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Abstract
This paper proposes a dynamic traffic-electric power network model to inves-
tigate the interdependent electric power and road transport systems, whose
operations are linked via the local marginal electricity price and the electric
vehicles (EVs) charging demand. For the electric road network (ERN), a
novel formulation based on the link transmission model is proposed to: 1)
accommodate the critical features of EVs and fast charging stations (FCSs),
such as EV with different driving ranges, initial states of charge of EVs,
number of chargers and their charging power in a FCS; 2) explicitly model
the charging process of EVs; 3) solve the optimal dynamic traffic assignment
problem considering the mix of EVs and gasoline vehicles. For the economic
operation of the power distribution network (PDN), an alternating current
optimal power flow model is solved to minimize the electricity expenditure.
Moreover, we propose mathematical algorithms to model the decentralized,
centralized and information-sharing decision-making environments, so that
the operational difference and social benefits of coordinating traffic-power sys-
tems can be compared. The proposed models and algorithms are applied to
an illustrative traffic-power system. The results show that the decentralized
decision-making always results in losses of operational cost and renewable in-
tegration, compared to the centralized decision making; however, these losses
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can be greatly mitigated by having ERN and PDN operators share informa-
tion about the planned EV charging demand and the projected locational
marginal electricity price.
Keywords: Traffic-power system, Electric vehicles, Charging stations,
Coordination, Decision-making environments, Link transmission model

1 Nomenclature

Indices

a index of links

t index of periods

s index of destinations

c index for classes of EVs

e index for energy levels of EVs

The electrified road network sets

A set of arcs

N set of nodes

A(i) (B(i)) set of links whose tail (head) node is i

AR set of source arcs

AS set of sink arcs

AG set of general arcs

AC set of charging arcs

T set of periods

Parameters
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ϕ time value

peva charging power of charging link a

NCa(t) number of chargers at charging link a during period t

δ period length

La physical length of link a

kjam/qmax/vf jam density/ maximum flow/ free-flow speed

w backward shock-wave speed, w = qmax · vf/(qmax − kjam · vf )

αt
a average charging speed for charging link a during period t, αt

a =
peva /(η · vf )

Ifa(t) inflow capacity of link a during period t

Ofa(t) outflow capacity of link a during period t

DGs
a(t) cumulative gasoline vehicle travel demand between the entry of

origin link a and destination s at the end of period t

νa free-flow travel time on link a, νa = La/(δ · vf )

βa travel time required by the backward shock wave from the exit
to the entry of link a, βa = La/(δ · w)

Variables

Ua(t) cumulative number of vehicles that enter link a by the end of
period t

Va(t) cumulative number of vehicles that leave link a by the end of
period t

UGa(t) cumulative number of GVs that enter link a by the end of in-
terval t

UGs
a(t) cumulative number of GVs that enter link a to destination s by

the end of period t
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V Ga(t) cumulative number of GVs that leave link a by the end of inter-
val t

V Gs
a(t) cumulative number of GVs that leave link a to destination s by

the end of period t

UEs,e
a,c(t) cumulative number of EVs of class c with energy level e that

enter link a to destination s by the end of period t

V Es,e
a,c(t) cumulative number of EVs of class c with energy level e that

leave link a to destination s by the end of period t

xs,e
a,c(t) occupancy of EVs of class c with energy level e at charging link

a during period t

x̂s,e
a,c(t) occupancy of EVs of class c with the updated energy level e at

charging link a during period t

The electric vehicle sets

C set of electric vehicle classes

Parameters

Bc battery capacity of EVs of class c

Ec maximum energy level of the EVs of class c

η energy consumption of EVs

ρa energy levels required to traverse link a, ρa = La/η

Lmax
c driving range of EVs of class c, Lmax

c = Bc/η

Ec set of energy levels for the EVs belonging to class c, Ec =
Lmax
c /(δ · vf )

The power network sets

PN set of buses

PL set of distribution lines

Γ(j) Successor set of bus j
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Parameters

aj, bj Energy production cost coefficients at bus j

µ(t) Contract electricity price with the main grid in period t

pramp
j Ramp limits of generators at bus j

Variables

pgj (t) Active power generation at bus j during period t

pdcj (t) Charging load at bus j during period t

Pij(t) Active/Reactive power flowing from buses i to j during period
t

Acronym

EVs Electric Vehicles

FCSs Fast Charging Stations

ERN Electrified Road Network

PDN Power Distribution Network

1. Introduction

Electric vehicles (EVs) are increasingly deployed worldwide [1], due to
their potential contribution in reducing green house gas emission, increased
economic viability and convenience for the users. However, this brings new
challenges to both the transportation and power systems. EV drivers need
to consider the charging cost and time at different charging stations, when
planning their trips. Traffic patterns are affected by the electricity price and
the locations of fast charging stations (FCSs). On the one hand, the spatial
and temporal charging demand resulting from the EVs charging patterns
impacts the distribution of power flow, which challenges the operation of
the existing power systems. On the other hand, this provides opportunities
to efficiently operate power systems through vehicle-to-grid exchanges which
could stabilize the power flow under the conditions of increased integration of
renewable energy. In this setting, the power systems and the electrified road

5



networks (ERNs) interact with each other through the dynamics of electricity
price and charging demand. Such interplay brings challenges to control and
operate the two systems, but also brings opportunities to promote integration
and communication between each other.

Investigating how to model, operate and control the coupled ERNs and
power systems considering EV charging has gained attention in recent years
[2, 3, 4]. Some of the main challenges addressed in the literature are how to
properly model the physical features of the coupled transportation systems
and power systems, as well as, modeling EVs and EVs supply equipment.

Some studies only consider the ERNs, ignoring the technical constraints
coming from the power systems. Their objectives are mainly of optimizing al-
location of FCSs [5, 6, 7], charging navigation [8] and routing [9, 10], as well as
simulating coordinated and uncoordinated charging modes [11]. Some stud-
ies, instead, only consider detailed power systems modeling including EVs
charging load, without considering realistic features of ERNs. Some of the
topics considered can be summarized as: 1) Investigating the impacts of EVs
on power systems in terms of safety [12], reliability [13], normal operation
[14], among others. 2) Long term planning problems [15], e.g., optimizing
the allocation of smart grid components and charging stations [16, 17]; re-
inforcing power systems capacity to enable the massive deployment of solar
photovoltaics, electric heat pumps and EVs [18], among others. 3) Coordi-
nating EVs charging [19], such as, minimizing the number of coordinated EVs
to mitigate voltage unbalance [20]; coordinating EVs charging while main-
taining the voltage deviation within acceptable power quality limits [21];
managing day-ahead electricity procurement and real-time EVs charging to
minimize the total operating cost [22]. In the majority of cases, the spa-
tial and temporal charging demand are required to be estimated statistically
from existing data, which is however difficult to access.

Other studies consider the coupled power systems and ERNs, and investi-
gate the interdependency between the two systems [23]. Several frameworks
[24, 25, 26] have been proposed to model the interaction of traffic-power sys-
tems, wherein in most models the traffic and power flow interact with each
other through electricity price, charging load and traffic toll. In this paper,
we consider that the traffic flow within the ERNs and the power flow are
interdependent through the charging demand at each FCS and the associ-
ated locational marginal price (LMP). Within this interaction process, from
an ERN operator’s perspective, the dynamic electricity price (i.e., LMP) and
the capacity of FCSs are important parameters. The former is obtained from
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power systems and the latter is a key physical feature of an ERN. Both can
influence the route choice of EV drivers and non-EV drivers, since EVs drivers
share the limited capacity of a FCS, and EVs and non-EVs drivers share the
limited capacities of roads. Therefore, traffic flow patterns are affected by
both factors and, further impact the distribution of charging demand. From
a power system operator’s perspective, the accurate data of the spatial and
temporal charging demand from an ERN can help to manage the electric-
ity production and balance the power flow of the systems. The spatial and
temporal charging loads affect the power flow distribution subject to power
system constraints, such as limitation of the grid and generator capacities,
as well as ramp limits of generators. The power flow distribution, in return,
influences the LMP, which would further affect traffic flow distribution. In
this way, the ERN and power system interact with each other and both FCSs
and EVs play critical roles in this interdependent traffic-power systems. The
former is the interface connecting the ERN and power system, and the lat-
ter acts as the power prompting the interplay between traffic and power
flow. Therefore, properly modeling the detailed physical features of EVs and
FCSs is important to adequately study the interaction between the ERN and
the power system. Here, we list some of the critical features that need to
be modeled when investigating the interdependency of traffic-power systems
and how they have been considered in the literature. A detailed comparison
of these features in the literature is listed in Table 1.

Dynamics (feature of the coupled systems): A dynamic traffic-power
system model is required due to: 1) the spatial and temporal nature of EVs;
2) the time-varying evolution of traffic flow; 3) the ramp limits of power
generators. Most existing studies only considered a static model [27, 28,
29, 30, 31], whereas recently increasing attention has been paid to modeling
dynamic [32, 33] or semi-dynamic [34] traffic-power systems.

Charging time (feature of EV): It is part of the travel time cost, when
the time value is considered. Refs. [30, 31] assumed that all EVs, had (A1)
the same exogenously given fixed charging time. This assumption is marked
as (A1).

Charging demand (feature of EV): It influences the charging cost for
EV drivers, and influences power production as well as power flow distribu-
tion. Refs. [28, 30, 31, 29] assumed all EVs had (A2) the same exogenously
given fixed charging demand; Refs. [32, 34, 29] assumed the charging demand
was (A3) only related to traffic flow through the FCSs without considering
the real charging needs. It could cause the EVs to charge multiple times with-

7



out considering the remaining battery capacity leading to an overestimation
of the charging demand.

Driving range/Battery capacity (feature of EV): It influences the
number of times an EV has to recharge during a trip.

Initial state of charge (SoC) (feature of EV): It influences whether it
is required to recharge an EV at the beginning of the time horizon. If it
has, the initial SoC of an EV influences which FCSs this EV is able to reach
without running out of battery. Ref. [28] assumed (A4) an EV was able to
reach any FCS. This assumption may result in the assigned charging point
to be beyond the remaining driving range of an EV.

Mix of gasoline vehicles (GVs) (feature of an ERN): EVs and GVs
compete for the limited road capacity.

Capacity of FCSs (feature of an ERN): EVs compete for the limited
charging capacities at FCSs.

Additionally, several decision-making environments considered for co-
operations of traffic-power systems are summarized in Table 1. Centralized
decision-making environments describe a situation where there is a single
operator who controls both ERNs and power systems in a fully integrated
manner. Their objectives usually lead to a social optimum. Information−
sharing decision-making environments describe a situation where ERNs and
power systems operate independently, but they can share their operation
plans at the beginning of each time step [32] or at the beginning of the time
horizon [28, 30, 33]. Their own plans do not need to change according to the
received information. They also can exchange their plans for any number
of rounds. The sufficient information-sharing in Table 1 means that both
the ERN operator and the power system operator share their information
until converging (e.g., the changes of traffic flow pattern and charging price
are smaller than a threshold [28]) or meeting the maximum iteration rounds.
Refs. [28, 30, 32] showed that, under the sufficient information-sharing situ-
ation, the solution approximates to an equilibrium between ERNs and power
systems. Furthermore, Ref. [33] has proved that the social optimum is a
general equilibrium if LMP is used in power systems, where the power sys-
tem operator is a nonprofit one whose objective is to balance the electricity
supply and demand under technical security constraints. Since the power
system operator is welfare-minded, it can steer a selfish ERN operator to-
wards the social optimum. More discussions are detailed in Refs. [33]. As
shown in Table 1, a systematic analysis for the interaction of traffic-power
systems under different decision-making environments is missing.
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Table 1: Summary of considered factors in relevant literatures

references decision-making environments dynamics EV features ERNs features

charging
time

charging
demand

driving
range

initial
SoC GVs capacity

of FCSs

[35] centralized ✓ × (A3) × × × ×
[32] limited information-sharing ✓ × (A3) × × × ✓
[36] centralized ✓ (A1) (A2) × × × ✓
[34] centralized ✓ × (A3) × × × ×
[27] centralized × ✓ ✓ ✓ ✓ × ×
[28] sufficient information-sharing × ✓ (A2) × (A4) ✓ ✓
[29] centralized × × (A3) ✓ ✓ × ✓
[30] sufficient information-sharing × (A1) (A2) × × ✓ ✓
[31] centralized × (A1) (A2) × × ✓ ✓

To fill the research gaps mentioned above, this paper proposes a dynamic
traffic-power system model and investigates the coordination of traffic-power
systems under centralized, decentralized and information-sharing decision-
making environments.

The main contributions of the paper are summarized as follows:
1) We propose a novel dynamic traffic-power system model, which is able

to capture the spatial-temporal traffic flow evolution and charging demand.
Dynamic models can provide more accurate charging load information com-
pared to static ones.

2) Within the proposed model, an electric link transmission model (eLTM)
is proposed to solve the system optimal dynamic traffic assignment (SO-
DTA) problem. The critical features of EVs and ERNs, summarized in Table
1, are thoroughly considered. Moreover, the proposed model also considers
the different classes of EVs with different driving ranges, chargers with dif-
ferent charging powers in a FCS and the charging process of EVs. These
extensions allow the model to be used in various applications and at differ-
ent granularities.

3) This paper systematically investigates the operation of traffic-power
systems under centralized, decentralized and information-sharing decision-
making environments. The corresponding objective functions under different
decision-making environments are formulated. An iterative algorithm is pro-
posed to solve the centralized optimization problem. We compare the three
environments in terms of the charging congestion level at FCSs, charging
price, charging demand, integration of renewable energy, among others.

The remainder of the article is structured as follows. Section 2 develops
the traffic-power system model. Section 3 describes decentralized, centralized
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and information-sharing decision-making environments. Section 4 illustrates
a numerical example to show the application of the proposed model and com-
pares the solutions under different decision-making environments. Finally,
Section 5 provides some concluding remarks and future research directions.

2. Coupled traffic-power system

2.1. Link transmission model based system optimal dynamic traffic assign-
ment problem

A road network with multiple sources (origins) and sinks (destinations)
is denoted as G(N ,A), where N and A are the sets of nodes and links,
respectively. All links (nodes) in the road network are classified into three
types: source, sink and general links (nodes). Within the road network, each
source (sink) node attaches only one source (sink) link, and each source (sink)
link connects to only one source (sink) node. NR (resp. NS) and AR (AS)
denote the set of source (sink) nodes and source (sink) links, respectively.
All source (sink) links are dummy of length zero and infinite outflow, inflow
and storage capacities. For SO-DTA problems, the outflow capacity of all
sink links are assumed to be 0, which means that all vehicles are collected
upon their arrival. The time horizon H is discretized into a finite set of
periods T = {t = 1, 2, · · · , T}. T is calculated according to T = H/δ, where
δ is the period length. The period length should be equal to or smaller than
the smallest link travel time so that vehicles take at least one time unit to
traverse a link [37].

A triangular fundamental diagram is used in the link transmission model
(LTM) [37, 38], which is an approximation and describes a macroscopic prop-
erty of roads considering the number of lanes, weather conditions, speed lim-
its, among others [37]. The diagram is defined by three parameters: a jam
density (kjam), a maximum flow (qmax) and a fixed-free flow speed (vf ). The
backward shock-wave speed w can be obtained by w = qmax · vf/(qmax −
kjam · vf ). The LTM updates the traffic flow evolution by calculating the
cumulative number of vehicles at the entry and exit of each link in each
period.

The Newell’s simplified theory is used in LTM to calculate sending Sa(t)
and receiving Ra(t) capacities of link a:

Sa(t) = min{Ua(t− νa)− Va(t− 1), Ofa(t)} (1a)
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Ra(t) = min{Va(t− βa) + La · kjam − Ua(t− 1), Ifa(t)} (1b)
where Ua(t) (Va(t)) denotes the cumulative number of vehicles that enter
(leave) link a by the end of period t, respectively. Ifa(t) and Ofa(t) are
the inflow capacity at the entering point and outflow capacity at the leaving
point of link a during period t. They can be obtained by δ · qmax at the
corresponding location and period. La is the length of link a. νa is the free-
flow travel time on link a and βa is the travel time required by the backward
shock wave from the exit to the entry of link a. They can be obtained by
νa = La/(δ · vf ) and βa = La/(δ · w), respectively.

The inflow and outflow of link a during interval t are constrained by its
corresponding sending and receiving capacities, respectively:

Ua(t)− Ua(t− 1) ≤ Ra(t),∀a ∈ A, t ∈ T (2a)

Va(t)− Va(t− 1) ≤ Sa(t),∀a ∈ A, t ∈ T (2b)
In the LTM-based SO-DTA problem, the different classes of vehicles are

not distinguished. Thus, we have:

Ua(t) =
∑
s∈NS

UGs
a(t),∀a ∈ A, t ∈ T (3a)

Va(t) =
∑
s∈NS

V Gs
a(t), ∀a ∈ A, t ∈ T (3b)

where UGs
a(t)(V Gs

a(t)) denotes the cumulative number of gasoline vehicles
that enter(leave) link a to destination s by the end of period t.

Substituting Eqs. (1) and (3) into the inequalities in Eq. (2), the linear
LTM-based flow constraints are obtained as follows:∑

s∈NS

V Gs
a(t) ≤

∑
s∈NS

UGs
a(t− νa),∀a ∈ A, t ∈ T (4)

∑
s∈NS

[V Gs
a(t)− V Gs

a(t− 1)] ≤ Ofa(t),∀a ∈ A, t ∈ T (5)

∑
s∈NS

UGs
a(t) ≤

∑
s∈NS

V Gs
a(t− βa) + La · kjam,∀a ∈ A, t ∈ T (6)
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∑
s∈NS

[UGs
a(t)− UGs

a(t− 1)] ≤ Ifa(t), ∀a ∈ A, t ∈ T (7)

The cumulative outflow to destination s should be constrained by the
cumulative inflow to the same destination on link a:

V Gs
a(t) ≤ UGs

a(t− νa),∀a ∈ A, t ∈ T (8)

The traffic demand is satisfied by letting the cumulative inflows of source
links equal to the cumulative demands:

UGs
a(t) = DGs

a(t), ∀a ∈ AR, ∀s ∈ NS, t ∈ T (9)

where DGs
a(t) is the cumulative gasoline vehicle travel demand between the

entry of origin link a and destination s at the end of period t.
In the LTM model, the inflow and outflow of a general node should be

restricted by the following flow conservation constraints:∑
a∈B(i)

V Gs
a(t) =

∑
b∈A(i)

UGs
a(t),∀i ∈ N /{NR,NS},∀s ∈ NS, t ∈ T (10)

where A(i) (B(i)) represents the set of links whose tail (head) node is i.
The cumulative flows should be nonnegative and nondecreasing :

V Gs
a(t)− V Gs

a(t− 1) ≥ 0,∀a ∈ A, ∀s ∈ NS, t ∈ T (11)

UGs
a(t)− UGs

a(t− 1) ≥ 0,∀a ∈ A,∀s ∈ NS, t ∈ T (12)
The following constraints force the initial cumulative flows to be 0:

UGs
a(0) = V Gs

a(0) = 0,∀a ∈ A,∀s ∈ NS (13)

The objective of the LTM-based SO-DTA problem is to minimize the
total travel time of all vehicles. The total travel time is calculated by the
total presence time of all vehicles on all links during the whole time horizon.
The LTM-based SO-DTA problem [38] is formulated as follows:

min
x∈Ω

∑
a∈A/AS

∑
s∈NS

∑
t∈T

δ[UGs
a(t)− V Gs

a(t)] (14)

where Ω = {x| s.t. (4)− (13)}.
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2.2. eLTM-based SO-DTA problem
The existing LTM-based SO-DTA model is not able to describe the new

features related to the EVs, such as the driving range of EVs and the capacity
of FCSs. To overcome this shortcoming, an eLTM-based SO-DTA model
is proposed to minimize the total cost for all vehicles considering the EVs
driving ranges, FCS capacities, charging costs, among others.

The assumptions in this model are:
(1) An EV charges the minimum en-route to ensure the shortest travel

time. The SoC after charging (original SoC plus the charged electricity)
should ensure that the EV can reach the destination or the next FCS. This
assumption is coherent with the objective function of the proposed model,
which is to minimize the total cost. Other phenomena, e.g., the EVs only
leave FCSs after being fully charged or 80% charged, can be easily incor-
porated by adding constraints on FCSs. As for the heterogeneous charging
preferences of EV drivers, their consideration is not within the scope of this
paper.

(2) The electricity consumed by an EV is linearly related to the distance
traveled. The electricity amount charged by an EV is linearly related to the
charging time. All EV batteries have the same energy consumption efficiency,
similar to Ref. [39].

(3) The electricity consumed by the in-vehicle equipment, such as air con-
ditioners and lights, is neglected. When EVs stop, no electricity is consumed.

In order to track the SoC of EVs, the model accounts for different energy
levels to describe the real-time SoC for each EV. Given a certain class of EV
denoted as c, its battery capacity is Bc kWh and the energy consumption
efficiency is η kWh/mile: then, the mileage of this class EV is Bc/η = Lmax

c

miles. One energy level (EL) is defined to be equal to δ · vf miles. Therefore,
the maximum EL of EV of class c is calculated by Ec = Lmax

c /(δ · vf ).
Assuming that there are C EV classes represented as C = {E1, E2, · · · , EC},
each element in set C is a set, which contains the energy levels that EV of
class c could have, denoted as Ec = {1, 2, · · · , Ec}.

To describe the FCS in the physical road network, dummy charging links
AC are originally defined in the eLTM-based model. A FCS is modeled by
one or several charging links, represented by arcs having the same origin and
destination, as shown in Fig. 1. Chargers with different charging speeds are
represented by different charging links. Parameter αt

a represents the average
charging speed for each charging link a during period t, which translates
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Figure 1: Link representation of different types of charges within a charging station.

to how many energy levels can be supplied using type a charger during a
period δ. Assuming the charging power of charging link a is peva , then, αt

a

can be calculated by peva ·δ
η·δ·vf

= peva
η·vf

. Similar to source and sink links, the
lengths of charging links are assumed to be 0. For each charging link a,
NCa(t) is defined as the physical number of type a chargers during period t.
Generally, charging speed αt

a and number of chargers NCa(t) are a constant
and only change with charging links. However, if some chargers temporally
or permanently are unavailable (e.g., due to physical failures, maintenance
and upgrade), these parameters could change over time.

Given a general link a, its length is La and the energy consumption ef-
ficiency of EVs is η; then, the consumed ELs on link a is calculated by
ρa = La/η. Similarly, EU s,e

a,c (t) (EV s,e
a,c (t)) denotes the cumulative number of

EVs that belong to type c with EL e that enter (leave) link a to destination
s by the end of interval t.

In the eLTM-based model, both EVs and conventional vehicles are con-
sidered. Therefore, Eq. (3) is reformulated as follows :

Ua(t) =
∑
s∈NS

UGs
a(t) +

∑
s∈NS

∑
c∈C

∑
e∈Ec

UEs,e
a,c, ∀a ∈ A, t ∈ T (15a)

Va(t) =
∑
s∈NS

V Gs
a(t) +

∑
s∈NS

∑
c∈C

∑
e∈Ec

V Es,e
a,c, ∀a ∈ A, t ∈ T (15b)

Substituting Eqs. (1) and (15) into the inequalities in Eq. (2), the eLTM-
based flow constraints for EVs and aggregate vehicle flows are obtained as
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follows:

V Es,e
a,c(t) ≤ UEs,e+ρa

a,c (t− νa),∀a ∈ A\{AC},
∀s ∈ NS,∀c ∈ C, e ∈ Ec ∩ {e ≤ Ec − ρa}, t ∈ T

(16a)

V Es,e
a,c(t) = 0,∀a ∈ A\{AC},

∀s ∈ NS, ∀c ∈ C, e ∈ Ec ∩ {e > Ec − ρa}, t ∈ T
(16b)∑

s∈NS

[V Gs
a(t)− V Gs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[V Es,e
a,c(t)− V Es,e

a,c(t− 1)]

≤ Ofa(t),∀a ∈ A\{AC}, t ∈ T
(17)

∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t− βa)]+∑
s∈NS

[UGs
a(t)− V Gs

a(t− βa)] ≤ Lakjam,∀a ∈ A\{AC}, t ∈ T
(18)

∑
s∈NS

[UGs
a(t)− UGs

a(t− 1)]+∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs
a(t)− UEs

a(t− 1)] ≤ Ifa(t),∀a ∈ A\{AC}, t ∈ T
(19)

Eq. (16a) guarantees that the outflow should be less than or equal to the
inflow and that the consumed ELs are deducted after EVs traversed the
corresponding links. Eq. (16b) ensures that EV ELs are less than their
maximum ELs. Eqs. (17) - (19) are same as Eqs. (5) - (7). Eqs. (17)
and (19) constrain the outflow and inflow to be less than or equal to their
outflow and inflow capacities, respectively. Eq. (18) states that the number
of vehicles on link a should be less than or equal to the maximum number of
vehicles that can be contained on this link.

Eq. (20) ensures that traffic demand of EVs should also be satisfied:

UEs,e
a,c(t) = DEs,e

a,c(t), ∀a ∈ AR, ∀s ∈ NS,∀c ∈ C,∀e ∈ Ec, t ∈ T (20)

Similar to Eq. (10), the flow conservation law should also be followed by
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EVs: ∑
a∈B(i)

V Es,e
a,c(t) =

∑
b∈A(i)

UEs,e
a,c(t),

∀i ∈ N /{NR,NS}, ∀s ∈ NS,∀c ∈ C,∀e ∈ Ec, t ∈ T
(21)

2.2.1. Modeling EV charging process
To model the charging process, intermediate variables x̂s,e

a,s(t) and xs,e
a,s(t)

are defined as the number of EVs before and after their ELs have been up-
dated on charging link a. The occupancy x̂s,e

a,s(t) on a charging link is calcu-
lated by the occupancy plus new inflow minus outflow during the previous
period, as shown in Eq. (22):

x̂s,e
a,s(t) = xs,e

a,s(t− 1) + [UEs,e
a,c(t− 1)− UEs,e

a,c(t− 2)]−
[V Es,e

a,c(t− 1)− V Es,e
a,c(t− 2)],

∀a ∈ AC ,∀s ∈ NS, ∀c ∈ C,∀e ∈ Ec, t ∈ T
(22)

Furthermore, the following equations describe the process of updating the
ELs on charging links:

xs,Ec
a,c (t) =

αt
a∑

l=0

x̂s,Ec−l
a,c (t), ∀a ∈ AC ,∀s ∈ NS,∀c ∈ C,∀t ∈ T (23a)

xs,e
a,c(t) = x̂s,e−αt

a
a,c (t), ∀a ∈ AC ,∀s ∈ NS,∀c ∈ C,∀e ∈ {αt

a ≤ e < Ec},∀t ∈ T
(23b)

xs,e
a,c(t) = 0,∀a ∈ AC ,∀s ∈ NS,∀c ∈ C,∀e ∈ {e < αt

a},∀t ∈ T (23c)

Eqs. (23a) and (23c) constrain the upper and lower bounds of the updated
ELs. Eqs. (23b) describe the process of linear increase in ELs. Eq. (23a)
states that if the ELs of EVs before being updated belong to [Ec − αt

a, Ec],
their energy levels are approximately updated as the maximum EL Ec of EV
of class c after one period. Eq. (23b) states that if the ELs of EVs are within
[0, Ec − αt

a) before being updated, they increase αt
a ELs after one period.

The updated ELs are within [αt
a ≤ e < Ec). Eq. (23c) ensures that no EVs’

ELs are less than αt
a level after being charged for one period. Therefore, if

the updated ELs are smaller than αt
a, they are forced to be 0. Note that the

number of EVs on charging links are conserved before and after the ELs of
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the EVs are updated, i.e.,
∑

e x̂
s,e
a,c(t) =

∑
e x

s,e
a,c(t).

Additionally, the outflow disaggregated by each EL on charging link a
should be less than its occupancy, as formulated in Eq. (24):

V Es,e
a,c(t)− V Es,e

a,c(t− 1) ≤ xs,e
a,c(t),∀a ∈ AC , ∀s ∈ NS,∀c ∈ C,∀e ∈ Ec,∀t ∈ T

(24)

Eq. (25) limits the number of EVs on charging link a to its maximum number
of chargers:∑

s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t)] ≤ NCa(t), ∀a ∈ AC ,∀t ∈ T (25)

Moreover, Eqs. (26) - (27) ensure that the cumulative EV flows are nonneg-
ative and nondecreasing:

V Es,e
a,c(t)− V Es,e

a,c(t− 1) ≥ 0,∀a ∈ A,∀s ∈ NS,∀c ∈ C,∀e ∈ Ec, t ∈ T (26)

UEs,e
a,c(t)− UEs,e

a,c(t− 1) ≥ 0,∀a ∈ A,∀s ∈ NS, ∀c ∈ C,∀e ∈ Ec, t ∈ T (27)

Similarly, the occupancies on charging links is nonnegative, as described in
Eq. (28):

xs,e
a,c(t) ≥ 0, x̂s,e

a,c(t) ≥ 0,∀a ∈ AC ,∀s ∈ NS,∀c ∈ C,∀e ∈ Ec, t ∈ T (28)

The occupancies on charging links and the cumulative EV flows are initialized
to be 0, as formulated in Eq. (29):

UEs,e
a,c(0) = V Es,e

a,c(0) = 0,∀a ∈ A,∀s ∈ NS,∀c ∈ C,∀e ∈ Ec (29)

As for the LTM-based SO-DTA problem, the objective of the eLTM-based
SO-DTA problem is to minimize the total travel time, including the charging
time of EVs. The problem is formulated as:

min
y∈Ψ

∑
s∈NS

∑
t∈T

∑
a∈A/{AC ,AS}

δ[UGs
a(t)− V Gs

a(t)]

+
∑
s∈NS

∑
t∈T

∑
a∈A/AS

∑
c∈C

∑
e∈Ec

δ[UEs,e
a,c(t)− V Es,e

a,c(t)]
(30)
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where Ψ = {y| s.t. (8) − (13) and (16) − (29)}. It should be noted that
for all a in constraints (8)-(13) its domain does not include AC . It means
conventional vehicles never go into charging links.

2.3. Power distribution network (PDN) model
We consider a radial PDN GP (PN ,PL), where PN and PL represent the

sets of buses and distribution branches, respectively. In a radial network, each
bus is attached to a unique predecessor bus and the number of buses equals
to that of branches, which excludes a slack bus. Slack bus is indexed as 0.
The successor set of bus j is denoted as Γ(j) = {∀k : (j, k) ∈ PL}. The power
system model in Ref. [28] is employed in this paper. We additionally add
constraint (31) to limit the generator ramp between two successive periods:

−pramp
j ≤ pgj (t)− pgj (t− 1) ≤ pramp

j ,∀j ∈ PN ,∀t ∈ T (31)

where pgj is the active power generation in period t and pramp
j is the ramp

limits of generators at bus j.
The EV charging load in Ref. [28] is calculated by the static traffic flow

passing charging stations and the energy demand of each EV is assumed to
be fixed. In our paper, the charging load during each period is calculated by
the number of EVs stoping in charging links. The energy demand of each EV
is consistent with assumption (1) in subsection 2.2. Thus, the EV charging
load in Eq. (28) in Ref. [28] is replaced by the following equation:

pdcj (t) =
∑

a∈M(j)

∑
s∈NS

∑
c∈C

∑
e∈Ec

peva [UEs,e
a,c(t)− V Es,e

a,c(t)] (32)

where M(j) is a mapping from bus set PN to charging links set AC , which
specifies the connection between buses in a power system and charging links
in a road network. N(a) is a reverse mapping of M(j), which maps charging
links set to the bus set. The LMP at each bus is denoted as λt

j. The charging
price at charging link a can be obtained by λt

N(a).
To clearly describe the PDN model here, we detail the objective function

used. The objective of the PDN operator is to minimize the total energy
production costs. The optimal power flow problem is defined as P1:

min
z∈Φ

∑
t∈T

∑
j∈PN

[aj(p
g
j (t))

2 + bjp
g
j (t)] +

∑
t∈T

∑
k∈Γ(0)

µ(t)P0k(t) (33)
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Φ = {z| s.t. (31)− (32), and (24)− (34) in Ref. [24]} (34)

where aj and bj are the production cost coefficients at bus j. P0k is the active
power flow from main grid to bus k. The first term is the production cost of
the local generators and the second term is the cost for purchasing electricity
from the main grid. µ(t) is the contract energy price during period t with
the main grid.

3. Decision environments

In this section, three decision-making environments are considered for
operating the traffic-power systems, which may arise when different bene-
ficiaries coordinate the interdependent infrastructures. Analyzing different
decision-making environments allows us to compare their operational and
socially beneficial difference. The value of sharing information also can be
studied.

3.1. Decentralized decision environments
In current practice, individual infrastructure systems such as ERNs and

PDNs often determine their operation in an independent, decentralized man-
ner with little information exchange among them.

For the ERN sector, we adopt a system optimum model where the objec-
tive is to minimize the total travel cost through dynamic traffic assignment.
The total travel cost includes the driving time cost of both EVs and GVs,
charging time cost of EVs and charging cost of EVs. This optimal traffic flow
problem P2 is formulated as follows:

min
y∈Ψ

∑
s∈NS

∑
t∈T

∑
a∈A/{AC ,AS}

ϕδ[UGs
a(t)− V Gs

a(t)]

+
∑
s∈NS

∑
t∈T

∑
a∈A/AS

∑
c∈C

∑
e∈Ec

ϕδ[UEs,e
a,c(t)− V Es,e

a,c(t)]+∑
s∈NS

∑
t∈T

∑
c∈C

∑
e∈Ec

∑
a∈AC

λt
N(a)p

ev
a δ[UEs,e

a,c(t)− V Es,e
a,c(t)]}

(35)

subject to constraints (8)-(13) and (16)-(29), where ϕ is the time value.
Since the ERN operator does not know the real-time electricity price λt

N(a)

beforehand, we assume that an estimated fixed charging price is used for the
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(a) Procedures of decentralized
decision-making environment

(b) Procedures of information-
sharing decision-making environ-
ment

Figure 2: Procedures of decentralized and information-sharing decision-making environ-
ments. CD: Charging demand of EVs; LMP: locational marginal price.

operator. For the PDN, it is assumed that the operator only knows the real-
time charging demand and the demand in the future time periods is unknown.
Thus, P1 is solved for each independent period for a total of T times. The
main process is shown in Fig. 2(a). At the beginning, the estimated charging
price (LMP) for the ERN operator is used to solve P1. Then, in each period,
the PDN operator receives the real-time charging demand from each FCS.
Based on the real-time power demand, the operator solves P2 to obtain the
optimal power flow pattern z and the corresponding actual LMP in each
period. Note that this price dose not change the traffic assignment solutions.
In the end, the actual charging cost for the ERN operator can be calculated
by the actual LMP.

3.2. Centralized decision environments
The centralized decision-making environment assumes that there is a cen-

tralized operator that coordinates both the ERNs and the PDNs to minimize
the total cost of the two systems. It means that ERNs and PDNs fully inte-
grate with each other, although this may lead to sacrifice their own benefits
from an independent system’s perspective. This situation may be ideal, but
the results can serve as a benchmark to understand and analyze the best
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possible coordination between ERNs and PDNs. This environment can be
expressed as the following optimization problem:

min
y,z∈Ψ,Φ

∑
s∈NS

∑
t∈T

∑
a∈A/{AC ,AS}

ϕδ[UGs
a(t)− V Gs

a(t)]

+
∑
s∈NS

∑
t∈T

∑
a∈A/AS

∑
c∈C

∑
e∈Ec

ϕδ[UEs,e
a,c(t)− V Es,e

a,c(t)]+∑
s∈NS

∑
t∈T

∑
c∈C

∑
e∈Ec

∑
a∈AC

λt
N(a)p

ev
a δ[UEs,e

a,c(t)− V Es,e
a,c(t)]}

+
∑
t∈T

∑
j∈PN

[aj(p
g
j (t))

2 + bjp
g
j (t)] +

∑
t∈T

∑
k∈Γ(0)

µ(t)P0k(t)

(36)

subject to constraints (8)-(13), (16)-(29) and (34).
Since variables λt

N(a) can be only obtained after the optimal power flow
z has been known, an iterative algorithm is proposed to solve this problem.
The main procedures of the algorithm is listed in Algorithm 1.

Algorithm 1: An iterative algorithm
1 Initialization:Chose a convergence tolerance ϵ > 0 and the maximum

iteration number Imax. Let LMP vector λ = 0, objective value
θ = 0, i = 0 ;

2 Solve problem (36) with fixed LMP λ; Get the objective value θ∗ and
retrieve λ∗ from optimal power flow ;

3 if |θ − θ∗| < ϵ for N consecutive times then
4 terminate and return the solution of problem (36);
5 else if i = Imax then
6 terminate, report that the algorithm fails to converge and return

the solution of problem (36);
7 else i = i+ 1, θ = θ∗,λ = λ∗, go to Line 2;

3.3. Information-sharing decision environments
The information-sharing decision-making environment describes a situ-

ation where an ERN operator and a PDN operator actively share (partial
information about) their operation plans with each other, but do not nec-
essarily fully coordinate or cooperate with each other. This environment
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assumes that the two operators exchange their expected plans at the be-
ginning of the time horizon. Specifically, an ERN operator sends the ex-
pected charging demands information to the PDN operator. Based on the
received information, the PDN operator calculates the expected electricity
prices and communicate them to the ERN operator who updates its plan
accordingly. This information-sharing behavior can be continued for any
number of rounds and the number of rounds can be understood as time
available for the operators to exchange information. From a modeling per-
spective, the information-sharing decision-making environment is similar to
the decentralized decision-making environment. Under both environments,
the charging demand and LMPs are parameters for P1 and P2, respectively.
The difference is that in the former environment, the PDN operator is able
to know the possible charging demand over the whole time horizon at the
beginning; whereas, in the latter environment, the PDN operator only knows
the real-time charging demand during each period. The interplay process is
shown in Fig. 2(b).

4. Numerical examples and results

4.1. Case study and system configuration
The similar structures of the ERN (with modified road lengths) and the

radial PDN (with added renewable generators) in Ref. [28] is used to il-
lustrate the proposed methods. The data used in the examples is briefly
summarized in Appendix A. More detailed data and parameters are avail-
able in Supplementary Material [40]. We consider 4 renewable distributed
generators (DGs) and 4 conventional generators connected to 4 renewable
FCS (charging link label: 65, 67, 70, 72) and 4 conventional FCS (66, 68,
69, 71), respectively. In this example, we consider similar assumptions to
Ref. [27]: 1) the DGs’ outputs are assumed to be controllable which means
the renewable power can be curtailed; 2) the available generation capacities
of DGs are assumed to be given by proper forecasting methods, which pro-
vide the upper limits of the actual generation. The generation costs of both
conventional and renewable DGs are detailed in Ref. [27].

4.2. Implementation note and results
All of the experiments have been run on a computer with an Intel Core

i7-8700 3.2-GHz CPU with 32 GB of RAM. All of the problems have been
solved by the commercial software IBM ILOG CPLEX (version 12.6).
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Table 2: Summary of the main results under different decision-making environments
Decision environments Cost ($) Generation and purchase (MWh)

Actual
charging

cost

Actual
traffic
cost

Power
cost

Actual
total
cost

Electricity
purchase

Conventional
DG

Renewable
DG (%)

Decentralized 2556.78 11770.78 3924.15 15694.93 0.46 25.71 227.99(89.70%)
Centralized 183.74 9821.34 3065.80 12887.15  0.078 20.35 232.96(91.94%)

Information-sharing 245.21 9463.21 3924.15 13387.36  0.46 25.71 228.01(89.71%)
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Figure 3: Total charging demand and average LMP in FCSs.

Algorithm 1 is employed to compute problem (36). The convergence
tolerance ϵ and the maximum iteration number Imax are set as 0.01 and 90,
respectively. Theoretically, information could be exchanged for any number
of rounds between system operators; however, it is reasonable to assume that
they only exchange information once due to practical limitations, particularly
with respect to time.

Table 2 compares the results under the three decision-making environ-
ments. As it shows, we have the highest actual total cost $15694.93 when
ERNs and PDNs operate independently. The total cost is 27.73% and
17.24% higher under the independent situation, compared to full integration
or sharing information, respectively. This is because under the decentral-
ized decision-making environment, the ERN operator only knows the fixed
electricity price and has no information on the difference among FCSs and

23



Table 3: Total charging demand in renewable and conventional FCSs (MWh)

Environments Renewable
FCS (%)

Conventional
FCS Total

Decentralized 7.175 (41.47%) 10.125 17.3
Centralized 8.85(50.80%) 8.57 17.42

Information-sharing 7.8(45.09%) 9.5 17.3

periods, which results in only travel time minimization being considered.
This leads to the highest charging cost and power expenditure. When an
ERN operator exchanges information once with a PDN operator before traf-
fic assignment, a significant reduction in the actual charging cost of up to
90.41% can be achieved. This is because one round information-sharing be-
tween the two operators can provide valuable information on the electricity
price difference among FCSs and periods, although the information may not
be exactly right. Such information can guide the ERN operator to minimize
the travel time cost and charging cost. Under a fully integrated-centralized
environment, the actual charging cost and power cost could decrease of up
to 92.81% and 21.87%, respectively. Moreover, Fig. 3 shows that the FCSs
with lower charging prices are generally assigned with more charging de-
mand, and this correlation is clearer under centralized situation than the
information-sharing situation. However, some exceptions can be observed,
for instance, while the electricity price in FCS #68 is not the cheapest, it
still maintains most charging demand. This is because there is a trade-off
between the saved charging cost and the extra time caused by detouring to
the FCS with cheaper charging price. Only when the charging price is cheap
enough, EVs would detour to this particular FCS.

In addition, Table 2 shows that the centralized decision-making environ-
ment has the highest renewable energy adoption. This can be explained by
two reasons: first, a part of charging demand is shifted from conventional
FCSs to renewable FCSs as shown in Table 3. The charging demand in re-
newable FCSs increase from 41.47% to 45.09% if the decision environment
change from the decentralized to the centralized. More specifically, except
FCS #68, the charging demands in the other three conventional FCSs (#66,
#69 and #71) are shifted to renewable FCSs (#65, #67, #70 and #72) in
varying degrees when the decision-making environments are centralized and
information-sharing is on, as shown in Fig. 3. The second reason is that un-
der the centralized decision-making environment, the system operator could
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Figure 4: Congestion level of FCS under different decision-making environments.
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Figure 5: The time distribution of the total power demand for the studied PDN.

properly assign the charging time and locations of EVs so as to alleviate the
charging congestion in FCSs in peak hours and flatten the the power demand
curve. Note that the generation capacities of renewable DGs are limited in
each period. Consequently, in peak hours, the expensive conventional energy
could be replaced by the cheap renewable energy. This can be verified by
Figs. 4 and 5. For example, the congestions in charging links 65, 67 and
68 are significantly alleviated when two systems operate jointly, as shown
in Fig. 4. As a result, the total power demand from the 3rd to the 9th
time step is clipped to from the 13rd to 26th time step, as shown in Fig. 5.
In summary, the operator optimizes the charging demand in temporal and
spatial aspects to promote the renewable energy integration and, thus, the
total cost is minimized.

5. Conclusion

This paper proposed a traffic-power system model to investigate the op-
erational solution differences when the electric road network (ERN) and the
power distribution network (PDN) operate independently, jointly and with
sharing information. The model considered constraints from both ERNs and
PDNs, such as road capacity, traffic flow capacity and ramp limit of gener-
ators. Within this model, an electric link transmission model (eLTM) was

26



presented to solve the system optimal dynamic traffic assignment problem. A
novel formulation was proposed to accommodate critical physical features of
electric vehicles (EVs) and fast charging stations (FCSs), such as, EV classes
with different driving ranges, initial state of charge (SoC) of EVs, capacity
of FCSs have been considered. Moreover, the charging process of EVs was
explicitly modeled within the eLTM. The objective of a PDN operator was
to minimize the power cost including power generation cost and purchase
from the main grid. A numerical example including renewable and conven-
tional generators was studied to illustrate the proposed models. The different
decision-making environments were compared to investigate the correspond-
ing operation and social benefits. From the results, we could observe that the
charging cost was the highest under decentralized situation, since the ERN
operator did not know the information on the electricity price difference
among FCSs and periods. Even limitedly sharing information or operating
jointly between ERNs and PDNs could significantly reduce the charging cost.
The increased renewable energy adoption and the flattened power demand
curve assisted in lowering charging cost, power cost and congestion level in
FCSs, under a centralized situation. Both electricity price difference among
FCSs and detouring time influenced the charging demand distribution.

This work can be extended in several directions: 1) It is interesting to
investigate by the proposed eLTM to solve the user equilibrium dynamic
traffic assignment (UE-DTA) problem considering critical features of ERNs
and FCSs. Although, Refs. [32, 36, 34] claimed that they have solved UE-
DTA considering EVs, they oversimplified the critical features of ERNs and
FCSs, as shown in Table 1. Therefore, how to solve this problem is still
challenging. 2) The proposed models can be easily extended to investigate
how the failure spreads between the interdependent traffic-power systems. 3)
It is also interesting to investigate how to coordinate the charging demand
so as to maximize the renewable energy adoption considering the security
constraints and the weather conditions.

Appendix A. Data description

A modified electrified road network [28] and power distribution network
is used to illustrated the proposed methods. Figs. A.6 and A.7 show the
modified road network and power network. As shown in Fig. A.6, there is one
type charger in each FCS. The green mark on charging links and generators
represents the corresponding FCSs and generators powered by the renewable
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Table A.4: Connections between charging links and Buses
Charging link Bus

65 1
66 2
67 4
68 3
69 6
70 5
71 8
72 7

Table A.5: Parameters of the studied traffic-power system
Parameters Values
vf (m/h) 50

kjam(veh/m) 214
δ (min) 6

qmax (veh/h/lane) 2160
peva (kW) 50

η (kMh/mile) 0.25
ϕ ($/h) 10

C 1
Ec 20

Bc (kWh) 25
NCa(t) 15

αt
a (ELs/δ) 4

energy. The detail connections between charging links and buses are listed
in Table A.4. The parameters used in this paper are listed in Tables A.5 and
A.6. For simplicity, we assume there is one type EV and its battery capacity
is 25 KWh and maximum energy level is 20. Total traffic demand is listed
in Table A.7. More detailed data of the studied road network and power
network are available in Supplementary Material [40].
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