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Abstract  9 

The 3D microstructure of dentinal tissue, the main tissue of the tooth, is the subject of 10 

an increasingly comprehensive body of knowledge. The relationship between this 11 

microstructure and the mechanical behaviour of dentinal tissue remains, nonetheless, under 12 

question. This article proposes an original SEM analysis of dentin microstructure, accounting 13 

for lateral branches, and a mechanical model based on these findings. An interesting 14 

observation is that lateral branches have a dense collar, as do tubules. The diameter of these 15 

branches as well as a percentage area are quantified all along the depth of a dentin sample. 16 

We use these unprecedented data to build an orthotropic homogenized model of dentin. 17 

The heterogeneities of microstructure are taken into account using level-set functions. The 18 

results reveal that the lateral branches slightly influence the global homogenized elastic 19 

behavior of the dentin tissue, albeit creating stress concentration areas that are highly 20 

influenced by the inclination of the traction with respect to the tubule and branches.  21 

1. Introduction 22 

The tooth is a sensitive biomechanical structure, which must provide sufficient 23 

stiffness and strength, simultaneously, to fragment hard food with the crown at one end 24 

without compromising support to the gingiva at the other end. The tooth’s stiffness must 25 

thus vary gradually from enamel to pulp cavity. This stiffness acts as a sensor through the 26 

nerve, informing the mandibular muscle to control pressure levels in order to break down 27 

food. The living cushion which provides said stiffness gradient is known as the dentin.  28 

Dentin material is thus a key tissue inside the tooth; the main tissue in terms of 29 

volume and the tissue on which most dental restorations are bonded. The restorative 30 

materials have to replace it as durably as possible. Given that most of the world’s population 31 

experiences dental problems at least once a lifetime, deeper knowledge of dentinal tissue is 32 

crucial. The scientific challenge of deepening this knowledge is geared towards linking both, 33 

knowledge of its microstructure and knowledge of its mechanical properties.  34 

Dentin is a complex porous medium with microstructural gradients in depth 35 

(millimetric length scale). Most of the time, however, dentin is simplified being indeed 36 

alluded to as a triphasic structure (micrometric length scale) with tubules (cylindrical voids 37 

called lumens (L), encircled by a peritubular collar called peritubular dentin, (PTD) and 38 

intertubular dentin (ITD), Figure 1) (Kinney et al. 2003).  39 

 40 
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 41 
Figure 1 : Classical representation of a tooth and of the dentin microstructure 42 

Dentin’s contribution to the total porosity of channels other than tubules are non-43 

negligible, as recently demonstrated. Such channels also greatly contribute to the maximum 44 

stress in the tissue (Vennat et al. 2017). The auxiliary channel network, classified by Mjor 45 

and Nordahl (1996), is made up of different types of lateral branches (LB) near the enamel: 46 

• major branches (0.5-1µm diameter) fused to become tubules when moving towards 47 

the middle dentin; 48 

• fine branches (0.3-0.7µm diameter), quantified in Vennat et al. 2017, form an angle 49 

of roughly 45° with the tubules 50 

In middle dentin, microbranches (0.025-0.2µm diameter) are observed and rise at right 51 

angle with the tubules. To our knowledge, however, no information is available on their 52 

volume ratios or size distribution. We may wonder if a highly mineralized collar is 53 

surrounding these lateral branches. 54 

We first investigate the dentinal tissue by SEM (Scanning Electron Microscopy). This 55 

investigation quantifies the variation of characteristics in sub-structures (L, ITD, PTD, LBC and 56 

LBL, LBL or lateral branch lumen) within the tissue (from pulp to enamel), highlighting 57 

morphological features potentially influencing the global and local mechanical properties of 58 

dentin. We then build a mechanical model of the dentinal tissue in light of our findings. A 59 

periodic model of dentin is presented considering the LB (LBL and LBC), observed by SEM. 60 

The model’s uniqueness is that the geometrical entities are not meshed explicitly, allowing 61 

for the direct use of images to quantify the dentin mechanical behavior. The model leads to 62 

an assessment of the equivalent stiffness tensor, together with a micromechanical failure 63 

criterion. 64 

 65 

 66 
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2. Previous theoretical and numerical models of dentin 67 

In previous numerical or theoretical studies of the dentinal tissue, only results and the 68 

tubular structure accounting for dentin porosity (Kinney et al. 1999, Qin & Swain 2004, Bar-69 

On & Wagner 2012, Yoon et al. 2013, Wang et al. 2017 and Arson et al. 2019) were 70 

presented in terms of effective properties.  71 

Kinney et al. (1999) proposed an initial micromechanical model considering ITD, PTD 72 

and L and claimed that the matrix (ITD) dominates the elastic mechanical behavior of bulk 73 

dentin. Qin & Swain (2004) also developed a model considering dentin as an assembly of 74 

ITD, PTD and L with different volume ratios and local elastic modulus. An interesting finding 75 

is that the modulus parallel to the tubules is always higher that the modulus perpendicular 76 

to the tubules; both decrease with distance to pulp. Bar-On & Wagner (2012) were the first 77 

to model the scale of the entanglement between collagen fibrils and the aforementioned 78 

hydroxyapatite crystals for ITD, as a staggered platelet micro-structure.  The tissue consisting 79 

of ITD, PTD and L were then studied, revealing that the modulus parallel to the tubules can 80 

be lower than the modulus perpendicular to the tubules, showing the impact of the lower 81 

scale structure. They further discovered that a transition from isotropy to anisotropy arises 82 

depending on location in the dentin. Yoon et al. (2013) proposed two geometrical scales of 83 

homogenization: at the lowest scale, ITD is considered as a mixture of collagen fibrils, 84 

hydroxyapatite crystals (which are considered as plate-shaped or needle-shaped) and water, 85 

and at the highest scale, dentin is considered as a periodic composite made of ITD, PTD and 86 

L. More recently, Seyedkavoosi & Sevostianov (2019) attempted to study the anisotropy of 87 

hydroxyapatite crystals and assessed its influence on effective mechanical properties. 88 

In terms of geometric modeling, Wang et al. (2017) and Arson et al. (2019) are of 89 

particular interest in that SEM images are used to better take into account the real 90 

microstructure of dentin (L, PTD and ITD) whereas the other authors are using data from the 91 

literature.  92 

In these previous studies, to the best of our knowledge, the effect of LB was not 93 

investigated. We claim that these branches and their possible mineralized collar (known as 94 

the lateral branch collar, LBC) have a significant role in the mechanical behavior of dentin. 95 

Analysis of the local stress field is also crucial towards deducing the location of crack 96 

initiation, for example, which is often overlooked in the literature.  97 

As quantitative experimental data on LB is lacking, we propose an experimental 98 

protocol to assess the sizes and surface ratios of the dentinal microstructure features 99 

including the LB. Using this protocol, we estimate the ratio of PTD, ITD, L and LBC in three 100 

locations of a dentin-sample. 101 

Apart from geometry, other input data for the model are the local mechanical 102 

properties. At the submicron scale, the properties of individual collagen fibrils and 103 

hydroxyapatite crystals are not accurately known.  As crucial interface properties remain 104 

unknown and the mixture organization remains under debate, this scale is not taken into 105 

account. In the discussion, we explain how the lower scale can be included in this model in 106 

future studies.  107 

At the scale of tissue features, more data are available. The PTD elastic stiffness 108 

appears isotropic (Ziskind et al. 2011 with an elastic modulus usually set between 20 and 109 

40GPa in the mechanical models. Kinney et al. (1996) estimate 29.8GPa as its lower limit. 110 

The ITD is slightly anisotropic and its elastic modulus varies between 17.7 and 21.1GPa 111 

depending on the location in the tissue (Kinney et al. 1996). Little information is available in 112 
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the literature concerning the possible presence of collar of lateral branches and their 113 

stiffness. Only Zanette et al. (2015) mentioned a dense collar surrounding LB. As we want to 114 

focus on the LB impact in this study, only the tissue scale will be investigated numerically. 115 

Dentin strength and toughness are also influenced by the hierarchical structure of this 116 

material (Iwamoto & Ruse 2003, Nalla et al. 2003, Arola et al. 2005, Han et al. 2012, Eltit et 117 

al. 2017, Lu et al. 2018 and Lu et al. 2019). The tubule orientation and the ITD organization 118 

impact are discussed in the literature although the LB impact is not discussed. The models of 119 

crack propagation proposed by An and Wagner (2016) and An et al. (2017) take into account 120 

only the tubules in a 2D model. The different authors agree that voids corresponding to 121 

tubule lumens and the PTD are important microstructural entities whose properties and 122 

ratios  influence failure. LB and their collars play a defining role in dentin failure. 123 

3. Image analysis protocol 124 

3.1. Images data 125 

A sound human third molar of a young adult (obtained with donor consent) was 126 

embedded in epoxy resin and imaged using microcomputed tomography (Quantum FX 127 

Perkin Elmer, with a pixel size of 50µm). The embedded tooth was then cut (ISOMET Low 128 

Speed Saw, Buehler) in order to reveal a coronal surface (Figure 1), where the dentin 129 

showed an interface both with enamel and pulp cavity. The surface was polished with 130 

polishing disks of decreasing grid size (LaboPol-5, Struers) and the final polishing was 131 

achieved using a polishing cloth and a 1 µm diamond suspension (TegraPol-15, Struers). 132 

Between each polishing step, the sample was cleaned in an ultrasonic bath.   133 

 134 
Figure 2 : 3D visualization of the selected tooth (reconstructed from microCT images) before (A) and after polishing (B). SEM 135 
image locations are indicated in B (scale bar: 1 mm). 136 

3.2. SEM imaging  137 

For scanning electron microscopy, the sample was dehydrated using ethanol bath with 138 

an increasing concentration. The microstructure of dentin was imaged using 139 

Helios Nanolab 660 (FEI). Backscattered electrons (BSE) detector was used in order to reveal 140 
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the chemical contrast between the highly mineralized peritubular dentin and the less 141 

mineralized inter-tubular dentin.   142 

To study the local variation of the morphological properties, one image was acquired 143 

close to the enamel (E), one in the middle dentin (M) and one close to the pulp (P) at 144 

distances of 250, 1000 and 1850 µm from dentino-enamel junction (DEJ) respectively (Figure 145 

1).   146 

Some interesting areas at higher magnifications have also been imaged using a FEG-147 

SEM (Zeiss Supra 55 VP) in BSE mode on the same polished surface.  148 

3.3. Image treatment and analysis  149 

The software “FIJI” (Schneider et al. 2012 and Schindelin et al. 2012) was used 150 

for image analysis. First, brightness and contrast of the images were self-151 

adjusted. Then, Weka plugin (Arganda-Carreras et al. 2017) of FIJI was used to segment the 152 

images (Figure 2).   153 

The image was segmented into three classes: 1) lumen L inside tubules -in black- 2) 154 

bright and highly mineralized parts PTD and LBC -shown in white- 3) intertubular dentin ITD -155 

in grey-. Once the image was segmented, it was manually edited and median filtered to 156 

remove the noise. Finally, the segmented images, were turned into three binary images 157 

using “adjust threshold”. Each binary image represents one of the classes. From these 158 

images, each constituent surface ratio is assessed. 159 

 160 
 161 

Figure 3 : The image processing protocol illustrated for a part of the image M (scale bar: 5 µm). The constituents of dentin 162 
are marked: Lumen (L), peritubular dentin (PTD), intertubular dentin (ITD) and lateral branch collars (LBC). 163 

It should be noted that this highly mineral phase consists in PTD and LBC. The protocol 164 

for quantifying the highly mineralized phase is shown in Figure 3. The dimensions of these 165 

parts are measured using the “Analyze Particles” tool in FIJI.  166 

 167 

 168 
 169 

Figure 4 : The protocol for studying the highly mineralized parts of dentin from the treated image 170 

The “Analyze particles” enables to assess the number of particles (here tubules and 171 

LB), from which the density can be calculated and the diameters of the considered structural 172 

entities (Figure 4). 173 

4. Periodic homogenization and numerical method 174 

Our aim here is to account for a truly 3D micro geometry with transverse open and 175 

reinforced channels.  176 

The homogenization approach has been more than extensively used to predict 177 

equivalent material properties at a large scale from heterogeneities at a smaller scale 178 

avoiding thus multi-scale strong coupling. The different assumptions may roughly be 179 

grouped according to the Elementary Volume Approach (Christensen 2005) where either 180 

macro-strains or stresses are given as boundary conditions and equivalent stiffness or 181 

compliance tensors are derived by averaging, or the Multiple Scale Method with periodicity 182 

assumptions (Sanchez-Palencia 1980, Cioranescu & Donato 1999) 183 
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We are particularly interested by the case of thin channels and refer to different 184 

studies by Cioranescu & Donato (1999) for reticulated structures where not only the 185 

reference volume is small with respect to the structural scale but furthermore the 186 

constituents are very thin inside this reference volume. Taking into account a 3D geometry 187 

like the one extracted from the images presented in the first section of this work requires 188 

usually to use a numerical approach because exact solutions are available only for simple 189 

geometries like embedded spheres or cylinders with moreover the assumptions of dilute 190 

concentration.  191 

The typical geometry that is considered here is a periodic brick with a cylindrical tubule 192 

along one axis and four cylindrical lateral branches along the other two perpendicular axis 193 

(Figure 5). 194 

 195 
Figure 5 : The considered periodic cell  196 

4.1. The rapidly oscillating elasticity tensor 197 

The 4th order elasticity tensors of the different materials are given by Cn with n=m for 198 

the matrix (ITD), n=c for the collar materials (PTD and LBC) and n=v for the empty channels (L 199 

and LBL). The representation of these tensors may be given with the help of their 200 

characteristic functions. Calling � � ��� � �� and ��	
��	�	 respectively the outer and inner 201 

collar radii resting in the plane x-y with z-axis, the characteristic function of this x-y tubular 202 

collar is: 	 ����� � ����� � ������ � � ������ � with H the classical Heaviside, or unit step, 203 

function and � � ��, �, � . Similar characteristic functions are built for the other collars 204 

including the void inside the tubules. From the latter, it is possible to build the characteristic 205 

functions for the Boolean intersection and union of different parts such as the ensemble of 206 

all the collars and the ensemble of the whole empty zone inside the channels. For example, 207 

the characteristic function of the union of all the collars is obtained by using the maximum of 208 

these functions and the intersection the minimum. Finally, the elasticity tensor of the 209 

heterogeneous dentin material may be represented by: 210 !��� � �"���C" � �$���!$ � �%���!% 211 

With �",	�$   and �%	the characteristic functions of the ITD, PTD+LBC and void. Now let 212 & ≅ 2)), be a characteristic size of the dentin domain and * ≅ 10-) the length of the 213 

periodic cell. It is interesting to define the scale parameter . � */& and to parametrize the 214 

geometry of the cell with respect to it. We can define �̅ and �̅�	so that: �� � .�̅�	and	� � .�̅ 215 

such that the characteristic function ��may be equivalently be written: 216 ����.� � ��� 4�. � �̅�5�̅�� 4 � �̅���̅�� � 217 

This scale parametrization leads to the following expression for the elasticity tensors: 218 
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! 6�.7 � �" 6�.7 C" � �$ 6�.7 !8$ � �% 6�.7 !% 219 

with C , a periodic function of 9: . A 2D illustration of the characteristic function of the 220 

heterogeneous material is given Figure 6 for different values of the period *. 221 

 222 

Figure 6 : 2D illustration of different microstructures with decreasing l and . (the cell Y is underlined in blue) also 223 
corresponding to the values of the C function (the darker area corresponds to Cv and the lighter to Cc) 224 

Now when the whole tooth undergoes a chewing loading, the dentin material itself   225 

is submitted to a macroscopic load from the enamel and the anchorage tissue. Ignoring body 226 

forces, the corresponding elasticity equations read where, for notation simplification 227 

purposes, � is replaced by �:  228 

 229 

 230 

With   the classical divergence operator for the stresses, u the displacements, ε  231 

the small strain tensor, ;< is the surface force applied on the enamel by the tooth in contact 232 

and n the unit outwards normal to the dentin boundary. It is assumed here that the channels 233 

are not filled with any interstitial fluid although this hypothesis can be easily taken into 234 

account by an additional term which would lead to poroelastic properties. 235 

4.2. The two-scales series expansion 236 

Due to the sizes of the peritubular and lateral branches heterogeneities are small with 237 

respect to the size of the whole dentin domain, this problem cannot be solved numerically 238 

economically (Sanchez-Palencia 1980). The classical ansatz provided by the multiple scale 239 

approach is to solve this problem approximately by looking for a two scales series expansion 240 

 of the displacement, each term being periodic with respect to the second variable. 241 
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Calling � � =: , the second independent variable, then computing the total derivatives of the 242 

strains-displacements and equilibrium equations, make the scale . explicitly appear, which is 243 

a key point: 244 

  245 

By plugging the series into the elasticity problem above, different powers of ξ  appear 246 

so that by cancelling each coefficient, successive elasticity problems need to be solved. 247 

Considering only the first three terms is enough for the homogenization process. Indeed, the 248 

first equation shows that  does not depend on y. The second one gives  as the periodic 249 

microscopic solution of a macroscopic initial strain -  problem: 250 

  251 

Because of the linearity this equation shows that there exists a fourth-order tensor A, 252 

usually called the strain localization tensor such that: 253 

  254 

At last, the third equation, integrated over the cell Y (indicated on the 2D 255 

microstructures in Figure 6), taking into account the periodic boundary conditions at the 256 

boundary of the cell Y (Sanchez Palencia 1980, Cioranescu & Donato 1999), eliminates u2 and 257 

gives the macroscopic problem that u0 has to satisfy: 258 

  259 

Where <.> stands for the average over the microscopic cell Y. The last equation allows 260 

to identify the macroscopic stiffness tensor . We define it implicitly by its action on a 261 

uniform macro-strain E from which its components may then be easily recovered: 262 

 263 !>: @ � 1AB*�C�D!: ��E � F�: @��GHI  264 

 265 

A virtual work formulation leads classically to the usual major and minor symmetries of 266 

.  267 

4.3. The orthotropy of the homogenized elasticity tensor 268 

As mentioned above, the elastic problems which provides A satisfies the following 269 

equilibrium equation with initial uniform strain - E: 270 

  271 

Periodic boundary conditions (and also vanishing average displacements to avoid rigid 272 

body translations), have to be considered. However, when the stiffness tensor and the 273 

geometry of the periodic cell satisfy given symmetry conditions, the corresponding solution 274 

inherits itself some symmetry which can sometimes implies periodicity. Here we assume 275 

that the constituents materials are elastic isotropic so that the geometry of the cell is 276 
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endowed with three orthogonal planes of symmetry from which it can be concluded that  277 

satisfies orthotropic symmetries. 278 

Going one step further, the geometric symmetry allows to decrease the size of the  279 

elementary cell to one eighth with specific boundary conditions. For an extensional 280 

initial strain, thanks to both periodicity and mirror symmetries along the middle symmetry 281 

planes, the normal displacement and the shear stress must vanish. Along the outer 282 

boundary of the periodic cell, the same boundary conditions prevail (Figure 7). 283 

 284 
Figure 7: Boundary conditions for the three extensions  285 

 286 
Figure 8 : the three shear boundary conditions 287 

The boundary conditions for an initial shear strain along the symmetry planes are 288 

different: the perpendicular displacement to the macroscopic shear plane and the 289 

corresponding shear stress must vanish and along the boundary of the periodic cell, the 290 

same boundary conditions prevail ( 291 

Figure 8). Because of these symmetries, the average displacement in each case 292 

vanishes so that all the equations of the periodic problem inside and at the boundary of the 293 

whole cell are satisfied.  294 

From JK, the orthotropic homogenized compliance LM � JK�N is finally obtained from 295 

which engineering coefficients like Young’s moduli and Poisson ratios are easily recovered: 296 

 297 

OPQ
PRS>TTTT � 1@T , S>TTHH � �UTH@T , 	S>TT�� � �UT�@TS>THTH � 12VTH

 298 

With obvious notations for the other components. 299 
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4.4. Microscopic maximal traction under given macroscopic 300 

oriented uniaxial traction 301 

As a final step of the model development, we want to show how the approach allows 302 

also to exhibit a failure criterion under macroscopic tension. The failure criterion of the 303 

homogenized dentin tissue comes from local failure criterion at the scale of the periodic cell 304 

Y. Following Christensen (2013) the local maximum traction is considered since the mineral 305 

collars are particularly sensitive to tension. Other microscopic criteria can be considered as 306 

well following the same arguments. If we look back at the above development of the two-307 

scale approach the local micro stress tensor is given from a product of a strain concentration 308 

tensor A and the macroscopic strain WTX � WT�YX�: 309 

   310 

Let  be an applied macroscopic uniaxial tension with amplitude σ
0

 along the unit 311 

axis e0 defined by two angles . Then the macroscopic strain  is given by 312 

 and the local micro-stress by: 313 

 314 ZH � ZX!: �E � F�: S>�[X ⊗ [X� � ZX]H�^X, _X� 315 

With ]H�^X, _X� representing the factor of 	316 ZX	 in the second right-hand side of the above equation. Now, if we define the following 317 

invariants of and its deviatoric part ZH̀  : 318 

 319 

OPP
QP
PR Ea � b��ZH�c� � a�b��ZH̀ 	��cd � adb��ZH̀ 	d�
e � ad
�fgh���d√d� cdc�j��

 320 

The major principal micro-stress is given by (see e.g. Zienkiewicz et al. 1999): 321 

 322 

Z"kT � Ea3 � 2�c�√3 gh��e � 2m3 � 323 

 324 
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Figure 9 : Illustration in 2D of the considered loading 325 

 326 
Figure 10 : The considered coordinate system 327 

Using the preceding formulas, it is easy to demonstrate that Z"kT is a linear function 328 

of the amplitude of the applied macro-stress ZX and an algebraic function ]" of the two 329 

angles (Figure 10): 330 Z"kT � ZX]"�^X, _X� 331 

When the maximal traction of the collar material  is reached usually along the 332 

boundary with the lumen, the corresponding maximal value of σ
0
, the amplitude of the 333 

macro-stress is obtained: 334 ZX n Zo]"�^X, _X� 335 

However, we show in the paragraph dedicated to the results that, depending on the 336 

orientation of the macroscopic traction, the maximum principal stress may be located in 337 

different areas. This leads us to consider several inequalities and criteria of the above type, 338 

correspondingly. Thus, the macroscopic failure criterion depends on the orientation of the 339 

network with respect to the applied macro-stress while this orientation varies inside the 340 

dentin from the pulp to the enamel. At local scale, a crack may eventually open 341 

perpendicular to the hole boundary. This macroscopic failure criterion shares a certain 342 

similarity with the classical Schmid’s law although issued from different microscopic reasons. 343 

Here a simple macro-tension has been considered but the case of a full macro-stress is easily 344 

designed along the same lines. 345 

4.5. Numerical method 346 

The above considerations show that two computations must be handled:  347 

(1) the average of the micro-stress inside the cell Y to get the equivalent macro-moduli 348 

(2) the local stress concentration of the maximum principal stress. 349 

Both computations are implemented by the Finite Element Method. But rather than 350 

building a mesh from the geometry of the periodic cell, it is preferred to use a Level Set 351 

approach mixed with a mesh adaptation with a quantity of interest (Bangerth & Rannacher 352 

2003) so that only one eighth part of the Y-cell is loosely meshed and heterogeneous zones 353 

are identified by their smoothed characteristic functions �p	q rhst	� � �)|f|A  defined by: 354 
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�p	q ��, v� � w 0	h;	� x �vy��a5j�	�=z��	y�	�=z�j1	h;	� { v  355 

The smoothness of the function and implicitly the thickness of the transition zones between 356 

the matrix and the collars, or the collars and the void are controlled by the length scale v. 357 

This is of interest from a physical point of view because they are not as abrupt as in 358 

conventional engineering structural parts. The stiffness of the void material (inside the 359 

lumen) has been chosen as 1% of the stiffness of the collar material and the length scale v	as 360 

one half of the size of an element. Several verifications have been carried out to assess the 361 

accuracy of the approach by comparison with the classical one (explicit meshing of the 362 

structures) and have shown that the strain concentration tensor A is well adapted. 363 

 364 

Then the accuracy of the computation of the equivalent moduli is controlled by an 365 

adaptive meshing based on the minimization of the error on the following quantity of 366 

interest for each given macroscopic strain E: 367 c�Ya� � D!: �WH�Ya� � @�I  368 

The so-called a-posteriori error estimation is driven by the Bangerth & Rannacher 369 

(2003) approach for this quantity which uses a Lagrangian formulation with an adjoint state. 370 

As explained there the error boils down to two residuals: one is associated with the 371 

equilibrium at the interface between the elements, and another one with the adjoint 372 

equilibrium. In general, a different refined mesh is produced for each quantity of interest. 373 

The figure below shows the obtained meshes after refinement for two different macro-374 

extensions.  375 

 376 

 377 

Figure 11, Left to right:  Initial mesh used for equivalent moduli, Level 4 mesh for macro-extension along z-axis,  Level 4 378 
mesh for extension along x-axis 379 

The computation of the maximum principal stress is much more stringent. The chosen 380 

quantity of interest is: 381 c�Ya� � D Z"kTI|  382 

Again, the same approach proposed by Bangerth & Rannacher (2003), is used now 383 

with a quantity of interest that is no more linear with respect to the displacement. 384 

Nevertheless, the theory may be extended correspondingly. 385 
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With this particular choice the refinement process is most adequately operated inside 386 

the collars and more precisely at the interface collars / void and close to the intersection PTD 387 

/ LBC.  The Figure 12 shows an illustration of the proposed technique with 4 levels of 388 

refinement. 389 

 390 

Figure 12 : Examples of meshes obtained for failure investigation with the following parameters 	^X � 0,_X �391 }~	�*[;s�	
��	^X � �� , _X � }~	��h�ts� 392 

The technique has been validated by comparison with an analytical solution e.g. 393 

cylindrical hole in a plate and has shown to provide the stress concentration factor with a 394 

relative error of less than 0.1%. 395 

4.6.   Investigated geometries and local properties 396 

Our study is in two steps. A first step is dedicated to the validation of the implicit 397 

modeling we propose and to a first assessment of the impact of the LB and their collars. 398 

Here, the considered geometries are defined using data from the literature. 399 

The second step consists in defining new geometries from our image analysis results 400 

and assess the impact of LB and their collars on the stress concentrations depending on the 401 

location in dentin and on the stress orientation. 402 

 403 

In the first step, three geometries (G0, G1 and G1*) are considered (Figure 13), mainly 404 

to validate the implicit modeling:  405 

• G0 is constituted of a tubule (L+PTD) surrounded by an ITD matrix  406 

• G1 is constituted of G0 where four lateral branches (LBL for lateral branch lumen+ LBC) 407 

with a collar are added 408 

• G1* is constituted of G0 where four lateral branches without collar are added 409 

 410 
Figure 13 : The first three considered geometries and their geometrical parameters 411 
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Those geometries are illustrated in Figure 13 and their geometrical parameters values are 412 

presented Table 1. They are defined using the data from the literature (Kinney et al. 1996). 413 

The LB characteristics have been chosen in accordance to Mjör and Nordahl (1996). They 414 

indeed estimated LB diameter to vary from 25nm to 700nm away from mantle dentin. As 415 

there is no data available concerning the LBC, we hypothesized a ratio -��� � `���`���	of 0.5. 416 

 L (lumen) PTD LBL LBC ITD 

Diameter (µm) 1 3 0.2 0.4 

 

- 

E (GPa) - 30 - 30 20 
Table 1 : Geometrical and local mechanical parameters for the three considered geometries (for a cubic cell of 5µm side). 417 

For those three geometries the ratio of highly mineralized collars (LBC and PTD), intertubular 418 

dentine (ITD) and porosity (LBL and L) are roughly the same: 25%, 72% and 3% representing 419 

an area in middle dentin. The G1 geometry has been used to validate our implicit modeling 420 

by comparing our results in terms of effective properties and stress concentration factor 421 

with a more classical explicit approach (i.e. where the geometrical entities are meshed). 422 

Then the role of the branches and their collars on the equivalent moduli and stress 423 

concentration have been investigated. 424 

Then, in the second step three other geometries with LBC are proposed mimicking the 425 

three areas observed and quantified by SEM. And finally, the effect of the microstructure 426 

orientation on stress concentration is assessed. 427 

5. Results and discussion 428 

This section is divided in two subsections, the first one dedicated to the preliminary 429 

geometries (G0, G1 and G1*) and the second one to the image-based simplified geometries. 430 

5.1. Preliminary study of the impact of LB on the mechanical 431 

behavior of dentin (first step) 432 

Implicit modeling validation 433 

The use of the implicit modeling described in 4.5 is validated through the estimation of 434 

the equivalent moduli for G1 with implicit modeling and explicit modeling (i.e. where the 435 

microstructures are all meshed initially). The differences in equivalent elastic moduli, shear 436 

moduli and Poisson ratios are less than 0.51%. The implicit modeling is thus validated for 437 

those estimations. 438 

A more sensitive assessment is the stress concentration. In order to validate the use of 439 

the implicit modeling to probe stress concentration, we compare the first principal stress on 440 

lines where the stress is intense in tension when the structure is loaded in z direction. G1 441 

configuration with EPTD=30GPa under tension (constrained displacement of 1% in z direction 442 

on the upper face (Figure 14) is considered with the two types of modelling (explicit or 443 

implicit). 444 
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 445 
Figure 14 : Boundary conditions and location of lines where the first principal stress is assessed in the case of the proposed 446 

tensile test in direction z (for comparison Implicit/Explicit modeling)  447 

The first principal stress along chosen lines cutting the interface between LBL and LBC 448 

at right angle is assessed in both cases (implicit and explicit modeling) and the maximum 449 

stress in the whole volume is recorded. The two modeling approaches provide very similar 450 

first principal stress values (Figure 15) with a higher estimation of the maximal first principal 451 

stress value found in the explicit modeling approach (0.90 MPa on line 3). The maximum first 452 

principal stress within the solid part of dentin (i.e. either in PTD or in ITD) is 0.94 MPa and 453 

0.90 MPa respectively in explicit and implicit modeling. We argue that the implicit modeling 454 

results are satisfactory and in the next sections, the implicit modeling approach is used. 455 

 456 

 457 
Figure 15 : First principal stress assessment along the chosen lines with both modeling approach. 458 

Furthermore, from a physical standpoint, the explicit computation enhances corner 459 

and interface singularities with artificial curvature discontinuities issued from the Computer 460 

Aided Design (CAD) output and zero thickness interface while they are much smoother in 461 

reality. For all these reasons the implicit computation is preferred and used in the sequel. 462 

Impact of LB on homogeneised modulii 463 

The three geometries presented in Figure 13 are investigated. The results in terms of 464 

equivalent moduli are presented in Table 2.  465 

 466 

 467 

 468 
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 G0 G1 G1* 

Ex (GPa) 20.5 20.6 20.5 

Ez (GPa) 21.8 21.7 21.7 

νxy (-) 0.30 0.30 0.30 

νxz (-) 0.28 0.28 0.28 

Gxy (GPa) 15.7 15.7 15.7 

Gxz (GPa) 16.1 16.1 16.0 

Table 2 : Equivalent stiffness matrix parameters for G0, G1 and G1* configurations (EPTD=30GPa) 469 

As reported by Qin and Swain 2004, the modulus parallel to the tubule (here, Ez equal 470 

to roughly 21.7 GPa) is higher than the modulus perpendicular to the tubule (here, Ex equal 471 

to roughly 20.5GPa). Bar-on et al. 2012 found the opposite which can be explained by the 472 

fact that the anisotropic fibrillar structure of ITD has been taken into account in their study.  473 

 474 

We can define and estimate @����o, the upper limit of the equivalent moduli: 475 @����o 	� f8o`@8o` � f�o`@�o` � f�@� 476 @����o 	� 21.9GPa 477 

With f8o`, f�o`, f� the volume ratios of PTD, ITD and L and @8o`, @�o` and @� their 478 

local modulus (@� � 0V�
� 479 @����o	is roughly the same for the 3 configurations (G0, G1 and G1*) since the ratios 480 

differs only slightly. @����o is known to be a good approximation in the direction parallel to 481 

the  major axis of inclusions so it can be compared to Ez (in the direction parallel to the 482 

tubule) and we remark that Ez is very close to @����o, although it remains lower.  483 

 484 

We can also define and assess @���<<: 485 @���<< 	� 1f8o`@8o` � f�o`@�o` � f�@�
 486 

@���<<	is known to be a good approximation in the direction perpendicular to the 487 

major axis of inclusions so it can be compared to Ex (in the direction parallel to the tubule). 488 

But @���<< almost vanishes here because of the modulus @� � 10��V�
. However, to get 489 

non-vanishing modulus, we choose to define: 490 @���<<∗ 	� 1f8o` �f�f8o`@8o` � f�o`@�o`
 491 

@���<<∗ 	� 13.62GPa 492 

As for @����o , @���<<∗ 	is roughly the same for the three configurations. The value found 493 

is not corresponding to Ex so Reuss estimation does no manage to model the behavior of the 494 

material in the direction parallel to the tubule.  495 

Poisson’s ratios are roughly the same and close to 0.3. Nevertheless, the value of νxz is 496 

sligthly lower than νxy . This can be explained by the fact the stiffer tubule is affecting 497 

(lowering) the expansion parallel to it (direction z) when a loading is applied perpendicular 498 

to the tubule (direction x). The values of νzx are not affected. 499 

The shear moduli Gxz are slightly higher than the shear moduli Gxy (for all the 500 

configurations), the impact of the rigid tubule is indeed more important with a xz (or yz) 501 

shear. Even though it is difficult to compare so close values, we can notice that the shear 502 
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modulus Gxy is higher when lateral branches with a mineralized collar are present and the 503 

lowest value is obtained when there are lateral branches with no collar.  504 

The experimental data are giving a wide range of values for dentin Young’s modulus as 505 

it was pointed out by Kinney et al.  [Kinney2003]. With the proposed calculations, we 506 

investigate an intermediate scale not probed by experiments (experiments are mainly on 507 

millimetric samples or are probing local properties with nano-indentation) so it is difficult to 508 

compare our results with finesse to experimental results. However, we can see that the 509 

variation with respect to the orientation of tubule is in accordance with Lees and Rollins 510 

[Lees&Rollins1972] but in contradiction with Kinney et al. [Kinney2002]. The organization at 511 

the scale below has to be taken into account to further investigate this point 512 

The main finding of this preliminary study is that the equivalent moduli seems only 513 

slightly impacted by the presence of LB.  514 

First insight on the impact of LB on stress concentration  515 

We loaded the three configurations (G0, G1 and G1*) as illustrated  Figure 14. So here, only 516 

one cell is considered contrarily to the next image-based study where a cell is considered 517 

among an infinity of other cells (following the concept of periodic cell).  518 

In this preliminary study of the LB impact, we found that the impact of LB is non negligeable, 519 

the maximum principal stress rises to reach 3 in G1 and G1* whereas there is no stress 520 

concentration in G0 in this mechanical load configuration (directed along the tubule axis). 521 

This shows that the impact of LB is to be taken into account.  522 

In the second step of our study, we propose to do so using periodic cells mimicking three 523 

areas in dentin. Those three areas will be defined using the results of our image analysis 524 

protocol on dentin SEM images at different locations. The periodicity will allow to consider 525 

that the cell is surrounded by other identical cells, enabling to take into account cell 526 

interactions. The load will also be considered with different directions because as the tubule 527 

orientation is varying in dentin, the periodic cell is in reality loaded not only along the tubule 528 

axis. 529 

5.2. Stress concentration in the tissue with a geometry 530 

deduced from SEM image analysis 531 

SEM Image Analysis 532 

An illustrative SEM image showing the investigated geometrical entities is presented in 533 

Figure 16. On this SEM image, we can clearly observe a quasi linear dense area prolongating 534 

the PTD of the second tubule. We can assume that the corresponding lateral branch is 535 

composed of a highly mineralized collar (LBC) and a lumen (LBL), the lumen is probably 536 

located below or above the cutting plan. As the LBC is statistically not cut in its middle plan, 537 

the LBC diameter measurement on that type of 2D image provides an underestimated value 538 

for its diameter. In our model (detailed in section  4), the same stiffness is affected to the 539 

dense areas corresponding to LBC and PTD, an hypothesis supported by the finding of 540 

Zanette et al. (2015). The texture of ITD is due to its mineral/organic composite composition 541 

at the nanoscale. 542 
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 543 
 Figure 16 : Example of a dense lateral collar perpendicular to a tubule observed by SEM in BSE mode. L=tubule lumen; 544 

PTD=Peritubular dentin LBC=Lateral branch collar. Scale bar : 2µm. 545 

 546 
Figure 17: Examples of LB observed by SEM in BSE mode. Scale bar: 10µm 547 

On a second SEM image, different configurations of LB arising from tubules are 548 

highlighted (Figure 17). Using this image, a first approximation of the ratio µLBL is calculated: 549 -��� � �������� ≅ 0.3 550 

This ratio will be used to deduce DLBL from the lower resolution image used for the 551 

analysis. Lower resolution images have been used in order to have wider and so more 552 

representative areas to analyze. 553 

Depending on the location, the density and diameter of LBC (and so LB) vary. So, after 554 

the qualitative analysis of a few high-resolution SEM images, a quantitative analysis is led on 555 

the dentin constituents. The results concerning L, PTD and ITD ratios, dimensions and tubule 556 

density (equivalent to L density) are summarized in Table 2.  557 
Location  L (%area)  Mineralized part (%area)  ITD (%area)  

  
L diameter DL (µm) 

(SD)   
PTD diameter DPTD 

(µm) (SD)   
L density (/mm²)  

E 0.9  8.5   90.6   0.82 (0.16)  1.82 (0.27)  17685  
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M 4.7  13.9  81.4  1.38 (0.20)  2.30 (0.33)  30229  
P 12.5  29.0  58.5  1.52 (0.19)  2.21 (0.32)  69168  

Table 3 : Distribution of area fraction, diameter and density of the dentin constituents 558 

The detected porosity is only due to tubules’ lumen L. Indeed, the LB are mostly cut 559 

parallel to their axis making it more likely to reveal their collar (LBC). The porosity values 560 

between 0.9 and 12.5 % are in the range of the values found in the literature: a global 561 

porosity of 4% (mean value over massive samples obtained by mercury intrusion 562 

porosimetry) was reported in Vennat et al. (2009) and a local porosity near DEJ of 1.2% was 563 

reported by Vennat et al. (2017). 564 

The lumen diameter increases continuously from DEJ to deep dentin, whereas the size 565 

of the peritubular collar first increases and then remains quasi-constant from M (middle 566 

dentin) to P (deep dentin).  The tubule density (L density) is within the range found in the 567 

literature (Garberoglio & Brännström 1976, Pashley et al. 1989). The mineralized part takes 568 

into account both PTD and LBC. A special attention is paid to their diameter distribution 569 

(Figure 18). The count (%) corresponds to the number of entities which have this range of 570 

diameter over the total number of entities. This does not take into account the surface ratio 571 

of the entities. The distribution is clearly bimodal as it is for the porosity (Vennat et al. 2017).  572 

 573 
Figure 18: Mineralized entities diameter depending on location. White scale bar: 1mm. Black scale bars : 15µm 574 

The mean values of LBC ratio (% area) and diameter are summarized in Table 4. 575 

 576 
Location %area of LBC (%) DLBC (µm)(SD) 

E 2.65 0.61 (0.18) 
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M 0.33 0.57 (0.15) 

P 0.13 0.58 (0.14) 

Table 4. Quantification of lateral branches collars LBC 577 

There is no significant difference between lateral branch collar diameter data from 578 

deep, middle and superficial dentin. Mjör & Nordahl (1996) have described the LB 579 

morphologies in dentin but their possible mineralized collar has never been discussed. So 580 

our quantification is used as a basis for defining the geometry of dentin microstructure in 581 

the proposed model. Three areas (E, M and P) are defined with the following parameters to 582 

mimic the constituents ratios, diameters and -��� (Table 5): 583 

 584 

Area E M P 

DL (µm) 0.52 1.22 2 

DPTD (µm) 1.04 2.38 3.6 

DLBL (µm) 0.20 0.20 0.20 

DLBC (µm) 0.60 0.60 0.60 

Lz (µm) 2.40 15.07 22.26 

Lx=Ly (µm) 4.94 4.43 2.65 
Table 5 : The geometrical parameters of the three image driven periodic cell geometries. Lz and Lx=Ly are the lengths of the 585 

cell along the tubule and perpendicular to the tubule respectively. 586 

The three periodic cells corresponding to the three considered areas are represented 587 

Figure 19. 588 

 589 
Figure 19: the three image-based configurations (E, M and P) 590 

Here, the SEM image analysis results constitute a first set of data that is used as an 591 

input for the proposed model. Further studies should be led to confirm this study and enrich 592 

it with data on other types of teeth or donor age.  593 

Variations of the equivalent stiffness from pulp to enamel  594 

To be the closest to a complex real microstructure, the implicit modeling presented in 595 

section 4 is chosen because it allows to do “image-driven” modeling easily. As imaging 596 

techniques are more and more powerful, it is attractive to design a modeling method that 597 

can be applied to those images quasi-directly. In our study, the 2D SEM images constitute a 598 

basis to define a simplified geometry but further study could use 3D images stack directly. 599 
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With the parameters corresponding to the three areas defined in Table 5, we evaluate the 600 

orthotropic parameters of dentin depending on the location (Table 6). 601 

 602 

 E M P 

Ez 20.4 19.8 17.7 

Ex=Ey 19.7 17.5 12.4 ��� 0.30 0.29 0.22 ��� 0.29 0.27 0.21 

Gxy 15.1 13.0 6.6 

Gxz 15.3 14.1 10.5 
Table 6 : Equivalent stiffness matrix parameters identified  for E, M and P configurations 603 

The modulus in the tubule direction, Ez, does not vary drastically within depth: the void 604 

of the lumen is balancing the rigidity of the collar. The modulus in the direction 605 

perpendicular to the tubule, Ex, is lower than Ez for the three locations which is in 606 

accordance with Qin & Swain (2004). When taking into account the lower scale organization, 607 

Bar-On et al. (2012) showed that it is possible to have Ez smaller or equal to Ex, highlighting 608 

the role of the lower scale in the global mechanical behavior of dentin but the impact of LB 609 

was not taken into account. 610 

We find out that near enamel (configuration E) the behavior is quasi-isotropic. 611 

However, this effect could be counterbalanced by the collagen fibril orientation effect which 612 

is not taken into account in the proposed study. Further study could also investigate the role 613 

of the angle with which the LB is rising from the tubule. 614 

From E to P, the anisotropy is enhanced to reach the P configuration which can be 615 

compared to a unidirectional fiber composite with Ez, the modulus along the fibers, very 616 

close to Voigt modulus  @����o	and Ex, the modulus perpendicular to the fibers, very close to 617 

Reuss modulus @���<<∗ . The same trend is observed for the shear modulii. 618 

The poisson’s ratios ���	and ���	decrease from E to P in accordance with the increase 619 

in terms of porosity.  620 

Failure criterion 621 

In this last section, a micromechanical failure criterion in the dentin cell microstructure 622 

is presented. It is well known that in composite materials, apart from simple cases, the 623 

failure criterion cannot be extracted solely from the macro-stress calculated from the 624 

homogenized moduli (Christensen 2013). 625 

Typically, in our case, the failure initiation may result from overstress in the collars 626 

either at the interface with the lumen or at the intersection of the collars or at the interface 627 

between the matrix and the collar, inside the matrix. 628 

We show underneath that depending on the stress state these stress concentrations 629 

may justly occur at these different locations. This means from a macroscopic viewpoint, the 630 

failure criterion may be considered as a multi-mechanism, i.e. with a set of inequalities, in 631 

the sense referenced by Mandel (1965). 632 

For illustration purpose, here, we limit ourselves to the special case of a uniform 633 

uniaxial macroscopic traction applied on the orthotropic homogenized material in a 634 

direction which is not necessarily the one of the orthotropic axes. This direction is defined by 635 

two angles: ^X the angle of the traction with the tubular channel axis, and _X the angle with 636 

the lateral branch x-axis (Figure 20). It is important to consider this general case because 637 
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during the chewing process the orientation of the principal stress with respect to the 638 

channels orientation inside the dentin material varies a lot from the pulp to the enamel. It 639 

has been underlined in the literature (Pilkey & Pilkey, 2008) that finite width, material 640 

orthotropy, multiple holes, hole intersections are parameters increasing the concentration 641 

factors, so that we want to explore these features in our particular case. Stress repartition in 642 

geometries made of tubes with cylindrical holes have been investigated by various authors 643 

(Pilkey & Pilkey 2008, Wu 2003) but the loading is in most cases an internal pressure and the 644 

tube is very thin in coherence with the dedicated applications (pipes with some fluid inside). 645 

In Wu (2003), a tube with a cylindrical hole is considered and a tensile loading is considered. 646 

A stress concentration factor of 3 to 8 is found depending on the geometry. It is not possible 647 

to directly compare those value to our results since the considered geometry is not the 648 

same, but we can notice that the stress concentration factor can be sensibly higher than 3. 649 

In the next paragraphs, we simply comment a few particular cases of macro-traction 650 

underlining the micro-mechanism sources of failure (Figure 20) in three geometrical 651 

configurations (E, M and P).  652 

 653 
Figure 20 The considered loading cases of macro-traction 654 

The case (�� � �,�� � �) 655 

The macro-traction is along the tubular channel. If no LB is considered, the stress is 656 

quasi-uniform in each geometrical entity and K is roughly 1. Whereas in the configurations 657 

where the LB are taken into account this overstress ratio grows to 3 to 4 in the E, M or P 658 

configurations (Figure 21). 659 

 660 
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 661 
Figure 21 The considered cases with LB for ^X � 0,_X � 0 and the corresponding stress concentration location (blue arrow 662 

heads) and overstress ratio.  663 

The maximum stress concentration occurs in a mild singular location with respect to 664 

the tubule-branches intersection. Its value of roughly 3 in M and P configurations 665 

corresponds the classical value obtained for a plate with a hole loaded with an axial traction 666 

far from the hole.  667 

With the higher density of LB (configuration E), the overstress ratio reaches a factor of 4.6, 668 

which is the order of magnitude found due to orthotropy (Pilkey & Pilkey, 2008). In E 669 

configuration, due to cell periodicity, LB are the closest so the stress concentration may rise 670 

in between those holes (Pilkey, 2005).  671 

 672 

In all the considered configurations, we see here that the main contribution to the 673 

failure is a hoop stress increase in the tubule collar PTD at the boundary with the lateral 674 

branch lumen. As seen in section 5.1, the stress concentration reaches the same level in a 675 

configuration without or with LBC. But the collars (PTD and LBC), when they are present, 676 

seem to withstand the highest levels of stress (figure 22) thus acting as a helmet for ITD. 677 

Those collars may thus crack but we can infer that the mineralization process due to aging 678 

(PTD is growing through life) is in fact a repair process. 679 

For M and P configurations, the generated level of overstress can be obtained with a 680 

tubule only loaded perpendicular to its axis (classical overstress ratio of 3). In the next 681 

paragraph, a more harmful case is considered where the stress concentrations of the two 682 

perpendicular arrays of channels are interacting. 683 

 684 

 685 

  686 
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The case (�� � �� , �� � �) 687 

The macro-traction is along the lateral branch oriented in the x-direction. 688 

If only the tubule is present, the overstress is occurring all along the boundary of the 689 

tubule with its lumen and the overstress ratio is 3. If only the lateral branches are present, 690 

the overstress may occur all along a line at the boundary of the branch oriented in the y-691 

direction and its lumen and the overstress ratio is 3. In the case where both are present, the 692 

overstress appears along a line at the intersection between the tubule lumen and the LBL 693 

which provides a corner singularity at a highly loaded location (Figure 22). Consequently, the 694 

concentration factor is very localized and much higher than in the case (^X � 0, _X � 0) to 695 

reach a maximal value of K between 7 and 8 in the different configurations. The highest 696 

value of K is obtained in P configuration which may be due to the interaction between 697 

neighboring cells as the maximum stresses are obtained at the interface with the lumen and 698 

because the tubules are, in this area, close to each other. Due account between adjacent 699 

cells, is an interesting ability of the periodic assumptions. 700 

We argue that this case is the most harmful case because it is arising from the 701 

interaction of the stress concentration of the two types of channels (that can be seen as a 702 

constructive interference). The drastic rise of overstress (superior to 7) due to the presence 703 

of LB is indicating that the impact of LB has to be taken into account when considering 704 

dentin failure. 705 

 706 

 707 
Figure 22 : Illustration of the stress concentration location at the intersection of dentin channels 708 

The case (�� � �� , �� � �) 709 

This is still a more complex state of stress which is interesting to decompose along the 710 

symmetry axes for comparison purpose with the two preceding cases: 711 Z � ZX2 �hT ⊗ hT � h� ⊗ h� � hT ⊗ h� � h� ⊗ hT� 712 

 713 
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This is a combination of the first two states of stress, case (^X � �� , _X � 0) and case 714 

(^X � 0,_X � 0), augmented by a transverse shear which should transfer some additional 715 

stress to the tubule interface with the lumen. 716 

Because of the xx-component of the stress field, the overstress occurs all along the 717 

boundary of the tubule with its lumen. The zz-component of the stress field, which should 718 

imply a stress concentration at the interface between the LB and its lumen at the bottom of 719 

the considered cube, seems to have a less harmful effect. The lines corresponding to the 720 

maximum stresses due to zz-component and the xx-component of the stress field have, in 721 

this case, no intersection in the solid. Nevertheless, this is a branch-tubule intersection (a 722 

geometrical singularity) that provides the maximum overstress localization with a factor 723 

varying from 3.5 to 5 in the different configurations.  724 

The computed maximum overstress is one more time located at the intersection of the 725 

tubule lumen and the lateral branch lumen while the overstress spreads along a line at the 726 

intersection of the tubule with its lumen. 727 

 728 

K (�� � �,�� � �) 

 

(�� � �� , �� � �) (�� � �� , �� � �) 

E 4.0 7   4   

M 3.3 6.9  5.2  

P 3.4  5.2  7.2  
Table 7 729 

Other cases of (^X, _X) couples have been considered but the overstress was lower 730 

than in the cases just presented above. Table 7 sums up the overstress ratio variation within 731 

depth and depending on the load orientation for the proposed cases. 732 

 733 

In brief, the maximum overstress ratio reaches 7 when the periodic cell is loaded in xx 734 

or yy-direction i.e. along a LB. It leads indeed to constructive interaction of stress 735 

concentration due to the yy (or xx-LB respectively) and due to tubule.  736 

Periodicity enhances stress concentration. When the location of stress concentration  737 

is close to the cell boundary, we find a higher value of K : 738 

• for E when loaded in zz-direction (interaction due to LB) 739 

• for P when loaded in xx or yy-direction (interaction due to tubules) 740 

The collars (PTD and LBC) seem to concentrate the higher stress levels acting as a 741 

protective shield for the ITD. The mineralization process of the dentin (PTD layer is growing 742 

during life)  would hence be the repair process of the dentin if a crack has been formed. 743 

  744 
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In summary, the study of a macroscopic traction applied to the material with various 745 

orientations with respect to the symmetry axes has shown several features. An overstress of 746 

about 4 is obtained when the traction is aligned with the tubule but may grow to twice this 747 

ratio when the traction is aligned with one of the lateral branches which differs with the 748 

classical plate with a hole where the size of the hole does not matter. The highest factor is 749 

located at the intersection between the branches and the tubule with the constructive 750 

interference of both lumens-induced stress concentration. If we assume only a slight 751 

heterogeneity (EPTD=30GPa and EITD=20GPa), a simple macroscopic failure criterion may be 752 

proposed when either of the two following thresholds is violated, [��  , [o	and Z "kT 753 

respectively the unit vectors giving the direction of the lateral branches and tubules and the 754 

collar material strength under traction: 755 

 756 

¡�Z�[���, [��� n Z "kT¢���Z�[o�, [o� n Z "kT¢o
 757 

 758 

With Z "kT maximum tensile stress, ¢��	and ¢o	the concentration factors described 759 

above, i.e. of the order of 8 and 4 to give an order of magnitude. Because of the special 760 

arrangement of the dentin microstructures, two physical different failure mechanisms 761 

according to whether the traction direction is close to either to the tubule or lateral 762 

branches directions exist and are taken into account in the proposed criterion. A safe and 763 

simplified approach could be to account only for the maximum of both criteria but could 764 

lead to a kind of conservatism design because during chewing the principal stress direction 765 

with respect to tubule and lateral branches directions varies a lot. We think that the two 766 

proposed inequalities embody and quantify rather well the two discovered overstress 767 

mechanisms rather well. 768 

 Obviously additional inequalities could be introduced but it is believed that these two 769 

criteria summarize in a simplified manner the investigations above. Post failure 770 

considerations can obviously be proposed but are clearly outside of the scope of the present 771 

study.  772 

Here a SEM image analysis has been carried out and has led us to design simplified 773 

geometrical configurations. Based on these configurations, a mechanical model has been 774 

build and the behavior of the tissue has been studied depending on the modeled area (near 775 

enamel, in middle dentin or near the pulp). The assumption of a periodic microstructure has 776 

been made. Even if the dentin microstructure is a biological microstructure (so it is not 777 

perfectly periodic as assumed here), we argue that this model is relevant as pointed out by 778 

Kinney et al.  [Kinney2001] in their study about spatial arrangement of tubules. Another 779 

simplification has been made concerning the LB: the LB angle with tubule has been fixed to 780 

90° but in reality it can be smaller in some areas. Further study could investigate inclined LB. 781 

The PTD Young’s modulus that has been fixed to 30GPa and this value is perhaps an 782 

underestimation so further study could investigate the effect of a higher modulus. 783 

Further studies could be conducted using directly 3D images acquired by 3D imaging 784 

techniques such as plasma FIB-SEM for example. This is made possible by the use of the 785 

implicit modeling proposed in this article. These studies would allow to take into account the 786 

truly complex morphology of the dentin microstructure and, for example, to probe the 787 



27 of 31 

 

microstructure gradients within the depth of dentin, the non-alignment of the lumen and 788 

the peritubular collar axis, the S-curvature of tubules, the arched shape of LB, the 789 

collagen/minerals entanglement (that can be given by TEM imaging). It would also be 790 

interesting to quantify the impact of aging on LB microstructure for collar size should 791 

increase with age, as the tubule collar does. In dental practice, knowledge of potential 792 

fracture locations in dentin allows for adaptation to the potential restoration 793 

geometry/properties and a reinforcement of the tissue to prevent tooth failure if needed. 794 

Moreover, using this implicit modeling, any other phase (a fluid infiltrating or flowing in the 795 

pores, a resin that reinforces the structure…) can be easily added. So, this model can be 796 

easily enriched to become a poromechanics model that can be helpful in understanding the 797 

mechanical behavior of tooth but also the impact of flow or temperature changes within the 798 

tubules. Moreover, using this implicit modeling, any other phase (a fluid infiltrating or 799 

flowing in the pores, a resin that reinforces the structure…) can be easily added. So, this 800 

model can be easily enriched to become a poromechanics model that can be helpful in 801 

understanding the mechanical behavior of tooth but also the impact of flow or temperature 802 

changes within the tubules.  803 

A global picture of the mechanical behavior of the tooth can also be forseen. Too few studies 804 

are trying to understand how damage interacts with the intact tooth. The philosophy of the 805 

proposed tissue-scale study can be enlarged to a whole tooth where the dental tissues 806 

morphologies and properties gradient are taken into account. 807 

 808 

6. Conclusion  809 

In this paper, we focus on the impact of lateral branches on the equivalent stiffness 810 

and failure initiation in dentin. An implicit finite element analysis is proposed, where the 811 

geometry is not explicitly meshed but taken into account using level set functions and 812 

adaptative meshing. 813 

We first validate this implicit modeling by comparing our results with a more classical 814 

explicit approach. We then show, on a cell corresponding to middle dentin, defined from the 815 

data available in the literature, that the lateral branches present in dentin do not influence 816 

the effective stiffness of the tissue. The lateral branches do, however, play a crucial role in 817 

stress concentration which will further initiate failure. Data on local characteristics are 818 

needed to investigate the role of these lateral branches depending on their location in 819 

dentin.  820 

As a second step, SEM imaging is performed to quantify the lateral branches’ 821 

characteristics (surface ratio, lumen and collar diameter) for different locations in dentin. An 822 

image-based simplified model is then built for three locations: near enamel (E), in middle 823 

dentin (M) and near the pulp (P). The effective stiffness is assessed and varies slightly from 824 

enamel to the pulp but the presence of LB is not an influencing factor as it was suggested by 825 

our preliminary results.  826 

An original mechanical study is finally led on three defined configurations. A uniform 827 

uniaxial macroscopic traction is applied on the orthotropic homogenized tissue oriented in 828 

different directions. The stress concentration due to the presence of lateral branches can 829 

interact with stress concentration due to the presence of tubules leading to dramatic 830 

overstress ratios that would further initiate material failure. It is also shown that depending 831 

on the location those ratios are modulated: in E configuration, the impact of LB is higher 832 
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whereas in P configuration the impact of tubule lumens is higher due to the cell geometry 833 

and the periodicity. 834 

As we know that not only the microstructure but also the nanostructure of dentin has 835 

a role to play in the mechanical behavior of dentin, an interesting perspective of this work is 836 

to add information concerning the nanoscale in the model. The “image-driven” model 837 

concept with the same implicit modeling approach could indeed be used with TEM imaging 838 

for example for modeling the entanglement of collagen fibrils and hydroxyapatite crystals in 839 

the tissue. 840 

7. Graphical abstract 841 

 842 

 843 
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