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ON THE APPROXIMATION EXPONENTS FOR SUBSPACES OF R n

This paper follows the generalisation of the classical theory of Diophantine approximation to subspaces of R n established by W. M. Schmidt in 1967. Let A and B be two subspaces of R n of respective dimensions d and e with d + e n. The proximity between A and B is measured by t = min(d, e) canonical angles 0 θ 1 • • • θ t π/2; we set ψ j (A, B) = sin θ j . If B is a rational subspace, his complexity is measured by its height H(B) = covol(B ∩ Z n ). We denote by µ n (A|e) j the exponent of approximation defined as the upper bound (possibly equal to +∞) of the set of β > 0 such that the inequality ψ j (A, B) H(B) -β holds for infinitely many rational subspaces B of dimension e. We are interested in the minimal value μn (d|e) j taken by µ n (A|e) j when A ranges through the set of subspaces of dimension d of R n such that for all rational subspaces B of dimension e one has dim(A ∩ B) < j. We show that μ4 (2|2) 1 = 3, μ5 (3|2) 1 6 and μ2d (d| ) 1 2d 2 /(2d -). We also prove a lower bound in the general case, which implies that μn (d|d) d -----→ n→+∞ 1/d.

Introduction

The classical theory of Diophantine approximation studies how well points of R n can be approximated by rational points. Here, we are interested in a problem studied by W. M. Schmidt in 1967 (see [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF]), which consists in approximating subspaces of R n by rational subspaces. The results presented here can be found in my Ph.D. thesis (see [START_REF] Joseph | Approximation rationnelle de sous-espaces vectoriels[END_REF] chapters 3 and 4 for more details).

A subspace of R n is said to be rational whenever it admits a basis of vectors with rational coordinates. Denote by R n (e) the set of rational subspaces of dimension e of R n . A subspace A of R n is called (e, j)-irrational whenever for all B ∈ R n (e), dim(A ∩ B) < j; notice that being (e, 1)-irrational is equivalent to intersecting trivially all subspaces of R n (e). Denote by I n (d, e) j the set of all (e, j)-irrational subspaces of dimension d of R n .

Let us define a notion of complexity for a rational subspace and a notion of proximity between two subspaces, which will lead to the formulation of the main problem.

Let B ∈ R n (e); one can choose Ξ ∈ Z N , with N = n e , a vector with setwise coprime coordinates in the class of Plücker coordinates of B. Let us define the height of B to be the Euclidean norm of Ξ:

H(B) = Ξ .
Endow R n with the standard Euclidean norm, and define the distance between two vectors X, Y ∈ R n \ {0} by

ψ(X, Y ) = sin (X, Y ) = X ∧ Y X • Y
where X ∧ Y is the exterior product of X and Y , and the Euclidean norm • is naturally extended to Λ 2 (R n ) so that X ∧ Y is the area of the parallelogram spanned by X and Y . Let A and B be two subspaces of R n of dimensions d and e respectively. One can define by induction t = min(d, e) angles between A and B. Let us define

ψ 1 (A, B) = min X∈A\{0} Y ∈B\{0}
ψ(X, Y )
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and denote by X 1 and Y 1 unitary vectors such that ψ(X 1 , Y 1 ) = ψ 1 (A, B). Then, by induction, it is assumed that ψ 1 (A, B), . . . , ψ j (A, B) have been constructed for j ∈ {1, . . . , t-1}, associated with couples of vectors (X 1 , Y 1 ), . . . , (X j , Y j ) ∈ A×B respectively. One denotes by A j the orthogonal complement of Span(X 1 , . . . , X j ) in A and by B j the orthogonal complement of Span(Y 1 , . . . , Y j ) in B. Let us define in a similar fashion

ψ j+1 (A, B) = min X∈A j \{0} Y ∈B j \{0} ψ(X, Y )
and denote by X j+1 and Y j+1 unitary vectors such that ψ(X j+1 , Y j+1 ) = ψ j+1 (A, B). These angles between A and B are canonical in the sense of this paragraph, based on [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF], Theorem 4. This will also be used to prove Claim 6.1 in Section 6 below. There exist orthonormal bases (X 1 , . . . , X d ) and (Y 1 , . . . , Y e ) of A and B respectively, and real numbers 0 θ t • • • θ 1 1 such that for all i ∈ {1, . . . , d} and for all j ∈ {1, . . . , e}, X i • Y j = δ i,j cos θ i where δ is the Kronecker delta and • is the canonical scalar product on R n . Moreover, the numbers θ 1 , . . . , θ t are independent of the bases (X 1 , . . . , X d ) and (Y 1 , . . . , Y e ) chosen. Notice that ψ j (A, B) = sin θ j .

We can now formulate the main problem. Let n 2, d, e ∈ {1, . . . , n -1} such that d + e n, j ∈ {1, . . . , min(d, e)}, and A ∈ I n (d, e) j . Let us define by µ n (A|e) j the upper bound (possibly equal to +∞) of all β > 0 such that

ψ j (A, B) 1 H(B) β
holds for infinitely many B ∈ R n (e). One also defines

μn (d|e) j = inf A∈In(d,e) j µ n (A|e) j .
Problem 1.1. Determine μn (d|e) j in terms of n, d, e, j.

Schmidt proved several bounds on the quantity μn (d|e) j in 1967 (see [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF], Theorems 12, 13, 15, 16 and 17). In all what follows, let t = min(d, e).

Theorem 1.1 [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF]. For all j ∈ {1, . . . , t}, one has

d(n -j) j(n -d)(n -e) μn (d|e) j 1 j e(n -e) + 1 n + 1 -d -e ,
moreover, when j = 1:

μn (d|e) 1 n(n -1) (n -d)(n -e) .
Schmidt improved the lower bound when an additional hypothesis is met. He also determined some exact values of μn (d|e) j . In particular, Problem 1.1 is completely solved when min(d, e) = 1.

Theorem 1.2 [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF]. Let j ∈ {1, . . . , t}. If

j + n -t j(j + n -d -e), then μn (d|e) j j + n -t j(j + n -d -e) ,
moreover, when j = t:

μn (d|e) t = n t(t + n -d -e) .
A direct application of Schmidt's Going-up theorem ([Sch67], Theorem 9) is the following result proved in section 5 below.

Proposition 1.1. Let d, e, j, ∈ N * be such that d + e n, 1 j e and j d. Then

μn (d|e) j n - n -e • μn (d| ) j .
This proposition implies some straightforward improvements. For instance, the known lower bound μ6 (3|3) 2 5/4 (Theorem 1.1) becomes μ6 (3|3) 2 4/3 using μ6 (3|2) 2 = 1 (Theorem 1.2).

In 2020, both N. Moshchevitin ([Mos20], Satz 2) and N. de Saxcé ([dS20], Theorem 9.3.2) improved some upper bounds.

Theorem 1.3 [START_REF] Moshchevitin | Über die Winkel zwischen Unterräumen[END_REF]. Let d 1 be an integer, one has μ2d (d|d) 1 2d.

Theorem 1.4 (Saxcé, 2020). Let n 2 and d ∈ {1, . . . , n/2 }. One has

μn (d|d) d n d(n -d)
.

The simplest unknown case and also the last unknown case in R 4 is (n, d, e, j) = (4, 2, 2, 1). Theorem 1.1 together with Theorem 1.3 gives 3 μ4 (2|2) 1 4. Here, we will show the following theorem.

Theorem 1.5. One has μ4 (2|2) 1 = 3.

The next unknown cases are in R 5 . One can notice that Theorem 1.1 combined with Theorem 1.2 give 4 μ5 (3|2) 1 7. This upper bound is improved by 1.

Theorem 1.6. One has μ5 (3|2) 1 6.

Combining Theorem 1.3 and Proposition 1.1, an improvement on the known bound for μ2d (d| ) 1 is deduced; see the beginning of section 5 for examples. 

μn (d|e) j (n -j)(jn -jd + j 2 /2 + j/2 + 1) j 2 (n -e)(n -d + j/2 + 1/2) .
This leads to the following corollary.

Corollary 1.1. One has, for any fixed d 1:

lim n→+∞ μn (d|d) d = 1 d .
Section 2 focuses on the case of the approximation of a plane by rational planes in R 4 (Theorem 1.5). In Section 3 we approximate a subspace of dimension 3 by rational planes (Theorem 1.6). Then, in Section 4, we comment briefly on the method developed in the previous two sections. Section 5 contains a proof of Theorem 1.7. Finally, Section 6 develops how to decompose the subspace one wants to approach into subspaces of lower dimensions, and this leads to a proof of Theorem 1.8 and Corollary 1.1.

Approximation of a plane by rational planes in R 4

The main result is Theorem 1.5: μ4 (2|2) 1 = 3. It finishes to solve Problem 1.1 for n 4. To prove this theorem, some planes of R 4 are explicitly constructed, which are (2, 1)-irrational and not so well approximated by rational planes. For ξ ∈]0, √ 7[, let us consider the plane A ξ of R 4 spanned by

X (1) ξ =     0 1 ξ 7 -ξ 2     and X (2) ξ =     1 0 -7 -ξ 2 ξ     .
The crucial lemma in order to prove Theorem 1.5 is Lemma 2.1 below, which requires the following function ϕ:

(1)

ϕ(A, B) = min(dim A,dim B) j=1 ψ j (A, B).
Lemma 2.1. There exist real numbers ξ ∈]0, √ 7[ and c > 0 such that A ξ ∈ I 4 (2, 2) 1 and

(2)

∀B ∈ R 4 (2), ϕ(A ξ , B) c H(B) 3 .
From Lemma 2.1 and Lemma 2.3 below, we shall deduce the following proposition.

Proposition 2.1. There exists ξ ∈]0, √ 7[ such that

µ 4 (A ξ |2) 1 = 3.
Theorem 1.5 comes directly from the definition of μ, Proposition 2.1 and Theorem 1.1. Before, proving Proposition 2.1, let us introduce some notations and two basic lemmas.

Given vectors X 1 , . . . , X e ∈ R n , let us denote by M ∈ M n,e (R) the matrix whose jth column is X j for j ∈ {1, . . . , e}. Let us define the generalised determinant of the family (X 1 , . . . , X e ) to be D(X 1 , . . . , X e ) = det( t M M ). The following result gives an equivalent definition of the height of a rational subspace (see [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF], Theorem 1).

Theorem 2.1. Let B ∈ R n (e) and (X 1 , . . . , X e ) be a basis of B ∩ Z n . Then

H(B) = D(X 1 , . . . , X e ).
Let us make a link between proximity and height.

Lemma 2.2. Let n 2, d, e ∈ {1, . . . , n -1} be such that d + e = n, A be a subspace of dimension d of R n and B ∈ R n (e). Let (X 1 , . . . , X d ) be a basis of A, (Y 1 , . . . , Y e ) be a basis of B ∩Z n , and denote by M ∈ M n (R) the matrix whose columns are X 1 , . . . , X d , Y 1 , . . . , Y e respectively. There exists a constant c > 0 depending only on (X 1 , . . . , X d ) such that

ϕ(A, B) = c |det M | H(B) .
Proof. The following claim comes from equation (7) page 446 of [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF].

Claim 2.1. One has

ϕ(A, B) = D(X 1 , . . . , X d , Y 1 , . . . , Y e ) D(X 1 , . . . , X d )D(Y 1 , . . . , Y e ) .
Since (Y 1 , . . . , Y e ) is a basis of B ∩ Z n , Claim 2.1 together with Theorem 2.1 gives us

ϕ(A, B) = cD(X 1 , . . . , X d , Y 1 , . . . , Y e )H(B) -1 where c = D(X 1 , . . . , X d ) -1 > 0 is a constant depending only on (X 1 , . . . , X d ). Moreover, the matrix M is a square matrix, so D(X 1 , . . . , X d , Y 1 , . . . , Y e ) 2 = det( t M M ) = det(M ) 2 . Thereby, since D(X 1 , . . . , X d , Y 1 , . . . , Y e ) 0, one has ϕ(A, B) = c |det M | H(B) -1 .
Lemma 2.3. Let n 2, A and B be two subspaces of R n of dimensions d et e respectively.

Then for all j ∈ {1, . . . , min(d, e)}, ψ j (A, B) ϕ(A, B) 1/j .

Proof. Let t = min(d, e) and j ∈ {1, . . . , t}. From the definition of the ψ i , one has

ψ 1 (A, B) • • • ψ t (A, B) 1.
Thereby, the product in Equation (1) can be split in this way:

ϕ(A, B) =    j i=1 ψ i (A, B) ψ j (A,B)    ×   t i=j+1 ψ i (A, B) 1   ψ j (A, B) j .
We can now provide a proof of Proposition 2.1.

Proof of Proposition 2.1. Together with Lemma 2.3 applied for j = 1, Lemma 2.1 shows

that µ 4 (A ξ |2) 1 3. Since Theorem 1.1 gives µ 4 (A ξ |2) 1 μ4 (2|2) 1 3, Proposition 2.1 follows.
We will prove a final lemma before tackling the proof of the central Lemma 2.1.

Lemma 2.4. Let n 2 be an integer, e ∈ {1, . . . , n} and B ∈ R n (e). There exists a basis (X 1 , . . . , X e ) of B ∩ Z n such that if one denotes by η = (η 1 , . . . , η N ), where N = n e , the Plücker coordinates associated with (X 1 , . . . , X e ) and ordered by lexicographic order, one has η ∈ Z N and gcd(η 1 , . . . , η N ) = 1.

Proof. Since B is a rational subspace, B ∩ Z n is a Z-submodule of the free Z-module Z n . According to the structure theorem for finitely generated modules over a principal ideal domain, there exist a basis (X 1 , . . . , X n ) of Z n and integers d 1 , . . . , d e 1 such that

(d 1 X 1 , . . . , d e X e ) is a basis of B ∩Z n . Let i ∈ {1, . . . , e}; since d i X i ∈ B ∩Z n and X i ∈ Z n , one has X i ∈ B ∩ Z n , therefore d i = 1, so (X 1 , . . . , X e ) is a basis of B ∩ Z n .
Let us denote by M the matrix of M n (Z) whose columns are X 1 , . . . , X n respectively. Let us also denote by M 1 the matrix of M n,e (Z) formed with the e first columns of M and by M 2 the matrix of M n,n-e (Z) formed with the n -e last columns of M . Notice that the minors of size e×e of M 1 ordered by lexicographic order give an element (η 1 , . . . , η N ) ∈ Z N of the class of Plücker coordinates of B associated with the basis (X 1 , . . . , X e ). Let us denote by δ 1 , . . . , δ N the minors of size (n -e) × (n -e) of M 2 ordered by lexicographic order. Computing the determinant of M using a Laplace expansion on its e firsts columns gives

(3) |det M | = N i=1 ε(i)η i δ N +1-i = 1 because |det M | = covol(Z n ) = 1, where ε is a function with values in {±1}. Since (3) is a generalised Bézout identity, one can conclude that gcd(η 1 , . . . , η N ) = 1.
In order to prove Lemma 2.1, we will use the following definition and theorem (see [START_REF] Beresnevich | Badly approximable points on manifolds[END_REF], Corollary 1).

Definition 2.1. Let Bad be the set of all y ∈ R k such that there exists c > 0 such that the only integer solution (a 0 , . . . , a k ) to the inequality

|a 0 + a 1 y 1 + • • • + a k y k | < c (a 1 , . . . , a k ) -k ∞
is the trivial one (0, . . . , 0). Theorem 2.2 [START_REF] Beresnevich | Badly approximable points on manifolds[END_REF]. Let M be a manifold immersed into R n by an analytic nondegenerate map. Then Bad ∩ M has the same Hausdorff dimension as M; in particular Bad ∩ M = ∅.

Finally, let us prove Lemma 2.1.

Proof of Lemma 2.1. Let B ∈ R 4 (2) and (Y 1 , Y 2 ) be a basis of B provided by Lemma 2.4. Let us denote by (η 1 , . . . , η 6 ) a set of Plücker coordinates of B associated with the basis (Y 1 , Y 2 ) as in Lemma 2.4, so that (η 1 , . . . , η 6 ) ∈ Z 6 and gcd(η 1 , . . . , η 6 ) = 1. Moreover, this vector satisfies the Plücker relation (see [START_REF] Caldero | Histoires hédonistes de groupes et de géométries[END_REF], Theorem 2.9) for a subspace of dimension

2 of R 4 : (4) η 1 η 6 -η 2 η 5 + η 3 η 4 = 0.
The manifold M = {(1, ξ, 7 -ξ 2 ), ξ ∈]0, √ 7[} is nondegenerate (the functions ξ → 1, ξ → ξ, and ξ → 7 -ξ 2 are linearly independent over R), so Theorem 2.2 implies the existence of ξ ∈]0, √ 7[ such that (1, ξ, 7 -ξ 2 ) ∈ Bad. In particular 1, ξ and 7 -ξ 2 are linearly independent over Q. Let us denote by M ξ the matrix of M 4 (R) whose columns are

X (1) ξ , X (2) ξ , Y 1 , Y 2 respectively. Notice that A ξ ∩ B = {0} if, and only if, det M ξ = 0.
The determinant of M ξ is computed by a Laplace expansion on its two first columns:

(5) det M ξ = -η 6 + η 5 ξ -η 4 7 -ξ 2 -η 3 7 -ξ 2 -η 2 ξ + 7η 1 .
Assuming that det M ξ = 0 implies (6)

-η 6 + 7η 1 + (η 5 -η 2 )ξ + (-η 3 -η 4 ) 7 -ξ 2 = 0. Since dim Q Span Q (1, ξ, 7 -ξ 2 ) = 3
and the η i are integers, Equation ( 6) gives

(7) (η 4 , η 5 , η 6 ) = (-η 3 , η 2 , 7η 1 ).
Thereby, Equality (4) becomes η 2 2 + η 2 3 = 7η 2 1 . Reducing modulo 4, this equation implies that η 1 , η 2 and η 3 are even, which contradicts the assumption gcd(η 1 , . . . , η 6 ) = 1 using Equation (7). Thereby, det M ξ = 0, so A ξ ∩ B = {0} which proves that the subspace A ξ is (2, 1)-irrational.

To establish Inequality (2) of Lemma 2.1, notice that the basis (Y 1 , Y 2 ) of B is provided by Lemma 2.4, so it is also a Z-basis of B ∩ Z 4 . Hence, Lemma 2.2 gives a constant c 1 > 0 depending only on (X

(1) ξ , X (2) ξ ), such that (8) ϕ(A ξ , B) = |det(M ξ )| c 1 H(B)
.

Since the Plücker coordinates η = (η 1 , . . . , η 6 ) of B are integers and satisfy gcd(η 1 , . . . , η 6 ) = 1, one has

(9) H(B) = η .
Now recall that we have chosen ξ in such a way that there exists a constant c 2 > 0 such that for all q = (a, b, c) ∈ Z 3 \ {(0, 0, 0)}:

(10) a 7 -ξ 2 + bξ + c c 2 q -2 .
Notice that for q = (-η 3 -η 4 , η 5 -η 2 , -η 6 + 7η 1 ), one has q = (0, 0, 0) otherwise (7) would be true, and it was already said that this was impossible. Moreover, q √ 67 η , so Inequality (10) combined with Equality (5) gives

|det(M ξ )| c 3 η -2 .
This inequality together with (8) and (9) give a constant c 4 > 0 such that

ϕ(A ξ , B) c 4 H(B) 3 .
Remark 2.1. In the same way, one can construct infinitely many subspaces A ξ defined over Q satisfying µ 4 (A ξ |2) 1 = 3 with a theorem of Schmidt. The point is to replace in the proof of Lemma 2.1 the use of Theorem 2.2 by Theorem 2 of [START_REF] Schmidt | Simultaneous Approximation To Algebraic Numbers By Rationals[END_REF]; the only difference is that the exponent -2 in Equation (10) becomes -2 -ε for any ε > 0, and -3 becomes -3 -ε in Equation (2). Up to this modification, Lemma 2.1 and Proposition 2.1 are still true if ξ ∈]0, √ 7[ is a real algebraic number satisfying dim Q Span Q (1, ξ, 7 -ξ 2 ) = 3. In particular, for ξ = √ 2, one gets the explicit example

µ 4 (A √ 2 |2) 1 = 3.
3. Approximation of a subspace of dimension 3 by rational planes in R 5

The method developed here is very similar to the one used in Section 2, so we will not linger on the details in this section. Computations are not detailed, see [START_REF] Joseph | Approximation rationnelle de sous-espaces vectoriels[END_REF] for extended computations. The main result is Theorem 1.6: μ5 (3|2) 1 6.

As in Section 2, a subspace of R 5 is explicitly constructed so that it is (2, 1)-irrational and at the same time not so well approximated by rational planes of R 5 . We will start by stating some lemmas to prove this statement; the proofs of the lemmas will follow later.

Let ζ 3 be a real number, let us consider the four real numbers:

ζ 1 = - 112 ζ 4 3 -196 ζ 3 3 -42 √ 2ζ 3 3 -17 √ 2ζ 2 3 + 13 √ 2ζ 3 √ 4 ζ 3 -5 √ ζ 3 -1 + 88 ζ 2 3 -30 ζ 3 + 6 4 10 ζ 4 3 -7 ζ 3 3 -4 √ 2ζ 3 3 + 3 √ 2ζ 2 3 + √ 2 √ 4 ζ 3 -5 √ ζ 3 -1 -10 ζ 2 3 + 5 ζ 3 -2 , ζ 2 = - 52 ζ 4 3 -154 ζ 3 3 -18 √ 2ζ 3 3 -35 √ 2ζ 2 3 + 13 √ 2ζ 3 -6 √ 2 √ 4 ζ 3 -5 √ ζ 3 -1 + 148 ζ 2 3 -60 ζ 3 + 18 4 10 ζ 4 3 -7 ζ 3 3 -4 √ 2ζ 3 3 + 3 √ 2ζ 2 3 + √ 2 √ 4 ζ 3 -5 √ ζ 3 -1 -10 ζ 2 3 + 5 ζ 3 -2 , ζ 4 = - √ 2 √ 4 ζ 3 -5 √ ζ 3 -1ζ 2 3 -6 ζ 3 3 + 3 ζ 2 3 + 3 ζ 3 2 (ζ 2 3 -1) , ζ 5 = - √ 2 √ 4 ζ 3 -5 √ ζ 3 -1ζ 3 -3 ζ 2 3 + 3 ζ 3 2 (ζ 2 3 -1)
, assuming ζ 3 5/4 so that all square roots are well defined, and ζ 3 large enough so that all denominators are non-zero (actually, ζ 3 5/4 is sufficient for both conditions). Let

ξ 1 = 1, ξ 2 = ζ 2 + ζ 5 , ξ 3 = -ζ 1 , ξ 4 = 1 + ζ 1 + ζ 5 , ξ 5 = ζ 2 , ξ 6 = 2ζ 2 -ζ 5 , ξ 7 = -ζ 3 , ξ 8 = ζ 3 , ξ 9 = ζ 4 , ξ 10 = ζ 5
and finally ξ = (ξ 1 , . . . , ξ 10 ). The following lemma allows us to construct the subspace of R 5 wanted.

Lemma 3.1. There exists a subspace A ξ of dimension 3 of R 5 which admits the vector ξ as Plücker coordinates (with respect to lexicographic order). Now that the subspace A ξ has been constructed, we can state that it is indeed (2, 1)irrational and not so well approximated by rational planes of R 5 . Lemma 3.2. There exist reals numbers ζ 3 5/4 and c > 0 such that A ξ ∈ I 5 (3, 2) 1 and

(11) ∀B ∈ R 5 (2), ϕ(A ξ , B) c H(B) 6 .
This lemma together with Lemma 2.3 immediately leads to the following proposition.

Proposition 3.1. There exists ζ 3 5/4 such that

µ 5 (A ξ |2) 1 6.
Similarly as in Section 2, Theorem 1.6 is an immediate consequence of Proposition 3.1, which itself follows from Lemma 2.3 and Lemma 3.2. We will start with the proof of Lemma 3.1.

Proof of Lemma 3.1. There exists a subspace which admits ξ as Plücker coordinates if, and only if, the coordinates of ξ satisfy the Plücker relations (see [START_REF] Caldero | Histoires hédonistes de groupes et de géométries[END_REF], Theorem 2.9) for a subspace of dimension 3 of R 5 :

(12)              ξ 2 ξ 5 = ξ 3 ξ 4 + ξ 1 ξ 6 ξ 2 ξ 8 = ξ 3 ξ 7 + ξ 1 ξ 9 ξ 4 ξ 8 = ξ 5 ξ 7 + ξ 1 ξ 10 ξ 4 ξ 9 = ξ 6 ξ 7 + ξ 2 ξ 10 ξ 5 ξ 9 = ξ 6 ξ 8 + ξ 3 ξ 10 .
A basic formal computation shows that the vector ξ -as it has been defined -indeed satisfies System (12).

Before proving the crucial Lemma 3.2, we need a technical result.

Lemma 3.3. The manifold M = {(1, ζ 1 , ζ 2 , ζ 3 , ζ 4 , ζ 5 ), ζ 3 5/4} is nondegenerate.
Proof. Let (a 0 , . . . , a 5 ) ∈ R 6 such that a 0 + a 1 ζ 1 + • • • + a 5 ζ 5 = 0 for any ζ 3 5/4. One can compute polynomials P 1 , P 2 , P 3 ∈ R[X] such that:

0 = a 0 + a 1 ζ 1 + • • • + a 5 ζ 5 = P 1 (ζ 3 ) + P 2 (ζ 3 ) P 3 (ζ 3 ) 10ζ 3 3 + 7ζ 3 -2 -(4ζ 2 3 -ζ 3 + 1) P 3 (ζ 3 )
.

Hence, one has P 1 (ζ 3 ) + P 2 (ζ 3 ) P 3 (ζ 3 ) = 0, so for all ζ 3 5/4:

P (ζ 3 ) = P 2 1 (ζ 3 ) - P 2 2 (ζ 3 )P 3 (ζ 3 ) = 0.
The four equations given by the monomials of degrees 32, 30, 28 and 26 lead to a system of equations between the a i , which implies a 0 = a 3 = a 4 = a 5 . Considering the monomial of degree 22 leads to 14a 2 1 +4a 1 a 2 -a 2 2 = 0, so a 2 = (2±3 √ 2)a 1 , and the monomials of degree 21 leads to 7a 2 1 -118a 1 a 2 + 19a 2 2 = 0 which can not be. Therefore, a i = 0 for all i ∈ {0, . . . , 5} so the manifold considered is nondegenerate. With Lemma 3.3, we are now able to prove Lemma 3.2. Notice that the proof is quite similar to the proof of Lemma 2.1.

Proof of Lemma 3.2. Let B ∈ R 5 (2) and (Y 1 , Y 2 ) be a basis of B provided by Lemma 2.4. Let us denote by (η 1 , . . . , η 10 ) a set of Plücker coordinates for B associated with the basis (Y 1 , Y 2 ) ordered by lexicographic order. According to Lemma 2.4, we may assume that (η 1 , . . . , η 10 ) ∈ Z 10 and gcd(η 1 , . . . , η 10 ) = 1. Moreover, this vector satisfies the Plücker relations for a subspace of dimension 2 of R 5 :

(13)              η 2 η 5 = η 3 η 4 + η 1 η 6 η 2 η 8 = η 3 η 7 + η 1 η 9 η 4 η 8 = η 5 η 7 + η 1 η 10 η 4 η 9 = η 6 η 7 + η 2 η 10 η 5 η 9 = η 6 η 8 + η 3 η 10 . According to Lemma 3.3, the manifold M = {(1, ζ 1 , ζ 2 , ζ 3 , ζ 4 , ζ 5 ), ζ 3 5/4} is nondegener- ate, so Theorem 2.2 implies the existence of ζ 3 5/4 such that (1, ζ 1 , ζ 2 , ζ 3 , ζ 4 , ζ 5 ) ∈ Bad. In particular, 1, ζ 1 , ζ 2 , ζ 3 , ζ 4 , ζ 5 are linearly independent over Q. Let (X (1) ξ , X (2) ξ , X (3) 
ξ ) be a basis of A ξ associated with ξ. Let us denote by M ξ the matrix of M 5 (R) whose columns are

X (1) ξ , X (2) ξ , X (3) ξ , Y 1 , Y 2 respectively. Notice that A ξ ∩ B = {0} if, and only if, det M ξ = 0.
The determinant of M ξ is computed by a Laplace expansion on its first three columns:

det M ξ = ξ 1 η 10 -ξ 2 η 9 + ξ 3 η 8 + ξ 4 η 7 -ξ 5 η 6 + ξ 6 η 5 -ξ 7 η 4 + ξ 8 η 3 -ξ 9 η 2 + ξ 10 η 1 .
Let us assume that det M ξ = 0, this implies

0 = det(M ξ ) = η 10 -(ζ 2 + ζ 5 )η 9 -ζ 1 η 8 + (1 + ζ 1 + ζ 5 )η 7 -ζ 2 η 6 + (2ζ 2 -ζ 5 )η 5 + ζ 3 η 4 + ζ 3 η 3 -ζ 4 η 2 + ζ 5 η 1 = η 10 + η 7 + (-η 8 + η 7 )ζ 1 + (-η 9 -η 6 + 2η 5 )ζ 2 + (η 4 + η 3 )ζ 3 -η 2 ζ 4 + (-η 9 + η 7 -η 5 + η 1 )ζ 5 . Since 1, ζ 1 , ζ 2 , ζ 3 , ζ 4 ,
ζ 5 are linearly independent over Q and the η i are integers, the equation above yields the following relations:

(η 1 , η 2 , η 4 , η 6 , η 8 , η 10 ) = (η 9 -η 7 + η 5 , 0, -η 3 , -η 9 + 2η 5 , η 7 , -η 7 ).

Thus, System (13) becomes ( 14)

             η 2 3 -2η 2 5 + 2η 5 η 7 -η 5 η 9 -η 7 η 9 + η 2 9 = 0 -η 3 η 7 -η 5 η 9 + η 7 η 9 -η 2 9 = 0 -η 3 η 7 -η 2 7 + η 7 η 9 = 0 -2η 5 η 7 -η 3 η 9 + η 7 η 9 = 0 η 3 η 7 -2η 5 η 7 + η 5 η 9 + η 7 η 9 = 0
whose set of rational solutions is the singleton {(0, . . . , 0)} (once again, the computations can be found in [START_REF] Joseph | Approximation rationnelle de sous-espaces vectoriels[END_REF]). Thereby, det M ξ = 0, so

A ξ ∩ B = {0} which implies that A ξ ∈ I 5 (3, 2) 1 .
The proof of second part of the lemma is almost identical as the proof of (2) in Lemma 2.1, but with 6 reals numbers instead of 3.

Remark 3.1. Similarly as in Section 2, one can construct infinitely many subspaces A ξ defined over Q satisfying µ 5 (A ξ |2) 1 6 with Theorem 2 of [START_REF] Schmidt | Simultaneous Approximation To Algebraic Numbers By Rationals[END_REF]. The only difference is that the exponent -6 in Equation ( 11 

Some comments on the method

We believe that the method developed in Sections 2 and 3 can be used to improve several other upper bounds for μn (d|e) 1 when d + e = n. As one can see in Section 3, the computations seem to be significantly more complicated with n growing. The main difficulty in R 5 was to construct a subspace A ξ complicated enough so that System (14) would not have any non trivial rational solution -which implies A ξ ∈ I 5 (3, 2) 1 -but also sufficiently simple so that it is indeed possible to show that this system does not have any non trivial rational solution.

This method creates two contradictory wishes on the subspace A desired:

• to have a lot of Plücker coordinates linearly independent on Q so that A is (e, 1)irrational; • to have few Plücker coordinates linearly independent on Q to obtain the best possible exponent with Theorem 2.2.

Application of Schmidt's Going-up theorem

Here, we will prove Corollary 5.1 which implies Proposition 1.1 from which is immediately deduced Theorem 1.7: μ2d (d| ) 1 2d 2 /(2d -). Indeed, Proposition 1.1 together with Theorem 1.3 gives for ∈ {1, . . . , d}:

μ2d (d| ) 1 (2d -d)/(2d -)μ 2d (d|d) 1 2d 2 /(2d -).
Theorem 1.7 allows us to improve on numerous known upper bounds for μ2d (d| ) 1 , since for instance taking = d -1 implies

2d 2 2d - ∼ d→+∞ 2d
and the known upper bound for μ2d (d|d -1) 1 , given by Theorem 1.1, is asymptotically equivalent to d 2 /2 . Notice that when is fixed and d tends to +∞, Theorem 1.1 gives an upper bound asymptotically equivalent to 2 , which is better than our new bound. The best improvements occur when is close to d, for instance Theorem 1.7 implies μ6 (3|2) 1 9/2 improving on μ6 (3|2) 1 5, μ12 (6|4) 1 9 improving on μ12 (6|4) 1 11, and μ22 (11|6) 1 15.125 improving on μ12 (6|4) 1 17.

Let us now state Schmidt's Going-up theorem (see [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF], Theorem 9).

Theorem 5.1 (Going-up, [START_REF] Schmidt | On Heights of Algebraic Subspaces and Diophantine Approximations[END_REF]. Let d, e ∈ N * be such that d + e < n; let t = min(d, e). Let A be a subspace of R n of dimension d and B ∈ R n (e). Let H 1 be such that H(B) H, and such that there exist x i , y i ∈ R such that for all i ∈ {1, . . . , t}, H(B)

x i ψ i (A, B) c 1 H -y i with c 1 > 0.
Then there exists a constant c 2 > 0 depending only on n and e, and a constant c 3 > 0 depending only of n, e, x i and y i , such that if H = c 2 H (n-e-1)/(n-e) , then there exists C ∈ R n (e + 1) such that C ⊃ B, H(C) H and ∀i ∈ {1, . . . , t}, H(C) x i (n-e)/(n-e-1) ψ i (A, C) c 1 c 3 H -y i (n-e)/(n-e-1) .

Let us formulate a corollary to the Going-up theorem.

Corollary 5.1. Let d, e, j, ∈ N * be such that d + e n, 1 j e and j d. Then for all A ∈ I n (d, e) j , one has A ∈ I n (d, ) j and

µ n (A|e) j n - n -e • µ n (A| ) j .
Since I n (d, e) j ⊂ I n (d, ) j , Corollary 5.1 implies immediately Proposition 1.1 stated in the introduction.

Remark 5.1. Notice that Corollary 5.1 generalises Theorem 2 of [START_REF] Laurent | On transfer inequalities in Diophantine approximation[END_REF]. Corollary 5.1 does not necessarily need to be applied on a line, and the irrationality hypothesis is weaker than the one in [START_REF] Laurent | On transfer inequalities in Diophantine approximation[END_REF].

Proof of Corollary 5.1. Notice that I n (d, e) j ⊂ I n (d, ) j since e. Let α = µ n (A| ) j and ε > 0; there exist infinitely many subspaces B ∈ R n ( ) such that (15)

ψ j (A, B) 1 H(B) α-ε .
For each such subspace B, the Going-up theorem applied e -times gives a subspace C ∈ R n (e) such that C ⊃ B and (16)

ψ j (A, C) c H(C) (α-ε)(n-)/(n-e)
with c > 0 depending only on A and ε. The subspace A is (e, j)-irrational, so for all C ∈ R n (e), ψ j (A, C) = 0. Thus, if there were only a finite number of rational subspaces C such that Inequality (16) holds, there would be a constant c > 0 such that

(17) ∀C ∈ R n (e), ψ j (A, C) > c .
Since there are infinitely many subspaces B ∈ R n ( ) such that Inequality (15) holds, there exist such subspaces of arbitrary large height, thus such that ψ j (A, B) c . The subspace C obtained from B with the Going-up theorem satisfies B ⊂ C, so ψ j (A, C) ψ j (A, B) c , which contradicts (17). Hence, there are infinitely many subspaces C ∈ R n (e) such that (16) holds, and the corollary follows.

6. A lower bound for μn (d|e) j in the general case

The goal here is to prove a new lower bound for μn (d|e) j (Theorem 1.8). The strategy is to break down the subspace we want to approach into subspaces of lower dimension (here, we will use lines). It is then possible to approach simultaneously each line (it will be done with Dirichlet's approximation theorem), and to deduce an approximation of the original subspace.

The bound given by Theorem 1.8 improves asymptotically (for fixed j, d and e) the known lower bound for μn (d|e) j (Theorem 1.1).

Let d n/2. Combining Theorem 1.8 with Theorem 1.4, one obtains

2dn -d 2 + d + 2 2d 2 n -d 3 + d 2 μn (d|d) d n d(n -d) ,
hence Corollary 1.1:

lim n→+∞ μn (d|d) d = 1 d .
The proof of Theorem 1.8 will require a lemma on the behaviour of the proximity function ψ with direct sums. Lemma 6.1. Let n 4 and F 1 , . . . , F , B 1 , . . . , B be 2 subspaces of R n such that for all i ∈ {1, . . . , }, dim

F i = dim B i = d i . Assume that the F i span a subspace of dimension k = d 1 + • • • + d and so do the B i . Let F = F 1 ⊕ • • • ⊕ F and B = B 1 ⊕ • • • ⊕ B , then one has ψ k (F, B) c F,n i=1 ψ d i (F i , B i )
where c F,n > 0 is a constant depending only on F 1 , . . . , F and n.

Proof. The idea is to break down each F i and each B i into a direct sum of well chosen lines. For this, we will use the following claim. 

= D 1 ⊕ • • • ⊕ D k , E = E 1 ⊕ • • • ⊕ E k , and (18) 
ψ k (D, E) k i=1 ψ 1 (D i , E i ) kψ k (D, E).
Proof of Claim 6.1. There exist an orthonormal basis (X 1 , . . . , X k ) of D and an orthonormal basis (Y 1 , . . . , Y k ) of E such that for all i ∈ {1, . . . , k}, ψ i (D, E) = ψ(X i , Y i ). Moreover, for all i ∈ {1, . . . , k}, one has ψ i (D, E) ψ k (D, E). Let us denote for i ∈ {1, . . . , k}, D i = Span(X i ) and E i = Span(Y i ) to get the second part of Inequality (18):

k i=1 ψ 1 (D i , E i ) = k i=1 ψ(X i , Y i ) = k i=1 ψ i (D, E) kψ k (D, E).
The first part of Inequality (18) is trivial since ψ 1 (D i , E i ) 0 for any i, and

ψ k (D, E) = ψ 1 (D k , E k ).
We can come back to the proof of Lemma 6.1. Let i ∈ {1, . . . , }; according to Claim 6.1, there exist d i lines D i,1 , . . . , D i,d i of F i and d i lines E i,1 , . . . , E i,d i of B i such that (19)

d i j=1 ψ 1 (E i,j , D i,j ) d i ψ d i (F i , B i ) nψ d i (F i , B i ).
Let a i,1 , . . . , a i,d i be unitary vectors of D i,1 , . . . , D i,d i respectively and b i,1 , . . . , b i,d i be unitary vectors of E i,1 , . . . , E i,d i respectively, such that for all j ∈ {1, . . . , d i }, a i,j • b i,j 0.

Let (X 1 , . . . , X k ) and (Y 1 , . . . , Y k ) be orthonormal bases of F and B respectively, such that ψ j (F, B) = ψ(X j , Y j ) for any j ∈ {1, . . . , k}.

Let Z = λ 1 Y 1 + • • • + λ k Y k be a unitary vector of B. One has |X k • Z| = k i=1 λ i X k • Y i k i=1 |λ i δ i,k X k • Y i | X k • Y k which implies that ψ k (F, B) = ψ(X k , Y k ) min Z∈B\{0} ψ(X k , Z) = ψ 1 (Span(X k ), B). Moreover, Span(Y k ) ⊂ B, so ψ 1 (Span(X k ), B) ψ(X k , Y k ). Hence (20) ψ k (F, B) = ψ 1 (Span(X k ), B).
Let us decompose X k in the basis (a 1,1 , . . . , a ,d ):

X k = i=1 d i j=1 x i,j a i,j
, and let

Y = i=1 d i j=1 x i,j b i,j ∈ B.
Since X k is unitary, one has

ψ(X k , Y ) X k -Y = i=1 d i j=1 x i,j (a i,j -b i,j ) i=1 d i j=1 |x i,j | a i,j -b i,j ,
where • stands for the Euclidean norm. For i ∈ {1, . . . , } and j ∈ {1, . . . , d i }, let us consider the functions p i,j :

F -→ R i=1 d i j=1
x i,j a i,j -→ x i,j .

These functions are continuous on the compact K = {x ∈ F, x = 1}, so they are bounded on it. Thus, there exists c

(1) F,n a constant depending only on a 1,1 , . . . , a ,d such that for all x = i=1 d i j=1 x i,j a i,j ∈ K, one has |x i,j | c

(1) F,n . We now require an elementary claim. Claim 6.2. Let X and Y be unitary vectors such that X • Y 0. One has

ψ(X, Y ) √ 2 2 X -Y . Proof. Let p ⊥ Span(Y ) be the orthogonal projection onto Span(Y ), α = X -p ⊥ Span(Y ) (X) and β = Y -p ⊥ Span(Y ) (X) . One has X -Y 2 = α 2 + β 2 , and since X is unitary: ψ(X, Y ) = ψ(X, p ⊥ Span(Y ) (X)) = X -p ⊥ Span(Y ) (X) = α. Moreover, X • Y 0, so 1 = X 2 = (1 -β) 2 + α 2 , hence there exists θ ∈ [0, π/2] such that 1 -β = cos θ and α = sin θ. Since 1 -cos θ sin θ, yields β α, and finally X -Y 2 2α 2 = 2ψ(X, Y ) 2 .
We can come back to the proof of Lemma 6.1. Since for all i, j one has a i,j • b i,j 0, applying Claim 6.2 yields to

ψ(X k , Y ) c (1) F,n i=1 d i j=1 a i,j -b i,j c (2) F,n i=1 d i j=1 ψ 1 (D i,j , E i,j )
because the a i,j and the b i,j are unitary vectors, with c

(2)

F,n = √ 2c (1) F,n . Finally, Inequality (19) implies (21) ψ(X k , Y ) c (2) F,n n i=1 ψ d i (F i , B i )
and with Equation (20) yields

ψ k (F, B) ψ 1 (Span(X k ), B) ψ(X k , Y ) because Y ∈ B. Using Inequality (21), it follows ψ k (F, B) c F,n i=1 ψ d i (F i , B i ).
Now that Lemma 6.1 is proved, we can tackle the proof of Theorem 1.8.

Proof of Theorem 1.8. Let F ∈ I n (d, e) j . Let us show by induction that F possesses an orthonormal family (f 1 , . . . , f j ) such that for all ∈ {1, . . . , j}, at least d -coordinates of f vanish. For = 0 there is nothing to show; let us assume that f 1 , . . . , f have been constructed. Let us denote by G the orthogonal complement of Span(f 1 , . . . , f ) in F . One has G ∩ (R n-d+ +1 × {0} d--1 ) = {0} because codim(R n-d+ +1 × {0} d--1 ) = dim G -1, let f +1 ∈ G ∩ (R n-d+ +1 × {0} d--1 ) be a unitary vector. At least d -( + 1) coordinates of this vector vanish, and it is orthogonal to f 1 , . . . , f . In all what follows, let (f 1 , . . . , f j ) be an orthonormal family of F such that for all ∈ {1, . . . , j}, at least d-coordinates of f vanish. Let us denote by x the vector formed with all the non-zero coordinates of the f and denote by N ∈ {1, . . . , jn-jd+j 2 /2+j/2} its number of coordinates.

One has x ∈ R N \ Q N , otherwise (f 1 , . . . , f j ) would span a subspace of dimension j of F , which can not be since F ∈ I n (d, e) j . Using Dirichlet's approximation theorem, there exist infinitely many couples (p, q) ∈ Z N × N * such that gcd(p 1 , . . . , p N , q) = 1 and (22)

x -p q ∞ 1 q 1+1/N .

Let us fix such a couple (p, q). For i ∈ {1, . . . , j}, let us denote by p i the subfamily of p corresponding to its coordinates approaching those of f i , completed with zeros so that p i ∈ Z n is close to qf i . For all i ∈ {1, . . . , j}, one has f i -p i /q ∞ q -1-1/N . Let B = Span(p 1 , . . . , p j ), and let us denote by p ⊥ i (f i ) the orthogonal projection of f i onto Span(p i /q). One has (23) ψ(f i , p i /q) = sin (f i , p i /q) = f i -p ⊥ i (f i ) f i f i -p i q c 1 q 1+1/N because f i = 1, with c 1 > 0 depending only on n. Inequality (22) gives p ∞ -qx ∞ qx -p ∞ q -1/N 1, so for all i ∈ {1, . . . , j}: p i ∞ p ∞ 1 + qx ∞ c 2 q, with c 2 > 0 depending only on F .

For E a subspace of R n and P a family of linearly independent vectors of E, let us denote by vol E (P ) the volume of the parallelotope spanned by the vectors of P and considered in the Euclidean space E. Since (p 1 , . . . , p j ) is a sublattice of B ∩ Z n , one has using Theorem 2.1: H(B) vol B (p 1 , . . . , p j ) j i=1 p i c 3 q j with c 3 > 0 depending only on F . Thus, there exists a constant c 4 > 0 such that (24) 1 q c 4 H(B) 1/j . Let Fj = Span(f 1 , . . . , f j ) which is a subspace of dimension j of F , and let B i = Span(p i ) for i ∈ {1, . . . , j}. According to Proposition 6.1 and Inequality (23), one has ψ 1 (Span(f i ), B i ) c 6 q (N +1)/N with c 5 , c 6 > 0 depending only on n and F . Moreover, F ⊃ Fj , so ψ j (F, B) ψ j ( Fj , B). Thus, Inequalities (24) and (25) show that there exists a constant c 7 > 0 depending only on n and F such that (26) ψ j (F, B) c 7 H(B) (N +1)/(jN ) c 7 H(B) (jn-jd+j 2 /2+j/2+1)/(j(jn-jd+j 2 /2+j/2)) , hence μn (d|j) j jn -jd + j 2 /2 + j/2 + 1 j 2 (n -d + j/2 + 1/2) and the result follows from Proposition 1.1.

  ) becomes -6 -ε for any ε > 0. Up to this modification, Lemma 3.2 and Proposition 3.1 are still true if ζ 3 5/4 is a real algebraic number satisfying [Q(ζ 3 ) : Q] 33.

Claim 6. 1 .

 1 Let D and E be two subspaces of R n of dimension k. There exist k lines D 1 , . . . , D k of D and k lines E 1 , . . . , E k of E, such that D