study the size of each test by simulating 5 000 independent
homogeneous Poisson processes of intensity λ0 = 1 w.r.t. Λ on [0, 1]. The probabilities of
first kind error of all the considered tests have been estimated by the number of rejections
divided by 5 000. The results are given in Table 1.

Table 11: Estimated sizes

La Z

0.052 0.049
(CP1u(Θu

d)) (CP2u(Θu
d))

0.045 0.045
(CP1u(Θu

r )) (CP2u(Θu
r ))

0.049 0.047

Notice again that the estimated sizes of our tests always remain below the target 0.05,
as expected from the definitions of u

(1)
n,α, u

(2)
n,α, u

(3)
n,α and u

(4)
n,α: the Monte Carlo estimation

procedure does not affect this first kind error rate control property.

Estimated powers For both testing problems, we study the estimated power of each
test under various alternatives.

For the jump detection problem, we consider the same alternative intensities λτ,δ as in
the known baseline intensity case, defined for all t in [0, 1] by (80), but with τ varying in
{0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95}.
For each alternative, we have simulated 1 000 independent inhomogeneous Poisson pro-
cesses with intensity λτ,δ w.r.t. Λ on [0, 1], and the powers have been estimated for each
test by the number of rejections divided by 1 000. The results are gathered in Tables
12-18.

Table 12: Estimated probability of detecting a jump with τ = 0.05

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.32 0.11 0.07 0.05 0.06 0.06 0.06 0.08
Z 0.58 0.26 0.13 0.07 0.06 0.07 0.10 0.14

CP1
u(Θu

d) 0.59 0.30 0.13 0.08 0.04 0.04 0.05 0.05
CP2

u(Θu
d) 0.59 0.30 0.13 0.08 0.05 0.04 0.05 0.07

CP1
u(Θu

r ) 0.39 0.17 0.08 0.06 0.04 0.04 0.05 0.07
CP2

u(Θu
r ) 0.39 0.17 0.08 0.06 0.04 0.04 0.05 0.08
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Table 13: Estimated probability of detecting a jump with τ = 0.1

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.64 0.28 0.14 0.06 0.06 0.09 0.09 0.15
Z 0.81 0.47 0.21 0.09 0.06 0.12 0.17 0.31

CP1
u(Θu

d) 0.85 0.47 0.19 0.07 0.04 0.06 0.10 0.16
CP2

u(Θu
d) 0.85 0.47 0.18 0.07 0.04 0.07 0.11 0.20

CP1
u(Θu

r ) 0.87 0.48 0.19 0.07 0.06 0.08 0.13 0.24
CP2

u(Θu
r ) 0.87 0.47 0.18 0.07 0.06 0.08 0.15 0.27

Table 14: Estimated probability of detecting a jump with τ = 0.2

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.95 0.64 0.30 0.10 0.08 0.16 0.27 0.42
Z 0.95 0.67 0.32 0.11 0.09 0.22 0.39 0.58

CP1
u(Θu

d) 0.96 0.64 0.31 0.09 0.05 0.11 0.18 0.38
CP2

u(Θu
d) 0.96 0.63 0.29 0.09 0.06 0.12 0.22 0.41

CP1
u(Θu

r ) 0.98 0.72 0.35 0.10 0.08 0.18 0.31 0.53
CP2

u(Θu
r ) 0.98 0.70 0.33 0.10 0.08 0.19 0.33 0.55

Table 15: Estimated probability of detecting a jump with τ = 0.5

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 1 0.90 0.48 0.15 0.14 0.37 0.62 0.83
Z 0.92 0.63 0.31 0.10 0.11 0.29 0.48 0.69

CP1
u(Θu

d) 1 0.86 0.36 0.10 0.09 0.29 0.55 0.77
CP2

u(Θu
d) 1 0.86 0.36 0.10 0.08 0.30 0.55 0.78

CP1
u(Θu

r ) 1 0.89 0.43 0.13 0.10 0.34 0.62 0.82
CP2

u(Θu
r ) 1 0.90 0.43 0.13 0.10 0.33 0.62 0.82

Table 16: Estimated probability of detecting a jump with τ = 0.8

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.73 0.42 0.21 0.08 0.09 0.20 0.33 0.54
Z 0.31 0.17 0.10 0.06 0.06 0.13 0.17 0.31

CP1
u(Θu

d) 0.78 0.36 0.14 0.07 0.08 0.21 0.34 0.57
CP2

u(Θu
d) 0.82 0.41 0.15 0.08 0.08 0.20 0.33 0.56

CP1
u(Θu

r ) 0.93 0.53 0.20 0.08 0.09 0.27 0.45 0.68
CP2

u(Θu
r ) 0.95 0.57 0.23 0.08 0.09 0.24 0.43 0.65
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Table 17: Estimated probability of detecting a jump with τ = 0.9

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.25 0.15 0.10 0.06 0.07 0.11 0.16 0.22
Z 0.10 0.09 0.06 0.05 0.06 0.08 0.09 0.11

CP1
u(Θu

d) 0.31 0.14 0.09 0.05 0.07 0.14 0.24 0.40
CP2

u(Θu
d) 0.41 0.19 0.10 0.05 0.07 0.14 0.23 0.37

CP1
u(Θu

r ) 0.47 0.20 0.10 0.05 0.07 0.15 0.26 0.42
CP2

u(Θu
r ) 0.60 0.26 0.11 0.05 0.06 0.14 0.25 0.40

Table 18: Estimated probability of detecting a jump with τ = 0.95

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.09 0.06 0.06 0.05 0.05 0.07 0.10 0.10
Z 0.07 0.05 0.05 0.04 0.05 0.05 0.07 0.07

CP1
u(Θu

d) 0.07 0.05 0.04 0.05 0.06 0.09 0.15 0.25
CP2

u(Θu
d) 0.12 0.08 0.05 0.05 0.06 0.08 0.14 0.23

CP1
u(Θu

r ) 0.08 0.05 0.06 0.06 0.05 0.05 0.11 0.14
CP2

u(Θu
r ) 0.10 0.07 0.06 0.06 0.05 0.05 0.10 0.12

Concerning the bump detection problem, we have considered the same alternative intensi-
ties λτ,ℓ,δ as in the known baseline intensity case. For each alternative, we have simulated
1 000 independent inhomogeneous Poisson processes with intensity λτ,ℓ,δ w.r.t. Λ on [0, 1].
The powers have been estimated for each test by the number of rejections divided by 1
000, giving the results presented in Tables 19-23.

Table 19: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.1

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.10 0.08 0.08 0.06 0.05 0.07 0.07 0.11
Z 0.08 0.07 0.06 0.06 0.05 0.05 0.04 0.04

TC1
u 0.17 0.12 0.08 0.07 0.07 0.10 0.16 0.24

TC2
u 0.20 0.12 0.09 0.05 0.05 0.08 0.14 0.20

Comments

1. Considering the single change-point or jump detection problem, it first arises that
among the (La) and (Z) procedures, neither is preferable to use: the Laplace and Z
tests can have very low powers depending on when the change occurs. One can notice
that their performances are significantly smaller than the ones of our procedures
(CP1u) and (CP2u) when the jump occurs near to one, while the estimated powers
remain comparable in the other cases. Moreover, it is worthwhile to note again
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Table 20: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.2

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.25 0.16 0.09 0.05 0.05 0.08 0.12 0.18
Z 0.12 0.08 0.08 0.05 0.05 0.05 0.05 0.05

TC1
u 0.68 0.29 0.13 0.09 0.07 0.14 0.29 0.47

TC2
u 0.74 0.34 0.15 0.07 0.07 0.15 0.29 0.46

Table 21: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.4

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.27 0.19 0.12 0.07 0.04 0.08 0.09 0.15
Z 0.09 0.08 0.06 0.05 0.04 0.04 0.03 0.03

TC1
u 0.99 0.69 0.28 0.11 0.10 0.22 0.46 0.67

TC2
u 0.99 0.71 0.28 0.10 0.09 0.20 0.45 0.67

that the jump detection problem in a Poisson process is not a symmetric problem.
Indeed, it is easier to detect large negative jumps occurring close to zero than close
to one, and easier to detect large positive jumps occurring close to one than close
to zero.

2. Considering the transitory change or bump detection problem, our procedures have
estimated powers significantly larger in all cases than the Laplace and Z tests.
Moreover, we have to mention that complementary experiments (omitted in this
study) showed that the estimated powers of (TC1u) and (TC2u) are equivalent for
a same value of change length whatever the change location. This assessment is
not true for the procedures (La) and (Z) except for ℓ = 0.1, for which one observes
better powers for ℓ = 0.4 and τ = 0.5 than for ℓ = 0.4 and τ = 0.2.

3. Among our testing procedures, the procedures (CP2u) and (TC2u), based on the
quadratic statistics, are slightly more powerful than (CP1u) and (TC1u) based on
the linear statistics for some negative jumps, and as expected, the aggregated tests
based on dyadic sets are significantly more efficient that the ones based on regular
sets when the change occurs near 0 or 1.

4. The comparison of the simulated powers of the different testing procedures confirm
again the intuition that detecting a bump is harder than detecting a jump. The
simulation study also highlights that it is substantially easier to detect a jump
or a bump with negative change height than with positive change height. This
phenomenon can still be explained by the fact that the significant parameter to
evaluate the detectability of a (transitory or not) change is not the change height
itself but the ratio between the minimum and the maximum values of the intensity.
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Table 22: Estimated probability of detecting a bump with τ = 0.2 and ℓ = 0.7

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.34 0.19 0.13 0.08 0.05 0.06 0.06 0.08
Z 0.66 0.39 0.20 0.08 0.08 0.11 0.19 0.29

TC1
u 0.98 0.75 0.32 0.11 0.09 0.15 0.26 0.48

TC2
u 0.98 0.71 0.30 0.10 0.08 0.17 0.31 0.51

Table 23: Estimated probability of detecting a bump with τ = 0.5 and ℓ = 0.4

δ = -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

La 0.78 0.47 0.22 0.09 0.08 0.17 0.31 0.51
Z 0.63 0.36 0.17 0.08 0.07 0.17 0.31 0.49

TC1
u 0.98 0.71 0.27 0.11 0.09 0.22 0.44 0.68

TC2
u 0.99 0.74 0.29 0.10 0.08 0.23 0.45 0.69

5 Proofs of the main results

Notation

As explained in the introduction, the main tools to prove our nonasymptotic minimax
separation rates upper bounds are exponential inequalities. Many of these exponential
inequalities involve the function g defined by:

g(x) = (1 + x) log(1 + x)− x ∀x > 0 , (86)

and its inverse function g−1, which can be upper bounded as follows:

g−1(x) ≤ 2x/3 +
√
2x ∀x > 0 . (87)

5.1 Proof of Proposition 2

The first statement of Proposition 2 directly results from the Neyman-Pearson fundamen-
tal lemma and Girsanov’s lemma recalled in Lemma 1.
Assume that δ∗ > 0 and notice that the assumption (7) leads to

δ∗ℓ∗L ≥
√

(λ0 + δ∗)ℓ∗L

β
+

√

λ0ℓ∗L

α
. (88)

From (88), the quantile bound (286) and the Bienayme-Chebyshev inequality, we obtain

Pλ(φ
+
1,α(N) = 0) ≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] ≤
√

λ0ℓ∗L

α
+ λ0ℓ

∗L

)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] ≤ (λ∗0 + δ∗)ℓ∗L−
√

(λ0 + δ∗)ℓ∗L

β

)

≤ β .
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Assume now that −λ∗0 < δ∗ < 0 and notice that the assumption (7) leads to

δ∗ℓ∗L ≤ −
√

(λ0 + δ∗)ℓ∗L

β
−
√

λ0ℓ∗L

α
. (89)

As above, using (89), (286) and the Bienayme-Chebyshev inequality, we obtain

Pλ(φ
−
1,α(N) = 0) ≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] ≥ −
√

λ0ℓ∗L

α
+ λ0ℓ

∗L

)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] ≥ (λ0 + δ∗)ℓ∗L+

√

(λ0 + δ∗)ℓ∗L

β

)

≤ β .

5.2 Proof of Proposition 3

Let Cα,β = 1 + 4(1− α− β)2. Let us introduce for r > 0 the Poisson intensity λr defined
by

λr(t) = λ0 +
r√
ℓ∗
1(τ∗,τ∗+ℓ∗](t) for all t in [0,1] .

Notice that λr belongs to (S
·,τ∗,ℓ∗ [λ0] )r = {λ ∈ S

·,τ∗,ℓ∗[λ0], d2(λ,S0[λ0]) ≥ r}, as defined
by Lemma 41. We get from Lemma 1 and Lemma 43 that

Eλ0

[(
dPλr

dPλ0

)2

(N)

]

= exp

(
r2L

λ0

)

.

Choosing r = (λ0 logCα,β/L)
1/2 then leads to Eλ0

[
(dPλr/dPλ0)

2 (N)
]
= Cα,β, and thanks

to Lemma 42, we conclude that ρα
(
(S

·,τ∗,ℓ∗ [λ0] )r
)
≥ β and mSRα,β (S·,τ∗,ℓ∗[λ0] ) ≥ r.

5.3 Proof of Proposition 4

The first statement of the proposition is straightforward.
For the test φ

(1)
2,α, let us consider first λ = λ0 + δ1(τ∗,τ∗+ℓ∗] in S

·,τ∗,ℓ∗ [λ0] with δ > 0. From
the quantile bound (286), one deduces that

Pλ(φ
(1)
2,α = 0) ≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] ≤
√

λ0ℓ∗L

α1
+ λ0ℓ

∗L

)

,

= Pλ

(

N(τ ∗, τ ∗ + ℓ∗]− (λ0 + δ ) ℓ∗L ≤ −δℓ∗L+

√

λ0ℓ∗L

α1

)

.

It remains to find a condition on d2 (λ,S0[λ0] ) which will guarantee that

− δℓ∗L+

√

λ0ℓ∗L

α1
≤ −

√

(λ0 + δ)ℓ∗L

β
, (90)

so that Pλ(φ
(1)
2,α = 0) ≤ β thanks to the Bienayme-Chebyshev inequality.
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Let us assume for instance that

d2 (λ,S0[λ0] ) ≥ 2

√

λ0
L

(
1√
β
+

1√
α1

)

+
1

β
√
ℓ∗L

.

Since d2 (λ,S0[λ0] ) = δ
√
ℓ∗, this implies

δ
√
ℓ∗ ≥ 2

√

λ0
L

(
1√
β
+

1√
α1

)

+
1

β
√
ℓ∗L

,

whereby

δ
√
ℓ∗ −

(

δ
√
ℓ∗

2
+

1

2β
√
ℓ∗L

)

≥
√

λ0
L

(
1√
β
+

1√
α1

)

.

Using the basic inequality
√
ab ≤ (a+ b)/2 then leads to

δ
√
ℓ∗ −

√

δ

βL
≥
√

λ0
L

(
1√
β
+

1√
α1

)

,

and (90) conveniently follows.
Let us consider now λ = λ0 + δ1(τ∗,τ∗+ℓ∗] in S

·,τ∗,ℓ∗[λ0] with δ in (−λ0, 0). From the
quantile bound (286) again, one deduces that

Pλ(φ
(1)
2,α = 0) ≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] ≥ −
√

λ0ℓ∗L

α2
+ λ0ℓ

∗L

)

= Pλ

(

N(τ ∗, τ ∗ + ℓ∗]− (λ0 + δ ) ℓ∗L ≥ −δℓ∗L−
√

λ0ℓ∗L

α2

)

.

As above, it remains to find a condition on d2 (λ,S0[λ0] ) which will guarantee that

− δℓ∗L−
√

λ0ℓ∗L

α2
≥
√

(λ0 + δ)ℓ∗L

β
, (91)

so that Pλ(φ
(1)
2,α = 0) ≤ β. Since d2 (λ,S0[λ0] ) = −δ

√
ℓ∗ and δ < 0, the following condition

suffices

d2 (λ,S0[λ0] ) ≥
√

λ0
L

(
1√
β
+

1√
α2

)

.

Taking C(α, β, λ0, ℓ
∗) = max

(

2
√
λ0

(
1√
β
+ 1√

α1

)

+ 1
β
√
ℓ∗
,
√
λ0

(
1√
β
+ 1√

α2

))

finally al-

lows to conclude for the test φ
(1)
2,α.

As for the test φ
(2)
2,α, let us consider λ = λ0 + δ1(τ∗,τ∗+ℓ∗] in S

·,τ∗,ℓ∗[λ0]. Since Tτ∗,τ∗+ℓ∗(N)

is centered under (H0 ), tλ0,τ∗,τ∗+ℓ∗(1− α) ≤
√

Varλ0(Tτ∗,τ∗+ℓ∗(N))/α. From the variance
computation of Lemma 45 under (H0 ), we derive the upper bound tλ0,τ∗,τ∗+ℓ∗(1 − α) ≤
(λ0/L)

√

2/α.
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Moreover, still using Lemma 45 but under (H1 ) now, one can see that Eλ[Tτ∗,τ∗+ℓ∗(N)] =
δ2ℓ∗ (recall that Tτ∗,τ∗+ℓ∗(N) is an unbiased estimator of d22(λ,S0[λ0] = δ2ℓ∗), and

Varλ(Tτ∗,τ∗+ℓ∗(N)) =
4(λ0 + δ)δ2ℓ∗

L
+

2(λ0 + δ)2

L2
.

Therefore,

Pλ(φ
(2)
2,α = 0) = Pλ (Tτ∗,τ∗+ℓ∗(N) ≤ tλ0,τ∗,τ∗+ℓ∗(1− α)) ,

≤ Pλ

(

Tτ∗,τ∗+ℓ∗(N) ≤ λ0
L

√

2

α

)

,

≤ Pλ

(

Tτ∗,τ∗+ℓ∗(N)− δ2ℓ∗ ≤ λ0
L

√

2

α
− δ2ℓ∗

)

.

Assume now that

d2 (λ,S0[λ0] ) ≥
C(α, β, λ0, ℓ

∗)√
L

,

with

C(α, β, λ0, ℓ
∗) = max

(√

3λ0

(√
2
α
+
√

2
β

)

, 6
√
λ0√
β

+ 3
√
2√

βℓ∗L
, 36

β
√
ℓ∗L

)

.

This implies

δ2ℓ∗ ≥ 3max

(

λ0
L

(√

2

α
+

√
2

β

)

, |δ|
√
ℓ∗

(

2√
L

√

λ0
β

+
1

L

√
2

βℓ∗

)

,
2|δ|3/2

√
ℓ∗√

βL

)

,

and then

δ2ℓ∗ ≥ λ0
L

√

2

α
+ 2

√

λ0
βL

|δ|
√
ℓ∗ +

√
2

β

(
λ0
L

+
1

L
√
ℓ∗
|δ|

√
ℓ∗
)

+
2|δ|3/2

√
ℓ∗√

βL
,

hence, using
√
λ0 + δ ≤

√
λ0 +

√

|δ|,

δ2ℓ∗ ≥ λ0
L

√

2

α
+ 2

√

λ0 + δ

Lβ
|δ|

√
ℓ∗ +

√
2

β

λ0 + δ

L
. (92)

Therefore,

Pλ(φ
(2)
2,α = 0) ≤ Pλ

(

Tτ∗,τ∗+ℓ∗(N)− δ2ℓ∗ ≤ λ0
L

√

2

α
− δ2ℓ∗

)

≤ Pλ

(

Tτ∗,τ∗+ℓ∗(N)− δ2ℓ∗ ≤ − 1√
β

√

4(λ0 + δ)δ2ℓ∗

L
+

2(λ0 + δ)2

L2

)

≤ Pλ

(

Tτ∗,τ∗+ℓ∗(N)− Eλ [Tτ∗,τ∗+ℓ∗(N) ] ≤ −
√

Varλ (Tτ∗,τ∗+ℓ∗(N))

β

)

≤ β .

This concludes the proof for the test φ
(2)
2,α.
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5.4 Proof of Proposition 5

Let us first give a short proof for the tests φ
(1)+
3,α and φ

(1)−
3,α .

Start by remarking that the first kind error rates control of both tests is straightforward.
Since g−1(x) ≤ 2x/3 +

√
2x for all x > 0 (see (87)), Proposition 47 leads to

p+λ0,ℓ∗(1− α) ≤ λ0ℓ
∗L+ 2

√

2λ0 log (2/α)L+ 4 log (2/α) /3 , (93)

and
p−λ0,ℓ∗(α) ≥ λ0ℓ

∗L− 2
√

2λ0 log (2/α)L− 4 log (2/α) /3 . (94)

Let us consider λ = λ0 + δ∗1(τ,τ+ℓ∗] in Sδ∗,··,ℓ∗ and assume that

d2 (λ,S0[λ0] ) ≥
1√
L

(

2

√

2λ0 log (2/α)

ℓ∗
+

√

λ0 + δ∗

β

)

+
4 log (2/α)

3L
√
ℓ∗

. (95)

If δ∗ > 0, the condition (95) yields

δ∗ℓ∗L ≥ 2
√

2λ0 log (2/α)L+
4

3
log (2/α) +

√

(λ0 + δ∗)ℓ∗L

β
, (96)

which entails

Pλ

(

max
t∈[0,1−ℓ∗]

N(t, t + ℓ∗] ≤ p+λ0,ℓ∗(1− α)

)

≤ Pλ

(

max
t∈[0,1−ℓ∗]

N(t, t + ℓ∗] ≤ (λ0 + δ∗)ℓ∗L−
√

(λ0 + δ∗)ℓ∗L

β

)

≤ Pλ

(

N(τ, τ + ℓ∗]− (λ0 + δ∗)Lℓ∗ ≤ −
√

(λ0 + δ∗)ℓ∗L

β

)

≤ β with the Bienayme-Chebyshev inequality .

This concludes the proof for φ
(1)+
3,α .

If δ∗ belongs to (−λ0, 0), the condition (95) yields

− δ∗ℓ∗L ≥ 2
√

2λ0 log (2/α)L+
4

3
log (2/α) +

√

(λ0 + δ∗)ℓ∗L

β
. (97)

We get then as above, with (94), (97) and the Bienayme-Chebyshev inequality,

Pλ

(

min
t∈[0,1−ℓ∗]

N(t, t+ ℓ∗] ≥ p−λ0,ℓ∗(α)

)

≤ Pλ

(

min
t∈[0,1−ℓ∗]

N(t, t + ℓ∗] ≥ λ0ℓ
∗L− 2

√

2λ0 log (2/α)L− 4

3
log (2/α)

)

≤ Pλ

(

min
t∈[0,1−ℓ∗]

N(t, t+ ℓ∗] ≥ (λ0 + δ∗)ℓ∗L+

√

(λ0 + δ∗)ℓ∗L

β

)

≤ Pλ

(

N(τ, τ + ℓ∗]− (λ0 + δ∗)ℓ∗L ≥
√

(λ0 + δ∗)ℓ∗L

β

)

≤ β .
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This concludes the proof for φ
(1)−
3,α .

Now, let us turn to the test φ
(2)
3/4,α. As above, start by remarking that the first kind error

rate control of this test straightforwardly follows from a basic union bound:

Pλ0

(

φ
(2)
3/4,α(N) = 1

)

≤
⌈(1−ℓ∗)M⌉−1
∑

k=0

Pλ0

(

T k
M

, k
M

+ℓ∗(N) > t k
M

, k
M

+ℓ∗ (1− uα)
)

≤
⌈(1−ℓ∗)M⌉−1
∑

k=0

α

⌈(1 − ℓ∗)M⌉
≤ α .

Let λ in Sδ∗,··,ℓ∗ such that λ = λ0 + δ∗1(τ,τ+ℓ∗] with τ in [0, 1 − ℓ∗], and assume that the
following holds:

d2 (λ,S0[λ0] ) ≥
2√
L
max

(

8

√

λ0 + |δ∗|
β

,

(

4
√
2(λ0 + |δ∗|)√

β
+ 8λ0

(
2

3

log (3/uα )√
λ0ℓ∗L

+
√

2 log (3/uα )

)2
) 1

2
)

. (98)

This entails

d22(λ,S0[λ0]) ≥
8λ0
L

(
2

3

log (3/uα )√
λ0ℓ∗L

+
√

2 log (3/uα )

)2

+
4
√
2(λ0 + |δ∗|)√

βL
+ (99)

8d2(λ,S0[λ0])√
L

√

λ0 + |δ∗|
β

.

Noticing that

Pλ

(

φ
(2)
3/4,α(N) = 0

)

≤ min
k∈{0,...,⌈(1−ℓ∗)M⌉−1}

Pλ

(

T k
M

, k
M

+ℓ∗(N) ≤ t k
M

, k
M

+ℓ∗(1− uα)
)

,

we only need to exhibit some kτ in {0, ..., ⌈(1− ℓ∗)M⌉ − 1} satisfying

Pλ

(

T kτ
M

, kτ
M

+ℓ∗(N) ≤ tkτ
M

, kτ
M

+ℓ∗(1− uα)
)

≤ β .

We set kτ = ⌊τM⌋. Since 0 < τ < 1− ℓ∗, kτ actually belongs to {0, ..., ⌈(1− ℓ∗)M⌉ − 1},
and since M = ⌈2/ℓ∗⌉, kτ/M ≤ τ < kτ/M + ℓ∗/2. Therefore, using Lemma 45 equation
(287), we get on the one hand

Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

= δ∗2
(ℓ∗ + kτ/M − τ)2

ℓ∗
≥ δ∗2ℓ∗

4
,

that is

Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

≥ d22(λ,S0[λ0])

4
, (100)
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and on the other hand with Lemma 45 equation (288),

Varλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

=
4δ∗2 (λ0ℓ

∗ + δ∗(kτ/M + ℓ∗ − τ))

L

(kτ/M + ℓ∗ − τ)2

ℓ∗2

+
2

L2

(λ0ℓ
∗ + δ∗(kτ/M + ℓ∗ − τ))2

ℓ∗2

≤ 4(λ0 + |δ∗|)
L

d22(λ,S0[λ0]) +
2(λ0 + |δ∗|)2

L2
. (101)

Moreover, Lemma 46 entails

tkτ
M

, kτ
M

+ℓ∗(1− uα) ≤ 2λ20ℓ
∗
(

g−1

(
log (3/uα )

λ0ℓ∗L

))2

,

with g−1(x) ≤ 2x/3 +
√
2x (see (87)), which implies, with (99), (100) and (101) that

tkτ
M

, kτ
M

+ℓ∗(1− uα) ≤ Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

−
√

Varλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

/β .

We simply conclude the proof for φ
(2)
3/4,α with

Pλ

(

T kτ
M

, kτ
M

+ℓ∗(N) ≤ tkτ
M

, kτ
M

+ℓ∗(1− uα)
)

≤ Pλ

(

T kτ
M

, kτ
M

+ℓ∗(N)− Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

≤ −
√

Varλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

/β

)

≤ β .

5.5 Proof of Proposition 7

The control of the first kind error rates of the two tests φ
(1)
4,α and φ

(2)
3/4,α is straightforward

using simple union bounds.

(i) Control of the second kind error rate of φ
(1)
4,α.

Recall from the proof of Proposition 5, equations (93) and (94), that

{

p+λ0,ℓ∗(1− α/2) ≤ λ0ℓ
∗L+ 2

√

2λ0 log (4/α)L+ 4 log (4/α) /3 ,

p−λ0,ℓ∗(α/2) ≥ λ0ℓ
∗L− 2

√

2λ0 log (4/α)L− 4 log (4/α) /3 .
(102)

Let us first set λ in S
·,··,ℓ∗ such that λ = λ0 + δ1(τ,τ+ℓ∗] with δ > 0 or δ in (−λ0, 0), τ in

(0, 1− ℓ∗), and

d2(λ,S0[λ0]) ≥ 2
√
λ0√
L

(

1√
β
+ 2

√

2 log(4/α)

ℓ∗

)

+
1√
ℓ∗L

(
1

β
+

8

3
log(4/α)

)

. (103)

The condition (103) entails

|δ|
√
ℓ∗ ≥ |δ|

√
ℓ∗

2
+

√
λ0√
L

(

1√
β
+ 2

√

2 log(4/α)

ℓ∗

)

+
1√
ℓ∗L

(
1

2β
+

4

3
log(4/α)

)

,
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and therefore, using the inequalities
√
ab ≤ (a + b)/2 and

√
a+ b ≤ √

a +
√
b for every

a, b ≥ 0,

|δ|
√
ℓ∗ ≥

√

|δ|
βL

+

√
λ0√
L

(

1√
β
+ 2

√

2 log(4/α)

ℓ∗

)

+
4

3

log(4/α)√
ℓ∗L

≥
√

|δ|+ λ0
βL

+ 2

√

2 log(4/α)λ0
ℓ∗L

+
4

3

log(4/α)√
ℓ∗L

. (104)

Then, assuming that δ > 0, we conclude with the following inequalities:

Pλ

(

φ
(1)
4,α(N) = 0

)

≤ Pλ

(

φ
(1)+
3,α/2(N) = 0

)

≤ Pλ

(

max
t∈[0,1−ℓ∗]

N(t, t + ℓ∗] ≤ p+λ0,ℓ∗(1− α/2)

)

≤ Pλ

(

N(τ, τ + ℓ∗] ≤ λ0ℓ
∗L+ 2

√

2λ0 log (4/α)L+ 4 log (4/α) /3
)

with (102)

≤ Pλ

(

N(τ, τ + ℓ∗]− (λ∗0 + δ)ℓ∗L ≤ −
√

(λ0 + δ)ℓ∗L

β

)

with (104)

≤ β with the Bienayme-Chebyshev inequality .

Assuming now that δ is in (−λ0, 0),

Pλ

(

φ
(1)
4,α(N) = 0

)

≤ Pλ

(

φ
(1)−
3,α/2(N) = 0

)

≤ Pλ

(

min
t∈[0,1−ℓ∗]

N(t, t + ℓ∗] ≥ p−λ0,ℓ∗(α/2)

)

≤ Pλ

(

N(τ, τ + ℓ∗] ≥ λ0ℓ
∗L− 2

√

2λ0 log (4/α)L− 4 log (4/α) /3
)

with (102)

≤ Pλ

(

N(τ, τ + ℓ∗]− (λ0 + δ)ℓ∗L ≥
√

(λ0 + |δ|)ℓ∗L
β

)

with (104)

≤ β .

(ii) Control of the second kind error rate of φ
(2)
3/4,α.

Let us now set λ in S
·,··,ℓ∗ such that λ = λ0 + δ1(τ,τ+ℓ∗] with δ > 0 or δ in (−λ0, 0), τ in

(0, 1− ℓ∗), and

d2(λ,S0[λ0]) ≥ 2max

(

12

√
λ0√
βL

+
6
√
2√

βℓ∗L
,

288

β
√
ℓ∗L

,

√

3λ0(4 log (3/uα ) +
√

2/β)
√
L

+
2
√
2 log (3/uα )√

3ℓ∗L
+

2
√
2(2λ0)

1/4 log3/4 (3/uα )

ℓ∗1/4L3/4

)

. (105)
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Notice that (105) entails that

d22(λ,S0[λ0]) ≥ 3max

(

d2(λ,S0[λ0])

(

8
√
λ0√
βL

+
4
√
2√

βℓ∗L

)

, d
3/2
2 (λ,S0[λ0])

8

ℓ∗1/4
√
βL

,

16λ0 log (3/uα )

L
+

32 log2 (3/uα )

9ℓ∗L2
+

32
√
2λ0 log

3/2 (3/uα )

3
√
ℓ∗L3/2

+
4λ0

√
2√

βL

)

,

and therefore

d22(λ,S0[λ0]) ≥ d2(λ,S0[λ0])

(

8
√
λ0√
βL

+
4
√
2√

βℓ∗L

)

+ d
3/2
2 (λ,S0[λ0])

8

ℓ∗1/4
√
βL

+

16λ0 log (3/uα )

L
+

32 log2 (3/uα )

9ℓ∗L2
+

32
√
2λ0 log

3/2 (3/uα )

3
√
ℓ∗L3/2

+
4λ0

√
2√

βL
.

Since d2(λ,S0[λ0]) = |δ|
√
ℓ∗ and

√

λ0 + |δ| ≤
√
λ0 +

√

|δ|, this implies that

d22(λ,S0[λ0])

4
≥ 2

√

λ0 + |δ|√
βL

d2(λ,S0[λ0]) +

√
2(|δ|+ λ0)√

βL
+

4λ0 log (3/uα )

L
+

8 log2 (3/uα )

9ℓ∗L2
+

8
√
2λ0 log

3/2 (3/uα )

3
√
ℓ∗L3/2

. (106)

Let us now prove that Pλ

(

φ
(2)
3/4,α(N) = 0

)

≤ β. From the definition (17), we notice that

Pλ

(

φ
(2)
3/4,α(N) = 0

)

≤ min
k∈{0,...,⌈(1−ℓ∗)M⌉−1}

Pλ

(

T k
M

, k
M

+ℓ∗(N) ≤ t k
M

, k
M

+ℓ∗ (1− uα )
)

,

so that we only need to exhibit some kτ in {0, ..., ⌈(1− ℓ∗)M⌉ − 1} such that

Pλ

(

T kτ
M

, kτ
M

+ℓ∗(N) ≤ tkτ
M

, kτ
M

+ℓ∗(1− uα)
)

≤ β .

As in the proof of Proposition 5, we choose kτ = ⌊τM⌋, which leads (see (100) and (101))
to

Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

≥ d22(λ,S0[λ0])

4
, (107)

and

Varλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

≤ 4(λ0 + |δ|)
L

d22(λ,S0[λ0]) +
2(λ0 + |δ|)2

L2
. (108)

From (106), (107) and (108), we derive that

Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

≥
√

Varλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

/β+

4λ0 log (3/uα )

L
+

8 log2 (3/uα )

9ℓ∗L2
+

8
√
2λ0 log

3/2 (3/uα )

3
√
ℓ∗L3/2

.
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The conclusion then basically follows from Lemma 46, supplemented by the upper bound
(87), which allows to see that

Eλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

≥
√

Varλ

[

T kτ
M

, kτ
M

+ℓ∗(N)
]

/β + tkτ
M

, kτ
M

+ℓ∗(1− uα) ,

and the Bienayme-Chebyshev inequality, which entails

Pλ

(

T kτ
M

, kτ
M

+ℓ∗(N) ≤ tkτ
M

, kτ
M

+ℓ∗(1− uα)
)

≤ β .

5.6 Proof of Proposition 8

Let Cα,β = 1 + 4(1− α− β)2, r = (λ0 logCα,β/L)
1/2 and λr defined for all t in (0, 1) by

λr(t) = λ0 + δ∗1(τ∗,τ∗+r2/δ∗2](t) .

Notice that for all L ≥ λ0 logCα,β/(δ
∗2(1 − τ ∗)), r2/δ∗2 ≤ 1 − τ ∗ and λr belongs to

(Sδ∗,τ∗,···[λ0] )r in the notation of Lemma 41. We get now from Lemma 1 and Lemma 43

Eλ0

[(
dPλr

dP0

)2

(N)

]

= exp

(
r2L

λ0

)

= Cα,β.

Lemmas 42 and 41 then entail ρα
(
(Sδ∗,τ∗,···[λ0] )r

)
≥ β and mSRα,β (Sδ∗,τ∗,···[λ0] ) ≥ r.

5.7 Proof of Proposition 9

The first kind error rate control is straightforward. As for the second kind error rate
control, let λ = λ0+δ

∗
1(τ∗,τ∗+ℓ] belonging to Sδ∗,τ∗,···[λ0] with ℓ in (0, 1−τ ∗) and satisfying

d2(λ,S0[λ0]) ≥
2√
L
max

(

2

√

λ0 + δ∗

β
,
√

δ∗s+
λ0,

δ∗
2

(1− α)1{δ∗>0}+

√

|δ∗| log (1/α)
log (λ0/ (λ0 − |δ∗|/2))1{−λ0<δ∗<0}

)

. (109)

Assume that δ∗ > 0 and recall that s+λ0,δ∗/2
(1− α) defined in Lemma 48 is a constant

which does not depend on L. The assumption (109) implies

d2(λ,S0[λ0]) ≥
2√
L
max

(

2

√

λ0 + δ∗

β
,
√

δ∗s+
λ0,

δ∗
2

(1− α)

)

,

which yields

δ∗ℓ ≥ 4max





√

(λ0 + δ∗)ℓ

βL
,
s+
λ0,

δ∗
2

(1− α)

L



 ,

hence

δ∗

2
ℓL ≥

√

(λ0 + δ∗)ℓL

β
+ s+

λ0,
δ∗
2

(1− α) . (110)

60



We get then

Pλ (φ5,α(N) = 0) ≤ Pλ

(

sup
ℓ′∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ′(N) ≤ s+λ0,δ∗,τ∗,L(1− α)

)

,

where
Sδ∗,τ∗,τ∗+ℓ′(N) = sgn(δ∗)

(

N(τ ∗, τ ∗ + ℓ′]− λ0Lℓ
′
)

− |δ∗|Lℓ′/2 ,

as defined by (20) and s+λ0,δ∗,τ∗,L(u) is the u-quantile of supℓ′∈(0,1−τ∗) Sδ∗,τ∗,τ∗+ℓ′(N) under
(H0). From the quantile upper bound (291), we deduce

Pλ (φ5,α(N) = 0) ≤ Pλ

(

sup
ℓ′∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ′(N) ≤ s+
λ0,

δ∗
2

(1− α)

)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ]−
(

λ0 +
δ∗

2

)

ℓL ≤ s+
λ0,

δ∗
2

(1− α)

)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ]− (λ0 + δ∗)ℓL ≤ s+
λ0,

δ∗
2

(1− α)− δ∗

2
ℓL

)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ]− (λ0 + δ∗)ℓL ≤ −
√

(λ0 + δ∗)ℓL

β

)

with (110)

≤ β ,

with a last line simply following from the Bienayme-Chebyshev inequality.

Assume now that δ∗ is in (−λ0, 0). The assumption (109) implies

d2(λ,S0[λ0]) ≥
2√
L
max

(

2

√

λ0 + δ∗

β
,

√

|δ∗| log (1/α)
log (λ0/ (λ0 − |δ∗|/2))

)

,

which yields

|δ∗|ℓ ≥ 4max

(√

(λ0 + δ∗)ℓ

βL
,

log (1/α)

L log (λ0/ (λ0 − |δ∗|/2))

)

.

Hence

|δ∗|
2
ℓL ≥

√

(λ0 + δ∗)ℓL

β
+

log (1/α)

log (λ0/ (λ0 − |δ∗|/2)) ,

and then

(

λ0 −
|δ∗|
2

)

ℓL− log (1/α)

log (λ0/ (λ0 − |δ∗|/2)) − (λ0 + δ∗)ℓL ≥
√

(λ0 + δ∗)ℓL

β
. (111)
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We conclude with the following inequalities:

Pλ

(

φ5,α(N) = 0
)

≤ Pλ

(

sup
ℓ′∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ′(N) ≤ s+λ0,δ∗,τ∗,L(1− α)

)

≤ Pλ

((

λ0 −
|δ∗|
2

)

ℓL−N(τ ∗, τ ∗ + ℓ] ≤ log (1/α)

log (λ0/ (λ0 − |δ∗|/2))

)

with (291)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ] ≥
(

λ0 −
|δ∗|
2

)

ℓL− log (1/α)

log (λ0/ (λ0 − |δ∗|/2))

)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ]− (λ0 + δ∗)ℓL ≥
√

(λ0 + δ∗)ℓL

β

)

with (111)

≤ β with the Bienayme-Chebyshev inequality .

5.8 Proof of Lemma 10

Let λ0 > 0, τ ∗ in (0, 1), and φα a level-α test of (H0 ) ”λ ∈ S0[λ0] = {λ0}” versus
(H1 ) ”λ ∈ S

·,τ∗,···[λ0]”, with

S
·,τ∗,···[λ0] =

{
λ : ∃δ ∈ (−λ0,+∞) \ {0}, ∃ℓ ∈ (0, 1− τ ∗), λ(t) = λ0 + δ1(τ∗,τ∗+ℓ](t)

}
,

as defined by (21).
Let r > 0 and λ in S

·,τ∗,···[λ0] satisfying d2 (λ,S0[λ0] ) ≥ r. We compute

Pλ (φα(N) = 0) = 1− Pλ (φα(N) = 1) + Pλ0 (φα(N) = 1)− Pλ0 (φα(N) = 1)

≥ 1− α− |Pλ0 (φα(N) = 1)− Pλ (φα(N) = 1) |
≥ 1− α− V (Pλ, Pλ0 ) ,

where V (Pλ, Pλ0 ) is the total variation distance between the probability measures Pλ and
Pλ0 . Then, using the Pinsker inequality (see for example Lemma 2.5 in [104]),

Pλ (φα(N) = 0) ≥ 1− α−
√

K (Pλ, Pλ0 )

2
,

where K (Pλ, Pλ0 ) is the Kullback divergence between the probability measures Pλ and
Pλ0 . We deduce from Lemma 41 that if there exists λ in S

·,τ∗,···[λ0] such that d2 (λ,S0[λ0] ) ≥
r satisfying 1− α−

√

K (Pλ, Pλ0 ) /2 ≥ β, then mSRα,β (S·,τ∗,···[λ0] ) ≥ r.
Let us introduce for all ℓ in (0, 1 − τ ∗), λr = λ0 + rℓ−1/2

1(τ∗,τ∗+ℓ] in S
·,τ∗,···[λ0] which

satisfies d2(λr,S0[λ0]) = r. Then, Lemma 1 entails

K (Pλr , Pλ0 ) =

∫

log

(
dPλr

dPλ0

)

dPλr = log

(

1 +
r

λ0
√
ℓ

)(

λ0 +
r√
ℓ

)

ℓL− Lr
√
ℓ .

Hence choosing ℓ close enough to 0 – which is allowed as long as λr is not constrained to
be upper bounded by some given constant, K (Pλr , Pλ0 ) ≤ 2(1− α− β)2. This entails

mSRα,β (S·,τ∗,···[λ0] ) ≥ r

for every r > 0 and allows to conclude that mSRα,β (S·,τ∗,···[λ0] ) = +∞.
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5.9 Proof of Proposition 11

Assume that L ≥ 3 and α + β < 1/2.
Let C ′

α,β = 4(1−α−β)2, Kα,β,L = ⌈(log2 L)/C ′
α,β⌉, and for k in {1, . . . , Kα,β,L}, λk = λ0+

δk1(τ∗,τ∗+ℓk] with ℓk = (1− τ ∗)/2k and δk = (λ0 log logL/(ℓkL))
1/2. Then d2 (λk,S0[λ0] ) =√

λ0 log logL/L for all k in {1, . . . , Kα,β,L} and assuming that

log logL

L1−1/C′
α,β

≤ (R− λ0)
21− τ ∗

2λ0
, (112)

λk belongs to S
·,τ∗,···[λ0, R]. Recall that for any k in {1, . . . , Kα,β,L} Pλk

denotes the
distribution of a Poisson process with intensity λk with respect to the measure Λ, and
consider κ, a random variable with uniform distribution on {1, . . . , Kα,β,L}, which allows
to define the probability distribution µ of λκ. From Lemma 42, we know that it is
enough to prove Eλ0 [(dPµ/dPλ0)

2] ≤ 1 + C ′
α,β to conclude that mSRα,β (S·,τ∗,···[λ0, R] ) ≥

√

λ0 log logL/L.
By definition, (dPµ/dPλ0)(N) = Eκ [(dPλκ/dPλ0)(N)] (where Eκ denotes the expectation
w.r.t. the uniform variable κ) and therefore

dPµ

dPλ0

(N) =
1

Kα,β,L

Kα,β,L∑

k=1

exp

(

log

(

1 +
δk
λ0

)

N(τ ∗, τ ∗ + ℓk]− Lℓkδk

)

.

Since ℓk′ < ℓk for all k′ > k,

(
dPµ

dPλ0

(N)

)2

=
1

K2
α,β,L

Kα,β,L∑

k=1

exp

(

2 log

(

1 +
δk
λ0

)

N(τ ∗, τ ∗ + ℓk]− 2Lℓkδk

)

+
2

K2
α,β,L

Kα,β,L−1
∑

k=1

Kα,β,L∑

k′=k+1

exp

((

log

(

1 +
δk
λ0

)

+ log

(

1 +
δk′

λ0

))

N(τ ∗, τ ∗ + ℓk′]+

+ log

(

1 +
δk
λ0

)

N(τ ∗ + ℓk′, τ
∗ + ℓk]− Lℓkδk − Lℓk′δk′

)

.

Recall that under (H0 ), N is a homogeneous Poisson process with intensity λ0 with
respect to the measure Λ, so

Eλ0

[(
dPµ

dPλ0

)2
]

=
1

K2
α,β,L

Kα,β,L∑

k=1

exp

(
Lℓkδ

2
k

λ0

)

+
2

K2
α,β,L

Kα,β,L−1
∑

k=1

Kα,β,L∑

k′=k+1

exp

(
Lℓk′δkδk′

λ0

)

.

Then

Eλ0

[(
dPµ

dPλ0

)2
]

=
logL

Kα,β,L

+
2

K2
α,β,L

Kα,β,L−1
∑

k=1

Kα,β,L∑

k′=k+1

exp
(

2
k−k′

2 (log logL)
)

, (113)

which entails

Eλ0

[(
dPµ

dPλ0

)2
]

=
logL

Kα,β,L

+
2

K2
α,β,L

Kα,β,L−1
∑

l=1

(Kα,β,L − l) exp
(

2−
l
2 (log logL)

)

≤ C ′
α,β log 2 +

2

K2
α,β,L

Kα,β,L−1
∑

l=1

(Kα,β,L − l) exp
(

2−
l
2 (log logL)

)

.
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Now taking η such that 0 < η < 1− 1/
√
2,

Eλ0

[(
dPµ

dPλ0

)2
]

≤ C ′
α,β log 2 +

2

K2
α,β,L

Kα,β,L−1
∑

l=1

(Kα,β,L − l) exp
(

2−
l
2 (log logL)

)

= C ′
α,β log 2 +

2

K2
α,β,L

⌊(logL)η⌋
∑

l=1

(Kα,β,L − l) exp
(

2−
l
2 (log logL)

)

+
2

K2
α,β,L

Kα,β,L−1
∑

l=⌊(logL)η⌋+1

(Kα,β,L − l) exp
(

2−
l
2 (log logL)

)

≤ C ′
α,β log 2 +

2C ′
α,β log 2

logL
(logL)

η+ 1√
2 + exp

(
log logL

2(logL)η/2

)

. (114)

If we assume now that

exp

(
log logL

2(logL)η/2

)

+
2C ′

α,β log 2

(logL)
1−η− 1√

2

≤ 1 + (1− log 2)C ′
α,β , (115)

we finally obtain the expected result, i.e.

Eλ0

[(
dPµ

dPλ0

)2
]

≤ 1 + C ′
α,β .

To end the proof, it remains to notice that there exists L0(α, β, λ0, R) ≥ 3 such that for
all L ≥ L0(α, β, λ0, R), both assumptions (112) and (115) hold.

5.10 Proof of Proposition 12

The control of the first kind error rates of the two tests φ
(1)
6,α and φ

(2)
6,α is straightforward

using simple union bounds.

(i) Control of the second kind error rate of φ
(1)
6,α.

Let λ in S
·,τ∗,···[λ0, R] be such that λ = λ0+ δ1(τ∗,τ∗+ℓ], with δ in (−λ0, R− λ0] \ {0}, ℓ in

(0, 1− τ ∗), and such that

d2 (λ,S0[λ0] ) ≥
√
2max

(

2

√

R log (2/uα)

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

R

βL
,
R√
L

)

.

(116)

Let us prove that Pλ

(

φ
(1)
6,α(N) = 0

)

≤ β.

Assume first that δ belongs to (0, R− λ0]. Noticing that

Pλ

(

φ
(1)
6,α(N) = 0

)

≤ inf
k∈{1,...,⌊log2 L⌋}

Pλ

(
Sτ∗,τ∗+ℓτ∗,k(N) ≤ sλ0,τ∗,τ∗+ℓτ∗,k (1− uα )

)
,

one can see that it is enough to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ

(
Sτ∗,τ∗+ℓτ∗,k(N) ≤ sλ0,τ∗,τ∗+ℓτ∗,k (1− uα )

)
≤ β .
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We get from (116) that d22 (λ,S0[λ0] ) ≥ 2R2/L which entails ℓ ≥ 2/L, so
(1 − τ ∗)2−⌊log2 L⌋ ≤ 2(1 − τ ∗)/L < 2/L ≤ ℓ and ℓ < (1 − τ ∗)2−1+1. Therefore, one can
find kτ∗ in {1, . . . , ⌊log2 L⌋} satisfying (1− τ ∗)2−kτ∗ ≤ ℓ < (1− τ ∗)2−kτ∗+1. Consider now
ℓτ∗ = (1− τ ∗)2−kτ∗ = ℓτ∗,kτ∗ such that ℓ/2 < ℓτ∗ ≤ ℓ. We get

δ2ℓτ∗ > d22 (λ,S0[λ0] ) /2 . (117)

Moreover, we deduce from (116) that

d2 (λ,S0[λ0] ) ≥
√
2max

(

2

√

δ log (2/uα)

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

λ0 + δ

βL

)

,

and then with (117),

δ
√

ℓτ∗ ≥ max

(

2

√

δ log (2/uα)

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

λ0 + δ

βL

)

.

This entails in particular δℓτ∗ ≥ 4 log (2/uα) /(3L) as well as

δℓτ∗ ≥ 2
√

ℓτ∗

(√

2λ0 log (2/uα)

L
+

√

λ0 + δ

βL

)

.

Therefore,

δℓτ∗ ≥ 2max

(

2 log (2/uα)

3L
,
√

ℓτ∗

(√

2λ0 log (2/uα)

L
+

√

λ0 + δ

βL

))

,

hence

δℓτ∗L ≥ 2

3
log (2/uα) +

√

2λ0ℓτ∗L log (2/uα) +

√

(λ0 + δ)ℓτ∗L

β
. (118)

On the one hand, since ℓτ∗ ≤ ℓ, Lemma 43 gives Eλ [Sτ∗,τ∗+ℓτ∗ (N) ] = δℓτ∗L, and
Varλ [Sτ∗,τ∗+ℓτ∗(N) ] = (λ0 + δ)ℓτ∗L. On the other hand, Lemma 50 gives

sλ0,τ∗,τ∗+ℓτ∗ (1− uα ) ≤ λ0ℓτ∗Lg
−1

(
log (2/uα )

λ0Lℓτ∗

)

,

with g−1(x) ≤ 2x/3 +
√
2x for all x > 0 (see (87)), which leads to

sλ0,τ∗,τ∗+ℓτ∗ (1− uα ) ≤
2

3
log (2/uα) +

√

2λ0ℓτ∗L log (2/uα) .

Combined with (118), these computations yield

Eλ [Sτ∗,τ∗+ℓτ∗ (N) ] ≥ sλ0,τ∗,τ∗+ℓτ∗ (1− uα ) +
√

Varλ [Sτ∗,τ∗+ℓτ∗ (N) ] /β . (119)

We conclude with the Bienayme-Chebyshev inequality:

Pλ

(

Sτ∗,τ∗+ℓτ∗(N) ≤ sλ0,τ∗,τ∗+ℓτ∗ (1− uα )
)

≤ Pλ

(

Sτ∗,τ∗+ℓτ∗(N)− Eλ [Sτ∗,τ∗+ℓτ∗ (N) ] ≤ −
√

Varλ [Sτ∗,τ∗+ℓτ∗(N) ] /β

)

with (119)

≤ β .
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Assume now that δ belongs to (−λ0, 0) and notice that

Pλ

(

φ
(1)
6,α(N) = 0

)

≤ inf
k∈{1,...,⌊log2 L⌋}

Pλ

(
−Sτ∗,τ∗+ℓτ∗,k(N) ≤ sλ0,τ∗,τ∗+ℓτ∗,k (1− uα )

)
.

The same choice of kτ∗ and ℓτ∗ = ℓτ∗,kτ∗ as in the above case where δ ∈ (0, R−λ0] entails

|δ|ℓτ∗L ≥ sλ0,τ∗,τ∗+ℓτ∗ (1− uα ) +

√

(λ0 + δ)ℓτ∗L

β
, (120)

and since Eλ [Sτ∗,τ∗+ℓτ∗(N) ] = −|δ|ℓτ∗L and Varλ [Sτ∗,τ∗+ℓτ∗ (N) ] = (λ0 + δ)ℓτ∗L, we
obtain in the same way

Pλ

(

− Sτ∗,τ∗+ℓτ∗ (N) ≤ sλ0,τ∗,τ∗+ℓτ∗ (1− uα )
)

≤ β .

Finally (116) leads in both cases to Pλ

(

φ
(1)
6,α(N) = 0

)

≤ β, which allows to conclude that

SRβ

(

φ
(1)
6,α,S·,τ∗,···[λ0, R]

)

≤
√
2max

(

2

√

R log (2⌊log2 L⌋/α)
3L

,

2

√

2λ0 log (2⌊log2 L⌋/α)
L

+ 2

√

R

βL
,
R√
L

)

.

(ii) Control of the second kind error rate of φ
(2)
6,α.

Let λ in S
·,τ∗,···[λ0, R] be such that λ = λ0+ δ1(τ∗,τ∗+ℓ], with δ in (−λ0, R− λ0] \ {0}, ℓ in

(0, 1− τ ∗), and such that

d2 (λ,S0[λ0] ) ≥ max

(

4

√

2λ0 log (3/uα )

L
+ 2

√

2

√
2

β

R

L
, 2

√

2
√
2R log (3/uα )

3L
,

4

(
2

3

)1/3

λ
1/6
0 R1/3

√

log (3/uα )

L
, 16

√

R

βL
,

√
2R√
L

)

. (121)

Let us prove that Pλ

(

φ
(2)
6,α(N) = 0

)

≤ β.

Noticing that

Pλ

(

φ
(2)
6,α(N) = 0

)

≤ inf
k∈{1,...,⌊log2 L⌋}

Pλ

(
Tτ∗,τ∗+ℓτ∗,k(N) ≤ tλ0,τ∗,τ∗+ℓτ∗,k (1− uα )

)
,

one can see that it is enough to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ

(
Tτ∗,τ∗+ℓτ∗,k(N) ≤ tλ0,τ∗,τ∗+ℓτ∗,k (1− uα )

)
≤ β .

From (121), we deduce that d22 (λ,S0[λ0] ) ≥ 2R2/L which entails ℓ ≥ 2/L. Therefore, as
in the above part (i) of the proof, let kτ∗ in {1, . . . , ⌊log2 L⌋} be such that (1− τ ∗)2−kτ∗ ≤
ℓ < (1− τ ∗)2−kτ∗+1, and consider ℓτ∗ = (1− τ ∗)2−kτ∗ = ℓτ∗,kτ∗ . Then ℓ/2 < ℓτ∗ ≤ ℓ and

δ2ℓτ∗ > d22 (λ,S0[λ0] ) /2 . (122)
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Moreover, we get from (121)

d2 (λ,S0[λ0] ) ≥ max

(

4

√

2λ0 log (3/uα )

L
+ 2

√

2

√
2

β

R

L
, 2

√

2
√
2R log (3/uα )

3L
,

4

(
2

3

)1/3

λ
1/6
0 R1/3

√

log (3/uα )

L
, 16

√

R

βL

)

.

On the one hand, this entails in particular d42 (λ,S0[λ0] ) ≥ 128R2 log2 (3/uα ) /(9L
2), and

then, with (122), d42 (λ,S0[λ0] ) ≥ 64d22 (λ,S0[λ0] ) log
2 (3/uα ) /(9L

2ℓτ∗).
On the other hand, this yields

d32 (λ,S0[λ0] ) ≥
64

3
d2 (λ,S0[λ0] )

√

2λ0 log
3 (3/uα )

L3ℓτ∗
,

using the same arguments. Therefore

d22 (λ,S0[λ0] ) ≥ max

(

32
λ0 log (3/uα )

L
+ 8

√
2

β

R

L
,
64 log2 (3/uα )

9L2ℓτ∗
,

64

3

√

2λ0 log
3 (3/uα )

L3ℓτ∗
, 16d2(λ,S0[λ0])

√

R

βL

)

.

Hence

d22 (λ,S0[λ0] )

2
≥ 4λ0 log (3/uα )

L
+

√
2

β

R

L
+

8 log2 (3/uα )

9L2ℓτ∗

+
8

3

√

2λ0 log
3 (3/uα )

L3ℓτ∗
+ 2d2(λ,S0[λ0])

√

R

βL
. (123)

Since ℓτ∗ ≤ ℓ, Lemma 45 gives Eλ [Tτ∗,τ∗+ℓτ∗ (N) ] = δ2ℓτ∗ and

Varλ [Tτ∗,τ∗+ℓτ∗ (N) ] =
4δ2(λ0 + δ)ℓτ∗

L
+

2(λ0 + δ)2

L2
.

This leads with (122) to

Eλ [Tτ∗,τ∗+ℓτ∗ (N) ] ≥ d22 (λ,S0[λ0] )

2
, (124)

and

Varλ [Tτ∗,τ∗+ℓτ∗ (N) ] ≤ 4d22 (λ,S0[λ0] )R

L
+

2R2

L2
. (125)

With (124) and (125), the inequality (123) yields

Eλ [Tτ∗,τ∗+ℓτ∗ (N) ] ≥ 4λ0 log (3/uα )

L
+

8 log2 (3/uα )

9L2ℓτ∗
+

8

3

√

2λ0 log
3 (3/uα )

L3ℓτ∗

+

√

Varλ [Tτ∗,τ∗+ℓτ∗ (N) ]

β
. (126)
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Moreover, Lemma 46 gives

tλ0,τ∗,τ∗+ℓτ∗ (1− uα ) ≤ 2λ20ℓτ∗

(

g−1

(
log (3/uα )

λ0ℓτ∗L

))2

,

where g−1(x) ≤ 2x/3 +
√
2x for all x > 0 (see (87)), and then

tλ0,τ∗,τ∗+ℓτ∗ (1− uα ) ≤
4λ0 log (3/uα )

L
+

8 log2 (3/uα )

9L2ℓτ∗
+

8

3

√

2λ0 log
3 (3/uα )

L3ℓτ∗

≤ Eλ [Tτ∗,τ∗+ℓτ∗ (N) ]−
√

Varλ [Tτ∗,τ∗+ℓτ∗ (N) ]

β
.

We obtain with the Bienayme-Chebyshev inequality

Pλ

(

Tτ∗,τ∗+ℓτ∗ (N) ≤ tλ0,τ∗,τ∗+ℓτ∗ (1− uα )
)

≤ Pλ

(

Tτ∗,τ∗+ℓτ∗(N) ≤ Eλ [Tτ∗,τ∗+ℓτ∗(N) ]−
√

Varλ [Tτ∗,τ∗+ℓτ∗(N) ]

β

)

≤ β ,

which entails Pλ

(

φ
(2)
6,α(N) = 0

)

≤ β.

This finally allows to conclude that

SRβ

(

φ
(2)
6,α,S·,τ∗,···[λ0, R]

)

≤ max

(

4

√

2λ0 log (3⌊log2 L⌋/α)
L

+ 2

√

2

√
2

β

R

L
,

2

√

2
√
2R log (3⌊log2 L⌋/α)

3L
, 4

(
2

3

)1/3

λ
1/6
0 R1/3

√

log (3⌊log2 L⌋/α)
L

, 16

√

R

βL
,

√
2R√
L

)

.

5.11 Proof of Proposition 13

Let Cα,β = 1 + 4(1− α− β)2, r = (λ0 logCα,β/L)
1/2 and λr defined for all t in (0, 1) by

λr(t) = λ0 + δ∗1(1−r2/δ∗2,1](t) .

Notice that for all L ≥ λ0 logCα,β/δ
∗2, we have r ≤ |δ∗| and λr belongs to (Sδ∗,··,1−··

[λ0] )r
in the notation of Lemma 41. We get now from Lemma 1 and Lemma 43

Eλ0

[(
dPλr

dP0

)2

(N)

]

= exp

(
r2L

λ0

)

= Cα,β.

Lemmas 42 and 41 then entail ρα
(
(Sδ∗,··,1−··

[λ0] )r
)
≥ β and mSRα,β (Sδ∗,··,1−··

[λ0] ) ≥ r.

68



5.12 Proof of Proposition 14

The first kind error rate control is straightforward. As for the second kind error rate
control, let λ = λ0 + δ∗1(τ,1] belonging to Sδ∗,··,1−··

[λ0] with τ in (0, 1) and satisfying

d2(λ,S0[λ0]) ≥
2√
L
max

(

2

√

λ0 + δ∗

β
,
√

δ∗s+
λ0,

δ∗
2

(1− α)1{δ∗>0}+

√

|δ∗| log (1/α)
log (λ0/ (λ0 − |δ∗|/2))1{−λ0<δ∗<0}

)

. (127)

Then the proof essentially follows the same line as the one of Proposition 9 just replacing
ℓ by (1− τ).
Assume that δ∗ > 0 and recall that s+λ0,δ∗/2

(1− α) defined in Lemma 48 is a constant

which does not depend on L. The assumption (127) implies that

d2(λ,S0[λ0]) ≥
2√
L
max

(

2

√

λ0 + δ∗

β
,
√

δ∗s+
λ0,

δ∗
2

(1− α)

)

,

which entails

δ∗

2
(1− τ)L ≥

√

(λ0 + δ∗)(1− τ)L

β
+ s+

λ0,
δ∗
2

(1− α) . (128)

Then we get from the quantile upper bound (292)

Pλ (φ7,α(N) = 0) ≤ Pλ

(

sup
τ ′∈(0,1)

Sδ∗,τ ′,1(N) ≤ s+
λ0,

δ∗
2

(1− α)

)

≤ Pλ

(

N(τ, 1]−
(

λ0 +
δ∗

2

)

(1− τ)L ≤ s+
λ0,

δ∗
2

(1− α)

)

≤ Pλ

(

N(τ, 1]− (λ0 + δ∗)(1− τ)L ≤ s+
λ0,

δ∗
2

(1− α)− δ∗

2
(1− τ)L

)

≤ Pλ

(

N(τ, 1]− (λ0 + δ∗)(1− τ)L ≤ −
√

(λ0 + δ∗)(1− τ)L

β

)

with (128)

≤ β .

Assume now that δ∗ is in (−λ0, 0). The assumption (127) implies that

d2(λ,S0[λ0]) ≥
2√
L
max

(

2

√

λ0 + δ∗

β
,

√

|δ∗| log (1/α)
log (λ0/ (λ0 − |δ∗|/2))

)

,

which entails

|δ∗|
2

(1− τ)L ≥
√

(λ0 + δ∗)(1− τ)L

β
+

log (1/α)

log (λ0/ (λ0 − |δ∗|/2)) ,
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and then

(

λ0 −
|δ∗|
2

)

(1− τ)L− log (1/α)

log (λ0/ (λ0 − |δ∗|/2)) − (λ0 + δ∗)(1− τ)L

≥
√

(λ0 + δ∗)(1− τ)L

β
. (129)

We conclude with the following inequalities, deduced from (292), (129) and the Bienayme-
Chebyshev inequality successively:

Pλ

(

φ7,α(N) = 0
)

≤ Pλ

(

sup
τ ′∈(0,1)

Sδ∗,τ ′,1(N) ≤ s+λ0,δ∗,τ∗,L(1− α)

)

≤ Pλ

((

λ0 −
|δ∗|
2

)

(1− τ)L−N(τ, 1] ≤ log (1/α)

log (λ0/ (λ0 − |δ∗|/2))

)

≤ Pλ

(

N(τ, 1]− (λ0 + δ∗)(1− τ)L ≥
√

(λ0 + δ∗)(1− τ)L

β

)

≤ β .

Coming back to the formulation of assumption (127), we therefore can take in the state-
ment of Proposition 14

C(α, β, λ0, δ
∗) = 2max

(

2

√

λ0 + δ∗

β
,
√

δ∗s+
λ0,

δ∗
2

(1− α)1{δ∗>0}+

√

|δ∗| log (1/α)
log (λ0/ (λ0 − |δ∗|/2))1{−λ0<δ∗<0}

)

.

5.13 Proof of Lemma 15

Let λ0 > 0 and φα a level-α test of the null hypothesis (H0 ) ”λ ∈ S0[λ0] = {λ0}”
versus the alternative (H1 ) ”λ ∈ S

·,··,1−··
[λ0]”, with S

·,··,1−··
[λ0] defined by (28). Let us

fix some r > 0. As in the proof of Lemma 10, we can argue that if there exists λ in
S
·,··,1−··

[λ0] such that d2 (λ,S0[λ0] ) ≥ r satisfying 1 − α −
√

K (Pλ, Pλ0 ) /2 ≥ β, then
mSRα,β (S·,··,1−··

[λ0] ) ≥ r.
Let us introduce for all τ in (0, 1), λr = λ0+r(1−τ)−1/2

1(τ,1] in S
·,··,1−··

[λ0] which satisfies
d2(λr,S0[λ0]) = r. The end of the proof follows the same line as the one of Lemma 10,
noticing that

K (Pλr , Pλ0 ) = log

(

1 +
r

λ0
√
1− τ

)(

λ0 +
r√
1− τ

)

(1− τ)L− Lr
√
1− τ ,

and choosing τ close enough to 1 in order to get K (Pλr , Pλ0 ) ≤ 2(1 − α − β)2, which
yields mSRα,β (S·,··,1−··

[λ0] ) ≥ r for all r > 0 and allows to conclude.
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5.14 Proof of Proposition 16

Assume that L ≥ 3 and α+β < 1/2. As in the proof of Proposition 11, we consider C ′
α,β =

4(1 − α − β)2, Kα,β,L = ⌈(log2 L)/C ′
α,β⌉ and for k in {1, . . . , Kα,β,L}, λk = λ0 + δk1(τk,1]

with τk = 1 − 2−k and δk = (2kλ0 log logL/L)
1/2. Then, for every k in {1, . . . , Kα,β,L},

d2 (λk,S0[λ0] ) =
√

λ0 log logL/L, and assuming that

log logL

L1−1/C′
α,β

≤ (R − λ0)
2

2λ0
, (130)

λk belongs to S
·,·,1−··

[λ0, R]. The proof then essentially follows the same arguments as the
proof of Proposition 11. Thus, considering a random variable κ with uniform distribu-
tion on {1, . . . , Kα,β,L} and the probability distribution µ of λκ, we aim at proving that
Eλ0 [(dPµ/dPλ0)

2] ≤ 1 + C ′
α,β, with Pµ defined as in Lemma 42, in order to conclude that

mSRα,β (S·,··,1−··
[λ0, R]) ≥

√

λ0 log logL/L.
By definition,

dPµ

dPλ0

(N) =
1

Kα,β,L

Kα,β,L∑

k=1

exp

(

log

(

1 +
δk
λ0

)

N(τk, 1]− L(1− τk)δk

)

.

Since τk′ > τk for all k′ > k,

(
dPµ

dPλ0

(N)

)2

=
1

K2
α,β,L

Kα,β,L∑

k=1

exp

(

2 log

(

1 +
δk
λ0

)

N(τk, 1]− 2L(1− τk)δk

)

+
2

K2
α,β,L

Kα,β,L−1
∑

k=1

Kα,β,L∑

k′=k+1

exp

((

log

(

1 +
δk
λ0

)

+ log

(

1 +
δk′

λ0

))

N(τk′ , 1]+

+ log

(

1 +
δk
λ0

)

N(τk, τk′]− L(1 − τk)δk − L(1− τk′)δk′

)

,

hence

Eλ0

[(
dPµ

dPλ0

)2
]

=
1

K2
α,β,L

Kα,β,L∑

k=1

exp

(
L(1− τk)δ

2
k

λ0

)

+
2

K2
α,β,L

Kα,β,L−1
∑

k=1

Kα,β,L∑

k′=k+1

exp

(
L(1− τk′)δkδk′

λ0

)

.

We then obtain the same expression of Eλ0

[
(dPµ/dPλ0)

2] as in Equation (113), and the
proof ends exactly as the one of Proposition 11, just replacing (112) by (130) in the final
argument.

5.15 Proof of Proposition 17

This proof is very similar to the one of Proposition 12. For the sake of completeness, we
nevertheless detail it below.
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The control of the first kind error rates of the two tests φ
(1)
8,α and φ

(2)
8,α is straightforward

using simple union bounds.

(i) Control of the second kind error rate of φ
(1)
8,α.

Let λ in S
·,··,1−··

[λ0, R] be such that λ = λ0+δ1(τ,1], with τ in (0, 1), δ in (−λ0, R−λ0]\{0},
and such that

d2 (λ,S0[λ0] ) ≥
√
2max

(

2

√

R log (2/uα)

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

R

βL
,
R√
L

)

,

(131)

as in (116).

We prove here that Pλ

(

φ
(1)
8,α(N) = 0

)

≤ β, assuming first that δ belongs to (0, R− λ0].

Noticing that

Pλ

(

φ
(1)
8,α(N) = 0

)

≤ inf
k∈{1,...,⌊log2 L⌋}

Pλ (Sτk ,1(N) ≤ sλ0,τk,1 (1− uα )) ,

one can see that it is enough to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ (Sτk ,1(N) ≤ sλ0,τk,1 (1− uα )) ≤ β .

Let kτ = ⌊− log2(1−τ)⌋+1. Since 0 < 1−τ < 1, kτ ≥ 1. Moreover, from (131), we obtain
d22 (λ,S0[λ0] ) ≥ 2R2/L which entails (1− τ) ≥ 2/L and kτ ≤ ⌊log2(L/2)⌋+ 1 ≤ ⌊log2 L⌋.
Consider now τkτ = 1− 2−kτ , which satisfies (1− τ)/2 ≤ 1− τkτ < 1− τ as well as

δ2(1− τkτ ) ≥ d22 (λ,S0[λ0] ) /2 . (132)

We get from (131)

d2 (λ,S0[λ0] ) ≥
√
2max

(

2

√

δ log (2/uα)

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

λ0 + δ

βL

)

,

which gives with (132)

δ
√

1− τkτ ≥ max

(

2

√

δ log (2/uα)

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

λ0 + δ

βL

)

.

This entails in particular δ (1− τkτ ) ≥ (4/3) log (2/uα) /L and also

δ (1− τkτ ) ≥ 2
√

1− τkτ

(√

2λ0 log (2/uα)

L
+

√

λ0 + δ

βL

)

.

Hence,

δ (1− τkτ )L ≥ 2

3
log (2/uα) +

√

2λ0 (1− τkτ )L log (2/uα)+
√

(λ0 + δ) (1− τkτ )L

β
. (133)
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On the one hand, since τkτ > τ , Lemma 43 gives Eλ

[
Sτkτ ,1

(N)
]
= δ (1− τkτ )L and

Varλ
[
Sτkτ ,1

(N)
]
= (λ0+δ) (1− τkτ )L. On the other hand, Lemma 50 with the inequality

(87) give

sλ0,τkτ ,1
(1− uα ) ≤

2

3
log (2/uα) +

√

2λ0 (1− τkτ )L log (2/uα) .

Combined with (133), these computations yield

Eλ

[
Sτkτ ,1

(N)
]
≥ sλ0,τkτ ,1

(1− uα ) +
√

Varλ
[
Sτkτ ,1

(N)
]
/β . (134)

The Bienayme-Chebyshev then leads to

Pλ

(

Sτkτ ,1
(N) ≤ sλ0,τkτ ,1

(1− uα )
)

≤ β .

Assume now that δ belongs to (−λ0, 0) and notice that

Pλ

(

φ
(1)
8,α(N) = 0

)

≤ inf
k∈{1,...,⌊log2 L⌋}

Pλ (−Sτk ,1(N) ≤ sλ0,τk ,1 (1− uα )) .

The same choice of kτ as in the above case where δ ∈ (0, R− λ0] entails

|δ| (1− τkτ )L ≥ sλ0,τkτ ,1
(1− uα ) +

√

(λ0 + δ) (1− τkτ )L

β
, (135)

and since Eλ

[
Sτkτ ,1

(N)
]
= −|δ| (1− τkτ )L and Varλ

[
Sτkτ ,1

(N)
]
= (λ0 + δ) (1− τkτ )L,

we obtain in the same way

Pλ

(

− Sτkτ ,1
(N) ≤ sλ0,τkτ ,1

(1− uα )
)

≤ β .

Finally, (131) leads in both cases to Pλ

(

φ
(1)
8,α(N) = 0

)

≤ β, which allows to conclude that

SRβ

(

φ
(1)
8,α,S·,··,1−··

[λ0, R]
)

≤
√
2max

(

2

√

R log (2⌊log2 L⌋/α)
3L

,

2

√

2λ0 log (2⌊log2 L⌋/α)
L

+ 2

√

R

βL
,
R√
L

)

.

(ii) Control of the second kind error rate of φ
(2)
8,α.

Let λ in S
·,··,1−··

[λ0, R] be such that λ = λ0+δ1(τ,1], with τ in (0, 1), δ in (−λ0, R−λ0]\{0},
and such that

d2 (λ,S0[λ0] ) ≥ max

(

4

√

2λ0 log (3/uα )

L
+ 2

√

2

√
2

β

R

L
, 2

√

2
√
2R log (3/uα )

3L
,

4

(
2

3

)1/3

λ
1/6
0 R1/3

√

log (3/uα )

L
, 16

√

R

βL
,

√
2R√
L

)

, (136)
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as in (121).

Let us prove that this implies that Pλ

(

φ
(2)
8,α(N) = 0

)

≤ β.

Notice that

Pλ

(

φ
(2)
8,α(N) = 0

)

≤ inf
k∈{1,...,⌊log2 L⌋}

Pλ (Tτk ,1(N) ≤ tλ0,τk,1 (1− uα )) ,

to see that one only needs to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ (Tτk ,1(N) ≤ tλ0,τk,1 (1− uα )) ≤ β ,

to obtain the expected result.
As in the above part (i) of the proof, let kτ = ⌊− log2(1 − τ)⌋ + 1 and τkτ = 1 − 2−kτ .
From (136) which in particular entails d22 (λ,S0[λ0] ) ≥ 2R2/L, we get that kτ actually
belongs to {1, . . . , ⌊log2 L⌋}. Furthermore, by definition,

δ2 (1− τkτ ) ≥ d22 (λ,S0[λ0] ) /2 . (137)

Now, we also deduce from (136) that

d2 (λ,S0[λ0] ) ≥ max

(

4

√

2λ0 log (3/uα )

L
+ 2

√

2

√
2

β

R

L
,

√√
2R log (3/uα )

3L
,

4

(
2

3

)1/3

λ
1/6
0 R1/3

√

log (3/uα )

L
, 16

√

R

βL

)

.

This entails on the one hand that d42 (λ,S0[λ0] ) ≥ 128R2 log2 (3/uα ) /(9L
2), and with

(137), d42 (λ,S0[λ0] ) ≥ 64d22 (λ,S0[λ0] ) log
2 (3/uα ) /(9L

2 (1− τkτ )). On the other hand,
we deduce that

d32 (λ,S0[λ0] ) ≥
64

3
d2 (λ,S0[λ0] )

√

2λ0 log
3 (3/uα )

L3 (1− τkτ )
.

Therefore

d22 (λ,S0[λ0] ) ≥ max

(

32
λ0 log (3/uα )

L
+ 8

√
2

β

R

L
,
64 log2 (3/uα )

9L2 (1− τkτ )
,

64

3

√

2λ0 log
3 (3/uα )

L3 (1− τkτ )
, 16d2(λ,S0[λ0])

√

R

βL

)

.

Hence,

d22 (λ,S0[λ0] )

2
≥ 4λ0 log (3/uα )

L
+

√
2

β

R

L
+

8 log2 (3/uα )

9L2 (1− τkτ )

+
8

3

√

2λ0 log
3 (3/uα )

L3 (1− τkτ )
+ 2d2(λ,S0[λ0])

√

R

βL
. (138)
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Since τkτ > τ , Lemma 45 gives that Eλ

[
Tτkτ ,1(N)

]
= δ2 (1− τkτ ) and

Varλ
[
Tτkτ ,1(N)

]
=

4δ2(λ0 + δ) (1− τkτ )

L
+

2(λ0 + δ)2

L2
.

From (137), we get

Eλ

[
Tτkτ ,1(N)

]
≥ d22 (λ,S0[λ0] )

2
. (139)

Moreover,

Varλ
[
Tτkτ ,1(N)

]
≤ 4d22 (λ,S0[λ0] )R

L
+

2R2

L2
. (140)

With (139) and (140), the inequality (138) yields

Eλ

[
Tτkτ ,1(N)

]
≥ 4λ0 log (3/uα )

L
+

8 log2 (3/uα )

9L2 (1− τkτ )
+

8

3

√

2λ0 log
3 (3/uα )

L3 (1− τkτ )

+

√

Varλ
[
Tτkτ ,1(N)

]

β
.

Furthermore, Lemma 46 gives

tλ0,τkτ ,1
(1− uα ) ≤

4λ0 log (3/uα )

L
+

8 log2 (3/uα )

9L2 (1− τkτ )
+

8

3

√

2λ0 log
3 (3/uα )

L3 (1− τkτ )

≤ Eλ

[
Tτkτ ,1(N)

]
−
√

Varλ
[
Tτkτ ,1(N)

]

β
,

and the Bienayme-Chebyshev leads to

Pλ

(

Tτkτ ,1(N) ≤ tλ0,τkτ ,1
(1− uα )

)

≤ β .

This entails the expected result Pλ

(

φ
(2)
8,α(N) = 0

)

≤ β, and finally allows to conclude

that

SRβ

(

φ
(2)
8,α,S·,··,1−··

[λ0, R]
)

≤ max

(

4

√

2λ0 log (3⌊log2 L⌋/α)
L

+ 2

√

2

√
2

β

R

L
,

2

√

2
√
2R log (3⌊log2 L⌋/α)

3L
, 4

(
2

3

)1/3

λ
1/6
0 R1/3

√

log (3⌊log2 L⌋/α)
L

, 16

√

R

βL
,

√
2R√
L

)

.

5.16 Proof of Proposition 18

Let L ≥ 2. For all k in
{
1, . . . , ⌈L3/4⌉

}
, let us define λk(t) = λ0+ δ

∗
1(τk,τk+ℓ](t) with τk =

k/L, and ℓ = λ0 logL/(2δ
∗2L). Then λk belongs to Sδ∗,··,···[λ0] for all k in

{
1, . . . , ⌈L3/4⌉

}

as soon as
⌈L3/4⌉
L

+
λ0 logL

2δ∗2L
< 1 , (141)
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and it satisfies
d22 (λk,S0[λ0] ) = λ0 logL/(2L) .

Considering a random variable J uniformly distributed on
{
1, . . . , ⌈L3/4⌉

}
and the dis-

tribution µ of λJ and using Lemma 42, one can see that it is enough to prove that
Eλ0 [(dPµ/dPλ0)

2] ≤ 1 + 4(1−α− β)2 to obtain the expected lower bound. By definition,
(dPµ/dPλ0)(N) = EJ [(dPλJ

/dPλ0)(N)], therefore

dPµ

dPλ0

(N) =
1

⌈L3/4⌉

⌈L3/4⌉
∑

k=1

exp

(

log

(

1 +
δ∗

λ0

)

N(τk, τk + ℓ]− Lδ∗ℓ

)

.

We then expand the square as

(
dPµ

dPλ0

)2

(N) =
1

⌈L3/4⌉2
⌈L3/4⌉
∑

k=1

exp

(

2 log

(

1 +
δ∗

λ0

)

N(τk, τk + ℓ]− 2Lδ∗ℓ

)

+
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

⌈L3/4⌉
∑

k′=k+1

exp

(

log

(

1 +
δ∗

λ0

)

N(τk, τk + ℓ]

+ log

(

1 +
δ∗

λ0

)

N(τk′ , τk′ + ℓ]− 2Lδ∗ℓ

)

.

For k in
{
1, . . . , ⌈L3/4⌉ − 1

}
, settingK0(k) = max

(
k′ ∈

{
k + 1, . . . , ⌈L3/4⌉

}
: τk′ < τk + ℓ

)
,

we may write

(
dPµ

dPλ0

)2

(N) =
1

⌈L3/4⌉2
⌈L3/4⌉
∑

k=1

exp

(

2 log

(

1 +
δ∗

λ0

)

N(τk, τk + ℓ]− 2Lδ∗ℓ

)

+
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

⌈L3/4⌉
∑

k′=K0(k)+1

exp

(

log

(

1 +
δ∗

λ0

)

N(τk, τk + ℓ]

+ log

(

1 +
δ∗

λ0

)

N(τk′ , τk′ + ℓ]− 2Lδ∗ℓ

)

+
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

K0(k)∑

k′=k+1

exp

(

log

(

1 +
δ∗

λ0

)

(N(τk, τk′] +N(τk′ , τk + ℓ])

+ log

(

1 +
δ∗

λ0

)

(N(τk′ , τk + ℓ] +N(τk + ℓ, τk′ + ℓ])− 2Lδ∗ℓ

)

.
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Under (H0 ), N is a homogeneous Poisson process with intensity λ0 with respect to the
measure Λ. Thus

Eλ0

[(
dPµ

dPλ0

)2

(N)

]

=

√
L

⌈L3/4⌉ +
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

(⌈L3/4⌉ −K0(k))

+
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

K0(k)∑

k′=k+1

exp

(
δ∗2L

λ0
(τk − τk′ + ℓ)

)

=

√
L

⌈L3/4⌉ +
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

(⌈L3/4⌉ −K0(k))

+
2
√
L

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

K0(k)∑

k′=k+1

exp

(

−δ
∗2

λ0
(k′ − k)

)

≤
√
L

⌈L3/4⌉ +
2

⌈L3/4⌉2
⌈L3/4⌉−1
∑

k=1

(⌈L3/4⌉ −K0(k))

+
2
√
L

⌈L3/4⌉
(

eδ
∗2/λ0 − 1

)−1

.

Since K0(k) ≥ k + 1 for all k in
{
1, . . . , ⌈L3/4⌉ − 1

}
, notice that

⌈L3/4⌉−1
∑

k=1

(⌈L3/4⌉ −K0(k)) ≤
⌈L3/4⌉−2
∑

k=1

k ≤ ⌈L3/4⌉2
2

,

hence

Eλ0

[(
dPµ

dPλ0

)2

(N)

]

≤ 1 +

√
L

⌈L3/4⌉
eδ

∗2/λ0 + 1

eδ∗2/λ0 − 1
.

Finally, assuming that

√
L

⌈L3/4⌉
eδ

∗2/λ0 + 1

eδ∗2/λ0 − 1
≤ 4(1− α− β)2 , (142)

we get

Eλ0

[(
dPµ

dPλ0

)2

(N)

]

≤ 1 + 4(1− α− β)2 .

Noticing that there exists L0(α, β, λ0, δ
∗) ≥ 2 such that for all L ≥ L0(α, β, λ0, δ

∗), both
assumptions (141) and (142) hold then allows to end the proof.

5.17 Proof of Proposition 21

The control of the first kind error rates of the two tests φ
(1)
9/10,α and φ

(2)
9/10,α is straightforward

using simple union bounds.

(i) Control of the second kind error rate of φ
(1)
9/10,α.
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Let λ in S
·,··,···[λ0, R]. We may fix δ in (−λ0, R− λ0] \ {0}, τ in (0, 1), ℓ in (0, 1− τ) such

that λ = λ0 + δ1(τ,τ+ℓ]. We assume by now that

d2 (λ,S0[λ0] ) ≥
√
3max

(√

4R log (2/uα))

3L
,

2

√

2λ0 log (2/uα)

L
+ 2

√

R

βL
,
R√
L

)

, (143)

and we prove the inequality Pλ

(

φ
(1)
9/10,α(N) = 0

)

≤ β.

Assume first that δ belongs to (0, R− λ0]. Noticing that

Pλ

(

φ
(1)
9/10,α(N) = 0

)

≤ inf
k∈{0,...,⌈L⌉−1}

inf
k′∈{1,...,⌈L⌉−k}

Pλ

(

S k
⌈L⌉ ,

k+k′
⌈L⌉

(N) ≤ s
λ0,

k
⌈L⌉ ,

k+k′
⌈L⌉

(1− uα )
)

,

one can see that it is enough to exhibit some k0 in {0, . . . , ⌈L⌉−1} and k′0 in {1, . . . , ⌈L⌉−
k0} satisfying

Pλ

(

S k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N) ≤ s

λ0,
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(1− uα )

)

≤ β .

We get from (143) that

d22 (λ,S0[λ0] ) ≥ 3R2/L > 3δ2/⌈L⌉ , (144)

which entails
ℓ > 3/⌈L⌉ and τ < 1− 3/⌈L⌉ . (145)

We therefore can define k0 = min(k ∈ {0, . . . , ⌈L⌉ − 1}, τ ≤ k/⌈L⌉) and k′0 = max(k′ ∈
{1, . . . , ⌈L⌉ − k0}, (k0 + k′)/⌈L⌉ ≤ τ + ℓ), so that τ ≤ k0/⌈L⌉ < (k0 + k′0)/⌈L⌉ ≤ τ + ℓ.
Since by definition k0/⌈L⌉ − τ < 1/⌈L⌉ and τ + ℓ− (k0 + k′0)/⌈L⌉ < 1/⌈L⌉, notice that

k′0
⌈L⌉ = ℓ−

((
k0
⌈L⌉ − τ

)

+

(

τ + ℓ− k0 + k′0
⌈L⌉

))

> ℓ− 2

⌈L⌉ .

This, combined with (145) and the expression of d22 (λ,S0[λ0] ) = δ2ℓ, implies that

δ2
k′0
⌈L⌉ > d22 (λ,S0[λ0] )−

2δ2

⌈L⌉ >
d22 (λ,S0[λ0] )

3
, (146)

which yields with (143)

δ

√

k′0
⌈L⌉ > max

(√

4δ log (2/uα))

3L
, 2

√

2λ0 log (2/uα)

L
+ 2

√

λ0 + δ

βL

)

. (147)

We then deduce on the one hand

δk′0
⌈L⌉ >

4 log (2/uα)

3L
,
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and on the other hand

δk′0
⌈L⌉ ≥

√

k′0
⌈L⌉

(

2

√

2λ0 log (2/uα)

L
+ 2

√

λ0 + δ

βL

)

,

which together can be synthesized in

δk′0
⌈L⌉ > 2max

(

2 log (2/uα)

3L
,

√

k′0
⌈L⌉

(√

2λ0 log (2/uα)

L
+

√

λ0 + δ

βL

))

.

Hence

δk′0L

⌈L⌉ >
2 log (2/uα)

3
+

√

2 log (2/uα) λ0k′0L

⌈L⌉ +

√

(λ0 + δ ) k′0L

β⌈L⌉ . (148)

From Lemma 43, we easily deduce that Eλ

[
Sk0/⌈L⌉,(k0+k′0)/⌈L⌉(N)

]
= δk′0L/⌈L⌉ and Varλ

(
Sk0/⌈L⌉,(k0+k′0)/⌈L⌉(N

(λ0 + δ)k′0L/⌈L⌉, and from Lemma 50

s
λ0,

k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(1− uα ) ≤

λ0k
′
0L

⌈L⌉ g−1

(
log (2/uα) ⌈L⌉

λ0k′0L

)

.

Using the upper bound (87), this leads to

s
λ0,

k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(1− uα ) ≤

2 log (2/uα)

3
+

√

2 log (2/uα) λ0k′0L

⌈L⌉ . (149)

The inequality (148) therefore entails

Eλ

[

S k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

> s
λ0,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(1− uα ) +

√

Varλ

(

S k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

)

/β . (150)

We conclude with (150) and the Bienayme-Chebyshev inequality:

Pλ

(

S k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ s
λ0,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(1− uα )

)

≤ Pλ

(

S k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)− Eλ

[

S k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

≤ −
√

Varλ

(

S k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

)

/β

)

≤ β .

Assume now that δ belongs to (−λ0, 0) and notice that we have here

Pλ

(

φ
(1)
9/10,α(N) = 0

)

≤ inf
k∈{0,...,⌈L⌉−1}

inf
k′∈{1,...,⌈L⌉−k}

Pλ

(

−S k
⌈L⌉ ,

k+k′
⌈L⌉

(N) ≤ s
λ0,

k
⌈L⌉ ,

k+k′
⌈L⌉

(1− uα )
)

,

The same choice of k0 and k′0 as in the previous case yields Eλ

[
−Sk0/⌈L⌉,(k0+k′0)/⌈L⌉(N)

]
=

|δ|k′0L/⌈L⌉ and Varλ
(
Sk0/⌈L⌉,(k0+k′0)/⌈L⌉(N)

)
= (λ0 + δ)k′0L/⌈L⌉, and we obtain

Pλ

(

−S k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ s
λ0,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(1− uα )

)

≤ β ,
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in the same way, notably replacing δ by |δ| (except when it is involved in λ0 + δ) in the
rest of the proof.

Coming back to the assumption (143) and the definition of uα, one can finally claim that

SRβ

(

φ
(1)
9/10,α,S·,··,···[λ0, R]

)

≤
√
3max

(√

4R log (⌈L⌉(⌈L⌉ + 1)/α)

3L
,

2

√

2λ0 log (⌈L⌉(⌈L⌉ + 1)/α)

L
+ 2

√

R

βL
,
R√
L

)

,

which ends the proof of (i).

(ii) Control of the second kind error rate of φ
(2)
9/10,α.

Let λ in S
·,··,···[λ0, R]. There exist δ in (−λ0, R− λ0] \ {0}, τ in (0, 1), ℓ in (0, 1− τ) such

that λ = λ0 + δ1(τ,τ+ℓ]. Let us assume now that

d2 (λ,S0[λ0] ) ≥ max

(

R

√

3

L
, 4

√

3λ0 log (3/uα )

L
+ 2

√

3
√
2R√
βL

,

2

√√
2R log (3/uα )

L
, 321/3(6λ0)

1/6R1/3

√

log (3/uα )

L
, 24

√

R

βL

)

, (151)

and prove that it entails Pλ

(

φ
(2)
9/10,α(N) = 0

)

≤ β.

As in (i), we begin by noticing that

Pλ

(

φ
(2)
9/10,α(N) = 0

)

≤ inf
k∈{0,...,⌈L⌉−1}

inf
k′∈{1,...,⌈L⌉−k}

Pλ

(

T k
⌈L⌉ ,

k+k′
⌈L⌉

(N) ≤ t
λ0,

k
⌈L⌉ ,

k+k′
⌈L⌉

(1− uα )
)

,

so it suffices to find k0 in {0, . . . , ⌈L⌉ − 1} and k′0 in {1, . . . , ⌈L⌉ − k0} satisfying

Pλ

(

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ t
λ0,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(1− uα )

)

≤ β ,

to obtain Pλ

(

φ
(2)
9/10,α(N) = 0

)

≤ β.

We get from (151) that d22 (λ,S0[λ0] ) ≥ 3R2/L > 3δ2/⌈L⌉ which entails

ℓ > 3/⌈L⌉ and τ < 1− 3/⌈L⌉ . (152)

We therefore can define k0 = min(k ∈ {0, . . . , ⌈L⌉ − 1}, τ ≤ k/⌈L⌉) and k′0 = max(k′ ∈
{1, . . . , ⌈L⌉ − k0}, (k0 + k′)/⌈L⌉ ≤ τ + ℓ), so that τ ≤ k0/⌈L⌉ < (k0 + k′0)/⌈L⌉ ≤ τ + ℓ.
As in (i) above, starting from the remark that k0/⌈L⌉ − τ < 1/⌈L⌉ and τ + ℓ − (k0 +
k′0)/⌈L⌉ < 1/⌈L⌉, which implies k′0/⌈L⌉ > ℓ−2/⌈L⌉, we obtain, combined with (152) and
the expression of d22 (λ,S0[λ0] ) = δ2ℓ:

δ2
k′0
⌈L⌉ > d22 (λ,S0[λ0] )−

2δ2

⌈L⌉ >
d22 (λ,S0[λ0] )

3
. (153)
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Moreover, we get from (151)

d2 (λ,S0[λ0] ) > max

(

4

√

3λ0 log (3/uα )

L
+ 2

√

3
√
2(λ0 + δ)√
βL

, 2

√√
2|δ| log (3/uα )

L
,

321/3(6λ0)
1/6|δ|1/3

√

log (3/uα )

L
, 24

√

λ0 + δ

βL

)

,

which entails

d22 (λ,S0[λ0] ) > max

(

48λ0 log (3/uα )

L
+

12
√
2(λ0 + δ)√
βL

,
32δ2 log2 (3/uα )

L2d22 (λ,S0[λ0] )
,

32
√
6λ0|δ| log3/2 (3/uα )
L3/2d2 (λ,S0[λ0] )

,
24
√
λ0 + δd2 (λ,S0[λ0] )√

βL

)

.

Then with (153),

d22 (λ,S0[λ0] ) > max

(

48λ0 log (3/uα )

L
+

12
√
2(λ0 + δ)√
βL

,
32 log2 (3/uα ) ⌈L⌉

3k′0L
2

,

32 log3/2 (3/uα )

L3/2

√

2λ0⌈L⌉
k′0

,
24
√
λ0 + δd2 (λ,S0[λ0] )√

βL

)

,

hence

d22 (λ,S0[λ0] )

3
>

4λ0 log (3/uα )

L
+

√
2(λ0 + δ)√

βL
+

8 log2 (3/uα ) ⌈L⌉
9k′0L

2
+

8 log3/2 (3/uα )

3L3/2

√

2λ0⌈L⌉
k′0

+
2
√
λ0 + δd2 (λ,S0[λ0] )√

βL

)

. (154)

Using Lemma 45, we compute

Eλ

[

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

= δ2
k′0
⌈L⌉ >

d22 (λ,S0[λ0] )

3
with (153) ,

and

Varλ

(

T k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

)

=
4(λ0 + δ)δ2

L

k′0
⌈L⌉ +

2(λ0 + δ)2

L2

≤ 4(λ0 + δ)d22 (λ,S0[λ0] )

L
+

2(λ0 + δ)2

L2
.

These computations combined with (154) leads to

Eλ

[

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

>
4λ0 log (3/uα )

L
+

8 log2 (3/uα ) ⌈L⌉
9k′0L

2
+

8 log3/2 (3/uα )

3L3/2

√

2λ0⌈L⌉
k′0

+

√

Varλ

(

T k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

)

/β . (155)
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Furthermore, Lemma 46 gives

t
λ0,

k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(1− uα) ≤

2λ20k
′
0

⌈L⌉

(

g−1

(
log (3/uα ) ⌈L⌉

λ0k′0L

))2

,

where g−1(x) ≤ 2x/3 +
√
2x for all x > 0 (see (87)), and then

t
λ0,

k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(1− uα) ≤

8 log2 (3/uα ) ⌈L⌉
9k′0L

2
+

8 log3/2 (3/uα )

3L3/2

√

2λ0⌈L⌉
k′0

+
4λ0 log (3/uα )

L
.

(156)
It follows from (155) and (156) that

Eλ

[

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

> t
λ0,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(1 − uα) +

√

Varλ

(

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

)

/β ,

whereby

Pλ

(

T k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N) ≤ t

λ0,
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(1− uα )

)

≤ Pλ

(

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ Eλ

[

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

−
√

Varλ

(

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

)

/β

)

.

The Bienayme-Chebyshev inequality allows to conclude that

Pλ

(

T k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ t
λ0,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(1− uα )

)

≤ β .

Coming back to the assumption (151) and the definition of uα, one can finally claim that

SRβ

(

φ
(2)
9/10,α,S·,··,···[λ0, R]

)

≤ max

(

4

√

3λ0 log (3⌈L⌉(⌈L⌉ + 1)/(2α))

L
+ 2

√

3
√
2R√
βL

,

2

√√
2R log (3⌈L⌉(⌈L⌉ + 1)/2α)

L
, 24

√

R

βL
, R

√

3

L
,

321/3(6λ0)
1/6R1/3

√

log (3⌈L⌉(⌈L⌉ + 1)/2α)

L

)

,

which ends the proof of (ii).

5.18 Proof of Proposition 24

By definition of bn,ℓ∗(u) as the u-quantile of a binomial distribution with parameters
(n, ℓ∗), the Bienayme-Chebyshev inequality easily gives

bn,ℓ∗(1− α) ≤ nℓ∗ +
√

nℓ∗(1− ℓ∗)/α ,
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for all n in N. It also gives for every n in N and every ε > 0, bn,ℓ∗(α) > nℓ∗−
√

nℓ∗(1− ℓ∗)/(α− ε).
Therefore, letting ε tending to 0,

bn,ℓ∗(α) ≥ nℓ∗ −
√

nℓ∗(1− ℓ∗)/α .

(i) Assume first that 0 < δ∗ < R and let λ in Su
δ∗,τ∗,ℓ∗ [R].

Setting I(λ) =
∫ 1

0
λ(t)dt ≤ R, the assumption (45) leads to

δ∗
√

ℓ∗(1− ℓ∗) ≥ 1√
L






√

2(λ0 + δ∗)

β(1− ℓ∗)
+ 2

√

I(λ)ℓ∗

β(1− ℓ∗)
+

√
√
√
√ 1

α

(

I(λ) + 2

√

I(λ)

βL

)



 .

Hence

δ∗ℓ∗(1− ℓ∗)L ≥
√

2(λ0 + δ∗)ℓ∗L

β
+ 2ℓ∗

√

I(λ)L

β
+

√
√
√
√ℓ∗(1− ℓ∗)

α

(

I(λ)L+ 2

√

I(λ)L

β

)

,

and since I(λ) = λ0 + δ∗ℓ∗,

(

I(λ)L+ 2

√

I(λ)L

β

)

ℓ∗ +

√
√
√
√ℓ∗(1− ℓ∗)

α

(

I(λ)L+ 2

√

I(λ)L

β

)

− (λ0 + δ∗)ℓ∗L ≤ −
√

2(λ0 + δ∗)ℓ∗L

β
. (157)

We get then the following inequalities

Pλ

(
φu,+
1,α (N) = 0

)

= Pλ (N(τ ∗, τ ∗ + ℓ∗] < bN1,ℓ∗(1− α))

= Pλ

(

N(τ ∗, τ ∗ + ℓ∗] < bN1,ℓ∗(1− α) , |N1 − I(λ)L| ≤ 2
√

I(λ)L/β
)

+ Pλ

(

N1 < I(λ)L− 2
√

I(λ)L/β
)

+ Pλ

(

N1 > I(λ)L+ 2
√

I(λ)L/β
)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] < bN1,ℓ∗(1− α) , |N1 − I(λ)L| ≤ 2
√

I(λ)L/β
)

+
β

2

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] < N1ℓ
∗ +

√

N1ℓ∗(1− ℓ∗)

α
, |N1 − I(λ)L| ≤ 2

√

I(λ)L/β

)

+
β

2

≤ Pλ




N(τ ∗, τ ∗ + ℓ∗] <

(

I(λ)L+ 2

√

I(λ)L

β

)

ℓ∗ +

√
√
√
√ℓ∗(1− ℓ∗)

α

(

I(λ)L+ 2

√

I(λ)L

β

)



 +

β

2

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗]− (λ0 + δ∗)ℓ∗L < −
√

2(λ0 + δ∗)ℓ∗L

β

)

+
β

2
(thanks to (157))

≤ β (Bienayme-Chebyshev) .

This concludes the proof of (i).
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(ii) Assume now that −R < δ∗ < 0 and let λ in Su
δ∗,τ∗,ℓ∗ [R]. The assumption (45) entails

|δ∗|
√

ℓ∗(1− ℓ∗) ≥ 1√
L






√

2(λ0 + δ∗)

β(1− ℓ∗)
+ 2

√

I(λ)ℓ∗

β(1− ℓ∗)
+

√
√
√
√ 1

α

(

I(λ) + 2

√

I(λ)

βL

)



 .

Hence

−δ∗ℓ∗(1− ℓ∗)L ≥
√

2(λ0 + δ∗)ℓ∗L

β
+ 2ℓ∗

√

I(λ)L

β
+

√
√
√
√ℓ∗(1− ℓ∗)

α

(

I(λ)L+ 2

√

I(λ)L

β

)

,

and then

(

I(λ)L− 2

√

I(λ)L

β

)

ℓ∗ −

√
√
√
√ℓ∗(1− ℓ∗)

α

(

I(λ)L+ 2

√

I(λ)L

β

)

− (λ0 + δ∗)ℓ∗L ≥
√

2(λ0 + δ∗)ℓ∗L

β
. (158)

We get then

Pλ

(
φu,−
1,α (N) = 0

)

= Pλ (N(τ ∗, τ ∗ + ℓ∗] > bN1,ℓ∗(α))

= Pλ

(

N(τ ∗, τ ∗ + ℓ∗] > bN1,ℓ∗(α) , |N1 − I(λ)L| ≤ 2
√

I(λ)L/β
)

+ Pλ

(

N1 < I(λ)L− 2
√

I(λ)L/β
)

+ Pλ

(

N1 > I(λ)L+ 2
√

I(λ)L/β
)

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] > bN1,ℓ∗(α) , |N1 − I(λ)L| ≤ 2
√

I(λ)L/β
)

+
β

2

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗] > N1ℓ
∗ −

√

N1ℓ∗(1− ℓ∗)

α
, |N1 − I(λ)L| ≤ 2

√

I(λ)L/β

)

+
β

2

≤ Pλ




N(τ ∗, τ ∗ + ℓ∗] >

(

I(λ)L− 2

√

I(λ)L

β

)

ℓ∗ −

√
√
√
√ℓ∗(1− ℓ∗)

α

(

I(λ)L+ 2

√

I(λ)L

β

)



+

β

2

≤ Pλ

(

N(τ ∗, τ ∗ + ℓ∗]− (λ0 + δ∗)ℓ∗L >

√

2(λ0 + δ∗)ℓ∗L

β

)

+
β

2
(thanks to (158))

≤ β (Bienayme-Chebyshev) .

This concludes the proof of (ii).

5.19 Proof of Proposition 25

Let us set λ0 = R/2 and introduce for r > 0 the Poisson intensity λr defined for all t in
[0, 1] by

λr(t) = λ0 +
r

√

ℓ∗(1− ℓ∗)
1(τ∗,τ∗+ℓ∗](t) .
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Notice that when 0 < r/
√

ℓ∗(1− ℓ∗) ≤ R/2, λr belongs to

(Su
·,τ∗,ℓ∗ [R])r = {λ ∈ Su

·,τ∗,ℓ∗ [R], d2(λ,S0[R]) ≥ r} ,

as defined in Lemma 41. We get from Lemma 1 and Lemma 43 that

Eλ0

[(
dPλ

dPλ0

)2

(N)

]

= exp

(
r2L

λ0(1− ℓ∗)

)

.

Choosing r = (λ0(1− ℓ∗) logCα,β/L)
1/2 then leads to Eλ0 [(dPλ/dPλ0)

2(N)] = Cα,β.

For L ≥ 1 such that 2 logCα,β/(ℓ
∗L) ≤ R, we obtain 0 < r/

√

ℓ∗(1− ℓ∗) ≤ R/2 whereby λr

belongs to (Su
·,τ∗,ℓ∗ [R])r and Lemma 42 allows us to conclude that ρ

((
Su
·,τ∗,ℓ∗ [R]

)

r

)

≥ β

and mSRα,β

(
Su
·,τ∗,ℓ∗ [R]

)
≥ r.

5.20 Proof of Proposition 26

The first statement of Proposition 26 is straightforward, just noticing that for every λ0 in
Su
0 [R]

Eλ0

[

φ
u(1/2)
2,α (N)

]

= Eλ0

[

Eλ0

[

φ
u(1/2)
2,α (N)

∣
∣
∣N1

]]

≤ α .

Let us assume that λ ∈ Su
·,τ∗,ℓ∗[R], that is there exists λ0 in (0, R) and δ in (−λ0, R−λ0]\

{0} satisfying λ(t) = λ0 + δ1(τ∗,τ∗+ℓ∗](t) for all t in [0, 1].

Let us first consider the test φ
u(1)
2,α (N) and assume

d2(λ,Su
0 [R]) ≥

1√
L





√

2R

β(1− ℓ∗)
+ 2

√

Rℓ∗

β(1− ℓ∗)
+

√
√
√
√ 1

α1 ∧ α2

(

R + 2

√

R

βL

)

 .

(159)

We may write φ
u(1)
2,α (N) = φu,−

1,α2
(N) ∨ φu,+

1,α1
(N) by definition of the tests φu,−

1,α and φu,+
1,α in

(42). We therefore obtain Pλ

(

φ
u(1)
2,α (N) = 0

)

= Pλ

(
φu,−
1,α2

(N) = 0, φu,+
1,α1

(N) = 0
)
.

From the assumption (159) and the same computations as in the proof of Proposition 24,
we get

Pλ

(
φu,−
1,α2

(N) = 0
)
≤ Pλ (N(τ ∗, τ ∗ + ℓ∗] > bN1,ℓ∗(α2)) ≤ β ,

when −λ0 < δ < 0 and

Pλ

(
φu,+
1,α1

(N) = 0
)
≤ Pλ (N(τ ∗, τ ∗ + ℓ∗] < bN1,ℓ∗(1− α1)) ≤ β ,

when 0 < δ ≤ R− λ0.
The result of Proposition 26 for the test φ

u(1)
2,α (N) follows with

C(α, β, R, ℓ∗) =

√

2R

β(1− ℓ∗)
+ 2

√

Rℓ∗

β(1− ℓ∗)
+

√
√
√
√ 1

α1 ∧ α2

(

R + 2

√

R

βL

)

.

Let us consider then the test φ
u(2)
2,α (N). We get from Lemma 52

t′n,τ∗,τ∗+ℓ∗(1− α) ≤ C

L2

(

5n log

(
2.77

α

)

+ 3max

(
1− ℓ∗

ℓ∗
,

ℓ∗

1− ℓ∗

)

log2
(
2.77

α

))

.
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Now, the Bienayme-Chebyshev inequality and the bound
∫ 1

0
λ(x)Ldx ≤ RL give

Pλ

(

N1 ≥ RL+

√

2RL

β

)

≤ β

2
.

This yields Pλ

(
t′N1,τ∗,τ∗+ℓ∗(1− α) ≥ C ′(α, β, R, ℓ∗, L)

)
≤ β/2 with

C ′(α, β, R, ℓ∗, L) = C

(

5R
log
(
2.77
α

)

L
+ 5

√

2R

β

log
(
2.77
α

)

L3/2

+ 3max

(
1− ℓ∗

ℓ∗
,

ℓ∗

1− ℓ∗

)
log2

(
2.77
α

)

L2

)

.

Noticing that

Pλ

(

φ
u(2)
2,α (N) = 0

)

≤ Pλ

(
T ′
τ∗,τ∗+ℓ∗(N) ≤ C ′(α, β, R, ℓ∗, L)

)

+ Pλ

(
t′N1,τ∗,τ∗+ℓ∗(1− α) > C ′(α, β, R, ℓ∗, L)

)
,

this enables to write

Pλ

(

φ
u(2)
2,α (N) = 0

)

≤ Pλ

(
T ′
τ∗,τ∗+ℓ∗(N) ≤ C ′(α, β, R, ℓ∗, L)

)
+
β

2
. (160)

Assume now

d2(λ,Su
0 [R]) ≥

1√
L
max

(

4

√

2R

β
,

(

4R√
β
+ 2LC ′(α, β, R, ℓ∗, L)

)1/2)

, (161)

which ensures

|δ|
√

ℓ∗(1− ℓ∗) ≥ 1√
L
max

(

4

√

2(λ0 + δ(1− ℓ∗))

β
,

(
4(λ0 + δ(1− ℓ∗))√

β
+ 2LC ′(α, β, R, ℓ∗, L)

)1/2
)

.

We get then

δ2ℓ∗(1− ℓ∗) ≥ 2max

(

2

√

2(λ0 + δ(1− ℓ∗))

βL
|δ|
√

ℓ∗(1− ℓ∗) ,

2(λ0 + δ(1− ℓ∗))√
βL

+ C ′(α, β, R, ℓ∗, L)

)

,

and using the simple facts that a+ b ≤ 2max(a, b) and
√
a + b ≤ √

a+
√
b for all a, b ≥ 0,

δ2ℓ∗(1− ℓ∗) ≥
√

2

β

(
4(λ0 + δ(1− ℓ∗))

L
δ2ℓ∗(1− ℓ∗) +

2(λ0 + δ(1− ℓ∗))2

L2

)

+ C ′(α, β, R, ℓ∗, L) . (162)
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Furthermore, Lemma 51 gives Eλ[T
′
τ∗,τ∗+ℓ∗(N)] = δ2ℓ∗(1− ℓ∗) and

Varλ
(
T ′
τ∗,τ∗+ℓ∗(N)

)
=

2(λ0 + δ(1− ℓ∗))2

L2
+

4(λ0 + δ(1− ℓ∗))

L
δ2ℓ∗(1− ℓ∗) ,

so (162) leads to

Eλ[T
′
τ∗,τ∗+ℓ∗(N)] ≥

√

2Varλ
(
T ′
τ∗,τ∗+ℓ∗(N)

)
/β + C ′(α, β, R, ℓ∗, L) .

Combined with (160), this inequality entails

Pλ

(

φ
u(2)
2,α (N) = 0

)

≤ Pλ

(

T ′
τ∗,τ∗+ℓ∗(N)− Eλ[T

′
τ∗,τ∗+ℓ∗(N)]

≤
√

2Varλ
(
T ′
τ∗,τ∗+ℓ∗(N)

)
/β

)

+
β

2
,

and the proof ends with the Bienayme-Chebyshev inequality, thus giving

Pλ

(

φ
u(2)
2,α (N) = 0

)

≤ β .

The result of Proposition 26 for the test φ
u(2)
2,α (N) then follows with

C(α, β, R, ℓ∗) = max

(

4

√

2R

β
,

(

4R√
β
+ 2C

(

5R log

(
2.77

α

)

+ 5

√

2R

β
log

(
2.77

α

)

+

3max

(
ℓ∗

1− ℓ∗
,
1− ℓ∗

ℓ∗

)

log2
(
2.77

α

)))1/2)

,

where the constant C is defined in Lemma 52.

5.21 Proof of Proposition 27

Start by remarking that the control of the first kind error rates of the three tests φ
u(1)+
3,α ,

φ
u(1)−
3,α and φ

u(2)
3/4,α is straightforward, considering the same conditioning trick as in the

beginning of the proof of Proposition 26 above.

Let us first address the statement of Proposition 27 for φ
u(1)+
3,α .

Let L ≥ 1 and let us consider λ = λ0 + δ∗1(τ,τ+ℓ∗] in Su
δ∗,··,ℓ∗ [R] with δ∗ > 0. Notice that

Pλ

(

φ
u(1)+
3,α (N) = 0

)

= Pλ

(

max
t∈[0,1−ℓ∗∧(1/2)]

N(t, t + ℓ∗ ∧ (1/2)] ≤ b+N1,ℓ∗∧(1/2)(1− α)

)

≤ Pλ

(

N(τ, τ + ℓ∗ ∧ (1/2)] ≤ b+N1,ℓ∗∧(1/2)(1− α)
)

.

One deduces from Lemma 53 that for every n in N \ {0},

b+n,ℓ∗∧(1/2)(1− α) ≤ (ℓ∗ ∧ (1/2))n+
n

2
g−1

(
32

n
log

(
320

α

))

,
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with g defined by (86), and then from the inequality g−1(x) ≤ 2x/3 +
√
2x for all x > 0

(see (87)),

b+n,ℓ∗∧(1/2)(1− α) ≤ (ℓ∗ ∧ (1/2))n+ 4

√

n log

(
320

α

)

+
32

3
log

(
320

α

)

.

Since b+0,ℓ∗∧(1/2)(1− α) = 0, the above control holds in fact for every n in N, whereby

b+N1,ℓ∗∧(1/2)(1− α) ≤ (ℓ∗ ∧ (1/2))N1 + 4

√

N1 log

(
320

α

)

+
32

3
log

(
320

α

)

.

Setting Iλ,L(β) = I(λ)L+
√

2I(λ)L
β

with I(λ) =
∫ 1

0
λ(t)dt, and

Q(α, β, ℓ, L) = ℓIλ,L(β) + 4

√

Iλ,L(β) log

(
320

α

)

+
32

3
log

(
320

α

)

, (163)

we obtain for ℓ in (0, 1/2]

Pλ

(

φ
u(1)+
3,α (N) = 0

)

≤ Pλ (N(τ, τ + ℓ∗ ∧ (1/2)] ≤ Q(α, β, ℓ∗ ∧ (1/2), L))

+ Pλ (N1 > Iλ,L(β)) .

Therefore

Pλ

(

φ
u(1)+
3,α (N) = 0

)

≤ Pλ (N(τ, τ + ℓ∗ ∧ (1/2)] ≤ Q(α, β, ℓ∗ ∧ (1/2), L)) +
β

2
, (164)

with

Q(α, β, ℓ∗ ∧ (1/2), L) ≤
(

ℓ∗ ∧ 1

2

)

(λ0 + δ∗ℓ∗)L+

(

ℓ∗ ∧ 1

2

)
√

2RL

β

+ 4

√
√
√
√

(

RL+

√

2RL

β

)

log

(
320

α

)

+
32

3
log

(
320

α

)

, (165)

since I(λ) = λ0 + δ∗ℓ∗ ≤ R. Let us now assume that

d2 (λ,Su
0 [R] ) = δ∗

√

ℓ∗(1− ℓ∗) ≥
√

ℓ∗

(1− ℓ∗)L

(√

2R

β
+

√

2R

β
(
ℓ∗ ∧ 1

2

)

+
4

ℓ∗ ∧ 1
2

√
√
√
√

(

R +

√

2R

βL

)

log

(
320

α

)

+
32 log (320/α)

3
(
ℓ∗ ∧ 1

2

)√
L

)

. (166)

Then

δ∗(1− ℓ∗)

(

ℓ∗ ∧ 1

2

)

L ≥
(

ℓ∗ ∧ 1

2

)
√

2RL

β
+

√

2RL

β

(

ℓ∗ ∧ 1

2

)

+ 4

√
√
√
√

(

RL+

√

2RL

β

)

log

(
320

α

)

+
32

3
log

(
320

α

)

.
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With (165) and using R ≥ λ0 + δ∗, this implies

δ∗(1− ℓ∗)

(

ℓ∗ ∧ 1

2

)

L ≥ Q(α, β, ℓ∗ ∧ (1/2), L) +

√

2 (λ0 + δ∗ )L

β

(

ℓ∗ ∧ 1

2

)

−
(

ℓ∗ ∧ 1

2

)

(λ0 + δ∗ℓ∗)L ,

and

Q(α, β, ℓ∗ ∧ (1/2), L) ≤
(

ℓ∗ ∧ 1

2

)

(λ0 + δ∗)L−
√

2 (λ0 + δ∗ )L

β

(

ℓ∗ ∧ 1

2

)

.

By simply using the exact computation of Eλ[N(τ, τ + ℓ∗ ∧ (1/2)]] and Varλ[N(τ, τ + ℓ∗ ∧
(1/2)]] which both equal (λ0+ δ∗) (ℓ∗ ∧ (1/2))L, one can notice that this is equivalent to

Q(α, β, ℓ∗ ∧ (1/2), L) ≤ Eλ[N(τ, τ + ℓ∗ ∧ (1/2)]]−
√

2Varλ[N(τ, τ + ℓ∗ ∧ (1/2)]]

β
.

Coming back to (164), one finally deduces from the Bienayme-Chebyshev inequality that

Pλ

(

φ
u(1)+
3,α (N) = 0

)

≤ Pλ (N(τ, τ + ℓ∗ ∧ (1/2)] ≤ Q(α, β, ℓ∗ ∧ (1/2), L)) +
β

2
≤ β .

Let us now address the statement of Proposition 27 for φ
u(1)−
3,α .

Let L ≥ 1 and let us consider again λ = λ0 + δ∗1(τ,τ+ℓ∗] in Su
δ∗,··,ℓ∗ [R], but with −λ0 <

δ∗ < 0 here. Notice first that

Pλ

(

φ
u(1)−
3,α (N) = 0

)

= Pλ

(

min
t∈[0,1−ℓ∗∧(1/2)]

N(t, t+ ℓ∗ ∧ (1/2)] ≥ b−N1,ℓ∗∧(1/2)(α)

)

≤ Pλ

(

N(τ, τ + ℓ∗ ∧ (1/2)] ≥ b−N1,ℓ∗∧(1/2)(α)
)

.

From Lemma 53, one deduces that

b−N1,ℓ∗∧(1/2)(α) ≥ N1 (ℓ
∗ ∧ (1/2))− 4

√

2N1 log

(
320

α

)

.

Setting for ℓ in (0, 1/2],

Q′(α, β, ℓ, L) = ℓI(λ)L− 2ℓ

√

I(λ)L

β
− 4

√
√
√
√I(λ)L+ 2

√

I(λ)L

β

√

2 log

(
320

α

)

, (167)

with I(λ) =
∫ 1

0
λ(t)dt as above, this entails

Pλ

(

φ
u(1)−
3,α (N) = 0

)

≤ Pλ (N(τ, τ + ℓ∗ ∧ (1/2)] ≥ Q′(α, β, ℓ∗ ∧ (1/2), L))

+ Pλ

(

N1 6∈
[

I(λ)L− 2
√

I(λ)L/β; I(λ)L+ 2
√

I(λ)L/β
])

.
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The Bienayme-Chebyshev inequality therefore leads to

Pλ

(

φ
u(1)−
3,α (N) = 0

)

≤ Pλ (N(τ, τ + ℓ∗ ∧ (1/2)] ≥ Q′(α, β, ℓ∗ ∧ (1/2), L)) +
β

2
, (168)

with

Q′(α, β, ℓ∗ ∧ (1/2), L) ≥
(

ℓ∗ ∧ 1

2

)

(λ0 + δ∗ℓ∗)L− 2

(

ℓ∗ ∧ 1

2

)
√

RL

β

− 4

√
√
√
√RL+ 2

√

RL

β

√

2 log

(
320

α

)

. (169)

since I(λ) = λ0 + δ∗ℓ∗ belongs to (0, R].
Let us furthermore assume that

d2 (λ,Su
0 [R] ) ≥

√

ℓ∗

(1− ℓ∗)L

(

2

√

R

β
+

√

2R

β
(
ℓ∗ ∧ 1

2

)

+
4

ℓ∗ ∧ 1
2

√
√
√
√R + 2

√

R

βL

√

2 log

(
320

α

))

. (170)

Then

|δ∗|(1− ℓ∗)

(

ℓ∗ ∧ 1

2

)

L ≥
√

2R (ℓ∗ ∧ (1/2))L

β
+ 2

(

ℓ∗ ∧ 1

2

)
√

RL

β

+ 4

√
√
√
√RL+ 2

√

RL

β

√

2 log

(
320

α

)

.

With (169) and the bound R ≥ λ0 + δ∗, this yields

|δ∗|(1− ℓ∗)

(

ℓ∗ ∧ 1

2

)

L ≥
√

2(λ0 + δ∗) (ℓ∗ ∧ (1/2))L

β
+

(

ℓ∗ ∧ 1

2

)

(λ0 + δ∗ℓ∗)L

−Q′(α, β, ℓ∗ ∧ (1/2), L) .

From Eλ[N(τ, τ + ℓ∗ ∧ (1/2)]] = Varλ[N(τ, τ + ℓ∗ ∧ (1/2)]] = (λ0 + δ∗) (ℓ∗ ∧ (1/2))L, we
then deduce that

Q′(α, β, ℓ∗ ∧ (1/2), L) ≥ Eλ[N(τ, τ + ℓ∗ ∧ (1/2)]] +

√

2Varλ[N(τ, τ + ℓ∗ ∧ (1/2)]]

β
.

Inserting this inequality in (168) and using the Bienayme-Chebyshev inequality again, we
finally obtain

Pλ

(

φ
u(1)−
3,α (N) = 0

)

≤ Pλ (N(τ, τ + ℓ∗ ∧ (1/2)] ≥ Q′(α, β, ℓ∗ ∧ (1/2), L)) +
β

2
≤ β .
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This concludes the proof for the test φ
u(1)−
3,α .

Let us finally turn to the test φ
u(2)
3/4,α.

Let L ≥ 1 and let us consider λ = λ0 + δ∗1(τ,τ+ℓ∗] in Su
δ∗,··,ℓ∗ [R] satisfying

d2(λ,Su
0 [R]) ≥ 2max

(

1√
L

(√

10CR log

(
2.77

uα

)

+ 2

√

R√
β

)

+
1

L3/4

√
√
√
√10C

√

2R

β
log

(
2.77

uα

)

+
1

L

√

6Cmax

(
ℓ∗

1− ℓ∗
,
1− ℓ∗

ℓ∗

)

log

(
2.77

uα

)

, 8

√

2R

βL

)

,

(171)

C being the constant defined in Lemma 52.
In order to prove Pλ(φ

u(2)
3/4,α(N) = 0) ≤ β, noticing first that

Pλ(φ
u(2)
3/4,α(N) = 0) ≤ inf

k∈{0,...,⌈(1−ℓ∗)M⌉−1}
Pλ

(

T ′
k
M

, k
M

+ℓ∗(N) ≤ t′
N1,

k
M

, k
M

+ℓ∗(1− uα)
)

,

we only need to exhibit some kτ in {0, ..., ⌈(1− ℓ∗)M⌉ − 1} such that

Pλ

(

T ′
kτ
M

, kτ
M

+ℓ∗
(N) ≤ t′

N1
kτ
M

, kτ
M

+ℓ∗
(1− uα)

)

≤ β .

Let

C ′(uα, β, R, ℓ
∗, L) = C

(

5R
log
(

2.77
uα

)

L
+ 5

√

2R

β

log
(

2.77
uα

)

L3/2

+ 3max

(
1− ℓ∗

ℓ∗
,

ℓ∗

1− ℓ∗

) log2
(

2.77
uα

)

L2

)

.

Since Lemma 52 with the Bienayme-Chebyshev inequality together entail

Pλ

(

t′
N1

kτ
M

, kτ
M

+ℓ∗
(1− uα) ≥ C ′(uα, β, R, ℓ

∗, L)
)

≤ β

2
,

kτ only needs to satisfy

Pλ

(

T ′
kτ
M

, kτ
M

+ℓ∗
(N) ≤ C ′(uα, β, R, ℓ

∗, L)
)

≤ β

2
. (172)

Using now the simple facts that (a+ b)2 ≥ a2 + b2 and a+ b ≤ 2max(a, b) for all a, b ≥ 0,
(171) entails

d22(λ,Su
0 [R]) ≥ 4C



5R
log
(

2.77
uα

)

L
+ 5

√

2R

β

log
(

2.77
uα

)

L3/2
+ 3max

(
ℓ∗

1− ℓ∗
,
1− ℓ∗

ℓ∗

) log2
(

2.77
uα

)

L2





+
8R

L
√
β
+

8
√
2R√
Lβ

|δ∗|
√

ℓ∗(1− ℓ∗) .
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Further using
√
a+ b ≤ √

a +
√
b for all a, b ≥ 0, by definition of C ′(uα, β, R, ℓ

∗, L), this
yields

δ∗2ℓ∗(1− ℓ∗)

4
≥ C ′(uα, β, R, ℓ

∗, L) +

√

4R2

L2β
+

8Rδ∗2ℓ∗(1− ℓ∗)

Lβ
. (173)

Let us set kτ = ⌊τM⌋. Since 0 < τ < 1−ℓ∗, kτ actually belongs to {0, ..., ⌈(1−ℓ∗)M⌉−1},
and since M = ⌈2/(ℓ∗(1 − ℓ∗))⌉, kτ/M ≤ τ < kτ/M + (ℓ∗(1 − ℓ∗)/2. Therefore, since we
get in particular kτ/M ≤ τ < kτ/M + ℓ∗, using Lemma 51 (equations (294) and (295))
with x = λ0kτ/M, y = λ0ℓ

∗+ δ(kτ/M + ℓ∗− τ) and z = λ0(1− ℓ∗−kτ/M)+ δ(τ −kτ/M),
we get on the one hand

Eλ

[

T ′
kτ
M

, kτ
M

+ℓ∗
(N)

]

= δ∗2
(ℓ∗(1− ℓ∗) + kτ/M − τ )2

ℓ∗(1− ℓ∗)
≥ δ∗2ℓ∗(1− ℓ∗)

4
,

and on the other hand

Varλ

[

T ′
kτ
M

, kτ
M

+ℓ∗
(N)

]

=
2

L2

(

λ0 + δ∗
(

1− ℓ∗ +

(

τ − kτ
M

)
2ℓ∗ − 1

ℓ∗(1− ℓ∗)

))2

+
4

L
δ∗2

1− ℓ∗

ℓ∗

(

ℓ∗ − τ − kτ/M

1− ℓ∗

)2(

λ0 + δ∗
(

1− ℓ∗ +

(

τ − kτ
M

)
2ℓ∗ − 1

ℓ∗(1− ℓ∗)

))

.

Using again the fact that τ − kτ/M < (ℓ∗(1− ℓ∗)/2, we obtain

0 ≤ 1− ℓ∗ +

(

τ − kτ
M

)
2ℓ∗ − 1

ℓ∗(1− ℓ∗)
≤ 1

for all ℓ∗ in (0, 1), leading to

Varλ

[

T ′
kτ
M

, kτ
M

+ℓ∗
(N)

]

≤
(

2

L2
(λ0 + δ∗)2 +

4

L
(λ0 + δ∗) δ∗2ℓ∗(1− ℓ∗)

)

1δ∗>0

+

(
2

L2
λ20 +

4

L
λ0δ

∗2ℓ∗(1− ℓ∗)

)

1δ∗<0 ,

whereby

Varλ

[

T ′
kτ
M

, kτ
M

+ℓ∗
(N)

]

≤ 2R2

L2
+

4R

L
δ∗2ℓ∗(1− ℓ∗) .

Combined with these computations, (173) leads to

Eλ

[

T ′
kτ
M

, kτ
M

+ℓ∗
(N)

]

≥ C ′(uα, β, R, ℓ
∗, L) +

√
√
√
√2Varλ

[

T ′
kτ
M

, kτ
M

+ℓ∗
(N)

]

β
.

The Bienayme-Chebyshev inequality finally allows to obtain (172), which ends the proof.

5.22 Proof of Proposition 29

As for the other Bonferroni type aggregated tests, the control of the first kind error rates
of the two tests φ

u(1)
4,α and φ

u(2)
3/4,α is straightforward using simple union bounds.
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(i) Control of the second kind error rate of φ
u(1)
4,α .

Let us first set λ in Su
·,··,ℓ∗ [R] such that λ = λ0+δ1(τ,τ+ℓ∗] with τ in (0, 1−ℓ∗), λ0 in (0, R],

δ in (0, R− λ0] or δ in (−λ0, 0), and

d2(λ,Su
0 [R]) ≥

√

ℓ∗

(1− ℓ∗)L

(

2

√

R

β
+

√

2R

β
(
ℓ∗ ∧ 1

2

)

+
4

ℓ∗ ∧ 1
2

√
√
√
√2

(

R + 2

√

R

βL

)

log

(
640

α

)

+
32 log (640/α)

3
(
ℓ∗ ∧ 1

2

)√
L

)

.

This condition ensures that (166) and (170) both hold, but with α replaced by α/2. Then,
it suffices to notice that if δ ∈ (0, R− λ0],

Pλ

(

φ
u(1)
4,α (N) = 0

)

≤ Pλ

(

φ
(1)+
3,α/2(N) = 0

)

,

and if δ in (−λ0, 0),

Pλ

(

φ
u(1)
4,α (N) = 0

)

≤ Pλ

(

φ
(1)−
3,α/2(N) = 0

)

.

Since (166) and (170) hold with α/2 instead of α, by using exactly the same arguments

as in the proof of Proposition 27, we obtain Pλ

(

φ
(1)+
3,α/2(N) = 0

)

≤ β when δ ∈ (0, R−λ0]
on the one hand, and Pλ

(

φ
(1)−
3,α/2(N) = 0

)

≤ β when δ in (−λ0, 0) on the other hand.

In any case, whatever the value of δ in (−λ0, R− λ0] \ {0}, one has

Pλ

(

φ
u(1)
4,α (N) = 0

)

≤ β .

(ii) Control of the second kind error rate of φ
u(2)
3/4,α.

Let us set now λ in Su
·,··,ℓ∗[R] such that λ = λ0+δ1(τ,τ+ℓ∗] with τ in (0, 1−ℓ∗), λ0 in (0, R],

δ in (−λ0, R− λ0] \ {0} as above, but with

d2(λ,Su
0 [R]) ≥ 2max

(

1√
L

(√

10CR log

(
2.77

uα

)

+ 2

√

R√
β

)

+
1

L3/4

√
√
√
√10C

√

2R

β
log

(
2.77

uα

)

+
1

L

√

6Cmax

(
ℓ∗

1− ℓ∗
,
1− ℓ∗

ℓ∗

)

log

(
2.77

uα

)

, 8

√

2R

βL

)

,

so that (171) holds.
Following the same arguments as in the proof of Proposition 27 (with the only change of
δ instead of δ∗), we prove that

Pλ

(

φ
u(2)
3/4,α(N) = 0

)

≤ β .
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This ends the proof, just taking for instance C(α, β, R, ℓ∗) as the maximum between

√

ℓ∗

(1− ℓ∗)

(

2

√

R

β
+

√

2R

β
(
ℓ∗ ∧ 1

2

)

+
4

ℓ∗ ∧ 1
2

√
√
√
√2

(

R + 2

√

R

β

)

log

(
640

α

)

+
32 log (640/α)

3
(
ℓ∗ ∧ 1

2

)

)

,

and

2max

((√

10CR log

(
2.77

uα

)

+ 2

√

R√
β

)

+

√
√
√
√10C

√

2R

β
log

(
2.77

uα

)

+

√

6Cmax

(
ℓ∗

1− ℓ∗
,
1− ℓ∗

ℓ∗

)

log

(
2.77

uα

)

, 8

√

2R

β

)

.

5.23 Proof of Proposition 30

Assume that

L >
((R− δ∗) ∧ R) logCα,β

2δ∗2τ ∗(1− τ ∗)
, (174)

and set

r =

√

((R− δ∗) ∧ R) logCα,β

2L
. (175)

The assumption (174) ensures

r2 < δ∗2τ ∗(1− τ ∗) ≤ δ∗2/4 , (176)

which enables us to define λr for t in (0, 1) by

λr(t) = λ0 + δ∗1(τ∗,τ∗+ℓr ](t) with λ0 = ((R− δ∗) ∧R) and ℓr =
1

2

(

1−
√
δ∗2 − 4r2

|δ∗|

)

.

First, ℓr belongs to (0, 1 − τ ∗) for all τ ∗ in (0, 1). Indeed, if τ ∗ ≤ 1/2 the result is
straightforward by definition of ℓr and if τ ∗ > 1/2 the result follows from (176).
Moreover, the definition of ℓr implies δ∗2ℓr(1 − ℓr) = r2 and ensures that λr belongs
to (Su

δ∗,τ∗,···[R])r. Furthermore, we get from (174) that L > (2λ0 logCα,β)/δ
∗2 and then

1− λ0 logCα,β/(Lδ
∗2) > 1/2, which leads to

r2 <
λ0 logCα,β

L

(

1− λ0 logCα,β

Lδ∗2

)

=
δ∗2

4

(

1−
(

1− 2λ0 logCα,β

Lδ∗2

)2
)

,

hence δ∗2ℓr < λ0 logCα,β/L. We then obtain from Lemma 1 and Lemma 43

Eλ0

[(
dPλr

dPλ0

)2

(N)

]

= exp

(
Lδ∗2ℓr
λ0

)

< Cα,β .

Lemmas 41 and 42 then entail ρ
(
(Su

δ∗,τ∗,···[R])r
)
≥ β and mSRα,β(Su

δ∗,τ∗,···[R]) ≥ r.
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5.24 Proof of Proposition 31

The control of the first kind error rate is straightforward, and even more strong by using
the same conditioning trick as in the proof of Proposition 26: in fact, for every λ0 in Su

0 [R]

and n in N, Eλ0

[

φu
5,α(N)

∣
∣
∣N1 = n

]

= Pλ0

(

φu
5,α(N) = 1

∣
∣
∣N1 = n

)

≤ α, so

∀λ0 ∈ Su
0 [R], Pλ0

(
φu
5,α(N) = 1

)
= Eλ0

[

Pλ0

(

φu
5,α(N)

∣
∣
∣N1

)]

≤ α .

Let us turn to the control of the second kind error rate of φu
5,α.

Set λ in Su
δ∗,τ∗,···[R] such that λ = λ0 + δ∗1(τ∗,τ∗+ℓ] with λ0 in (−δ∗ ∨ 0, (R− δ∗) ∧R] and

ℓ in (0, 1− τ ∗), and satisfying

d2(λ,S0[R]) ≥
2√
L
max

(
√

|δ∗|Q(2R, δ∗, α), 2
√

2R

β
,

|δ∗|
2
√
2βR

)

, (177)

where Q(2R, δ∗, α) is the quantile upper bound defined by Lemma 54, and which does
not depend on L. The condition (177) ensures that |δ∗|

√

ℓ(1− ℓ) ≥ |δ∗|/√2βRL, that is,
using the fact that ℓ(1− ℓ) ≤ 1/4,

L ≥ 2

βR
. (178)

Setting I(λ) =
∫ 1

0
λ(t)dt as in the proof of Proposition 27, with I(λ) ≤ R (and therefore

obviously 2R− I(λ) ≥ R), since (178) also entails L ≥ 2R/(βR2) we obtain

L ≥ 2I(λ)

(2R− I(λ))2β
. (179)

Notice now that (179) and the Bienayme-Chebyshev inequality yield

Pλ(N1 > 2RL) = Pλ

(
N1 − I(λ)L > L(2R− I(λ))

)

≤ Pλ

(

N1 − I(λ)L >

√

2I(λ)L

β

)

≤ β

2
.

This leads to

Pλ

(
φu
5,α(N) = 0

)
≤ Pλ

(

sup
ℓ′∈(0,1−τ∗)

S ′
δ∗,τ∗,τ∗+ℓ′(N) ≤ s

′+
N1,δ∗,τ∗,L(1− α), N1 ≤ 2RL

)

+
β

2
,

and Lemma 54 allows to write that

Pλ

(
φu
5,α(N) = 0

)
≤ Pλ

(

sup
ℓ′∈(0,1−τ∗)

S ′
δ∗,τ∗,τ∗+ℓ′(N) ≤ Q(2R, δ∗, α)

)

+
β

2

≤ Pλ

(
S ′
δ∗,τ∗,τ∗+ℓ(N) ≤ Q(2R, δ∗, α)

)
+
β

2
.

Moreover, the assumption (177) implies

|δ∗|
√

ℓ(1− ℓ) ≥ 2√
L
max

(
√

|δ∗|Q(2R, δ∗, α), 2
√

2R

β

)

,
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which entails

|δ∗|
2
ℓ(1− ℓ)L ≥ 2max

(

Q(2R, δ∗, α),

√

2Rℓ(1− ℓ)L

β

)

,

hence

|δ∗|
2
ℓ(1− ℓ)L ≥ 2max

(

Q(2R, δ∗, α),

√

2(λ0 + δ∗(1− ℓ))ℓ(1− ℓ)L

β

)

.

Noticing that Eλ[S
′
δ∗,τ∗,τ∗+ℓ(N)] = |δ∗|ℓ(1− ℓ)L/2 and Varλ(S

′
δ∗,τ∗,τ∗+ℓ(N)) = (λ0+ δ

∗(1−
ℓ))ℓ(1− ℓ)L, we get

Eλ[S
′
δ∗,τ∗,τ∗+ℓ(N)] ≥ Q(2R, δ∗, α) +

√

2Var(S ′
δ∗,τ∗,τ∗+ℓ(N))

β
. (180)

Therefore,

Pλ

(
φu
5,α(N) = 0

)
≤ Pλ

(
S ′
δ∗,τ∗,τ∗+ℓ(N) ≤ Q(2R, δ∗, α)

)
+
β

2

≤ Pλ



S ′
δ∗,τ∗,τ∗+ℓ(N)− Eλ[S

′
δ∗,τ∗,τ∗+ℓ(N)] ≤ −

√

2Var(S ′
δ∗,τ∗,τ∗+ℓ(N))

β



+
β

2

≤ β ,

with a last line simply following from the Bienayme-Chebyshev inequality.

5.25 Proof of Proposition 32

Assume that L ≥ 3 and α+β < 1/2, and set λ0 = R/2. As in the proof of Proposition 11,
we consider C ′

α,β = 4(1− α − β)2, Kα,β,L = ⌈(log2 L)/C ′
α,β⌉, and for k in {1, . . . , Kα,β,L},

λk = λ0+ δk1(τ∗,τ∗+ℓk] with ℓk = (1− τ ∗)/2k and δk = (λ0 log logL/(ℓkL))
1/2. Then, for all

k in {1, . . . , Kα,β,L}, noticing that ℓk < 1− τ ∗, we get d2 (λk,S0[R] ) >
√

λ0τ ∗ log logL/L.
Furthermore, assuming that

log logL

L1+1/C′
α,β

≤ R(1− τ ∗)

4
, (181)

one obtains that λk belongs to Su
·,τ∗,···[R].

Recall also that for all k in {1, . . . , Kα,β,L}, Pλk
denotes the distribution of a Poisson

process with intensity λk with respect to the measure Λ, and consider κ, a random
variable with uniform distribution on {1, . . . , Kα,β,L}, which allows to define the prob-
ability distribution µ of λκ. From Lemma 42, we know that it is enough to prove
Eλ0 [(dPµ/dPλ0)

2] ≤ 1+C ′
α,β to conclude that mSRα,β(Su

·,τ∗,···[R]) ≥
√

Rτ ∗ log logL/(2L).

The same calculation as in the proof of Proposition 11 (see (114)) gives for η such that
0 < η < 1− 1/

√
2,

Eλ0

[(
dPµ

dPλ0

)2
]

≤ C ′
α,β log 2 +

2C ′
α,β log 2

logL
(logL)

η+ 1√
2 + exp

(
log logL

2(logL)η/2

)

.
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If we assume now that

exp

(
log logL

2(logL)η/2

)

+
2C ′

α,β log 2

(logL)
1−η− 1√

2

≤ 1 + (1− log 2)C ′
α,β , (182)

we finally obtain the expected result

Eλ0

[(
dPµ

dPλ0

)2
]

≤ 1 + C ′
α,β .

To end the proof, it remains to notice that there exists L0(α, β, R, τ
∗) ≥ 3 such that for

all L ≥ L0(α, β, R, τ
∗), both assumptions (181) and (182) hold.

5.26 Proof of Proposition 33

As for all our Bonferroni type aggregated tests, the control of the first kind error rates
of the two tests φ

u(1)
6,α and φ

u(2)
6,α is straightforward using simple union bounds and the

conditioning trick of the above proofs for upper bounds.

(i) Control of the second kind error rate of φ
u(1)
6,α .

Let λ in Su
·,τ∗,···[R] be such that λ = λ0+δ1(τ∗,τ∗+ℓ] with λ0 in (0, R], δ in (−λ0, R−λ0]\{0}

and ℓ in (0, 1− τ ∗) and assume that

d2(λ,Su
0 [R]) ≥ 2max

(√

R

3

√

1 + τ ∗

τ ∗

√

log (2/uα)

L
,

1 + τ ∗

τ ∗






√

2 log (2/uα)

L

√
√
√
√R +

√

2R

βL
+

√

2R

βL




 ,

√
1− τ ∗R√

2L

)

. (183)

Let us prove the inequality Pλ(φ
u(1)
6,α (N) = 0) ≤ β. Applying Lemma 43, we get for all k

in {1, . . . , ⌊log2 L⌋} and ℓτ∗,k = (1− τ ∗ ) 2−k

Eλ[S
′
τ∗,τ∗+ℓτ∗,k

(N)] = δ(ℓτ∗,k ∧ ℓ)(1− ℓτ∗,k ∨ ℓ)L , (184)

and

Varλ

[

S ′
τ∗,τ∗+ℓτ∗,k

(N)
]

=

{

(λ0(1− ℓτ∗,k) + δ(1− 2ℓτ∗,k + ℓτ∗,kℓ))ℓτ∗,kL if ℓτ∗,k ≤ ℓ ,

(λ0ℓτ∗,k + δℓ(1− ℓτ∗,k))(1− ℓτ∗,k)L if ℓτ∗,k ≥ ℓ .

(185)
Assume first that δ belongs to (0, R− λ0]. Noticing that

Pλ(φ
u(1)
6,α (N) = 0) ≤ inf

k∈{1,...,⌊log2 L⌋}
Pλ

(

S ′
τ∗,τ∗+ℓτ∗,k

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,k
(1− uα )

)

,

one can see it is enough to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ

(

S ′
τ∗,τ∗+ℓτ∗,k

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,k
(1− uα )

)

≤ β .
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Under the condition (183), we have d22(λ,Su
0 [R]) ≥ 2R2(1 − τ ∗)/L which ensures the

inequality ℓ(1− ℓ) > 2(1− τ ∗)/L > (1− τ ∗)2−⌊log2 L⌋ and then

1− τ ∗ > ℓ >
1− τ ∗

2⌊log2 L⌋
. (186)

From (186), we deduce the existence of kℓ in {1, . . . , ⌊log2 L⌋} satisfying (1 − τ ∗)2−kℓ ≤
ℓ < (1− τ ∗)2−kℓ+1, that is

ℓτ∗,kℓ ≤ ℓ < ℓτ∗,kℓ−1 . (187)

Then
ℓτ∗,kℓ

1− ℓτ∗,kℓ
≤ ℓ

1− ℓ
<

ℓτ∗,kℓ−1

1− ℓτ∗,kℓ−1

,

and
ℓτ∗,kℓ

1− ℓτ∗,kℓ
=

ℓτ∗,kℓ−1

1− ℓτ∗,kℓ−1
︸ ︷︷ ︸

> ℓ
1−ℓ

1− ℓτ∗,kℓ−1

1− ℓτ∗,kℓ

ℓτ∗,kℓ
ℓτ∗,kℓ−1
︸ ︷︷ ︸

= 1
2

>
ℓ

2(1− ℓ)

1− ℓτ∗,kℓ−1

1− ℓτ∗,kℓ
.

But
1− ℓτ∗,kℓ−1

1− ℓτ∗,kℓ
= 1− 1− τ ∗

2kℓ − (1− τ ∗)
≥ 2

τ ∗

1 + τ ∗
,

so we finally obtain
ℓτ∗,kℓ

1− ℓτ∗,kℓ
>

τ ∗

1 + τ ∗
ℓ

1− ℓ
. (188)

The condition (183) then gives on the one hand

δ
√

ℓ(1− ℓ) ≥ 2√
3

√
R

√

1 + τ ∗

τ ∗

√

log (2/uα)

L
,

and using the fact that δ < R

δℓ(1− ℓ)
τ ∗

1 + τ ∗
≥ 4 log (2/uα)

3L
,

which entails with (187) and (188)

δℓτ∗,kℓ(1− ℓ) ≥ 4 log (2/uα)

3L
. (189)

On the other hand, (183) yields

δ
√

ℓ(1− ℓ) ≥ 2
1 + τ ∗

τ ∗






√

2 log (2/uα)

L

√
√
√
√R +

√

2R

βL
+

√

2R

βL




 ,

which entails with (187) and (188)

δ(1− ℓ)

√

ℓτ∗,kℓ
1− ℓτ∗,kℓ

≥ 2






√

2 log (2/uα)

L

√
√
√
√R +

√

2R

βL
+

√

2R

βL




 ,
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whereby

δℓτ∗,kℓ(1− ℓ) ≥ 2
√

ℓτ∗,kℓ(1− ℓτ∗,kℓ)






√

2 log (2/uα)

L

√
√
√
√R +

√

2R

βL
+

√

2R

βL




 . (190)

Thus, with (189) and (190) the condition (183) leads to

δℓτ∗,kℓ(1−ℓ) ≥ max





4 log (2/uα)

3L
, 2
√

ℓτ∗,kℓ(1− ℓτ∗,kℓ)






√

2 log (2/uα)

L

√
√
√
√R +

√

2R

βL
+

√

2R

βL









 .

Using the fact that 2max(a, b) ≥ a + b for all a, b ≥ 0, we get

δℓτ∗,kℓ(1− ℓ)L ≥ 2

3
log

(
2

uα

)

+
√

ℓτ∗,kℓ(1− ℓτ∗,kℓ)






√

2 log

(
2

uα

)
√
√
√
√LI(λ) +

√

2LI(λ)

β
+

√

2RL

β




 , (191)

where we recall that I(λ) stands for
∫ 1

0
λ(t)dt.

Moreover, with (187), the equations (184) and (185) lead toEλ[S
′
τ∗,τ∗+ℓτ∗,kℓ

(N)] = δℓτ∗,kℓ(1−
ℓ)L and Varλ

[

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

= (λ0(1− ℓτ∗,k) + δ(1− 2ℓτ∗,k + ℓτ∗,kℓ))ℓτ∗,kL ≤ ℓτ∗,kℓ(1−
ℓτ∗,kℓ)RL. So (191) entails

Eλ[S
′
τ∗,τ∗+ℓτ∗,kℓ

(N)] ≥ 2

3
log

(
2

uα

)

+
√

ℓτ∗,kℓ(1− ℓτ∗,kℓ)

√

2 log

(
2

uα

)
√
√
√
√LI(λ) +

√

2LI(λ)

β

+

√

2Varλ

[

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

/β . (192)

The total probability formula then ensures that

Pλ

(

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα )

)

≤Pλ

(

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ Eλ[S
′
τ∗,τ∗+ℓτ∗,kℓ

(N)]−
√

2Varλ

[

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

/β

)

+ Pλ




s

′
N1,τ∗,τ∗+ℓτ∗,kℓ

(1− uα ) >
2

3
log

(
2

uα

)

+
√

ℓτ∗,kℓ(1− ℓτ∗,kℓ)

√

2 log

(
2

uα

)
√
√
√
√LI(λ) +

√

2LI(λ)

β




 .

From the Bienayme-Chebyshev inequality, we deduce on the one hand that the first right
hand side term is upper bounded by β/2, i.e.

Pλ

(

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ Eλ[S
′
τ∗,τ∗+ℓτ∗,kℓ

(N)]−
√

2Varλ

[

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

/β

)

≤ β

2
,
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and on the other hand that

Pλ

(

N1 ≥ LI(λ) +

√

2LI(λ)

β

)

≤ β

2
.

This last inequality, combined with Lemma 55, which follows from a simple application
of Bennett’s inequality, leads to

Pλ

(

s′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα ) >

2

3
log

(
2

uα

)

+
√

ℓτ∗,kℓ(1− ℓτ∗,kℓ)

√

2 log

(
2

uα

)
√
√
√
√LI(λ) +

√

2LI(λ)

β

)

≤ β

2
.

We therefore conclude that

Pλ

(

S ′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα )

)

≤ β ,

so, as expected, Pλ(φ
u(1)
6,α (N) = 0) ≤ β.

Assume now that δ belongs to (−λ0, 0) and notice that

Pλ(φ
u(1)
6,α (N) = 0) ≤ inf

k∈{1,...,⌊log2 L⌋}
Pλ

(

−S ′
τ∗,τ∗+ℓτ∗,k

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,k
(1− uα )

)

.

One can see it is enough to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ

(

−S ′
τ∗,τ∗+ℓτ∗,k

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,k
(1− uα )

)

≤ β .

The same choice of kℓ as above leads, with (184) and (185), to Eλ[−S ′
τ∗,τ∗+ℓτ∗,kℓ

(N)] =

|δ|ℓτ∗,kℓ(1 − ℓ)L and Varλ[−S ′
τ∗,τ∗+ℓτ∗,kℓ

(N)] ≤ ℓτ∗,kℓ(1− ℓτ∗,kℓ)λ0L ≤ ℓτ∗,kℓ(1 − ℓτ∗,kℓ)RL.

Using very similar arguments and calculations (mainly replacing δ by |δ|), we also conclude
that condition (183) implies

Pλ

(

−S ′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ s′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα )

)

≤ β ,

and Pλ(φ
u(1)
6,α (N) = 0) ≤ β.

Since log (2/uα) = log(2⌊log2 L⌋/α) and L ≥ 3, there exists C(α, β, R, τ ∗) > 0 such that

2max

(√

R

3

√

1 + τ ∗

τ ∗

√

log (2/uα)

L
,
1 + τ ∗

τ ∗

(√

2 log (2/uα)

L

√
√
√
√R +

√

2R

βL
+

√

2R

βL

)

,

√
1− τ ∗R√

2L

)

≤ C(α, β, R, τ ∗)

√

log logL

L
,

which allows to conclude the proof.

(ii) Control of the second kind error rate of φ
u(2)
6,α .
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Let λ in Su
·,τ∗,···[R] such that λ = λ0+ δ1(τ∗,τ∗+ℓ] with λ0 in (0, R], δ in (−λ0, R−λ0] \ {0}

and ℓ in (0, 1− τ ∗) and assume that

d2(λ,Su
0 [R]) ≥

√

1 + τ ∗

τ ∗
max

(
√
2C

(
√
5R

√

log (2.77/uα)

L
+
√
5

(
2R

β

)1/4
√

log (2.77/uα)

L3/4

+

√
3 log (2.77/uα)

2
√
2L log logL

)

+
2
√
R

√

L
√
β
, 4

√

1 + τ ∗

τ ∗

√

2R

Lβ
, 4R

√
τ ∗

1 + τ ∗

√

log logL

L

)

, (193)

where C is the constant defined in Lemma 52, and let us prove the inequality Pλ(φ
u(2)
6,α (N) =

0) ≤ β.
Noticing that

Pλ(φ
u(2)
6,α (N) = 0) ≤ inf

k∈{1,...,⌊log2 L⌋}
Pλ

(

T ′
τ∗,τ∗+ℓτ∗,k

(N) ≤ t′N1,τ∗,τ∗+ℓτ∗,k
(1− uα )

)

,

one only needs to exhibit some k in {1, . . . , ⌊log2 L⌋} satisfying

Pλ

(

T ′
τ∗,τ∗+ℓτ∗,k

(N) ≤ t′N1,τ∗,τ∗+ℓτ∗,k
(1− uα )

)

≤ β ,

in order to prove the result.
Under the condition (193), we first obtain d22(λ,Su

0 [R]) ≥ 16R2(log logL)/L which ensures
ℓ(1− ℓ) > 16(log logL)/L as well as

ℓ >
16 log logL

L
and 1− ℓ >

16 log logL

L
. (194)

Moreover, since 16(log logL)/L > 2−⌊log2 L⌋ > (1− τ ∗)2−⌊log2 L⌋, we obtain

1− τ ∗ > ℓ >
1− τ ∗

2⌊log2 L⌋
. (195)

From (195), as in the above part (i), we deduce that there exists kℓ in {1, . . . , ⌊log2 L⌋}
satisfying (1− τ ∗)2−kℓ ≤ ℓ < (1− τ ∗)2−kℓ+1, that is

ℓτ∗,kℓ ≤ ℓ < ℓτ∗,kℓ−1 . (196)

As above again, this leads to the same inequality as (188), i.e.

ℓτ∗,kℓ
1− ℓτ∗,kℓ

>
τ ∗

1 + τ ∗
ℓ

1− ℓ
. (197)

Applying Lemma 51, we get with (196)

Eλ[T
′
τ∗,τ∗+ℓτ∗,kℓ

(N)] = δ2(1− ℓ)2
ℓτ∗,kℓ

1− ℓτ∗,kℓ
, (198)

and

Varλ

[

T ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

=
2

L2

(

λ0 + δ

(

1− (1− ℓ)
ℓτ∗,kℓ

1− ℓτ∗,kℓ

))2

+
4

L
δ2(1− ℓ)2

ℓτ∗,kℓ
1− ℓτ∗,kℓ

(

λ0 + δ

(

1− (1− ℓ)
ℓτ∗,kℓ

1− ℓτ∗,kℓ

))

. (199)
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Using (197),

Eλ[T
′
τ∗,τ∗+ℓτ∗,kℓ

(N)] > δ2ℓ(1− ℓ)
τ ∗

1 + τ ∗
, (200)

and with (196) we obtain

Varλ

[

T ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

≤ 2R2

L2
+

4R

L
δ2ℓ(1− ℓ) . (201)

On the one hand, using a2 + b2 ≤ (a + b)2 for a, b ≥ 0, the condition (193) ensures that

δ2ℓ(1−ℓ) ≥ 2
1 + τ ∗

τ ∗

(

C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2
+

3 log2 (2.77/uα)

8L log logL

)

+
2R

L
√
β

)

,

and on the other hand

δ2ℓ(1− ℓ) ≥ 2
1 + τ ∗

τ ∗

(

2

√

2R

Lβ
|δ|
√

ℓ(1− ℓ)

)

,

hence

δ2ℓ(1−ℓ) ≥ 2
1 + τ ∗

τ ∗
max

(

C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2
+

3 log2 (2.77/uα)

8L log logL

)

+
2R

L
√
β
, 2

√

2R

Lβ
|δ|
√

ℓ(1− ℓ)

)

.

Finally, with the inequality a+ b ≤ 2max(a, b), we get

δ2ℓ(1−ℓ) τ ∗

1 + τ ∗
≥ C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2
+

3 log2 (2.77/uα)

8L log logL

)

+
2R

L
√
β

+ 2

√

2R

Lβ
|δ|
√

ℓ(1− ℓ) ,

that is, with (200), (201) and using
√
a + b ≤ √

a+
√
b,

Eλ[T
′
τ∗,τ∗+ℓτ∗,kℓ

(N)] ≥ C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2
+

3 log2 (2.77/uα)

8L log logL

)

+

√

2Varλ

[

T ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

/β . (202)

Furthermore, (194) and (196) lead to

1

ℓτ∗,kℓ
<

L

8 log logL
and

1

1− ℓτ∗,kℓ
<

L

16 log logL
,

and therefore

max

(
1− ℓτ∗,kℓ
ℓτ∗,kℓ

,
ℓτ∗,kℓ

1− ℓτ∗,kℓ

)

<
L

8 log logL
. (203)
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We set now

Q(α, β, L,R, ℓτ∗,kℓ) = C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2

+ 3max

(
ℓτ∗,kℓ

1− ℓτ∗,kℓ
,
1− ℓτ∗,kℓ
ℓτ∗,kℓ

)
log2 (2.77/uα)

L2

)

,

and with (203), the condition (202) ensures that

Eλ[T
′
τ∗,τ∗+ℓτ∗,kℓ

(N)] ≥ Q(α, β, L,R, kℓ) +

√

2Varλ

[

T ′
τ∗,τ∗+ℓτ∗,kℓ

(N)
]

/β . (204)

The Bienayme-Chebyshev inequality leads to

Pλ

(

N1 ≥ LI(λ) +

√

2LI(λ)

β

)

≤ β

2
,

and combined with Lemma 52 and the fact that I(λ) ≤ R, we obtain

Pλ

(

t′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα) ≥ Q(α, β, L,R, ℓτ∗,kℓ)

)

≤ β

2
. (205)

As a consequence,

Pλ(T
′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ t′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα))

≤ Pλ

(

T ′
τ∗,τ∗+ℓτ∗,kℓ

(N) < Q(α, β, L,R, ℓτ∗,kℓ)
)

+
β

2
,

whereby we finally obtain with (204) and the Bienayme-Chebyshev inequality

Pλ(T
′
τ∗,τ∗+ℓτ∗,kℓ

(N) ≤ t′N1,τ∗,τ∗+ℓτ∗,kℓ
(1− uα)) ≤ β .

The proof is ended by noticing that there exists C(α, β, R, τ ∗) > 0 such that

√

1 + τ ∗

τ ∗
max

(
√
2C

(
√
5R

√

log (2.77/uα)

L
+
√
5

(
2R

β

)1/4
√

log (2.77/uα)

L3/4
+

√
3 log (2.77/uα)

2
√
2L log logL

)

+
2
√
R

β1/4

1√
L
, 4

√

1 + τ ∗

τ ∗

√

2R

β

1√
L
, 4R

√
τ ∗

1 + τ ∗

√

log logL

L

)

≤ C(α, β, R, τ ∗)

√

log logL

L
,

as log (2.77/uα) = log(2.77⌊log2 L⌋/α) and L ≥ 3.

5.27 Proof of Proposition 34

Assume that

L >
2((R− δ∗) ∧R) logCα,β

δ∗2
, (206)
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and set

r =

√

((R− δ∗) ∧ R) logCα,β

2L
. (207)

The assumption (206) entails

r2 <
δ∗2

4
, (208)

which enables us to define λr by λr(t) = λ0+δ
∗
1(τr ,1](t) for t in (0, 1), with λ0 = (R−δ∗)∧R

and

τr =
1

2

(

1 +

√
δ∗2 − 4r2

|δ∗|

)

.

Thanks to (208), τr belongs to (0, 1) and satisfies δ∗2τr(1− τr) = r2, that is λr belongs to
(
Su
δ∗,··,1−··

[R]
)

r
. Moreover, the inequality 1 − λ0 logCα,β/(Lδ

∗2) > 1/2 comes from (206)
and yields

r2 <
λ0 logCα,β

L

(

1− λ0 logCα,β

Lδ∗2

)

=
δ∗2

4

(

1−
(

1− 2λ0 logCα,β

Lδ∗2

)2
)

,

hence δ∗2(1− τr) < λ0 logCα,β/L. We get now from Lemma 1 and Lemma 43

Eλ0

[(
dPλ

dPλ0

)2

(N)

]

= exp

(
L(1 − τr)δ

∗2

λ0

)

< Cα,β .

Lemmas 41 and 42 then entail ρ
(
(Su

δ∗,··,1−··
[R])r

)
≥ β and mSRα,β(Su

δ∗,··,1−··
[R]) ≥ r.

5.28 Proof of Proposition 35

The control of the first kind error rate is straightforward, and even more strong by using
the same conditioning trick as in the proof of Proposition 31: in fact, for every λ0 in Su

0 [R]

and n in N, Eλ0

[

φu
7,α(N)

∣
∣
∣N1 = n

]

= Pλ0

(

φu
7,α(N) = 1

∣
∣
∣N1 = n

)

≤ α.

Let us turn to the control of the second kind error rate of φu
7,α.

Set λ in Su
δ∗,··,1−··

[R] such that λ = λ0 + δ∗1(τ,1] with λ0 in (−δ∗ ∨ 0, (R − δ∗) ∧ R] and τ
in (0, 1), and satisfying

d2(λ,Su
0 [R]) ≥

2√
L
max

(
√

|δ∗|Q(2R, δ∗, α), 2
√

2R

β
,

|δ∗|
2
√
2βR

)

, (209)

where Q(2R, δ∗, α) is the constant, not depending on L, defined in Lemma 54 and used in
Lemma 56. The condition (209) ensures that |δ∗|

√

τ(1− τ) ≥ |δ∗|/√2βRL, and therefore,
using the fact that τ(1 − τ) ≤ 1/4,

L ≥ 2

βR
. (210)
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Setting I(λ) =
∫ 1

0
λ(t)dt, we obtain with I(λ) ≤ R (and therefore obviously 2R− I(λ) ≥

R) and the fact that (210) entails L ≥ 2R/(βR2)

L ≥ 2I(λ)

(2R− I(λ))2β
. (211)

Notice now that (211) and the Bienayme-Chebyshev inequality yield

Pλ(N1 > 2RL) = Pλ

(
N1 − I(λ)L > L(2R− I(λ))

)

≤ Pλ

(

N1 − I(λ)L >

√

2I(λ)L

β

)

≤ β

2
.

This leads to

Pλ

(
φu
7,α(N) = 0

)
≤ Pλ

(

sup
τ ′∈(0,1)

S ′
δ∗,τ ′,1(N) ≤ s

′+
N1,δ∗,L(1− α), N1 ≤ 2RL

)

+
β

2

≤ Pλ

(

sup
τ ′∈(0,1)

S ′
δ∗,τ ′,1(N) ≤ Q(2R, δ∗, α)

)

+
β

2
with Lemma 56

≤ Pλ

(
S ′
δ∗,τ,1(N) ≤ Q(2R, δ∗, α)

)
+
β

2
.

Moreover, the assumption (209) implies

|δ∗|
√

τ(1− τ) ≥ 2√
L
max

(
√

|δ∗|Q(2R, δ∗, α), 2
√

2R

β

)

,

which entails

|δ∗|
2
τ(1− τ)L ≥ 2max

(

Q(2R, δ∗, α),

√

2Rτ(1− τ)L

β

)

,

whereby

|δ∗|
2
τ(1− τ)L ≥ 2max

(

Q(2R, δ∗, α),

√

2(λ0 + δ∗τ)τ(1− τ)L

β

)

.

Noticing that Eλ[S
′
δ∗,τ,1(N)] = |δ∗|τ(1− τ)L/2 and Var(S ′

δ∗,τ,1(N)) = (λ0+ δ
∗τ)τ(1− τ)L,

this leads to

Eλ[S
′
δ∗,τ,1(N)] ≥ Q(2R, δ∗, α) +

√

2Var(S ′
δ∗,τ,1(N))

β
. (212)

Therefore,

Pλ

(
φu
7,α(N) = 0

)
≤ Pλ



S ′
δ∗,τ,1(N)−Eλ[S

′
δ∗,τ,1(N)] ≤ −

√

2Var(S ′
δ∗,τ,1(N))

β



+
β

2
with (212)

≤ β ,

with a last line simply deduced from the Bienayme-Chebyshev inequality.
Setting

C(α, β, R, δ∗) = 2max

(
√

|δ∗|Q(2R, δ∗, α), 2
√

2R

β
,

|δ∗|
2
√
2βR

)

,

allows to conclude the proof.
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5.29 Proof of Proposition 36

Assume that L ≥ 3 and α + β < 1/2. We consider C ′
α,β = 4(1 − α − β)2, Kα,β,L =

⌈(log2 L)/C ′
α,β⌉, λ0 = R/2 and for k in {1, . . . , Kα,β,L}, λk = λ0+δk1(τk,1], with τk = 1−2−k

and δk = (2kλ0 log logL/L)
1/2. Then, for every k in {1, . . . , Kα,β,L}, d2 (λk,Su

0 [R] ) ≥
√

R log logL/(4L), and λk belongs to Su
·,··,1−··

[R] assuming

log logL

L1−1/C′
α,β

≤ R

4
. (213)

The proof then essentially follows the same arguments as the proof of Proposition 16.
Considering a random variable κ with uniform distribution on {1, . . . , Kα,β,L} and the
probability distribution µ of λκ, we aim at proving that Eλ0 [(dPµ/dPλ0)

2] ≤ 1+C ′
α,β, with

Pµ defined as in Lemma 42, in order to conclude that mSRα,β(Su
·,··,1−··

[R]) ≥
√

R log logL/(4L).
The same calculation as in the proof of Proposition 11 and Proposition 16 gives for η such
that 0 < η < 1− 1/

√
2,

Eλ0

[(
dPµ

dPλ0

)2
]

≤ C ′
α,β log 2 +

2C ′
α,β log 2

logL
(logL)

η+ 1√
2 + exp

(
log logL

2(logL)η/2

)

.

If we assume now that

exp

(
log logL

2(logL)η/2

)

+
2C ′

α,β log 2

(logL)
1−η− 1√

2

≤ 1 + (1− log 2)C ′
α,β , (214)

we finally obtain the expected result, that is

Eλ0

[(
dPµ

dPλ0

)2
]

≤ 1 + C ′
α,β .

To end the proof, it remains to notice that there exists L0(α, β, R) ≥ 3 such that for all
L ≥ L0(α, β, R), both assumptions (213) and (214) hold.

5.30 Proof of Proposition 37

As for all our Bonferroni type aggregated tests, the control of the first kind error rates of
the two tests φ

u(1)
8,α and φ

u(2)
8,α is straightforward using union bounds and the conditioning

trick of the above proofs for upper bounds. Let us now turn to the second kind error
rates.

(i) Control of the second kind error rate of φ
u(1)
8,α .

Let λ in Su
·,··,1−··

[R] such that λ = λ0+ δ1(τ,1], with λ0 in (0, R], τ in (0, 1), δ in (−λ0, R−
λ0] \ {0}, and assume that

d2(λ,Su
0 [R]) ≥ max

(√

log (2/uα)

L
2
√
R ,

√

log (2/uα)

L
2
√
6

√
√
√
√R +

√

2R

βL
+

2√
L

√

6R

β
,

√

2

L
R

)

. (215)
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Let us prove that under this assumption, Pλ(φ
u(1)
8,α (N) = 0) ≤ β.

Applying Lemma 43, we get for all τ ′ in DL

Eλ[S
′
τ ′,1(N)] = δ(τ ′ ∧ τ)(1− τ ′ ∨ τ)L , (216)

and

Varλ
[
S ′
τ ′,1(N)

]
=

{

(λ0(1− τ ′) + δτ ′(1− τ))τ ′L if τ ′ ≤ τ

(λ0τ
′ + δ(τ ′ − τ + τ ′τ))(1− τ ′)L if τ ′ ≥ τ .

(217)

Assume first that δ belongs to (0, R− λ0].
Noticing that

Pλ(φ
u(1)
8,α (N) = 0) ≤ inf

τ ′∈DL

Pλ

(
S ′
τ ′,1(N) ≤ s′N1,τ ′,1(1− uα)

)
,

one can see that it is enough to exhibit some τ ′ in DL such that

Pλ

(
S ′
τ ′,1(N) ≤ s′N1,τ ′,1(1− uα)

)
≤ β .

Under the condition (215), we have d22(λ,Su
0 [R]) ≥ 2R2/L which entails

τ(1− τ) >
2

L
. (218)

On the one hand, if τ belongs to (0, 1/2), the condition (218) implies the inequalities
2−1 > τ > 2/L > 2−⌊log2 L⌋ and the existence of kτ in {2, ..., ⌊log2 L⌋} satisfying 2−kτ ≤
τ < 2−kτ+1. We set τkτ = 2−kτ and then

τkτ ≤ τ < τkτ−1 , (219)

whereby
τkτ

1− τkτ
≤ τ

1− τ
<

τkτ−1

1− τkτ−1
,

and therefore

τkτ
1− τkτ

=
τkτ−1

1− τkτ−1
︸ ︷︷ ︸

> τ
1−τ

1− τkτ−1

1− τkτ

τkτ
τkτ−1
︸ ︷︷ ︸

= 1
2

>
1

2

τ

1− τ

1− τkτ−1

1− τkτ
.

But
1− τkτ−1

1− τkτ
= 1− 1

2kτ − 1
≥ 2

3
,

so we finally obtain
τkτ

1− τkτ
>

τ

3(1− τ)
. (220)

On the other hand, if τ belongs to [1/2, 1), the condition (218) implies the inequalities
1 − 2−1 ≤ τ < 1 − 2/L < 1 − 2−⌊log2 L⌋ and the existence of kτ in {1, ..., ⌊log2 L⌋ − 1}
satisfying 1− 2−kτ ≤ τ < 1− 2−kτ−1. We set τkτ = 1− 2−kτ and we obtain

τkτ ≤ τ < τkτ+1 , (221)
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whereby
τkτ

1− τkτ
≤ τ

1− τ
<

τkτ+1

1− τkτ+1

,

and therefore

τkτ
1− τkτ

=
τkτ+1

1− τkτ+1
︸ ︷︷ ︸

> τ
1−τ

1− τkτ+1

1− τkτ
︸ ︷︷ ︸

= 1
2

τkτ
τkτ+1

>
1

2

τ

1− τ

τkτ
τkτ+1

.

But
τkτ
τkτ+1

= 1− 1

2kτ+1 − 1
≥ 2

3
,

so we finally get
τkτ

1− τkτ
>

τ

3(1− τ)
. (222)

Recall that I(λ) =
∫ 1

0
λ(t)dt ≤ R and notice that the assumption (215) leads to

δ
√

τ(1− τ) ≥ max

(√

log (2/uα)

L
2
√
R ,

√

log (2/uα)

L
2
√
6

√
√
√
√I(λ) +

√

2I(λ)

βL
+

2√
L

√

6(λ0 + δτkτ )

β

)

. (223)

In particular, (223) gives on the one hand

δ2τ(1− τ) ≥ 4R
log (2/uα)

L
,

which entails, using (219), (221) and the inequality δ < R

δτ(1− τkτ ) ≥ 4
log (2/uα)

L
.

Then, (220) and (222) ensure that τ(1 − τkτ )/(3(1− τ)) < τkτ and thus

δτkτ (1− τ) ≥ 4

3

log (2/uα)

L
. (224)

On the other hand, it follows from (223) that

δ
√

τ(1− τ) ≥
√

log (2/uα)

L
2
√
6

√
√
√
√I(λ) +

√

2I(λ)

βL
+

2√
L

√

6(λ0 + δτkτ )

β
,

which entails with (220) and (222)

δ(1− τ)

√
τkτ

1− τkτ
≥
√

log (2/uα)

L
2
√
2

√
√
√
√I(λ) +

√

2I(λ)

βL
+

2√
L

√

2(λ0 + δτkτ )

β
,
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that is

δτkτ (1− τ)L ≥ 2
√

2τkτ (1− τkτ )
√

L log (2/uα)

√
√
√
√I(λ) +

√

2I(λ)

βL

+ 2

√

2τkτ (1− τkτ )(λ0 + δτkτ )L

β
. (225)

Thereby, with (224) and (225),

δτkτ (1− τ)L ≥ 2max

(

2

3
log

(
2

uα

)

,
√

τkτ (1− τkτ )

√

2 log

(
2

uα

)
√
√
√
√LI(λ) +

√

2LI(λ)

β

+

√

2τkτ (1− τkτ )(λ0 + δτkτ )L

β

)

,

hence

δτkτ (1− τ)L ≥ Q(α, β, L, τkτ ) +

√

2τkτ (1− τkτ )(λ0 + δτkτ )L

β
, (226)

with

Q(α, β, L, τkτ ) =
2

3
log

(
2

uα

)

+
√

τkτ (1− τkτ )

√

2 log

(
2

uα

)
√
√
√
√LI(λ) +

√

2LI(λ)

β
.

Furthermore, with (219) and (221), the expressions of Eλ

[
S ′
τ ′,1(N)

]
and Varλ

[
S ′
τ ′,1(N)

]

given in (216) and (217) entail

Eλ[S
′
τkτ ,1

(N)] = δτkτ (1− τ)L , Varλ

[

S ′
τkτ ,1

(N)
]

≤ (λ0 + δτkτ )τkτ (1− τkτ )L . (227)

The Bienayme-Chebyshev inequality leads to

Pλ

(

N1 ≥ LI(λ) +

√

2LI(λ)

β

)

≤ β

2
,

and combined with Lemma 55, which follows from a simple application of Bennett’s
inequality, we get that

Pλ

(

s′N1,τkτ ,1
(1− uα) ≥ Q(α, β, L, τkτ )

)

≤ β

2
. (228)

We conclude with the following inequalities:

Pλ(S
′
τkτ ,1

(N) ≤ s′N1,τkτ ,1
(1− uα))

≤ Pλ

(

S ′
τkτ ,1

(N) < Q(α, β, L, τkτ )
)

+
β

2
with (228)

≤ Pλ



S ′
τkτ ,1

(N)− Eλ[S
′
τkτ ,1

(N)] < −
√

2Varλ(S ′
τkτ ,1

(N))

β



+
β

2
with (226) and (227)

≤ β with the Bienayme-Chebyshev inequality again .
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Assume now that δ belongs to (−λ0, 0) and notice that we have also

Pλ(φ
u(1)
8,α (N) = 0) ≤ inf

τ ′∈DL

Pλ

(
−S ′

τ ′,1(N) ≤ s′N1,τ ′,1(1− uα)
)
.

The same choices of τkτ as above lead, with (216) and (217), to Eλ[−S ′
τkτ ,1

(N)] = |δ|τkτ (1−
τ)L and Varλ

[

−S ′
τkτ ,1

(N)
]

≤ λ0τkτ (1−τkτ )L and we obtain, using very similar arguments

and calculations (mainly replacing δ by |δ|), that the assumption (215) implies

Pλ(−S ′
τkτ ,1

(N) ≤ s′N1,τkτ ,1
(1− uα)) ≤ β ,

so Pλ(φ
u(1)
8,α (N) = 0) ≤ β.

Since log(2/uα) = log(2(2⌊log2 L⌋ − 1)/α) and L ≥ 3, there exists C(α, β, R) > 0 such
that

max






√

log (2/uα)

L
2
√
R,

√

log (2/uα)

L
2
√
6

√
√
√
√R +

√

2R

βL
+

2√
L

√

6R

β
,

√

2

L
R






≤ C(α, β, R)

√

log logL

L
, (229)

which allows to conclude the proof.

(ii) Control of the second kind error rate of φ
u(2)
8,α .

Let λ in Su
·,··,1−··

[R] such that λ = λ0 + δ1(τ,1] with λ0 in (0, R], τ in (0, 1) and δ in
(−λ0, R− λ0] \ {0} and assume that

d2(λ,Su
0 [R]) ≥ max

(√

30CR log (2.77/uα)

L
+

√

30C log (2.77/uα)

L3/4

(
2R

β

)1/4

+
3
√
C log (2.77/uα)

2
√
L log logL

+ 2

√

3R

L
√
β
, 12

√

2R

Lβ
, 4R

√

log logL

L

)

, (230)

where C is the constant defined in Lemma 52.
Let us prove the inequality Pλ(φ

u(2)
8,α (N) = 0) ≤ β. Notice first that

Pλ(φ
u(2)
8,α (N) = 0) ≤ inf

τ ′∈DL

Pλ

(
T ′
τ ′,1(N) ≤ t′N1,τ ′,1(1− uα)

)
,

so one only needs to exhibit some τ ′ in DL satisfying

Pλ

(
T ′
τ ′,1(N) ≤ t′N1,τ ′,1(1− uα)

)
≤ β ,

to obtain the expected result.
Under the assumption (230), we get d22(λ,Su

0 [R]) ≥ 16R2(log logL)/L which entails

τ(1− τ) >
16 log logL

L
. (231)

Assume first that τ belongs to (0, 1/2). The condition (231) leads to τ > 16(log logL)/L
and since L ≥ 3, we get the inequality 16(log logL)/L > 2−⌊log2 L⌋ and the existence of kτ
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in {2, ..., ⌊log2 L⌋} satisfying 2−kτ ≤ τ < 2−kτ+1. Setting τkτ = 2−kτ we can prove as in
the above case (i) that

τkτ ≤ τ < τkτ−1 , (232)

and
τkτ

1− τkτ
>

τ

3(1− τ)
. (233)

Moreover, since τkτ < 1/2 and by definition of kτ ,

max

(
τkτ

1− τkτ
,
1− τkτ
τkτ

)

=
1− τkτ
τkτ

<
2− τ

τ
.

Since (231) implies τ > 16(log logL)/L, we get

max

(
τkτ

1− τkτ
,
1− τkτ
τkτ

)

<
L

8 log logL
. (234)

Assume now that τ belongs to [1/2, 1). The condition (231) entails τ < 1−16(log logL)/L
and since L ≥ 3, 1−2−1 ≤ τ < 1−2−⌊log2 L⌋. Hence, there exists kτ in {1, ..., ⌊log2 L⌋−1}
satisfying 1− 2−kτ ≤ τ < 1− 2−kτ−1. We set τkτ = 1− 2−kτ and we obtain as in the above
case (i)

τkτ ≤ τ < τkτ+1 , (235)

and
τkτ

1− τkτ
>

τ

3(1− τ)
. (236)

Moreover, since τkτ belongs to [1/2, 1), we get using (235)

max

(
τkτ

1− τkτ
,
1− τkτ
τkτ

)

=
τkτ

1− τkτ
≤ τ

1− τ
.

Since (231) yields 1− τ > 16(log logL)/L, we get also

max

(
τkτ

1− τkτ
,
1− τkτ
τkτ

)

<
L

16 log logL
. (237)

Applying Lemma 51, we obtain with (232) and (235)

Eλ[T
′
τkτ ,1

(N)] = δ2(1− τ)2
τkτ

1− τkτ
, (238)

and

Varλ

[

T ′
τkτ ,1

(N)
]

=
4

L
δ2(1−τ)2 τkτ

1− τkτ

(

λ0+δ(1−τ)
τkτ

1− τkτ

)

+
2

L2

(

λ0+δ(1−τ)
τkτ

1− τkτ

)2

.

(239)
On the one hand, we finally get with (233) and (236),

Eλ[T
′
τkτ ,1

(N)] >
δ2τ(1 − τ)

3
, (240)
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and on the other hand, using (232) and (235),

Varλ

[

T ′
τkτ ,1

(N)
]

≤ 4δ2τ(1− τ)R

L
+

2R2

L2
. (241)

Notice that the assumption (230) entails

δ2τ(1− τ) ≥ max

(

30CR log (2.77/uα)

L
+

30C log (2.77/uα)

L3/2

√

2R

β
+

9C log2 (2.77/uα)

4L log logL

+
12R

L
√
β
, 12|δ|

√

τ(1 − τ)

√

2R

Lβ

)

,

hence

δ2τ(1− τ) ≥ 15CR log (2.77/uα)

L
+

15C log (2.77/uα)

L3/2

√

2R

β

+
9C log2 (2.77/uα)

8L log logL
+

6R

L
√
β
+ 6|δ|

√

τ(1− τ)

√

2R

Lβ
. (242)

Using (240) and (241), the condition (242) then leads to

Eλ[T
′
τkτ ,1

(N)]−
√

2Varλ

[

T ′
τkτ ,1

(N)
]

/β

≥ C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2
+

3

8

log2 (2.77/uα)

L log logL

)

. (243)

Now, if we set

Q(α, β, L,R, τkτ ) = C

(

5R
log (2.77/uα)

L
+ 5

√

2R

β

log (2.77/uα)

L3/2

+ 3max

(
τkτ

1− τkτ
,
1− τkτ
τkτ

)
log2 (2.77/uα)

L2

)

, (244)

combined with (234) and (237), the condition (243) yields

Eλ[T
′
τkτ ,1

(N)]−
√

2Varλ

[

T ′
τkτ ,1

(N))
]

/β ≥ Q(α, β, L,R, τkτ ) . (245)

Furthermore, from the inequality

Pλ

(

N1 ≥ LI(λ) +

√

2LI(λ)

β

)

≤ β

2
,

Lemma 52, and the fact that I(λ) ≤ R, we deduce that

Pλ

(

t′N1,τkτ ,1
(1− uα) ≥ Q(α, β, L,R, τkτ )

)

≤ β

2
. (246)
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We finally obtain using successively (246), (245) and the Bienayme-Chebyshev inequality

Pλ(T
′
τkτ ,1

(N) ≤ t′N1,τkτ ,1
(1− uα)) ≤ Pλ

(

T ′
τkτ ,1

(N) < Q(α, β, L,R, τkτ )
)

+
β

2

≤ Pλ

(

T ′
τkτ ,1

(N)− Eλ[T
′
τkτ ,1

(N)] < −
√

2Varλ

[

T ′
τkτ ,1

(N))
]

/β

)

+
β

2

≤ β .

Since log(2/uα) = log((4⌊log2 L⌋−2)/α) and L ≥ 3, there exists C(α, β, R) > 0 such that
(230) is implied by

d2(λ,Su
0 [R]) ≥ C(α, β, R)

√

log logL

L
,

which concludes the proof.

5.31 Proof of Proposition 38

Let L ≥ 2 and set λ0 = (R− δ∗) ∧ R.
For all k in

{
1, . . . , ⌈L3/4⌉

}
, let us define λk(t) = λ0 + δ∗1(τk ,τk+ℓ](t) with τk = k/L and

ℓ = λ0 logL/(2δ
∗2L). Then, as soon as

⌈L3/4⌉
L

+
((R− δ∗) ∧R) logL

2δ∗2L
< 1 , (247)

λk belongs to Su
δ∗,··,···[R] for any k in

{
1, . . . , ⌈L3/4⌉

}
. If in addition

logL

L
≤ δ∗2

(R− δ∗) ∧ R , (248)

λk satisfies for all k in
{
1, . . . , ⌈L3/4⌉

}
,

d22 (λk,Su
0 [R] ) ≥

((R − δ∗) ∧R) logL
4L

.

Using Lemma 42 and considering a random variable J uniformly distributed on
{
1, . . . , ⌈L3/4⌉

}

and the distribution µ of λJ , one can see that it is enough to prove that Eλ0 [(dPµ/dPλ0)
2] ≤

1 + 4(1 − α − β)2 to obtain the expected lower bound. The same calculation as in the
proof of Proposition 18 leads to

Eλ0

[(
dPµ

dPλ0

)2

(N)

]

≤ 1 +

√
L

⌈L3/4⌉
eδ

∗2/λ0 + 1

eδ∗2/λ0 − 1
.

Therefore, assuming that
√
L

⌈L3/4⌉
eδ

∗2/(R−δ∗)∧R + 1

eδ∗2/(R−δ∗)∧R − 1
≤ 4(1− α− β)2 , (249)

we get the expected result, that is

Eλ0

[(
dPµ

dPλ0

)2

(N)

]

≤ 1 + 4(1− α− β)2 .

We then conclude the proof noticing that there exists L0(α, β, δ
∗, R) ≥ 2 such that the

assumptions (247), (248) and (249) hold for all L ≥ L0(α, β, δ
∗, R).
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5.32 Proof of Proposition 40

As for all our Bonferroni type aggregated tests of Section 3 dedicated to change detection
from an unknown baseline intensity, the control of the first kind error rates of the two
tests φ

u(1)
9/10,α and φ

u(2)
9/10,α is easily deduced from union bounds and the conditioning trick

of the above proofs for upper bounds. We therefore focus here on the second kind error
rates.

(i) Control of the second kind error rate of φ
u(1)
9/10,α.

Let λ in Su
·,··,···[R] such that λ = λ0+ δ1(τ,τ+ℓ], with λ0 in (0, R], τ in (0, 1), δ in (−λ0, R−

λ0] \ {0} and ℓ in (0, 1− τ). By now, we aim at proving that Pλ

(

φ
u(1)
9/10,α(N) = 0

)

≤ β as

soon as we assume that

d2(λ,Su
0 [R]) ≥ max

(

2

√
√
√
√R log

(

2/u
(1)
α

)

L
, 6

√
√
√
√2 log

(

2/u
(1)
α

)

L

√
√
√
√R +

√

2R

βL

+ 6

√

2R

βL
,

√
3R√
L

)

. (250)

Let us first consider the case where δ belongs to (0, R− λ0].
Noticing that

Pλ

(

φ
(1)
9/10,α(N) = 0

)

≤ inf
k∈{0,...,⌈L⌉−1}

inf
k′∈{1,...,⌈L⌉−k}

Pλ

(

S ′
k

⌈L⌉ ,
k+k′
⌈L⌉

(N) ≤ s′
N1,

k
⌈L⌉ ,

k+k′
⌈L⌉

(
1− u(1)α

)
)

,

one can see that it is enough to exhibit some k0 in {0, . . . , ⌈L⌉−1} and k′0 in {1, . . . , ⌈L⌉−
k0} such that

Pλ

(

S ′
k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ s′
N1,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(
1− u(1)α

)
)

≤ β .

We get from (250) that d22(λ,Su
0 [R]) ≥ 3R2/L ≥ 3R2/⌈L⌉ which entails

ℓ(1− ℓ) > 3/⌈L⌉ . (251)

Assume first that ℓ ≤ 1/2. The condition (251) leads to

ℓ > 3/⌈L⌉ and τ < 1− 3/⌈L⌉ . (252)

Therefore, we can define k0 = min(k ∈ {0, . . . , ⌈L⌉ − 1}, τ ≤ k/⌈L⌉) and k′0 = max(k′ ∈
{1, . . . , ⌈L⌉ − k0}, (k0 + k′)/⌈L⌉ ≤ τ + ℓ), so that τ ≤ k0/⌈L⌉ < (k0 + k′0)/⌈L⌉ ≤ τ + ℓ.
Since by definition k0/⌈L⌉ − τ < 1/⌈L⌉ and τ + ℓ− (k0 + k′0)/⌈L⌉ < 1/⌈L⌉, we get that

k′0
⌈L⌉ = ℓ−

((
k0
⌈L⌉ − τ

)

+

(

τ + ℓ− k0 + k′0
⌈L⌉

))

> ℓ− 2

⌈L⌉ ,

and then, combining with (252),
k′0
⌈L⌉ >

ℓ

3
. (253)
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Lemma 43 leads to Eλ

[

S ′
k0/⌈L⌉,(k0+k′0)/⌈L⌉

(N)
]

= δ(1− ℓ)Lk′0/⌈L⌉ and

Varλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

=

(

λ0

(

1− k′0
⌈L⌉

)

+ δ

(

1− (2− ℓ)
k′0
⌈L⌉

))
k′0
⌈L⌉L .

With (253), we obtain on the one hand

Eλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

>
δ

3
ℓ(1− ℓ)L . (254)

On the other hand, k′0/⌈L⌉ ≤ ℓ < 1 yields 0 < 1− (2− ℓ)k′0/⌈L⌉ < 1− k′0/⌈L⌉. Moreover,
using k′0/⌈L⌉ ≤ ℓ again and the fact that ℓ ≤ 1/2 one obtains

k′0
⌈L⌉

(

1− k′0
⌈L⌉

)

≤ ℓ(1− ℓ) , (255)

and we finally get

Varλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

≤ (λ0 + δ)ℓ(1− ℓ)L . (256)

Recall that I(λ) =
∫ 1

0
λ(t)dt and notice that (250) entails

δ
√

ℓ(1− ℓ) ≥ max






2

√
√
√
√δ log

(

2/u
(1)
α

)

L
, 6

√
√
√
√2 log

(

2/u
(1)
α

)

L

√
√
√
√I(λ) +

√

2I(λ)

βL
+ 6

√

2(λ0 + δ)

βL







,

thereby

δℓ(1−ℓ) ≥ 2max







2 log
(

2/u
(1)
α

)

L
, 3
√

ℓ(1− ℓ)







√
√
√
√2 log

(

2/u
(1)
α

)

L

√
√
√
√I(λ) +

√

2I(λ)

βL
+

√

2(λ0 + δ)

βL













,

and then

δ

3
ℓ(1−ℓ)L ≥ 2

3
log

(
2

u
(1)
α

)

+
√

ℓ(1− ℓ)

√

2L log

(
2

u
(1)
α

)
√
√
√
√I(λ) +

√

2I(λ)

βL
+

√

2ℓ(1− ℓ)L(λ0 + δ)

β
.

(257)
Thus, with (254) and (256), the inequality (257) ensures that

Eλ

[

S ′
k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

≥ 2

3
log

(
2

u
(1)
α

)

+
√

ℓ(1− ℓ)

√

2L log

(
2

u
(1)
α

)
√
√
√
√I(λ) +

√

2I(λ)

βL

+

√
√
√
√
√

2Varλ

[

S ′
k0/⌈L⌉,(k0+k′0 )/⌈L⌉

(N)

]

β
. (258)
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Furthermore, we deduce from the inequality

Pλ

(

N1 ≥ LI(λ) +

√

2LI(λ)

β

)

≤ β

2
,

combined with Lemma 55 that

Pλ

(

s′
N1,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(
1− u(1)α

)
≥ Q(α, β, L, k′0)

)

≤ β

2
, (259)

with

Q(α, β, L, k′0) =
2

3
log

(
2

u
(1)
α

)

+

√

k′0
⌈L⌉

(

1− k′0
⌈L⌉

)
√

2 log

(
2

u
(1)
α

)
√
√
√
√LI(λ) +

√

2LI(λ)

β
.

(260)
Using (255), the inequality (258) leads to

Eλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

≥ Q(α, β, L, k′0) +

√
√
√
√2Varλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉

(N)

]

/β , (261)

and we conclude with the following inequalities

Pλ

(

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N) ≤ s′

N1,
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉

(
1− u(1)α

)
)

≤ Pλ

(

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N) < Q(α, β, L, k′0)

)

+ Pλ

(

s′
N1,

k0
⌈L⌉ ,

k0+k′
0

⌈L⌉

(
1− u(1)α

)
≥ Q(α, β, L, k′0)

)

≤ Pλ

(

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N) < Q(α, β, L, k′0)

)

+
β

2
with (259)

≤ Pλ



S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)−Eλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

< −

√
√
√
√2Varλ

(

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉

(N)

)

/β



 +
β

2
with (261)

≤ β with the Bienayme-Chebyshev inequality .

Assume now that ℓ > 1/2. We define k0 = max(k ∈ {0, . . . , ⌈L⌉ − 1}, τ ≥ k/⌈L⌉) and
k′0 = min(k′ ∈ {1, . . . , ⌈L⌉ − k0}, (k0 + k′)/⌈L⌉ ≥ τ + ℓ) so that k0/⌈L⌉ ≤ τ < τ + ℓ ≤
(k0 + k′0)/⌈L⌉. Notice that the condition (251) entails

1− ℓ > 3/⌈L⌉ . (262)

Since by definition of k0 and k′0, τ −k0/⌈L⌉ < 1/⌈L⌉ and (k0+k
′
0)/⌈L⌉− (τ + ℓ) < 1/⌈L⌉,

then, with (262),

k′0
⌈L⌉ =

k0 + k′0
⌈L⌉ − (τ + ℓ) + ℓ+ τ − k0

⌈L⌉ < 1/⌈L⌉+ (1− 3/⌈L⌉) + 1/⌈L⌉ ≤ 1− 1/⌈L⌉ < 1 .

In the same way, we can also obtain with (262) that

1− k′0
⌈L⌉ = 1− ℓ−

((

τ − k0
⌈L⌉

)

+

(
k0 + k′0
⌈L⌉ − (τ + ℓ)

))

> 1− ℓ− 2

⌈L⌉ >
1− ℓ

3
. (263)
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Furthermore, by definition of k0 and k′0, one has k′0/⌈L⌉ ≥ ℓ and since ℓ > 1/2,

k′0
⌈L⌉

(

1− k′0
⌈L⌉

)

≤ ℓ(1− ℓ) . (264)

From Lemma 43, we therefore deduce

Eλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

= δℓ

(

1− k′0
⌈L⌉

)

L

>
δ

3
ℓ(1− ℓ)L with (263) ,

and since k′0/⌈L⌉ ≥ ℓ,

Varλ

[

S ′
k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

=

(

λ0
k′0
⌈L⌉ + δℓ

(

1− k′0
⌈L⌉

))(

1− k′0
⌈L⌉

)

L

≤
(

λ0 + δ

(

1− k′0
L

))(

1− k′0
L

)
k′0
⌈L⌉L

≤ (λ0 + δ)ℓ(1− ℓ)L with (264) .

Thus, the condition (257) also yields

Eλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

≥ Q(α, β, L, k′0) +

√
√
√
√2Varλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉

(N)

]

/β ,

where Q(α, β, L, k′0) is defined by (260) and we conclude that

Pλ

(

S ′
k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ s′
N1,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(
1− u(1)α

)
)

≤ β ,

with the same arguments as above.

Let us then treat the case where δ belongs to (−λ0, 0). We start by noticing that

Pλ

(

φ
(1)
9/10,α(N) = 0

)

≤ inf
k∈{0,...,⌈L⌉−1}

inf
k′∈{1,...,⌈L⌉−k}

Pλ

(

−S ′
k

⌈L⌉ ,
k+k′
⌈L⌉

(N) ≤ s′
N1,

k
⌈L⌉ ,

k+k′
⌈L⌉

(
1− u(1)α

)
)

.

The same choice of k0 and k′0 as in the case where δ belongs to (0, R− λ0] leads to

Eλ

[

−S ′
k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N)

]

>
|δ|ℓ(1− ℓ)L

3

and

Varλ

[

S ′
k0
⌈L⌉ ,

k0+k′
0

⌈L⌉
(N)

]

≤ λ0
k′0
⌈L⌉

(

1− k′0
⌈L⌉

)

L ≤ R
k′0
⌈L⌉

(

1− k′0
⌈L⌉

)

L ,

and we obtain

Pλ

(

−S ′
k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(N) ≤ s′
N1,

k0
⌈L⌉ ,

k0+k′0
⌈L⌉

(
1− u(1)α

)
)

≤ β ,
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following the same lines of proof as above, but with δ replaced by |δ| except when it is
involved in λ0 + δ.
Coming back to the assumption (250) and the definition of u

(1)
α , one can finally claim that

SRβ

(

φ
u(1)
9/10,α,Su

·,··,···[R]
)

≤ max

(

2

√

R log (⌈L⌉(⌈L⌉ + 1)/α)

L
,

6

√

2 log (⌈L⌉(⌈L⌉ + 1)/α)

L

√
√
√
√R +

√

2R

βL
+ 6

√

2R

βL
,

√
3R√
L

)

, (265)

which leads to the result stated in Proposition 40 for φ
u(1)
9/10,α and the set Su

·,··,···[R] of the

alternative [Alt
u.10]. Since Su

δ∗,··,···[R] ⊂ Su
·,··,···[R] for any δ∗ in (−R,R) \ {0}, the same

result holds for φ
u(1)
9/10,α and the set Su

δ∗,··,···[R] of the alternative [Alt
u.9]. Notice that in

this case, the constant C(α, β, R) involved in the upper bound can be refined, benefiting
from the knowledge of δ∗, which explains the formulation with C(α, β, R, δ∗) instead of
C(α, β, R) in Proposition 40.

(ii) Control of the second kind error rate of φ
u(2)
9/10,α.

Let λ in Su
·,··,···[R] such that λ = λ0+ δ1(τ,τ+ℓ], with λ0 in (0, R], τ in (0, 1), δ in (−λ0, R−

λ0] \ {0} and ℓ in (0, 1− τ). We assume by now that

d2(λ,Su
0 [R]) ≥ max

(

√
√
√
√60CR log

(

2.77/u
(2)
α

)

L
+

(
2R

β

)1/4

√

60C log
(

2.77/u
(2)
α

)

L3/4

+ 6
√
C
log
(

2.77/u
(2)
α

)

√
L logL

+ 2

√

6R

L
√
β
, 24

√

2R

βL
, R

√

3 logL

L

)

, (266)

where C is the constant defined in Lemma 52.
Let us prove that this assumption implies Pλ

(

φ
u(2)
9/10,α(N) = 0

)

≤ β.

As above, we invoke that

Pλ

(

φ
u(2)
9/10,α(N) = 0

)

≤ inf
k∈{0,...,ML−1}

inf
k′∈{1,...,ML−k}
(k,k′)6=(0,ML)

Pλ

(

T ′
k

ML
, k+k′
ML

(N) ≤ t′
N1,

k
ML

, k+k′
ML

(
1− u(2)α

)
)

,

to argue that we only need to exhibit some k0 in {0, . . . ,ML−1} and k′0 in {1, . . . ,ML−k0}
such that (k0, k

′
0) 6= (0,ML) satisfying

Pλ

(

T ′
k0
ML

,
k0+k′

0
ML

(N) ≤ t′
N1,

k0
ML

,
k0+k′

0
ML

(
1− u(2)α

)

)

≤ β .

Recalling that ML = ⌈L/ logL⌉, we get from (266) that d22(λ,Su
0 [R]) ≥ 3R2 logL/L ≥

3R2/ML which entails
ℓ(1− ℓ) > 3/ML . (267)
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Let us first consider the case where ℓ ≤ 1/2.
The condition (267) leads to

ℓ > 3/ML , (268)

and therefore, we can define k0 = min(k ∈ {1, . . . ,ML−1}, τ ≤ k/ML) and k′0 = max(k′ ∈
{1, . . . ,ML − k0}, (k0 + k′)/ML ≤ τ + ℓ), so that τ ≤ k0/ML < (k0 + k′0)/ML ≤ τ + ℓ.
Since by definition k0/ML − τ < 1/ML and τ + ℓ− (k0 + k′0)/ML < 1/ML, notice that

k′0
ML

= ℓ−
((

k0
ML

− τ

)

+

(

τ + ℓ− k0 + k′0
ML

))

> ℓ− 2

ML
,

and then, combined with (268),
k′0
ML

>
ℓ

3
. (269)

Lemma 51 gives Eλ

[

T ′
k0/ML,(k0+k′0 )/ML

(N)

]

= δ2(1− ℓ)2(k′0/ML)/(1− k′0/ML), and with

(269) and the facts that 1− ℓ ≥ 1/2 and 1/(1− k′0/ML) > 1, we get

Eλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

>
δ2

6
ℓ(1− ℓ) . (270)

Lemma 51 also gives

Varλ

[

T ′
k0
ML

,
k0+k′0
ML

(N)

]

=
2

L2

(

λ0 + δ
1− (2− ℓ)k′0/ML

1− k′0/ML

)2

+
4

L
δ2(1− ℓ)2

k′0/ML

1− k′0/ML

(

λ0 + δ
1− (2− ℓ)k′0/ML

1− k′0/ML

)

, (271)

and since k′0/ML ≤ ℓ < 1, notice that 0 < 1− (2− ℓ)k′0/ML < 1−k′0/ML. Moreover using
k′0/ML ≤ ℓ again, one obtains

k′0/ML

1− k′0/ML
≤ ℓ

1− ℓ
. (272)

Therefore, using (272),

Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

≤
(

2

L2
(λ0 + δ)2 +

4

L
(λ0 + δ)δ2ℓ(1− ℓ)

)

1δ>0

+

(
2

L2
λ20 +

4

L
λ0δ

2ℓ(1− ℓ)

)

1δ<0 ,

hence

Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

≤ 2R2

L2
+

4R

L
δ2ℓ(1− ℓ) . (273)
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Now, on the one hand, notice that the assumption (266) ensures that

|δ|
√

ℓ(1− ℓ) ≥

√
√
√
√60CR log

(

2.77/u
(2)
α

)

L
+

(
2R

β

)1/4

√

60C log
(

2.77/u
(2)
α

)

L3/4

+ 6
√

C(ML − 1)
log
(

2.77/u
(2)
α

)

L
+ 2

√

6R

L
√
β
,

which entails

δ2ℓ(1− ℓ) ≥ 60CR
log
(

2.77/u
(2)
α

)

L
+ 60C

√

2R

β

log
(

2.77/u
(2)
α

)

L3/2

+ 36C(ML − 1)
log2

(

2.77/u
(2)
α

)

L2
+

24R√
βL

. (274)

On the other hand, the same assumption (266) ensures that |δ|
√

ℓ(1− ℓ) ≥ 24
√

2R/(βL),
which leads to

δ2ℓ(1− ℓ) ≥ 24

√

2R

βL
|δ|
√

ℓ(1− ℓ) . (275)

Therefore, (274) and (275) imply

δ2ℓ(1− ℓ) ≥ 2max

(

C

(

30R
log
(

2.77/u
(2)
α

)

L
+ 30

√

2R

β

log
(

2.77/u
(2)
α

)

L3/2

+ 18(ML − 1)
log2

(

2.77/u
(2)
α

)

L2

)

+
12R√
βL

, 12

√

2R

βL
|δ|
√

ℓ(1− ℓ)

)

,

so

δ2

6
ℓ(1−ℓ) ≥ C

(

5R
log
(

2.77/u
(2)
α

)

L
+5

√

2R

β

log
(

2.77/u
(2)
α

)

L3/2
+3(ML−1)

log2
(

2.77/u
(2)
α

)

L2

)

+
2R√
βL

+ 2

√

2R

βL
|δ|
√

ℓ(1− ℓ) . (276)

Thus, with (270) and (273), the inequality (276) ensures that

Eλ

[

T ′
k0
ML

,
k0+k′0
ML

(N)

]

≥ C

(

5R
log
(

2.77/u
(2)
α

)

L
+ 5

√

2R

β

log
(

2.77/u
(2)
α

)

L3/2

+ 3(ML − 1)
log2

(

2.77/u
(2)
α

)

L2

)

+

√
√
√
√2Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

/β . (277)
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Furthermore, the inequality

Pλ

(

N1 ≥ LI(λ) +

√

2LI(λ)

β

)

≤ β

2
,

combined with Lemma 52 and the upper bound I(λ) ≤ R, leads to

Pλ

(

t′
N1,

k0
ML

,
k0+k′

0
ML

(
1− u(2)α

)
≥ Q(α, β, L, k′0)

)

≤ β

2
, (278)

with

Q(α, β, L, k′0) = C

(

5R
log
(

2.77/u
(2)
α

)

L
+ 5

√

2R

β

log
(

2.77/u
(2)
α

)

L3/2

+ 3max

(
k′0/ML

1− k′0/ML
,
1− k′0/ML

k′0/ML

) log2
(

2.77/u
(2)
α

)

L2

)

. (279)

Since k′0/ML ≤ ℓ ≤ 1/2, one has

max

(
k′0/ML

1− k′0/ML
,
1− k′0/ML

k′0/ML

)

=
1− k′0/ML

k′0/ML
=
ML

k′0
− 1 ≤ML − 1 ,

and the inequality (277) leads to

Eλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

≥ Q(α, β, L, k′0) +

√
√
√
√2Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

/β . (280)

We conclude with the following inequalities

Pλ

(

T ′
k0
ML

,
k0+k′0
ML

(N) ≤ t′
N1,

k0
ML

,
k0+k′0
ML

(
1− u(2)α

)

)

≤ Pλ

(

T ′
k0
ML

,
k0+k′0
ML

(N) < Q(α, β, L, k′0)

)

+ Pλ

(

t′
N1,

k0
ML

,
k0+k′0
ML

(
1− u(2)α

)
≥ Q(α, β, L, k′0)

)

≤ Pλ

(

T ′
k0
ML

,
k0+k′0
ML

(N) < Q(α, β, L, k′0)

)

+
β

2
with (278)

≤ Pλ



T ′
k0
ML

,
k0+k′

0
ML

(N)−Eλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

< −

√
√
√
√2Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

/β



+
β

2
with (280)

≤ β with the Bienayme-Chebyshev inequality .

Let us then consider the case where ℓ > 1/2.
We define k0 = max(k ∈ {0, . . . ,ML − 1}, τ ≥ k/ML) and k′0 = min(k′ ∈ {1, . . . ,ML −
k0}, (k0 + k′)/ML ≥ τ + ℓ) so that k0/ML ≤ τ < τ + ℓ ≤ (k0 + k′0)/ML.
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Notice that the condition (267) entails

1− ℓ >
3

ML
. (281)

Since by definition of k0 and k′0, τ − k0/ML < 1/ML and (k0 + k′0)/ML − (τ + ℓ) < 1/ML,
then, with (281),

k′0
ML

=
k0 + k′0
ML

− (τ + ℓ) + ℓ+ τ − k0
ML

< 1/ML + (1− 3/ML) + 1/ML < 1 . (282)

In the same way, we can also get with (281)

1− k′0
ML

= 1− ℓ−
((

τ − k0
ML

)

+

(
k0 + k′0
ML

− (τ + ℓ)

))

> 1− ℓ− 2

ML
>

1− ℓ

3
. (283)

Furthermore, by definition of k0 and k′0 again, one has k′0/ML ≥ ℓ, so

1− k′0/ML

k′0/ML

≤ 1− ℓ

ℓ
. (284)

From Lemma 51, we deduce the expectation

Eλ

[

T ′
k0/ML,(k0+k′0 )/ML

(N)
]

= δ2ℓ2 (1− k′0/ML ) / (k
′
0/ML ) ,

which satisfies with (283) and ℓ > 1/2

Eλ

[

T ′
k0/ML,(k0+k′0 )/ML

(N)
]

>
δ2

6
ℓ(1− ℓ) .

Lemma 51 also gives the variance

Varλ

[

T ′
k0
ML

,
k0+k′0
ML

(N)

]

=
2

L2

(

λ0 + δℓ
1− k′0/ML

k′0/ML

)2

+
4

L
δ2ℓ2

1− k′0/ML

k′0/ML

(

λ0 + δℓ
1− k′0/ML

k′0/ML

)

,

which satisfies with (284)

Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

≤
(

2

L2
(λ0 + δ)2 +

4

L
δ2ℓ(1− ℓ)(λ0 + δ)

)

1δ>0

+

(
2

L2
λ20 +

4

L
λ0δ

2ℓ(1− ℓ)

)

1δ<0 ,

thereby

Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

≤ 2R2

L2
+

4R

L
δ2ℓ(1− ℓ) .

Finally, since k′0/ML ≥ ℓ > 1/2, (282) leads to

max

(
k′0/ML

1− k′0/ML

,
1− k′0/ML

k′0/ML

)

=
k′0/ML

1− k′0/ML

=
k′0

ML − k′0
≤ ML − 1 .
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As in the above case where ℓ ≤ 1/2, we can therefore prove that the assumption (266)
leads to (280), that is

Eλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

≥ Q(α, β, L, k′0) +

√
√
√
√2Varλ

[

T ′
k0
ML

,
k0+k′

0
ML

(N)

]

/β ,

with Q(α, β, L, k′0) is defined by (279). We then use the same final arguments as in this
case, to conclude that

Pλ

(

T ′
k0
ML

,
k0+k′

0
ML

(N) ≤ t′
N1,

k0
ML

,
k0+k′

0
ML

(
1− u(2)α

)

)

≤ β .

Coming back to the assumption (266), we can thus affirm that

SRβ

(

φ
u(2)
9/10,α,Su

·,··,···[R]
)

≤ max

(

√
√
√
√60CR log

(

2.77/u
(2)
α

)

L

+

(
2R

β

)1/4

√

60C log
(

2.77/u
(2)
α

)

L3/4
+ 6

√
C
log
(

2.77/u
(2)
α

)

√
L logL

+ 2

√

6R

L
√
β
,

24

√

2R

βL
, R

√

3 logL

L

)

, (285)

which, since ML = ⌈L/ logL⌉ and u
(2)
α = 2α/(ML(ML +1)− 2), leads to the result stated

in Proposition 40 for φ
u(2)
9/10,α and the set Su

·,··,···[R] of the alternative [Alt
u.10].

Since Su
δ∗,··,···[R] ⊂ Su

·,··,···[R] for any δ∗ in (−R,R) \ {0}, the same result holds for φ
u(2)
9/10,α

and the set Su
δ∗,··,···[R] of the alternative [Alt

u.9]. Again, notice that in this case, the
constant C(α, β, R) could be refined thanks to the knowledge of δ∗, which justifies the
formulation with C(α, β, R, δ∗) instead of C(α, β, R) in Proposition 40.

6 Key arguments for minimax separation rates lower

bounds and technical results for minimax separation

rates upper bounds

6.1 Key arguments for nonasymptotic minimax separation rates

lower bounds

The arguments given below are repeated from [8], who adapted the asymptotic Bayesian
approach of Ingster [65] to obtain lower bounds for minimax rates of testing in a nonasymp-
totic perspective, and [50] who derived these lower bounds in the Poisson framework. We
only recall these arguments without the proofs for the sake of clarity and completeness.
Let us recall the notation of the introduction, where N = (Nt)t∈[0,1] is a Poisson process
observed on [0, 1], with intensity λ w.r.t. some measure Λ on [0, 1], and whose distribution
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is denoted by Pλ, and where S0 is either the set S0[λ0] = {λ0} of a single known constant
intensity λ0 on [0, 1], or the set Su

0 [R] of all constant intensities on [0, 1] bounded by R.
We consider the problem of testing (H0 ) ”λ ∈ S0” versus (H1 ) ”λ ∈ S”, where S is a set
of possible alternative intensities, from the nonasymptotic minimax point of view based
on the definition of mSRα,β(S) given in (2).

Lemma 41. For r > 0 and any subspace S of L2([0, 1]), set Sr = {λ ∈ S, d2(λ,S0) ≥ r}.
For α in (0, 1), we define

ρα(Sr) = inf
φα,supλ∈S0

Pλ(φα(N)=1)≤α
sup
λ∈Sr

Pλ(φα(N) = 0) .

(i) If ρα(Sr) ≥ β then mSRα,β(S) ≥ r.
(ii) For all subsets S ′ and S of L2([0, 1]) such that S ′ ⊂ S, then ρα(S ′

r) ≤ ρα(Sr) and
mSRα,β(S ′) ≤ mSRα,β(S).

Lemma 42 (Minimax lower bounds and Bayesian approach). Let µ be a probability mea-
sure on Sr and define Pµ the mixture probability by

Pµ =

∫

Pλdµ(λ).

Then

ρα(Sr) ≥ 1− α− 1

2

(

inf
λ0∈S0

Eλ0

[(
dPµ

dPλ0

)2

(N)

]

− 1

)1/2

.

As a consequence, if α + β < 1 and infλ0∈S0 Eλ0

[
(dPµ/dPλ0)

2 (N)
]
≤ 1 + 4(1 − α − β)2

then
ρα(Sr) ≥ β and mSRα,β(S) ≥ r .

6.2 Technical results for minimax separation rates upper bounds

Lemma 43 (Moments of a Poisson distribution). Let X be a Poisson distributed random
variable with constant intensity ξ > 0.

1. The Laplace transform for X is given by

∀c ∈ R, E [exp(cX)] = exp[ξ(exp(c)− 1)].

2. The first moments of X are given by the following formulas:

E[X ] = ξ, E[X2] = ξ2 + ξ, E[X3] = ξ3 + 3ξ2 + ξ, E[X4] = ξ4 + 6ξ3 + 7ξ2 + ξ,

and its central moments are given by E[(X − E[X ])3] = ξ and E[(X − E[X ])4] =
3ξ2 + ξ.

Lemma 44 (Quantile bounds for the Poisson distribution). The u-quantile pξ(u) of the
Poisson distribution with parameter ξ satisfies

−
√

ξ/u+ ξ ≤ pξ(u) ≤
√

ξ/(1− u) + ξ . (286)
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Proof. Let N be a Poisson random variable with parameter ξ. Using the Bienayme-
Chebyshev inequality, we obtain for all ε > 0

P

(

N ≤ −
√

ξ

u− ε
+ ξ

)

≤ u− ε < u and P

(

N >

√

ξ

u
+ ξ

)

≤ u,

which leads to the expected result by letting ε tend to zero.

Lemma 45 (Expectation and variance of Tτ1,τ2(N)). Let τ1, τ2 be in (0, 1) such that
0 ≤ τ1 < τ2 ≤ 1, λ0 > 0 and Tτ1,τ2(N) be defined by (11). Assume that N(τ1, τ2] follows a
Poisson distribution with parameter Lx with x > 0. Then

E[Tτ1,τ2(N)] =

(
x√

τ2 − τ1
− λ0

√
τ2 − τ1

)2

, (287)

and

Var(Tτ1,τ2(N)) =
4x

L

(
x

τ2 − τ1
− λ0

)2

+
2

L2

x2

(τ2 − τ1)2
. (288)

Proof. Set mi the moment of order i of N(τ1, τ2]. Since N(τ1, τ2] follows a Poisson distri-
bution, m2 = m1 +m2

1 and

E[Tτ1,τ2(N)] =
1

L2(τ2 − τ1)
m2

1 −
2λ0
L
m1 + λ20(τ2 − τ1),

with m1 = Lx. This straightforwardly leads to the first statement of Lemma 45. Notice
now that

Tτ1,τ2(N) =
1

L2(τ2 − τ1)

(
(N(τ1, τ2]−m1)

2 +m2
1 + (2m1 − 1)(N(τ1, τ2]−m1)−m1

)

− 2λ0
L

(N(τ1, τ2]−m1)−
2λ0
L
m1 + λ20(τ2 − τ1) ,

which entails

Tτ1,τ2(N)− E[Tτ1,τ2(N)] =
1

L2(τ2 − τ1)

(
(N(τ1, τ2]−m1)

2 + (2m1 − 1)(N(τ1, τ2]−m1)−m1

)

− 2λ0
L

(N(τ1, τ2]−m1).

Considering the moment ci of order i of the centered variable N(τ1, τ2]−m1, one obtains

Var(Tτ1,τ2(N)) =
1

L4(τ2 − τ1)2
(
c4 + (2m1 − 1)2c2 +m2

1 + 2(2m1 − 1)c3 − 2m1c2
)
+

4λ20
L2

c2

− 4λ0
L3(τ2 − τ1)

(c3 + (2m1 − 1)c2) .

Applying Lemma 43 finally leads to the second statement of Lemma 45.

Lemma 46 (Quantile bound for Tτ1,τ2(N)). Let λ0 > 0, u in (0, 1) and assume that
N is a homogeneous Poisson process of intensity λ0 with respect to the measure Λ. Let
tλ0,τ1,τ2(1− u) be the (1− u)-quantile of Tτ1,τ2(N) defined by (11). Then for all 0 ≤ τ1 <
τ2 ≤ 1,

tλ0,τ1,τ2 (1− u) ≤ 2λ20(τ2 − τ1)

(

g−1

(
log (3/u)

λ0L(τ2 − τ1)

))2

,

where g is defined by (86).
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Proof. Notice first that under the assumption of Lemma 46, Tτ1,τ2(N) can be written as

Tτ1,τ2(N) =

(∫ 1

0

ϕ(τ1,τ2](t)

L
(dNt − λ0Ldt)

)2

−
∫ 1

0

(
ϕ(τ1,τ2](t)

L

)2

dNt

with ϕ(τ1,τ2] = 1(τ1,τ2]/
√
τ2 − τ1. Applying the exponential inequality of Theorem 2 in [71],

we obtain for all x > 0

P(Tτ1,τ2(N) > x) ≤ 3 exp

(

−
‖Hτ1,τ2‖22,L
‖Hτ1,τ2‖2∞

g

(

‖Hτ1,τ2‖∞
‖Hτ1,τ2‖22,L

√
x

2

))

,

where Hτ1,τ2(t) = ϕ(τ1,τ2](t)/L, g is defined by (86) and ‖Hτ1,τ2‖2,L is the L2-norm of Hτ1,τ2

in L
2([0, 1], λ0Ldt), that is ‖Hτ1,τ2‖22,L =

∫ 1

0
|Hτ1,τ2(t)|2λ0Ldt = λ0/L. This leads to

P (Tτ1,τ2(N) > x) ≤ 3 exp

(

−λ0L(τ2 − τ1)g

(
1

λ0
√
τ2 − τ1

√
x

2

))

.

We therefore obtain P (Tτ1,τ2(N) > x) ≤ u if x ≥ 2λ20(τ2−τ1) (g−1 ( log (3/u) /(λ0L(τ2 − τ1))))
2

and the result follows.

Proposition 47 (Quantile bound for max /minτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗]).
Let L ≥ 1. The (1 − α)-quantile p+λ0,ℓ∗(1 − α) of maxτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] under (H0 )
satisfies

p+λ0,ℓ∗(1− α) ≤ λ0Lℓ
∗ + 2λ0Lg

−1

(
log(2/α)

λ0L

)

.

The α-quantile p−λ0,ℓ∗(α) of minτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] under (H0 ) satisfies

p−λ0,ℓ∗(α) ≥ λ0Lℓ
∗ − 2λ0Lg

−1

(
log(2/α)

λ0L

)

,

where g is defined by (86).

Proof. We define M t
s =

∫ t

s
(dNu − λ0Ldu) for all s, t > 0. Let x > 0 be such that

x ≥ λ0Lℓ
∗ + 2λ0Lg

−1

(
log(2/α)

λ0L

)

. (289)

Since

Pλ0

(

max
τ∈[0,1−ℓ∗]

N(τ, τ + ℓ∗] > x

)

= Pλ0

(

max
τ∈[0,1−ℓ∗]

M τ+ℓ∗
τ > x− λ0Lℓ

∗
)

≤ Pλ0

(

max
s,t∈[0,1]

|M t
s| > x− λ0Lℓ

∗
)

,

Theorem 4 in [71] ensures that

Pλ0

(

max
s,t∈[0,1]

|M t
s| > x− λ0Lℓ

∗
)

≤ 2 exp

(

−λ0Lg
(
x− λ0Lℓ

∗

2λ0L

))

.
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Then (289) entails

2 exp

(

−λ0Lg
(
x− λ0Lℓ

∗

2λ0L

))

≤ α ,

leading to Pλ0(maxτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] > x) ≤ α. The (1 − α)-quantile p+λ0,ℓ∗(α) of

maxτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] under (H0 ) therefore satisfies p+λ0,ℓ∗(1− α) ≤ x for every x such
that (289) holds. In particular,

p+λ0,ℓ∗(1− α) ≤ λ0Lℓ
∗ + 2λ0Lg

−1

(
log(2/α)

λ0L

)

.

Let us consider now x in R and ε in (0, 1) satisfying

x ≤ λ0Lℓ
∗ − 2λ0Lg

−1

(
log(2/(α(1− ε)))

λ0L

)

. (290)

Using (290) and Theorem 4 in [71] again, we obtain

Pλ0

(

min
τ∈[0,1−ℓ∗]

N(τ, τ + ℓ∗] ≤ x

)

= Pλ0

(

max
τ∈[0,1−ℓ∗]

−M τ+ℓ∗
τ ≥ λ0Lℓ

∗ − x

)

≤ Pλ0

(

max
s,t∈[0,1]

|M t
s| ≥ λ0Lℓ

∗ − x

)

≤ 2 exp

(

−λ0Lg
(
λ0Lℓ

∗ − x

2λ0L

))

≤ α(1− ε)

< α .

Thus the α-quantile p−λ0,ℓ∗(α) of minτ∈[0,1−ℓ∗]N(τ, τ + ℓ∗] under (H0 ) satisfies p−λ0,ℓ∗(α) > x
for every x such that (290) holds. In particular

p−λ0,ℓ∗(α) > λ0Lℓ
∗ − 2λ0Lg

−1

(
log(2/(α(1− ε)))

λ0L

)

for every ε in (0, 1). The result then follows by continuity of g−1.

Lemma 48 (Quantile bound for supℓ∈(0,1−τ∗) Sδ∗,τ∗,τ∗+ℓ(N)). Let γ > 0 and L ≥ 1. Let

(Nλ0
t )t≥0 be an homogeneous Poisson process with a known constant intensity λ0L > 0

w.r.t. the Lebesgue measure. Then, the u-quantile of the supremum supt≥0(N
λ0
t − (λ0 +

γ)Lt) does not depend on L, and will therefore be denoted by s+λ0,γ
(u). Now considering

s+λ0,δ∗,τ∗,L(u), the u-quantile under (H0) of the statistic supℓ∈(0,1−τ∗) Sδ∗,τ∗,τ∗+ℓ(N) with
Sδ∗,τ∗,τ∗+ℓ(N) defined by (20), we have for all L ≥ 1

{

s+λ0,δ∗,τ∗,L(u) ≤ s+λ0,δ∗/2
(u) when δ∗ > 0 ,

s+λ0,δ∗,τ∗,L(u) ≤ log( 1/(1−u) )
log(λ0/(λ0−|δ∗|/2 ) ) when δ∗ ∈ (−λ∗0, 0) .

(291)

Proof. Equation (7) in [89] directly enables to state the first part of the result.
Under (H0), since the processes (N(τ ∗, τ ∗ + ℓ])ℓ∈(0,1−τ∗] and (N(0, ℓ])ℓ∈(0,1−τ∗] are left-
continuous and have the same finite dimensional laws, we get

sup
ℓ∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ(N)
d
= sup

ℓ∈(0,1−τ∗)

(

sgn(δ∗)(N(0, ℓ]− λ0ℓL)−
|δ∗|
2
ℓL

)

.
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Assume first that δ∗ > 0. We compute

Pλ0

(

sup
ℓ∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ(N) > s+λ0,δ∗/2
(u)
)

≤ P

(

sup
t∈[0,+∞)

(

Nλ0(0, t]−
(

λ0 +
δ∗

2

)

Lt

)

> s+λ0,δ∗/2
(u)

)

≤ 1− u ,

by definition of s+λ0,δ∗/2
(u). This allows to conclude that the first part of (291) holds.

Assume then that δ∗ belongs to (−λ0, 0). For all x > 0,

Pλ0

(

sup
ℓ∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ(N) > x

)

= Pλ0

(

sup
ℓ∈(0,1−τ∗)

((

λ0 −
|δ∗|
2

)

ℓL−N(0, ℓ]

)

> x

)

.

Theorem 3 in [89] then entails

Pλ0

(

sup
ℓ∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ(N) > x

)

≤ exp (−ωx) ,

where ω is the largest real root of the equation λ0(1 − e−ω) = ω (λ0 − |δ∗|/2). Notice
that ω > log (λ0/(λ0 − |δ∗|/2)). Then, correctly choosing x in the above exponential
inequality leads to

Pλ0

(

sup
ℓ∈(0,1−τ∗)

Sδ∗,τ∗,τ∗+ℓ(N) >
log (1/(1− u))

log (λ0/ (λ0 − |δ∗|/2))

)

≤ 1− u ,

which implies the second part of (291).

Lemma 49 (Quantile bound for supτ∈(0,1) Sδ∗,τ,1(N)). Let L ≥ 1. With the same notation

as in Lemma 48 and Sδ∗,τ,1(N) defined by (20), the u-quantile s+λ0,δ∗,L(u) of the statistic
supτ∈(0,1) Sδ∗,τ,1(N) under (H0) satisfies

{

s+λ0,δ∗,L(u) ≤ s+λ0,δ∗/2
(u) when δ∗ > 0 ,

s+λ0,δ∗,L(u) ≤ log(1/(1−u) )
log(λ0/(λ0−|δ∗|/2 ) ) when δ∗ ∈ (−λ∗0, 0) .

(292)

Proof. Under (H0), since the processes (N(τ, 1])τ∈(0,1) and (N(0, 1 − τ ])τ∈(0,1) are left-
continuous and have the same finite dimensional laws, we get

sup
τ∈(0,1)

Sδ∗,τ,1(N)
d
= sup

τ∈(0,1)

(

sgn(δ∗)(N(0, τ ]− λ0τL)−
|δ∗|
2
τL

)

.

The result then follows from the same arguments as in the proof of Lemma 48, by noticing
that when δ∗ > 0,

Pλ0

(

sup
τ∈(0,1)

Sδ∗,τ,1(N) > s+λ0,δ∗/2
(u)
)

≤ P

(

sup
t∈[0,+∞)

(

Nλ0(0, t]−
(

λ0 +
δ∗

2

)

Lt

)

> s+λ0,δ∗/2
(u)

)

,
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and when δ∗ belongs to (−λ0, 0),

Pλ0

(

sup
τ∈(0,1)

Sδ∗,τ,1(N) > x

)

= Pλ0

(

sup
t∈(0,1)

((

λ0 −
|δ∗|
2

)

tL−N(0, t]

)

> x

)

for all x > 0.

Lemma 50 (Quantile bound for |Sτ1,τ2(N)|). Let λ0 > 0 and assume that N is a homoge-
neous Poisson process of intensity λ0 with respect to the measure Λ. For 0 ≤ τ1 < τ2 ≤ 1
and u in (0, 1), let sλ0,τ1,τ2(1 − u) be the (1 − u)-quantile of |Sτ1,τ2(N)|, with Sτ1,τ2(N) =
N(τ1, τ2]− λ0(τ2 − τ1)L as defined by (24). Then

sλ0,τ1,τ2 (1− u) ≤ λ0L(τ2 − τ1)g
−1

(
log (2/u)

λ0(τ2 − τ1)L

)

,

where g is defined by (86).

Proof. Since Sτ1,τ2(N) can be written as

Sτ1,τ2(N) =

∫ 1

0

1(τ1,τ2](t)(dNt − λ0Ldt) ,

we can apply the exponential inequality of Theorem 1 in [71] and obtain for all x > 0

Pλ0(|SN(τ1, τ2)| > x) ≤ 2 exp

(

−λ0L(τ2 − τ1)g

(
x

λ0L(τ2 − τ1)

))

. (293)

We get then Pλ0(|SN(τ1, τ2)| > x) ≤ u if

x ≥ λ0L(τ2 − τ1)g
−1

(
log (2/u)

λ0L(τ2 − τ1)

)

,

which leads to the expected result.

Lemma 51 (Expectation and variance of T ′
τ1,τ2(N)). Let τ1 and τ2 in (0, 1] such that

0 < τ1 < τ2 ≤ 1 and let N be a Poisson process such that N(0, τ1], N(τ1, τ2], and N(τ2, 1]
follow a Poisson distribution with respective parameters Lx > 0, Ly > 0 and Lz > 0.
Considering the statistic T ′

τ1,τ2 defined by (49), one has

E[T ′
τ1,τ2

(N)] =

(√
τ2 − τ1

1− τ2 + τ1
(x+ z)−

√
1− τ2 + τ1
τ2 − τ1

y

)2

, (294)

and

Var(T ′
τ1,τ2

(N)) =
2

L2

(
τ2 − τ1

1− τ2 + τ1
(x+ z) +

1− τ2 + τ1
τ2 − τ1

y

)2

+
4

L

(
1− τ2 + τ1
τ2 − τ1

)2(

y − τ2 − τ1
1− τ2 + τ1

(x+ z)

)2
((

τ2 − τ1
1− τ2 + τ1

)2

(x+ z) + y

)

. (295)
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Proof. Recall that

T ′
τ1,τ2

(N) =
1

L2

[

τ2 − τ1
1− τ2 + τ1

(
(N(0, τ1] +N(τ2, 1])

2 − (N(0, τ1] +N(τ2, 1])
)

+
1− τ2 + τ1
τ2 − τ1

(
N(τ1, τ2]

2 −N(τ1, τ2]
)
− 2N(τ1, τ2] (N(0, τ1] +N(τ2, 1])

]

.

Set, as in the proof of Lemma 45, mi and m̄i the moments of order i of N(τ1, τ2] and
(N(0, τ1] + N(τ2, 1]) respectively, and ci and c̄i the corresponding centered moments of
order i. Then, by independence ofN(0, τ1], N(τ1, τ2] andN(τ2, 1], and sincem2 = m2

1+m1,
m̄2 = m̄2

1 + m̄1 with m1 = Ly and m̄1 = L(x+ z),

E[T ′
τ1,τ2(N)] =

1

L2

[
τ2 − τ1

1− τ2 + τ1
(m̄2 − m̄1) +

1− τ2 + τ1
τ2 − τ1

(m2 −m1)− 2m1m̄1

]

=
τ2 − τ1

1− τ2 + τ1
(x+ z)2 +

1− τ2 + τ1
τ2 − τ1

y2 − 2y(x+ z) ,

which gives (294). Moreover,

T ′
τ1,τ2(N) =

1

L2

[

τ2 − τ1
1− τ2 + τ1

(
(N(0, τ1] +N(τ2, 1])

2 − (N(0, τ1] +N(τ2, 1])
)

+
1− τ2 + τ1
τ2 − τ1

(
N(τ1, τ2]

2 −N(τ1, τ2]
)
− 2N(τ1, τ2] (N(0, τ1] +N(τ2, 1])

]

,

and then

T ′
τ1,τ2(N)− E[T ′

τ1,τ2(N)] =
1

L2

[

τ2 − τ1
1− τ2 + τ1

(

(N(0, τ1] +N(τ2, 1]− m̄1)
2

+ (2m̄1 − 1) (N(0, τ1] +N(τ2, 1]− m̄1)− m̄1

)

+
1− τ2 + τ1
τ2 − τ1

(

(N(τ1, τ2]−m1)
2 + (2m1 − 1)(N(τ1, τ2]−m1)−m1

)

− 2(N(τ1, τ2]−m1)
(

(N(0, τ1] +N(τ2, 1]− m̄1) + m̄1

)

− 2m1 (N(0, τ1] +N(τ2, 1]− m̄1)

]

.

This entails

Var(T ′
τ1,τ2(N)) =

1

L4

[(
τ2 − τ1

1− τ2 + τ1

)2
(
c̄4 + (2m̄1 − 1)2c̄2 + m̄2

1 + 2(2m̄1 − 1)c̄3 − 2m̄1c̄2
)

+

(
1− τ2 + τ1
τ2 − τ1

)2
(
c4 + (2m1 − 1)2c2 +m2

1 + 2(2m1 − 1)c3 − 2m1c2
)

+ 4
(
c2m̄2 +m2

1c̄2
)
+ 2(c2 −m1)(c̄2 − m̄1)

− 4m1
τ2 − τ1

1− τ2 + τ1
(c̄3 + (2m̄1 − 1)c̄2)

− 4m̄1
1− τ2 + τ1
τ2 − τ1

(c3 + (2m1 − 1)c2)

]

.
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This leads using Lemma 43 to

Var(T ′
τ1,τ2

(N)) =
1

L4

[(
τ2 − τ1

1− τ2 + τ1

)2
(
4L3(x+ z)3 + 2L2(x+ z)2

)

+

(
1− τ2 + τ1
τ2 − τ1

)2
(
4L3y3 + 2L2y2

)

+ 4
(
Ly(L2(x+ z)2 + L(x+ z)) + L2y2L(x+ z)

)

− 4Ly
τ2 − τ1

1− τ2 + τ1
(L(x+ z) + (2L(x+ z)− 1)L(x+ z))

− 4L(x+ z)
1 − τ2 + τ1
τ2 − τ1

(Ly + (2Ly − 1)Ly)

]

.

The second statement of Lemma 51 given in (295) finally follows from direct computations.

Lemma 52 (Conditional quantile bound for T ′
τ1,τ2

(N)). Assume that N is a homogeneous
Poisson process with a constant intensity λ0 with respect to the measure Λ = Ldt. For τ1
and τ2 in (0, 1) such that 0 < τ1 < τ2 ≤ 1, u in (0, 1) and n in N, let t′n,τ1,τ2(1 − u) the
(1−u)-quantile of the conditional distribution of T ′

τ1,τ2
(N) defined by (49) given the event

{N1 = n}. Then

t′n,τ1,τ2(1− u) ≤ C

L2

(

5n log

(
2.77

u

)

+ 3max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

log2
(
2.77

u

))

,

with C = minε>0 (e(1 + ε−1)2(2.5 + 32ε−1 ) +
(
(2
√
2(2 + ε+ ε−1)) ∨ ((1 + ε)2)/

√
2
)
.

Proof. For n ≥ 2 and conditionally on the event {N1 = n}, the points of the process
N obey the same law as a n-sample (U1, . . . , Un) of i.i.d. random variables uniformly
distributed on (0, 1). t′n,τ1,τ2(1 − u) is thus equal to the (1 − u)-quantile of the following
U -statistic of order 2

T ′
n,L,τ1,τ2 =

1

L2

n∑

i 6=j=1

ψτ1,τ2(Ui)ψτ1,τ2(Uj) =

n∑

i=2

i−1∑

j=1

HL,τ1,τ2(Ui, Uj) ,

where HL,τ1,τ2(x, y) = 2ψτ1,τ2(x)ψτ1,τ2(y)/L
2 for any x and y in [0, 1].

Since for all 0 ≤ τ1 < τ2 ≤ 1, ψτ1,τ2 is orthogonal to ψ0 (in L
2([0, 1])), the variables

ψτ1,τ2(Ui) are centered and we can apply Theorem 3.4 in [62]. We obtain that there exists
some absolute constant C > 0 such that for all x > 0 and for all n ≥ 2

P
(
T ′
n,L,τ1,τ2 ≥ C(A1

√
x+ A2x+ A3x

3/2 + A4x
2)
)
≤ 2.77e−x ,
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where

A2
1 = n2

E[Hτ1,τ2(U1, U2)
2] ,

A2 = sup

(∣
∣
∣
∣
∣
E

[
n∑

i=2

i−1∑

j=1

HL,τ1,τ2(Ui, Uj)fi(Ui)gj(Uj)

]∣
∣
∣
∣
∣
,

E

[
n∑

i=2

f 2
i (Ui)

]

≤ 1, E

[
n−1∑

j=1

g2j (Uj)

]

≤ 1, fi and gi Borel measurable functions

)

,

A2
3 = n sup

y∈[0,1]

∫ 1

0

H2
L,τ1,τ2

(x, y)dx ,

A4 = sup
x,y∈[0,1]

|HL,τ1,τ2(x, y)| .

From Theorem 3.4 in [62], notice that the constant C can be taken equal to C =
minε>0 (e(1 + ε−1)2(2.5 + 32ε−1 ) +

(
(2
√
2(2 + ε+ ε−1)) ∨ ((1 + ε)2/

√
2)
)
.

Let us now evaluate A1, A2, A3 and A4.
Since the function ψτ1,τ2 has a L2-norm equal to 1 and the Ui’s are independent, we get

A2
1 =

4n2

L4
E
[
ψ2
τ1,τ2

(U1)
]2

=
4n2

L4
.

The independence of the Ui’s and the Cauchy-Schwarz inequality applied twice also yields
∣
∣
∣
∣
∣
E

[
n∑

i=2

i−1∑

j=1

HL,τ1,τ2(Ui, Uj)fi(Ui)gj(Uj)

]∣
∣
∣
∣
∣

≤ 2

L2

n∑

i=2

i−1∑

j=1

∣
∣
∣
∣

∫ 1

0

ψτ1,τ2(x)fi(x)dx

∣
∣
∣
∣

∣
∣
∣
∣

∫ 1

0

ψτ1,τ2(y)gj(y)dy

∣
∣
∣
∣

≤ 2

L2

n∑

i=2

√
∫ 1

0

f 2
i (x)dx

n−1∑

j=1

√
∫ 1

0

g2j (y)dy

≤ 2(n− 1)

L2

√
√
√
√
√
√

n∑

i=2

∫ 1

0

f 2
i (x)dx

︸ ︷︷ ︸

=E[f2
i (Ui)]

√
√
√
√
√
√

n−1∑

j=1

∫ 1

0

gj(y)
2dy

︸ ︷︷ ︸

=E[g2j (Uj)]

,

hence A2 ≤ 2n/L2. Moreover,

A2
3 =

4n

L4
sup
y∈[0,1]

∫ 1

0

ψ2
τ1,τ2

(x)ψ2
τ1,τ2

(y)dx

=
4n

L4
sup
y∈[0,1]

ψ2
τ1,τ2(y)

=
4n

L4
max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

.

To conclude,

A4 =
2

L2

(

sup
x∈[0,1]

|ψτ1,τ2(x)|
)2

=
2

L2
max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

.
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We finally obtain for all x > 0 and for all n ≥ 2

P

(

T ′
n,L,τ1,τ2 ≥

C

L2

(

2n
√
x+ 2nx+ 2

√

nmax

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

x3/2

+ 2max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

x2

))

≤ 2.77e−x .

Then notice that for all x > 0

2

√

nmax

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

x3/2 ≤ nx+max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

x2,

whereby

P

(

T ′
n,L,τ1,τ2 ≥

C

L2

(

2n
√
x+ 3nx+ 3max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

x2
))

≤ 2.77e−x . (296)

By convention, (296) also holds for n in {0, 1} such that T ′
n,L,τ1,τ2 = 0. We then obtain

for all n in N and x = log (2.77/u) (which satisfies x ≥ 1 for all u in (0, 1))

P

(

T ′
n,L,τ1,τ2 ≥

C

L2

(

5n log

(
2.77

u

)

+ 3max

(
1− τ2 + τ1
τ2 − τ1

,
τ2 − τ1

1− τ2 + τ1

)

log2
(
2.77

u

)))

≤ u .

This allows to end the proof.

Lemma 53 (Conditional quantile bound for max /minτ∈[0,1−ℓ]N(τ, τ + ℓ]). Let L ≥ 1
and 0 < ℓ < 1. For any n in N \ {0}, the (1 − α)-quantile b+n,ℓ(1 − α) of the conditional
distribution of maxτ∈[0,1−ℓ]N(τ, τ + ℓ] given N1 = n under (H0 ) satisfies

b+n,ℓ(1− α) ≤ ℓn +
n

2
g−1

(
32

n
log

(
320

α

))

,

where g is defined by (86). Moreover, b+0,ℓ(1− α) = 0.

For any n in N, the α-quantile b−n,ℓ(α) of the conditional distribution of minτ∈[0,1−ℓ]N(τ, τ + ℓ]
given N1 = n under (H0 ) satisfies

b−n,ℓ(α) ≥ ℓn− 4

√

2n log

(
320

α

)

.

Proof. Let n in N \ {0}. If U1, . . . , Un denote independent uniform random variables on
(0, 1), let us consider the empirical process Un associated with these random variables,
defined for 0 ≤ t ≤ 1 by

Un(t) =
√
n

(

1

n

n∑

i=1

1Xi≤t − t

)

.
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Let ℓ in (0, 1/2] and x > 0 satisfying

x ≥ nℓ+
n

2
g−1

(
32

n
log

(
320

α

))

. (297)

Then, we may compute for all λ0 in (0, R)

Pλ0

(

max
t∈[0,1−ℓ]

N(t, t + ℓ] > x
∣
∣
∣ N1 = n

)

= Pλ0

(

max
t∈[0,1−ℓ]

(
n∑

i=1

1Xi≤t+ℓ −
n∑

i=1

1Xi≤t

)

> x
∣
∣
∣ N1 = n

)

= Pλ0

(

max
t∈[0,1−ℓ]

√
n

(

1

n

n∑

i=1

1Xi≤t+ℓ −
1

n

n∑

i=1

1Xi≤t − ℓ

)

>
√
n
( x

n
− ℓ
) ∣
∣
∣N1 = n

)

≤ Pλ0

(

max
t∈[0,1−ℓ]

|Un(t + ℓ)− Un(t)| >
√
n
( x

n
− ℓ
) ∣
∣
∣N1 = n

)

≤ Pλ0

(

max
0≤z≤ 1

2

max
t∈[0,1−z]

|Un(t + z)− Un(t)| >
√
n
( x

n
− ℓ
) ∣
∣
∣N1 = n

)

.

We shall use now an inequality for controlling the oscillations of the empirical process
which is due to Mason, Shorack and Wellner, and which can be found in Chapter 14 of
[95] page 545 under the name of Inequality 1. We get

sup
λ0∈(0,R)

Pλ0

(

max
t∈[0,1−ℓ]

N(t, t + ℓ] > x
∣
∣
∣ N1 = n

)

≤ 320 exp
(

− n

32
g
(

2
( x

n
− ℓ
)))

≤ α using (297) .

This yields b+n,ℓ(1−α) ≤ nℓ+ ng−1 (32 log (320/α) /n) /2 for every n in N \ {0}, which is

the first statement of Lemma 53. The fact that b+0,ℓ(1− α) = 0 is obvious.
Now let again n in N \ {0} , ε > 0 and y in R satisfying

y ≤ nℓ− 4

√

2n log

(
320

α− ε

)

. (298)

We compute for all λ0 in (0, R)

Pλ0

(

min
t∈[0,1−ℓ]

N(t, t + ℓ] ≤ y
∣
∣
∣ N1 = n

)

= Pλ0

(

min
t∈[0,1−ℓ]

(Un(t+ ℓ)− Un(t)) ≤
√
n
( y

n
− ℓ
) ∣
∣
∣ N1 = n

)

= Pλ0

(

max
t∈[0,1−ℓ]

(Un(t)− Un(t + ℓ)) ≥ √
n
(

ℓ− y

n

) ∣
∣
∣ N1 = n

)

≤ Pλ0

(

max
0≤z≤ 1

2

max
t∈[0,1−z]

(Un(t)− Un(t+ z)) ≥
√
n
(

ℓ− y

n

) ∣
∣
∣ N1 = n

)

.
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Applying now the second part of Inequality 1 page 545 in [95], we obtain

sup
λ0∈(0,R)

Pλ0

(

min
t∈[0,1−ℓ]

N(t, t + ℓ] ≤ y
∣
∣
∣ N1 = n

)

≤ 320 exp

(

− n

32

(

ℓ− y

n

)2
)

≤ α− ε < α using (298) .

This entails b−n,ℓ(α) > nℓ− 4
√

2n log (320/(α− ε)) for all ε > 0. With ε tending to 0, we

get b−n,ℓ(α) ≥ nℓ− 4
√

2n log (320/α), which leads to the second statement of Lemma 53

with the obvious fact that b−0,ℓ(α) = 0.

Lemma 54 (Conditional quantile bound for supℓ∈(0,1−τ∗) S
′
δ∗,τ∗,τ∗+ℓ(N)). Let L ≥ 1 and

n0 ≥ 1. For all 0 ≤ n ≤ n0L, the (1 − α)-quantile s
′+
n,δ∗,τ∗,L(1 − α) of the conditional

distribution of supℓ∈(0,1−τ∗) S
′
δ∗,τ∗,τ∗+ℓ(N) given N1 = n under (H0) with S ′

δ∗,τ∗,τ∗+ℓ(N)
defined by (59) satisfies

s
′+
n,δ∗,τ∗,L(1− α) ≤ Q(n0, δ

∗, α) ,

where

Q(n0, δ
∗, α) = log(2)

(6n0 + |δ∗|)(6n0 + 2|δ∗|/3)
δ∗2

+ log

(
π2

3α

)
9n0 + |δ∗|

3|δ∗| .

Proof. First recall that (see (59))

S ′
δ∗,τ∗,τ∗+ℓ(N) = sgn(δ∗)

(

N(τ ∗, τ ∗ + ℓ]− ℓN1

)

− |δ∗|ℓ(1− ℓ)L/2 .

Since N is an homogeneous Poisson process, the processes (N1, N(τ ∗, τ ∗ + ℓ])ℓ∈(0,1−τ∗]

and (N1, N(0, ℓ])ℓ∈(0,1−τ∗] have the same finite dimensional law and since N is a right
continuous process, we get that supℓ∈(0,1−τ∗) S

′
δ∗,τ∗,τ∗+ℓ(N) is distributed as

sup
ℓ∈(0,1−τ∗)

(

sgn (δ∗ ) (N(0, ℓ]− ℓN1)−
|δ∗|
2
ℓ(1− ℓ)L

)

.

As seen above, for n ≥ 1 and conditionally on the event {N1 = n}, the points of the
process N obey the same law as a n-sample (U1, . . . , Un) of i.i.d. random variables uni-
formly distributed on (0, 1). Therefore, considering the empirical distribution function Fn

associated with this sample defined for 0 ≤ t ≤ 1 by

Fn(t) =
1

n

n∑

i=1

1Xi≤t ,

conditionally on the event {N1 = n}, supℓ∈(0,1−τ∗) S
′
δ∗,τ∗,τ∗+ℓ(N) is distributed as

sup
ℓ∈(0,1−τ∗)

(

sgn(δ∗)
(
nFn(ℓ)− nℓ

)
− |δ∗|

2
ℓ(1− ℓ)L

)

.

Notice first that for all n ≥ 1 and for all x > 0

P

(

sup
ℓ∈(0,1−τ∗)

(

sgn (δ∗ ) (nFn(ℓ)− nℓ)− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

≤ P

(

sup
ℓ∈(0,1)

(

sgn (δ∗ ) (nFn(ℓ)− nℓ)− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

.
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Moreover, since the process
(
− (nFn(ℓ) − nℓ)

)

ℓ∈(0,1) has the same distribution as the

process
(
nFn(1− ℓ)− n(1− ℓ)

)

ℓ∈(0,1), one has when δ∗ < 0

P

(

sup
ℓ∈(0,1)

(

sgn (δ∗ ) (nFn(ℓ)− nℓ)− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

= P

(

sup
ℓ∈(0,1)

(

nFn(1− ℓ)− n(1− ℓ)− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

= P

(

sup
ℓ∈(0,1)

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

.

Therefore, whatever the sign of δ∗,

P

(

sup
ℓ∈(0,1−τ∗)

(

sgn (δ∗ ) (nFn(ℓ)− nℓ)− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

≤ P

(

sup
ℓ∈(0,1)

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

,

and

P

(

sup
ℓ∈(0,1−τ∗)

(

sgn (δ∗ ) (nFn(ℓ)− nℓ)− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

≤ P

(

sup
ℓ∈(0,1/2]

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

+ P

(

sup
ℓ∈(1/2,1)

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

> x

)

. (299)

Let us now prove that on the one hand

P

(

sup
ℓ∈(0,1/2]

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

> Q(n0, δ
∗, α)

)

≤ α

2
, (300)

and on the other hand

P

(

sup
ℓ∈(1/2,1)

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

> Q(n0, δ
∗, α)

)

≤ α

2
. (301)

Let 1 ≤ n ≤ n0L. Set C(δ∗, n0) = |δ∗|/ (6n0) and C ′(δ∗, n0, n) =
⌊

exp
(

3n
2

C(δ∗,n0)2

3+2C(δ∗ ,n0)

)⌋

.

For all k in {0, . . . , C ′(δ∗, n0, n)− 1}, we define

ℓk =
3 + 2C(δ∗, n0)

3C(δ∗, n0)2
log(k + 1)

n
,
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and

ℓC′(δ∗,n0,n) =

(
3 + 2C(δ∗, n0)

3C(δ∗, n0)2
log(C ′(δ∗, n0, n) + 1)

n

)

∧ 1 .

Notice that with such definitions, ℓk belongs to [0, 1/2] for all k in {0, . . . , C ′(δ∗, n0, n)− 1}
and ℓC′(δ∗ ,n0,n) belongs to (1/2, 1].
Applying Bernstein’s inequality, as stated in equation (2.6) in [12][page 12], one obtains
for every x > 0 and every k in {1, . . . , C ′(δ∗, n0, n)}

P

(

nFn(ℓk) > nℓk +
√

2nℓk(1− ℓk)(x+ 2 log k) +
x+ 2 log k

3

)

≤ e−x

k2
.

A union bound therefore gives for every x > 0

P

(

∀k ∈ {1, . . . , C ′(δ∗, n0, n)}, nFn(ℓk) ≤ nℓk +
√

2nℓk(1− ℓk)(x+ 2 log k) +
x+ 2 log k

3

)

≥ 1− π2

6
e−x .

Using the inequality
√
2ab ≤ aC(δ∗, n0) + b/(2C(δ∗, n0)) and the fact that ℓ 7→ nFn(ℓ) is

nondecreasing, we get

P

(

∀k ∈ {1, . . . , C ′(δ∗, n0, n)}, ∀ℓ ∈ (ℓk−1, ℓk], nFn(ℓ) ≤ nℓk + C(δ∗, n0)nℓk(1− ℓk)

+
x+ 2 log k

2C(δ∗, n0)
+
x+ 2 log k

3

)

≥ 1− π2

6
e−x .

Therefore, with probability larger than 1− π2e−x/6, for all k in {1, . . . , C ′(δ∗, n0, n)} and
all ℓ in (ℓk−1, ℓk],

nFn(ℓ) ≤nℓk + C(δ∗, n0)nℓk(1− ℓk) + x
3 + 2C(δ∗, n0)

6C(δ∗, n0)
+ log k

3 + 2C(δ∗, n0)

3C(δ∗, n0)

=nℓk + C(δ∗, n0)nℓk(1− ℓk) + x
3 + 2C(δ∗, n0)

6C(δ∗, n0)
+ C(δ∗, n0)nℓk−1

<nℓk + C(δ∗, n0)nℓk(1− ℓk) + x
3 + 2C(δ∗, n0)

6C(δ∗, n0)
+ C(δ∗, n0)nℓ

=nℓ+ C(δ∗, n0)nℓ(1− ℓ) + C(δ∗, n0)nℓ+ n(ℓk − ℓ) + C(δ∗, n0)n (ℓk(1− ℓk)− ℓ(1− ℓ))

+ x
3 + 2C(δ∗, n0)

6C(δ∗, n0)

≤nℓ+ C(δ∗, n0)nℓ(1− ℓ) + C(δ∗, n0)nℓ+ n(ℓk − ℓ) + C(δ∗, n0)n(1− ℓ) (ℓk − ℓ)

+ x
3 + 2C(δ∗, n0)

6C(δ∗, n0)

<nℓ+ C(δ∗, n0)nℓ(1− ℓ) + C(δ∗, n0)nℓ+ (1 + C(δ∗, n0)(1− ℓ))
3 + 2C(δ∗, n0)

3C(δ∗, n0)2
log 2

+ x
3 + 2C(δ∗, n0)

6C(δ∗, n0)
.
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Finally, we have proved that with probability larger than 1−π2e−x/6, for all ℓ in (0, 1/2],

nFn(ℓ) ≤ nℓ+3C(δ∗, n0)n0Lℓ(1−ℓ)+(1+C(δ∗, n0))
3 + 2C(δ∗, n0)

3C(δ∗, n0)2
log 2+x

3 + 2C(δ∗, n0)

6C(δ∗, n0)
,

hence

P

(

sup
ℓ∈(0,1/2]

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

≤ Q(n0, δ
∗, α)

)

≥ 1− α

2
,

that is (300).
Define now ℓ′k = 1 − ℓk for all k in {0, . . . , C ′(δ∗, n0, n)} and notice that ℓ′k belongs to
[1/2, 1] for all k in {0, . . . , C ′(δ∗, n0, n)− 1} and ℓ′C′(δ∗ ,n0,n)

belongs to [0, 1/2).
Applying Bernstein’s inequality again, one obtains for every x > 0

P

(

∀k ∈ {1, . . . , C ′(δ∗, n0, n)}, nFn(ℓ
′
k−1) ≤ nℓ′k−1 +

√

2nℓ′k−1(1− ℓ′k−1)(x+ 2 log k)

+
x+ 2 log k

3

)

≥ 1− π2

6
e−x .

With the same computations as in the above case, we get

P

(

∀k ∈ {1, . . . , C ′(δ∗, n0, n)}, ∀ℓ ∈ [ℓ′k, ℓ
′
k−1), nFn(ℓ) ≤ nℓ′k−1+C(δ

∗, n0)nℓ
′
k−1(1−ℓ′k−1)

+
x+ 2 log k

2C(δ∗, n0)
+
x+ 2 log k

3

)

≥ 1− π2

6
e−x .

Therefore, with probability larger than 1− π2e−x/6, for all k in {1, . . . , C ′(δ∗, n0, n)} and
all ℓ in [ℓ′k, ℓ

′
k−1),

nFn(ℓ) ≤nℓ′k−1 + C(δ∗, n0)nℓ
′
k−1(1− ℓ′k−1) + x

3 + 2C(δ∗, n0)

6C(δ∗, n0)
+ log k

3 + 2C(δ∗, n0)

3C(δ∗, n0)

=nℓ′k−1 + C(δ∗, n0)nℓ
′
k−1(1− ℓ′k−1) + x

3 + 2C(δ∗, n0)

6C(δ∗, n0)
+ C(δ∗, n0)n(1− ℓ′k−1)

<nℓ′k−1 + C(δ∗, n0)nℓ
′
k−1(1− ℓ′k−1) + x

3 + 2C(δ∗, n0)

6C(δ∗, n0)
+ C(δ∗, n0)n(1− ℓ)

<nℓ+ C(δ∗, n0)nℓ(1− ℓ) + C(δ∗, n0)n(1− ℓ) + n(ℓ′k−1 − ℓ) + C(δ∗, n0)n(1− ℓ)
(
ℓ′k−1 − ℓ

)

+ x
3 + 2C(δ∗, n0)

6C(δ∗, n0)

≤ nℓ+ C(δ∗, n0)nℓ(1− ℓ) + C(δ∗, n0)n(1− ℓ) + (1 + C(δ∗, n0)(1− ℓ))
3 + 2C(δ∗, n0)

3C(δ∗, n0)2
log 2

+ x
3 + 2C(δ∗, n0)

6C(δ∗, n0)
.

Finally, we have proved that with probability larger than 1−π2e−x/6, for all ℓ in [1/2, 1),

nFn(ℓ) ≤ nℓ+3C(δ∗, n0)n0Lℓ(1−ℓ)+(1+C(δ∗, n0))
3 + 2C(δ∗, n0)

3C(δ∗, n0)2
log 2+x

3 + 2C(δ∗, n0)

6C(δ∗, n0)
,
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hence

P

(

sup
ℓ∈[1/2,1)

(

nFn(ℓ)− nℓ− |δ∗|
2
ℓ(1− ℓ)L

)

≤ Q(n0, δ
∗, α)

)

≥ 1− α

2
,

that is (301). Combined with (299), the equations (300) and (301) conclude the proof
using the obvious fact that s

′+
0,δ∗,τ∗,L(1− α) = 0.

Lemma 55 (Conditional quantile bound for
∣
∣S ′

τ1,τ2
(N)

∣
∣). Let L ≥ 1, u in (0, 1), τ1 and

τ2 such that 0 < τ1 < τ2 ≤ 1 and n in N. The (1 − u)-quantile s′n,τ1,τ2(1 − u) of the

conditional distribution of
∣
∣S ′

τ1,τ2
(N)

∣
∣ given N1 = n under (H0) with S ′

τ1,τ2
(N) defined by

(62) satisfies

s′n,τ1,τ2(1− u) ≤ 2

3
log(2/u) +

√

n(τ2 − τ1)(1− τ2 + τ1)
√

2 log(2/u) .

Proof. Let n ≥ 1. Under (H0 ) and conditionally on N1 = n, N(τ1, τ2] follows a binomial
distribution with parameters (n, τ2 − τ1) and then S ′

τ1,τ2
(N) = N(τ1, τ2] − n(τ2 − τ1).

Applying Bennett’s inequality as stated in Theorem 2.28 in [12], we obtain for all x > 0

sup
λ0∈Su

0 [R]

Pλ0

(∣
∣S ′

τ1,τ2(N)
∣
∣ > x |N1 = n

)

≤ 2 exp

(

−n(τ2 − τ1)(1− τ2 + τ1)g

(
x

n(τ2 − τ1)(1− τ2 + τ1)

))

,

where g(y) = (1 + y) log(1 + y)− y for all y ≥ 0. It directly follows that

s′n,τ1,τ2(1− u) ≤ n(τ2 − τ1)(1− τ2 + τ1)g
−1

(
log(2/u)

n(τ2 − τ1)(1− τ2 + τ1)

)

.

The inequality g−1(y) ≤ 2y/3 +
√
2y for all y ≥ 0 and the fact that s′0,τ1,τ2(1 − u) = 0

allow to conclude.

Lemma 56 (Conditional quantile bound for supτ∈(0,1) S
′
δ∗,τ,1(N)). Let L ≥ 1 and n0 ≥ 1.

For all 0 ≤ n ≤ n0L, the (1− α)-quantile s
′+
n,δ∗,L(1− α) of the conditional distribution of

supτ∈(0,1) S
′
δ∗,τ,1(N) given N1 = n under (H0) with S ′

δ∗,τ,1(N) defined by (59) satisfies

s
′+
n,δ∗,L(1− α) ≤ Q(n0, δ

∗, α) ,

where Q(n0, δ
∗, α) is defined in Lemma 54.

Proof. Notice first that supτ∈(0,1) S
′
δ∗,τ,1(N) is distributed as

sup
τ∈(0,1)

(

sgn (δ∗ ) (N(0, 1− τ ]− (1− τ)N1)−
|δ∗|
2
τ(1− τ)L

)

.

Now, recall that for n ≥ 1 and conditionally on the event {N1 = n}, the points of the pro-
cess N obey the same law as a n-sample (U1, . . . , Un) of i.i.d. random variables uniformly
distributed on (0, 1) and consider the empirical distribution function Fn associated with
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this sample defined for 0 ≤ t ≤ 1 as in the proof of Lemma 54. Then, conditionally on
the event {N1 = n}, supτ∈(0,1) S

′
δ∗,τ,1(N) is distributed as

sup
τ∈(0,1)

(

sgn(δ∗)
(
nFn(1− τ)− n(1− τ)

)
− |δ∗|

2
τ(1 − τ)L

)

.

Since the process (−(nFn(1−τ)−n(1−τ)))τ∈(0,1) has the same distribution as the process
(nFn(τ)− nτ)τ∈(0,1), whatever the sign of δ∗, supτ∈(0,1) S

′
δ∗,τ,1(N) is distributed as

sup
τ∈(0,1)

(

nFn(τ)− nτ − |δ∗|
2
τ(1 − τ)L

)

.

The proof now follows the same line as the proof of Lemma 54, just replacing ℓ by τ and
using the fact that s

′+
0,δ∗,L(1− α) = 0.
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