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ABSTRACT 

Perineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory 

interneurons marks the closure of critical periods of high plasticity, whereas PNN removal 

reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic in vivo 

approaches in the adult mouse visual cortex, we found that transient electrical silencing of PV 

interneurons, directly or through inhibition of local excitatory neurons, induced PNN 

regression. Conversely, excitation of either neuron types did not reduce the PNN. We also 

observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared 

to their untransduced neighbors, and confirmed that single PV interneurons express multiple 

genes enabling cell-autonomous control of their own PNN density. Our results indicate that 

PNNs are dynamically regulated in the adult by PV neurons acting as sensors of their local 

microcircuit activities. PNN regulation provides individual PV neurons with an activity-

dependent mechanism to control the local remodeling of adult cortical circuits. 

 

Keywords: cerebral cortex, fast-spiking parvalbumin interneurons, extracellular matrix, 

perineuronal net, critical period plasticity, chemogenetics, histochemistry, electrophysiology. 
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INTRODUCTION 

 

During the post-natal development of the cerebral cortex, the closure of a highly plastic 

period, called critical period, is concomitant with the accumulation of the PNN, a specialized 

extracellular matrix enwrapping fast-spiking PV interneurons (Hensch, 2005). The PNN is 

made of lecticans, proteoglycan link proteins, and tenascin R, it is reticulated and attached to 

the membrane via hyaluronan, and it can be degraded by various proteases (Dityatev et al., 

2010; Kwok et al., 2012; Ferrer-Ferrer and Dityatev, 2018). The PNN attracts in part the 

homeoprotein transcription factor OTX2 from cerebrospinal fluid to accumulate within PV 

cells, which in turn enhances PNN accumulation (Sugiyama et al., 2008). Enzymatic digestion 

of the PNN, modulating the inhibitory tone, or antagonizing OTX2 import by PV cells, 

reinstate high circuit plasticity in the adult; and a decrease of the PNN accompanies the 

reopening of plasticity, whatever the paradigm used (Hensch et al., 1998; Pizzorusso et al., 

2002; Fagiolini et al., 2004; Beurdeley et al., 2012; Lensjø et al., 2017a; Harauzov et al., 

2010; Sale et al., 2010). Conversely, PNN stability is linked to memory resilience, and PNN 

deficits are thought to contribute to circuit dysfunctions in several pathologies of the central 

nervous system (Testa et al., 2019). 

Alteration of GABAergic transmission can induce PNN regression and reinstate high cortical 

plasticity, indicating that the PNN is dynamically regulated in the adult (Hensch, 2005; 

Harauzov et al., 2010; Sale et al., 2010). PV interneurons are strongly interconnected with 

excitatory pyramidal neurons, express multiple genes involved in PNN synthesis and 

degradation, and their maturation parallels that of their PNN (Angulo et al., 1999; Ascoli et 

al., 2008; Okaty et al., 2009; Rossier et al., 2015). This suggests that PV cells are key actors in 

the physiological regulation of the PNN. Likewise, transient and targeted inhibition of PV 

cells using chemogenetics (Alexander et al., 2009) in vivo is sufficient to restore visual 

plasticity in the mouse cortex after closure of the critical period (Kuhlman et al., 2013). We 

hypothesize that this chemogenetic paradigm induces PNN reduction, making the network 

permissive to circuit plasticity. 

Here, we used targeted chemogenetic in vivo approaches to test this hypothesis and examine 

the physiological factors that govern PNN remodeling in the adult mouse visual cortex. We 

also assessed the acute electrophysiological effects of chemogenetic paradigms. We found 

that silencing of PV interneurons, directly or through inhibition of excitatory neurons, induced 

PNN regression, and obtained evidence for cell-autonomous regulation of its own PNN by 

each PV cell. 
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RESULTS 

 

Targeted chemogenetic inhibition of PV interneurons induces PNN regression in the 

adult visual cortex 

The PNN accumulates postnatally to reach adult density at P50 in the V1 area of the 

mouse visual cortex (Ye et al., 2018; Lee et al., 2017; Lensjø et al., 2017b). In order to test the 

hypothesis that targeted chemogenetic inhibition of PV interneurons alters adult PNN density, 

we adapted the protocol known to reinstate visual plasticity at P35 (Kuhlman et al., 2013) to 

measure PNN changes between P58 and P61 (see Methods and Fig.S1). Hemilateral injection 

of Cre-dependent AAV encoding the inhibitory DREADD hM4Di fused to fluorescent protein 

mCherry in the V1 area of the visual cortex of PV-Cre mice resulted in robust and selective 

expression in PV interneurons, with 100 % of mCherry+ cells being also PV+ (n=208 out of 

208 cells, Fig.S2). Four weeks after viral injection, mice were treated with the DREADD 

agonist CNO or with PBS. PNNs are most abundant at the peak of PV interneuron distribution 

in layer IV and upper layer V (Ye et al., 2013; Lensjø et al., 2017b; Rudy et al., 2011). We 

quantified PNN density around PV+ cells in these layers using WFA staining (Methods and 

Fig.S1). Following CNO treatment, the PNN of hM4Di-mCherry+ cells was strongly 

decreased as compared to the PNN of the uninjected contralateral hemicortex (39.7 ± 4.4 % of 

contralateral PNN density, n=70 mCherry+/PV+ cells and n=72 contralateral PV+ cells from 3 

animals, p<0.05, Fig.1, Table 1). Conversely, no significant change of the PNN of hM4Di-

mCherry+ cells was observed as compared to contralateral PNN in PBS treated animals 

(101.1 ± 8.5 % of contralateral PNN density, n=85 mCherry+ cells and n=87 contralateral 

cells from 3 animals, p=0.3, Fig.1, Table 1). The significantly lower PNN density of hM4Di+ 

cells from CNO-treated animals compared to hM4Di+ cells from PBS-treated animals (Table 

1) is illustrated in Fig.1. These results indicate that activation by CNO of hM4Di expressed in 

PV interneurons locally induces PNN regression in the adult visual cortex. 

The DREADD hM4Di has somatodendritic effects, but can also inhibit GABA release 

from axon terminals of PV interneurons (Alexander et al., 2009; Kruglikov and Rudy, 2008; 

Stachniak et al., 2014). Hence, PNN regression may result either from decreased 

somatodendritic excitation of PV interneurons, or from increased network activity due to 

disinhibition of their excitatory target neurons. To discriminate between these possibilities, we 

characterized acute electrophysiological effects of CNO in hM4Di-expressing mice. 

 

CNO treatment results in moderate silencing of hM4Di-expressing PV interneurons 

 We investigated the effect of CNO [0.5 µM, (Alexander et al., 2009)] on the 

excitability of hM4Di-expressing PV interneurons using patch-clamp recordings in acute 

slices of visual cortex (see Methods). Expression of hM4Di did not conspicuously alter 

electrophysiological properties of PV interneurons in the absence of CNO (Cauli et al., 1997). 

CNO application elicited a hyperpolarization (from -66.8 ± 0.5 mV in control to -71.6 ± 0.5 

mV in CNO, p<0.05) and a decrease in input resistance (from 152.9 ± 13.6 MΩ in control to 

128.6 ± 10.7 MΩ in CNO, p<0.05, n=8 PV cells, Fig.2A), as reported (Alexander et al., 
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2009). This effect was associated with an increase in rheobase (from 143 ± 16 pA in control 

to 191 ± 23 pA in CNO, p<0.05, Fig.2A). These results indicate that activation of hM4Di by 

CNO decreases the somatodendritic excitability of PV neurons. 

 We next investigated acute CNO effects on network activities in V1 using EEG 

recordings in the hemicortex of awake mice expressing hM4Di in PV interneurons (see 

Methods). After 1 h baseline recording in control conditions, a first i.p. injection of PBS was 

performed, followed 1 h later by i.p. injection of CNO. We found no evidence for CNO-

induced unbalanced excitation of the network indicative of marked disinhibition (Fig.2B). 

CNO injection induced a strong decrease of network oscillations in the mid-high gamma 

frequency band (from 99.5 ± 8.5 % of control in PBS to 58.7 ± 17.5 % of control in CNO for 

the 55-95 Hz range, and from 94.9 ± 2.2 % of control in PBS to 41.1 ± 12.3 % of control in 

CNO for the 100-150 Hz range, n=3 mice, p<0.05, Fig.2B). We also observed a non-

significant decrease in theta oscillations (from 105.7 ± 18.0 % of control in PBS to 56.3 ± 

13.6 % of control in CNO, p=0.14, Fig.2B), but no change in low frequency gamma or delta 

oscillations. PV interneurons play a key role in synchronizing cortical neuronal populations, 

notably at gamma frequencies (Cardin et al., 2009). Hence, these results indicate that hM4Di 

activation by CNO induces moderate silencing of PV cells in vivo, which could be the trigger 

of the observed PNN reduction. 

 

Targeted excitation of glutamatergic neurons or PV interneurons does not alter adult 

PNN density 

In order to rule out disinhibition-induced network excitation as a cause of PNN 

regression, we selectively expressed the excitatory DREADD hM3Dq in either glutamatergic 

neurons or PV interneurons using the same paradigm as above in Emx1-Cre or PV-Cre mice, 

respectively (see Methods). We first verified that CNO (0.5 µM) enhanced the excitability of 

hM3Dq-expressing neurons using patch-clamp recordings of hM3Dq+ layer V pyramidal 

cells (n=8) in cortical slices. CNO elicited a depolarization (from -66.1 ± 0.9 mV in control to 

-63.9 ± 1.4 mV in CNO, p<0.05) and an increase in input resistance (from 139.8 ± 12.5 MΩ 

in control to 173.2 ± 10.6 MΩ in CNO, p<0.05; Fig.S3A) of these neurons, accompanied by a 

decrease in rheobase (from 60 ± 3 pA in control to 38 ± 3 pA in CNO, p<0.05; Fig.S3A). 

These results confirm that CNO enhances the excitability of hM3Dq-expressing neurons. 

We next probed the effect of in vivo activation of hM3Dq-expressing glutamatergic 

neurons in V1 on the PNN surrounding PV interneurons. Neither CNO, nor PBS treatment 

significantly changed PNN density around PV+ cells in the ipsilateral hM3Dq-expressing 

hemicortex as compared to the uninjected contralateral hemicortex (Fig.S3B, Table 1). We 

also tested the effect of in vivo activation of hM3Dq-expressing PV interneurons in V1 on 

their PNN. Neither CNO, nor PBS treatment significantly changed the density of the PNN 

around hM3Dq+/PV+ cells as compared to contralateral PV+ cells (Fig.S3C, Table 1). These 

results show that cortical network excitation does not trigger PNN regression in the adult. 

Hence, CNO-induced PNN regression around hM4Di+ PV interneurons did not result from 

cortical network disinhibition. 
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Electrical silencing of PV interneurons triggers PNN regression in the adult visual 

cortex 

The DREADD hM4Di is coupled to Gi intracellular signaling and thus results in both 

electrophysiological and metabotropic effects. In order to assess electrical silencing of PV 

interneurons as a cause of PNN decrease, and rule out involvement of Gi-dependent 

metabotropic effects, we used an alternative chemogenetic tool, the chloride channel PSAM-

GlyR exclusively activated by the agonist PSEM89S (Magnus et al., 2011) co-expressed with 

GFP, to inhibit PV interneurons in the same paradigm as above (see Methods). We found that 

82 % of GFP+ cells were PV+ (n=75 out of 92, not shown), consistent with efficient 

expression of PSAM-GlyR in PV interneurons. Following PSEM89S treatment, the density of 

the PNN surrounding PSAM-GlyR-GFP+/PV+ cells in layers IV-V was largely decreased as 

compared to the PNN of contralateral PV+ cells (51.0 ± 4.6 % of contralateral PNN density, 

n=110 GFP+ cells and n=119 contralateral cells from 3 animals, p<0.05; Fig.3, Table 1). PNN 

density around GFP+ cells did not significantly differ from contralateral PNN in PBS treated 

animals (Fig.3, Table 1). These results confirm that electrical silencing of PV interneurons 

induces PNN regression in the adult visual cortex. 

We next reasoned that PV interneuron silencing can, in principle, also be achieved by 

decreasing their synaptic excitation. We thus targeted expression of hM4Di to inhibit 

excitatory neurons in the V1 area. CNO treatment significantly reduced the PNN of PV+ cells 

in the ipsilateral hM4Di-expressing hemicortex as compared to contralateral PNN (68.9 ± 4.9 

% of contralateral PNN density, n=122 ipsilateral and n=130 contralateral PV+ cells from 4 

animals, p<0.05; Fig.4, Table 1). PBS treatment had no significant effect on PNN density 

(Fig.4, Table 1). These data indicate that a decrease in the synaptic excitation of PV 

interneurons induces PNN regression in the adult visual cortex. 

Our results collectively suggest that PNN density is dynamically regulated in the adult 

depending on the activity level of PV interneurons. 

 

The PNN may be regulated cell-autonomously by each PV interneuron 

 During histochemical analyses of CNO treated mice, we noticed that hM4Di-negative 

PV interneurons had dense PNNs, whereas the PNN of neighboring hM4Di+ cells was 

reduced (see examples in Fig.5A). This suggests that each PV interneuron is able to regulate 

its own PNN cell-autonomously. In order to test this hypothesis, we compared PNN density 

within pairs of hM4Di+ and hM4Di- PV interneuron neighbors located at short distance from 

each other in the V1 area (maximal distance 106 µm, see Methods and Fig.5B). We verified 

that PNN density around hM4Di- cells was higher than around hM4Di+ cells (WFA staining 

intensity 85.1 ± 5.5 % of hM4Di-negative cells, n=21 cell pairs from 3 animals; Fig.5B). We 

next plotted WFA staining intensity of hM4Di- cells against that of hM4Di+ cells for each PV 

interneuron pair (Fig.5B). The plot was skewed towards higher WFA staining around hM4Di- 

cells, consistent with hM4Di effect on the PNN. Linear regression analysis yielded a slope of 

0.2, which did not significantly differ from the zero slope value expected from independence 
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between WFA staining intensities of hM4Di+/PV+ and hM4Di-/PV+ cells (p=0.12). These 

results suggest that PNN density is regulated by each PV interneuron independently of its PV 

cell neighbors. 

PV interneurons express multiple genes involved in synthesis and degradation of the 

PNN (Okaty et al., 2009; Rossier et al., 2015). We thus searched through published 

transcriptomic database of single cells collected from the primary visual cortex of P56 mice 

(Tasic et al., 2018) for the expression of genes that may enable PV interneurons to regulate 

their PNN cell-autonomously. Figure 5C shows expression levels of selected PNN lecticans, 

linkers, and proteases in 10,100 cells comprising major interneuron and layers II-V excitatory 

neuron types as previously defined (Tasic et al., 2018), as well as astrocytes. The expression 

profiles of PNN-related genes differed between cell-types, with the largest array of genes 

expressed by PV interneurons. All lecticans and PNN linkers mRNAs were present in PV 

interneurons, which preferentially express Acan and weakly express Ptprz1 mainly found in 

astrocytes (Rossier et al., 2015; Maurel et al., 1994). PV interneurons strikingly differed from 

other cell types in expressing significant levels of all tested proteases, except Mmp9 mainly 

observed in a subtype of layer V excitatory neurons. Notably, secreted proteases were 

preferentially expressed by PV interneurons consistent with earlier observations (Rossier et 

al., 2015). These results confirm that adult PV interneurons express key genes enabling cell-

autonomous control of the accumulation and degradation of their own PNN. 
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DISCUSSION 

 

We tested the effects of targeted chemogenetic modulation of PV interneurons and excitatory 

neurons on PNN density around PV interneurons in the adult visual cortex. Inhibition of PV 

interneurons using the Gi-coupled hM4Di or the chloride channel PSAM-GlyR, as well as 

inhibition of glutamatergic neurons, induced PNN regression. Inhibition of PV interneurons 

did not elicit unbalanced excitation of the network and excitation of glutamatergic neurons or 

of PV interneurons did not alter PNN density, ruling out network disinhibition as a cause of 

PNN regression. We also found that the PNN of hM4Di-expressing PV cells was reduced 

compared to the PNN of their hM4Di-negative neighbors, and that PV interneurons express 

genes enabling control of their own PNN density. Our results indicate that silencing of PV 

interneurons, directly or through reduced synaptic excitation, triggers PNN regression in the 

adult cortex, and suggest that each PV cell regulates its own PNN cell-autonomously. 

 

Targeted chemogenetic modulation of PV interneurons or excitatory neurons 

Cre-dependent viral transduction resulted in robust and selective expression of chemogenetic 

actuators, consistent with previous studies (Alexander et al., 2009; Hippenmeyer et al., 2005; 

Gorski et al., 2002; Magnus et al., 2011; Krashes et al., 2011). Cell-type-specific targeting 

was assessed by immunochemistry and patch-clamp recordings of transduced neurons, which 

all exhibited electrophysiological properties typical of PV interneurons or glutamatergic 

neurons (Cauli et al., 1997; Connors and Gutnick, 1990). Our results exclude DREADD-

independent effects of CNO (Gomez et al., 2017) as the cause of PNN changes: (i) CNO was 

ineffective in hM3Dq expressing mice; (ii) CNO induced PNN regression in the hM4Di-

expressing hemicortex but not contralaterally; (iii) CNO and PSEM treatments both 

effectively reduced PNN around PV interneurons expressing their cognate chemogenetic 

actuator; (iv) our electrophysiological recordings of acute CNO effects confirm its efficiency 

in modulating somatodendritic excitability of DREADD-expressing neurons (Alexander et al., 

2009; Krashes et al., 2011 but see Stachniak et al., 2014; Gomez et al., 2017). Hence, the 

PNN changes we observed stem from specific chemogenetic ligand/actuator interactions 

eliciting a decrease in excitability of selectively targeted cell-types. 

 

PNN regression is triggered by electrical silencing of PV interneurons, but not by 

network disinhibition 

Modulation of PV interneurons using hM4Di reinstates visual plasticity in the mouse cortex 

after closure of the critical period (Kuhlman et al., 2013). Consistent with our working 

hypothesis, we found that this chemogenetic paradigm also induced PNN regression. Our 

observations indicate that this effect, also obtained upon inhibition of PV cells by the chloride 

channel PSAM-GlyR, was due to electrical silencing of these interneurons. This outcome was 

reinforced by the reduced somatodendritic excitability of PV cells upon hM4Di activation, in 

agreement with earlier calcium imaging data (Kuhlman et al., 2009), and by the decrease in 
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cortical gamma oscillations that critically rely on these interneurons (Cardin et al., 2009). 

Conversely, EEG recordings showed no evidence for unbalanced network excitation (e.g. 

epileptiform activities), and targeted excitation of either glutamatergic neurons or PV 

interneurons using hM3Dq did not alter PNN density, thereby ruling out network disinhibition 

as a cause of PNN regression. Our results further indicate that electrical silencing of PV 

interneurons triggers PNN regression in the adult independently of the activity of other 

network components. Indeed, both targeted inhibition of PV interneurons (which silences PV 

cells but disinhibits excitatory cells), and targeted inhibition of excitatory neurons (which 

silences both excitatory and PV cells), resulted in PNN regression. Interestingly, a reduction 

in PV interneuron function has been proposed to underlie the effects of several commonly 

prescribed drugs and of dark exposure on adult PNN density or cortical plasticity (Hensch and 

Quinlan, 2018). 

Our results reveal that PNN remodeling in the adult relies on the ability of PV interneurons to 

sense their own activity level, which reflects the activity of their local and distant inputs. 

Indeed, PV interneurons receive strong inputs from sensory thalamic nuclei, are densely 

interconnected with excitatory neurons, and receive direct feedback on their own GABAergic 

activity through powerful autapses (Bacci et al., 2003; Gabernet et al., 2005; Faini et al., 

2018). Among the candidate signals that may link neuronal activity of PV cells to PNN 

degradation, changes in post-synaptic calcium entry [e.g. through calcium permeable AMPA 

receptors (Geiger et al., 1995; Angulo et al., 1997)] are unlikely to be involved since PNN 

regression occurred regardless of excitatory neurons being inhibited or disinhibited. 

Conversely, a change in OTX2 import appears as a more likely candidate signal: OTX2 

accumulation in PV interneurons is activity-dependent, and the reduction of OTX2 import 

induces PNN regression and reinstates juvenile plasticity in the adult (Sugiyama et al., 2008; 

Beurdeley et al., 2012). 

PV interneurons may regulate their PNN cell-autonomously 

The present study provides evidence for cell-autonomous regulation of the PNN by each PV 

cell independently of its neighbors. This possibility is substantiated by analysis of 

transcriptomic data (Tasic et al., 2018) showing expression of a large array of genes that 

enable PV cells to control the density of their own PNN. The PNN regression observed in the 

present study can theoretically result from enhanced proteolysis or from reduced synthesis 

associated with tonic proteolysis. Reduced expression or secretion of lecticans or PNN linkers 

by individual PV cells is expected to reduce their PNN cell-autonomously. Moreover, the 

pattern of membrane and secreted proteases characteristically found in PV interneurons is 

indicative of a tonic level of PNN proteolysis, which may be upregulated at the level of gene 

expression, secretion or proteolytic activity upon PV interneuron silencing. Hence, the 

expression pattern of PNN-related genes observed in PV interneurons indicates that these 

cells are able to reduce their PNN cell-autonomously. 

Multiple earlier studies indicate that PNN removal renders adult cortical network permissive 

for high circuit plasticity. The chemogenetic paradigm used in the present study is known to 

reinstate visual plasticity in the young adult after closure of the critical period (Kuhlman et al., 

2013). Our results thus suggest that each PV cell is able to regulate the PNN-dependent 
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plasticity of its microcircuit by local sensing of neuronal activities, thereby contributing to 

point-by-point tuning of cortical network properties in the adult.  
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MATERIALS AND METHODS 

 

Animals, Viruses and Surgery 

Experiments were carried out in accordance with the European Communities Council 

Directive 86/609/062, and animal protocols approved by our local ethics committee (Ce5/ 

2012/062). Transgenic mice lines from Jackson laboratories: PV-Cre [# 008069, 

Pvalbtm1(cre)Arbr, (Hippenmeyer et al., 2005)], and Emx1-Cre [# 005628, Emx1tm1(cre)Krj, (Gorski 

et al., 2002)], were genotyped by PCR with following primers. PV-Cre: wild-type forward 

CAGAGCAGGCATGGTGACTA, wild-type reverse AGTACCAAGCAGGCAGGAGA, 

mutant forward, GCGGTCTGGCAGTAAAAACTATC, mutant reverse 

GTGAAACAGCATTGCTGTCACTT (wild-type: 500 bp, mutant: 100 bp); Emx1 Cre: wild-

type forward AAGGTGTGGTTCCAGAATCG, wild-type reverse 

CTCTCCACCAGAAGGCTGAG, mutant forward GCGGTCTGGCAGTAAAAACTATC, 

mutant reverse GTGAAACAGCATTGCTGTCACTT (wild-type: 102 bp, mutant: 378 bp). 

Adeno-associated pseudovirions (AAVs) encoding Designed Receptor Exclusively Activated 

by Designer Drug [DREADD, (Alexander et al., 2009)] AAV2/5-hSyn-DIO-hM4Di-mCherry 

(titer: 5.2x1012 gc/ml) and AAV2/5-hSyn-DIO-hM3Dq-mCherry (7.8x1012 gc/ml) were 

produced from Addgene plasmids #44362 and #44361 at the facility of Nantes University 

(UMR 1089, France). AAV2/5-hsyn-FLEX:rev-PSAML141F,Y115F-GlyR-IRES-GFP (3.6x1012, 

diluted at 1x1012 gc/ml) was generously provided by Dr. C.J. Magnus [Sternson Lab, Janelia 

Research Campus, USA, (Magnus et al., 2011)]. 

For viral transduction, postnatal day (P) 25 to 28 PV-Cre or Emx1-Cre mice were 

anesthetized by intraperitoneal (i.p.) injection of ketamine/xylazine (100/10 mg/kg body 

weight) and restrained in a neonatal stereotaxic adaptor (David Kopf instrument). The scalp 

was retracted, and a burr hole was drilled in the skull at coordinates AP= 0.05 mm and ML=2 

mm from lambda to target the V1 area of the right visual cortex. Viral suspension (0.5 µl for 

hM3Dq and hM4Di, 1 µl for PSAM-GlyR) was injected with a glass capillary (1 µm tip, 

Drummond) at 500 µm below the pial surface at a speed of 100 nl/min. The scalp was sutured 

and mice were housed for at least 4 weeks with food and water ad libitum. 

 

Chemogenetic treatment and histological processing 

Four weeks after viral injection, DREADD-expressing mice received 4 i.p. injections at 12 h 

intervals of DREADD agonist Clozapine-N-oxide (CNO, 1mg/kg; HelloBio) or phosphate 

buffered saline (PBS: Na phosphate 10 mM, NaCl 137 mM, KCl 2.7 mM, pH 7.4; 100 µl) 

(Fig.S1). PSAM-GlyR-expressing mice were treated similarly with the PSAM agonist 

PSEM89S (10 mg/kg, kind gift of Dr. C.J. Magnus, Magnus et al. 2011) or PBS. 

One day after the last i.p. injection, mice were anesthetized using a lethal mix of 

ketamine/xylazine (200/20 mg/kg body weight, respectively) and perfused transcardially with 

PBS containing 4% paraformaldehyde. Brains were extracted, incubated 2 h at 4°C in the 

same fixative, and sectioned in 50 µm coronal slices using a vibratome (VT1000S, Leica). 
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Free-floating sections were blocked for 1.5 h at room temperature in PBS/0.25% Triton X-

100/ 0.2% gelatin solution (PBS-GT) and incubated overnight at 4°C in PBS-GT with primary 

antibodies against PV, and RFP (DREADD-mCherry) or GFP (PSAM-GlyR). Slices were 

then washed with PBS and incubated for 1.5 h at room temperature with relevant secondary 

antibodies in PBS-GT. After washing in PBS, slices were next incubated with biotinylated 

Wisteria floribunda Agglutinin (WFA, 10 mg/ml, CliniSciences) for PNN labeling. Slices 

were then washed and incubated with streptavidin-AMCA (1:1000, Vector Laboratories). 

Finally, slices were washed and mounted on gelatin-coated slides in Fluoromount-G 

(Southernbiotech). Antibodies were used at following dilutions: mice IgG1 anti-PV (1:1000, 

Sigma), rat anti-RFP (1:500, Chromotek), chicken anti-GFP (1:1000, Aves Labs), goat anti-

mouse IgG1 Alexafluor488 (1:500, Life Technologies), goat anti-mouse IgG Alexafluor555 

(1:500, Life Technologies), goat anti-rat IgG Alexafluor555 (1:500, Life Technologies), 

donkey anti-chicken IgY Alexafluor488 (1:400; Jackson Immunoresearch). 

Fluorescence images were acquired using an epifluorescence macro-apotome (Axiozoomer, 

Zeiss) equipped with filters DAPI, GFP and CY3 to acquire images of entire sections, an 

epifluorescence microscope (DMR, Leica) equipped with filters A4, GFP and CY3 to analyze 

PNN density, and a laser scanning confocal microscope (SP5, Leica) with 20X, 40X and 63X 

objectives, and 405, 488, and 561 nm lasers. Images were processed using ImageJ (U.S. 

National Institutes of Health, Bethesda, MD, USA; http://rsbweb.nih. gov/ij/). 

 

PNN density analyses 

PNN density was analyzed by quantifying WFA fluorescence intensity around PV 

immunoreactive cells in the V1 area of both ipsilateral (virally transduced) and contralateral 

(uninjected) visual cortices using wide-field microscopy. Only brains showing extended viral 

transduction in V1 were kept for further analysis. In the case of targeted transduction of PV 

interneurons, only mCherry+ (DREADD-expressing) or GFP+ (expressing PSAM-GlyR) 

cells were analyzed ipsilaterally. The region analyzed in V1 was selected using a 20X 

objective, based on conspicuously low WFA staining in V2 area [Fig.S1, (Ueno et al., 2018)], 

as delineated by Paxinos and Franklin (Paxinos and Franklin, 2004). Images were acquired in 

layers IV-V using a 63X objective, starting medially from the V2/V1 border and progressing 

laterally into V1 through contiguous acquisition fields. In each field, all PV+ (or ipsilateral 

PV+/mCherry+ or PV+/GFP+) cells were selected for PNN density analysis (Fig.S1). Images 

were acquired with constant brightness and contrast, and variable exposure time. Perisomatic 

PNN was delineated manually based on WFA staining intensity (Fig.S1), forming ring-shaped 

regions of interest (ROIs) defined using the XOR function of the FIJI software (ImageJ). For 

each ROI, we measured area and mean WFA fluorescence intensity, which was normalized 

for exposure time. For each animal, the average fluorescence intensity of contralateral ROIs 

was used to normalize fluorescence intensity of each ipsi- and contralateral ROI. For each 

animal, 3-4 bilateral sections were used for this analysis. Data obtained in different mice for a 

given condition were compared using a Kruskall-Wallis nonparametric test. Since no 

significant difference was observed between mice for a given condition, data were pooled. 

Between-group comparisons were performed using Mann–Whitney nonparametric test. 
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In order to investigate cell-autonomous regulation of the PNN, WFA staining intensity was 

compared within pairs of PV+ cells: one being hM4Di+ (mCherry+) and the other being its 

closest hM4Di- (mCherry-) neighbor. Confocal images were acquired with a 40X objective at 

the lateral edge of the hM4Di expressing zone within the V1 area, in order to maximize the 

number of hM4Di+/PV+ and hM4Di-/PV+ cell pairs. Pairs were selected based on a distance 

criterion: the mean of the minimal distance between hM4Di+/PV+ cells determined for each 

section [range: 70-106 µm, n=7 sections, N=3 mice] was used as the maximal radius to select 

pairs of hM4Di+ and hM4Di- PV+ neighboring cells. PNN density was quantified as 

described above, and compared within cell pairs. Comparison between hM4Di+/PV+ and 

hM4Di-/PV+ cells was performed using Wilcoxon nonparametric test. Linear regression 

analysis was performed to test the independence between WFA staining intensities of 

hM4Di+/PV+ and hM4Di-/PV+ cells. 

 

Electrophysiological recordings of CNO/DREADD effects in cortical slices 

Four to ten weeks after viral injection, mice were anesthetized using a lethal mix of 

ketamine/xylazine (200/20 mg/kg body weight) and 250 µm-thick coronal slices of V1 visual 

cortex prepared for whole-cell patch-clamp recordings (Hay et al., 2018) performed on 

mCherry+ layers IV-V PV interneurons or layer V pyramidal cells selected under 

epifluorescence illumination with a 535-nm LED (CoolLED) and an RFP filter set (Semrock). 

Membrane potentials were not corrected for liquid junction potential. Cells were set at -60 

mV by continuous current injection and submitted to series of current pulses (800 ms, from –

100 to 375 pA with 25 pA increments). Parameters were measured from three series of pulses 

in control conditions and 2 minutes after the beginning of CNO bath application. Resting 

potential was determined on sweeps where no current was injected, input resistance on 

responses to hyperpolarizing pulses eliciting 10-15 mV shifts, and rheobase defined as the 

minimal depolarizing pulse triggering an action potential. Between-group comparisons were 

performed using paired Wilcoxon nonparametric test. 

 

Electroencephalographic (EEG) recordings of CNO/DREADD effects in vivo 

Four weeks after viral injection, mice were subjected to anesthesia induced with 2% 

isoflurane and maintained by ketamine/xylasine (100/10 mg per kg body weight), and their 

body temperature maintained at 36.5°C. Electrodes made of bundles of insulated tungsten 

wires were implanted through the skull and sealed in place with acrylic resin. An epidural 

screw placed above the olfactory bulb was used as ground. One electrode placed above the 

cerebellum was used as reference. Three recording electrodes were implanted ipsilateral to the 

hM4Di-expressing hemisphere in V1 (AP = 0.05 mm, ML = ± 2 mm, DV= -0.5 mm from 

lambda) and somatosensory S1 (AP = -2 mm, ML = 2 mm, DV = -0.5 mm from bregma) 

cortical areas. After a 1-week resting period, EEG and simultaneous video recordings of 

awake mice were performed as described (Sieu et al., 2015). A half hour recording was 

extracted in each condition for analysis using a custom-made software based on Labview 

(National Instruments). The EEG signal was filtered with 1-4 Hz, 6-10 Hz, 30-50 Hz, 55-95 
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Hz and 100-150 Hz pass-bands and mean power values were extracted for each band and 

normalized to control condition. Data obtained in different conditions were compared using a 

Student t-test. 

Throughout this study, treatments (ligand vs. PBS) or experimental conditions (transduction 

of PV-Cre or Emx1-Cre with DREADDs- or PSAM-encoding AAVs) were allocated 

randomly across mice, and results are given as mean ± standard error of the mean (SEM), and 

a p-value below 0.05 was considered statistically significant. 
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FIGURE LEGENDS 

 

Figure 1. Targeted inhibition of PV interneurons using DREADD hM4Di induces PNN 

regression. Confocal fluorescence images acquired in the V1 cortex illustrate the PNN 

(WFA) surrounding hM4Di-expressing PV interneurons in layers IV-V after PBS or CNO 

treatment of the mice. Note the low PNN density around hM4Di+ cells after CNO treatment, 

as exemplified in high magnification images. Scale bars: 100 µm (left), 10 µm (right). Plot of 

PNN density around PV+ (contralateral uninjected hemicortex) and hM4Di+/PV+ (ipsilateral 

injected) cells in the V1 cortex normalized for each mouse to mean density in contralateral 

hemicortex. Indicated in bars are the number of cells analyzed in 3 CNO-treated and 3 PBS-

treated mice. * Significantly different from other conditions. 

 

Figure 2. CNO decreases the excitability of hM4Di-expressing PV interneurons and 

reduces cortical gamma oscillations. (A) Patch-clamp recordings in cortical slices. Traces 

show responses of a hM4Di-expressing interneuron to depolarizing current step in control 

conditions and upon bath application of CNO (0.5 µM). CNO elicited a hyperpolarization of 

the membrane potential and an increase in the current needed to induce action potential firing. 

Plots show parameters measured in hM4Di-expressing interneurons (n=8). Note the large 

amplitude of the fast afterhyperpolarizing potentials, the quiescent periods between trains of 

action potentials, the modest input resistance, and the high rheobase value typical of fast-

spiking PV interneurons. (B) EEG recordings in the hM4Di-expressing visual hemicortex of 

awake PV-Cre mouse before and after consecutive i.p. injections of PBS and CNO. The EEG 

signal was filtered to analyze oscillations in the delta 1-4 Hz, theta 6-10 Hz, gamma low 30-

50 Hz, gamma mid 55-95 Hz and gamma high 100-150 Hz frequency ranges. Traces show 

samples obtained from 1 mouse and graphs show mean results from 3 mice. * Significant 

differences. 

 

Figure 3. Silencing of PV interneurons by PSAM-GlyR induces PNN regression. 

Confocal fluorescence images in the V1 cortex illustrate the PNN (WFA) surrounding PSAM-

GlyR+ cells after mice treatment with PBS or with the PSAM-GlyR agonist PSEM89S. Note 

the low PNN density around PSAM-GlyR+ cells after PSEM treatment, as exemplified in 

high magnification images. Scale bars: 100 µm (left), 10 µm (right). Plot of PNN density 

around PV+ (contralateral uninjected hemicortex) and PSAM-GlyR+/PV+ (ipsilateral 

injected) cells in the V1 cortex. Indicated in bars are the number of cells analyzed in 3 PSEM-

treated and 3 PBS-treated mice. * Significantly different from other conditions. 

 

Figure 4. Targeted inhibition of excitatory neurons by hM4Di induces PNN regression. 

Confocal fluorescence images illustrate the PNN (WFA) surrounding PV+ cells in the vicinity 

of hM4Di-expressing excitatory neurons in layers IV-V of the V1 cortex of mice treated with 

PBS or CNO. Note the low PNN density around PV+ cells after CNO treatment, as 
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exemplified in high magnification images. Scale bars: 100 µm (left), 10 µm (right). Plot of 

PNN density around PV+ cells ipsi- and contralateral to hM4Di expression normalized for 

each mouse to mean density in contralateral hemicortex. Indicated in bars are the number of 

cells analyzed in 4 CNO-treated and 3 PBS-treated mice. * Significantly different from other 

conditions. 

 

Figure 5. PV interneurons may regulate their PNN cell-autonomously. (A) Examples of 

the high PNN density (arrows) observed around hM4Di-negative, or weakly hM4Di-positive 

PV interneurons, as compared to the low PNN density observed around their PV+ neighbors 

robustly expressing hM4Di in the V1 cortex of a CNO treated mouse. Scale bar: 20 µm. (B) 

Comparison of PNN density within pairs of hM4Di+ and hM4Di- closest neighbors PV+ 

cells: selection criterion (left), individual and mean WFA intensity (middle, * significant 

difference) and scatter plot of WFA intensity for PV interneuron pairs (right, n=21). Note that 

the slope of linear regression did not significantly differ from zero. (C) Violin plots showing 

distributions of individual gene expression in 10,100 single cells from primary visual cortex 

of P56 mice. Data are from the Allen Institute. Cells are from subclasses segregated in Tasic 

et al. (20): GABAergic (Lamp5, Vip, Sst and Pvalb), glutamatergic (layers 2/3 and 5 IT 

intratelencephalic, layer 4, layer 5 PT Pyramidal Tract) and astrocytes. Rows show individual 

gene expression across cell types, values (number per million reads) are displayed on a log10 

scale normalized to maximum expression value for each gene (right column), black dots are 

median values. Markers: Gad2, glutamate decarboxylase; Slc17a7, vesicular glutamate 

transporter; Gja1, gap junction alpha1; Pvalb, PV; Lecticans: Acan, aggrecan; Bcan, brevican; 

Ncan, neurocan; PNN linkers: Hapln, hyaluronan and proteoglycan link protein; Ptprr and 

Ptprz1, Protein Tyrosine Phosphatase Receptor types R and Z1; Tnr, tenascin R; Proteases: 

Adam, A Disintegrin And Metalloproteases; Mmp9, membrane metallopeptidase 9; Mme, 

neprilysin; Tll1, tolloid-like metallopeptidase; Adamts, A Disintegrin And Metalloprotease 

with Thrombospondin motif; Prss23, serine protease 23. 
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Table 1- Summary of chemogenetic experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N refers to number of animals, and n to number of cells counted in each condition. Significant 

differences are in bold. 

  Drug PBS 

Mice Virus WFA ipsi WFA contra WFA ipsi WFA contra 

PV Cre 

 

hM4Di 0.397 ± 0.044 

(N=3, n=70) 

1.000 ± 0.080 

(n=72) 

1.011 ± 0.085 

(N=3, n=85) 

1.000 ± 0.110 

(n=87) 

Drug-ipsi< Drug-contra, p= 0.000; Drug-ipsi< PBS-ipsi, p= 0.012; PBS-ipsi 

vs. PBS-contra, p= 0.326 

PV Cre PSAM 

GlyR 
0.510 ± 0.046 

(N=3, n=110) 

1.000 ± 0.050 

(n=119) 

1.051 ± 0.072 

(N=3, n=110) 

1.000 ± 0.054 

(n=107) 

Drug-ipsi< Drug-contra, p= 0.000; Drug-ipsi< PBS-ipsi, p = 0.000; PBS-ipsi 

vs. PBS-contra, p= 0.726 

Emx1 

Cre 

hM4Di 0.689 ± 0.049 

(N=4, n=122) 

1.000 ± 0.049 

(n=130) 

1.027 ± 0.061 

(N=3, n=93) 

1.000 ± 0.056 

(n=92) 

Drug-ipsi< Drug-contra, p= 0.000; Drug-ipsi< PBS-ipsi, p= 0.000; PBS-ipsi 

vs. PBS-contra, p= 0.888 

Emx1 

Cre 

hM3Dq 0.949 ± 0.060 

(N=3, n=101) 

1.000 ± 0.059 

(n=101) 

0.950 ± 0.043 

(N=3, n=92) 

1.000 ± 0.058 

(n=92) 

Drug-ipsi vs. Drug-contra, p= 0.602 ; Drug-ipsi vs. PBS-ipsi, p= 0.820; PBS-

ipsi vs. PBS-contra, p= 0.667 

PV Cre hM3Dq 1.085 ± 0.087 

(N=3, n=86) 

1.000 ± 0.074 

(n=90) 

1.114 ± 0.079 

(N=3, n=101) 

1.000 ± 0.061 

(n=100) 

Drug-ipsi vs. Drug-contra, p=  0.600; Drug-ipsi vs. PBS-ipsi, p= 0.873; PBS-

ipsi vs. PBS-contra, p= 0.719 
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Fig. S1. Chemogenetic paradigm and histological analysis of PNN density in the V1 visual 

cortex. (A) Four weeks after hemilateral AAV injection in the V1 cortex, DREADD- or PSAM-

GlyR-expressing mice received 4 injections of relevant agonist or PBS starting at P58, and brains 

were processed for histochemistry at P61. (B) Macrotome fluorescence negative picture of a 

coronal section of mouse brain at the level of the visual cortex showing PNN staining with WFA. 

The superimposed section of the mouse brain atlas delineates the densely stained V1 area flanked 

by V2L and V2ML areas exhibiting faint PNN labeling. Throughout this study, analyses of PNN 

density were performed in layers IV-V of the V1 area as indicated by the red rectangle. (C) PNN 

density analyses were performed around PV immunopositive cells, or around cells showing 

expression of both PV and the chemogenetic tool, as exemplified here for the hM4Di-mCherry 

fusion protein. (D) In order to quantify PNN density, whole-field fluorescence pictures were 

acquired (left panel), background-subtracted using the Substract Background function of the 

ImageJ software (middle panel), and PNNs were delineated manually around the soma based on 

WFA staining intensity (red lines in right panel), to create ring-shaped ROIs using the XOR 

function of ImageJ. Scale bar for C-D: 20 µm.  
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Fig. S2. Targeted expression of DREADD hM4Di in PV interneurons. (A) Stereotaxic 

injection of Cre-dependent AAV encoding hM4Di fused to mCherry in the visual cortex of PV-

Cre mice. Macrotome fluorescence picture showing expression of hM4Di-mCherry revealed by 

anti-RFP immunohistochemistry 5 weeks after injection. The superimposed section of the mouse 

brain atlas delineates the V1 area. (B) Confocal fluorescence images acquired in the V1 cortex 

after dual immunostaining showing hM4Di-mCherry expression in PV-positive cells. Scale bar: 

100 µm.  
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Fig. S3. Targeted excitation of glutamatergic or PV neurons using hM3Dq does not alter 

PNN density. (A) Patch-clamp recordings in cortical slices. Traces show responses of a hM3Dq-

expressing layer V pyramidal neuron to depolarizing current steps in control conditions and upon 

bath application of CNO (0.5 µM). CNO application elicited a depolarization of the membrane 

potential and a decrease of the current needed to induce action potential firing. Plots show 

electrophysiological parameters measured in control and CNO conditions in hM3Dq-expressing 

neurons (n=8). * Significant differences. (B) Confocal fluorescence images illustrate the PNN 

(WFA) surrounding PV+ cells in the vicinity of hM3Dq-expressing excitatory neurons in layers 

IV-V of the V1 cortex of mice treated with PBS or CNO. For better visualization, upper panels 

show WFA and anti-PV labelling separately from hM3Dq-mCherry positive excitatory neurons 

visible on lower panels. Scale bar: 100 µm. Plot of PNN density around PV+ cells ipsi- and 
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contralateral to hM3Dq expression in the V1 cortex normalized for each mouse to mean density 

in contralateral hemicortex. Indicated in bars are the number of cells analyzed in 3 CNO-treated 

and 3 PBS-treated mice. (C) Upper confocal fluorescence images show hM3Dq-mCherry 

expression in PV+ cells of the V1 cortex 5 weeks after injection of corresponding Cre-dependent 

AAV in a PV-Cre mouse. Lower confocal fluorescence images illustrate the PNN (WFA) 

surrounding hM3Dq+ PV interneurons in layers IV-V after PBS or CNO treatment of the mice. 

Scale bars: 100 µm. Plot of PNN density around PV+ (contralateral uninjected hemicortex) and 

hM3Dq+/PV+ (ipsilateral injected) cells. Indicated in bars are the number of cells analyzed in 3 

CNO-treated and 3 PBS-treated mice.  
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