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Bearing Fault Event-Triggered Diagnosis using a

Variational Mode Decomposition-based Machine

Learning Approach
Houssem Habbouche, Yassine Amirat, Senior Member, IEEE, Tarak Benkedjouh, Mohamed

Benbouzid, Fellow, IEEE,

Abstract—The monitoring of rolling element bearing is indexed
as a critical task for condition-based maintenance in various in-
dustrial applications. It allows avoiding unscheduled maintenance
operations while decreasing their cost. For this purpose, various
methodologies were developed to ensure accurate and efficient
monitoring. In this context, this paper proposes an approach
for bearing fault early diagnosis based on the variational mode
decomposition (VMD), used as a notch filter for dominant mode
cancellation, and a machine learning approach, namely the one-
dimensional convolution neural network (1D-CNN), for detection
and diagnosis purposes. Specifically, the proposed approach first
performs features extraction using VMD for fault detection,
and then triggers to multi-scale features extraction using CNN
convolution and pooling layers for classification and diagnosis.

The proposed bearing fault detection and diagnosis approach
is evaluated, in terms of robustness and performances, using
the well-known Case Western Reserve University experimental
dataset. In addition, performances are evaluated versus well-
established demodulation techniques, in terms of fault detection,
and machine learning strategies, in terms of fault diagnosis. The
achieved results show that the proposed VMD notch filter-based
1D-CNN approach is clearly promising for bearing degradation
monitoring.

Index Terms—Bearing fault, convolution neural network, fault
detection and diagnosis, variational mode decomposition, ma-
chine learning.

I. INTRODUCTION

INDUSTRIAL rotating machines key and critical

components are clearly gears and bearings as their

failure modes can lead to prolonged downtime and substantial

additional maintenance costs. Monitoring the health status of

these components is therefore a high industrial priority [1],

[2].

Monitoring and analyzing these sensed vibrations is therefore

given a great industrial importance, in addition to carry

information about the rotating machine dynamic state [3].

Indeed, industrial experience feedback has shown that 70% of

rotating machine shutdowns are caused by induced vibrations

and 30% of them are a consequence of bearing failures [4],
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[5].

Rotating machines state of health indicators have to be

adequately chosen to help in the monitoring process:

failure detection [6], failure diagnosis, which is in fact the

classification of the failure type, and the prognosis to estimate

the remaining useful lifetime in order to avoid unplanned

shutdowns [7], [8]. For this purpose, many techniques

and tools were developed for these failures detection and

diagnosis, as well as potentially attempting to prolong the

working life cycle. While the literature is rich of model-based

failures detection and diagnosis approaches, data-driven or

signal-based processing techniques become more attractive as

they do not require any prior knowledge of rotating machines

parameters in addition of their ability to extract useful features

for fault recognition [9] without specific information about

the rotating machine operating conditions [10]. Depending on

the operating conditions, specific signal processing techniques

were developed, where the most popular ones are time- and

frequency-analysis techniques for steady-state conditions,

while time-frequency and time-scale representations are

adopted for non-stationary behaviors. As highlighted in the

literature, these techniques have some limitations mainly

in terms of complexity, poor resolution, and cross-terms

occurrence. To address this issues, parametric methods, based

on parameter estimations of a known model were developed.

Nevertheless, these methods have drawbacks as they are

formulated through integral transforms and analytic signal

representations [11]. Hence, they depend on data length and

model accuracy.

To overcome the above-mentioned drawbacks, data driven

approaches based on mode decomposition (i.e. empirical

mode decomposition (EMD), ensemble empirical mode

decomposition EEMD, waveform mode decomposition

(WPD), variational mode decomposition (VMD), etc.) were

introduced and their merits highlighted as one of the most

suitable bearing fault detection and diagnostic approaches

given the generated non-stationary vibration signals [4],

[12], [13]. These techniques are often coupled with an

artificial intelligence-based algorithm for automatic fault

classification [14]. Indeed, artificial intelligence, namely

machine learning, is introduced to process the acquired

signals and the extracted features with the objective to design

a fully automated diagnosis process [13]. In this context,

artificial intelligence-based techniques provide relevant tools

in terms of features recognition, detection, diagnosis, and
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prediction accuracy (prognosis) [15]. Specifically, machine

learning-based algorithms, such as deep neural network

(DNN), recurrent neural network (RNN), and conventional

neural network (CNN) are considered as the best path for

features classification [16]. Indeed, these techniques efficiently

extract features by useful information compression [7], [8].

Hybridizing mode decomposition with machine learning for

fault detection and diagnosis, respectively, has been recently

addressed in the literature. Indeed, Chen et al. [17] proposed

a comparative study between VMD and EMD-based support

vector machine (SVM) approaches for classification. They

specifically investigated the entropy of each intrinsic mode

function and mode as an input vector for classification

purpose for wind turbine monitoring. For gearbox monitoring,

Li et al. [18], used VMD for features extraction, by power

spectral entropy, and DNN for classification. In this case,

comparisons have been carried out versus back propagation

neural network (BPNN) and SVM, although modes after

decomposition were stationary. Gai et al. [19] used hybrid

grey wolf optimization to find the VMD best parameters

combination to improve mode decomposition for DBN-based

learning and bearing faults classification. In this study, where

VMD has been compared to EMD, it has been shown that

convolution layers to extract more useful information can

improve the diagnosis accuracy. Sharma et al. [20] compared

VMD to empirical wavelet transform and flexible analytic

wavelet transform for gearbox faults detection. This study

highlighted the VMD effectiveness in clearly exhibiting a

fault by extracting its transients. In the same context, Gu et

al. [4] proposed a framework based on VMD to decompose

signals, then calculating statistical indicators used as SVM

inputs for learning and bearing states classification. In this

case, VMD-based decomposition has been compared to EMD.

However, replacing signals with temporal indicators limits the

technique robustness. For the monitoring of a refrigeration

system, Wang et al. [21] proposed a combination of 1D-CNN

and gate recurrent unit (GRU) to ensure features extraction

and learning features for classification. In this case, the

proposal has been evaluated versus BPNN, CNN, and long

short-term memory (LSTM). A multi-signal fault detection

and diagnosis approach has been proposed by Hao et al. [22]

which used 1D-CNN for features extraction that LSTM for

classification. The effectiveness of this approach has been

assessed versus SVM, k-nearest neighbors (KNN), BPNN,

and CNN. The denoising issue has been addressed by Liu

et al. [23] who proposed a combination of 1D-convolutional

autoencoder for denoising input signals, which are then

learned by 1D-CNN for faults classification. In this case, high

diagnosis accuracy has been achieved. Finally, the idea to

remove the signal processing step has been proposed by Jiang

et al. [24]. It is in then replaced by convolution layers and

pooling for classes discrimination. Despite machine learning

obtained results for filtering and features extraction, signal

processing remains very useful especially in highly noisy

environment to improve diagnosis accuracy [25].

According to the above-discussed context and state of the

art review, this paper proposes a new method for bearing fault

diagnosis. It is based on the VMD, as a notch filter for fault

detection, and the 1D-CNN for classification purpose. In this

context, the proposal main contributions are the following:

• Providing an intelligent decision support tool for real-

time bearing diagnosis, ensuring detection first and fault

classification later;

• High-level features extraction by filtering the dominant

mode using VMD to identify the fault even in presence

of high harmonics pollution;

• Multi-scale features extraction using CNN convolution

and pooling layers to extract most discriminating features

between different classes;

• Experimental evaluation and validation using the Case

Western Reserve University (CWRU) database.

The paper is organized as follows; section II is devoted to

the methodology theoretical background presentation. Section

III deals with the experimental evaluation and validation.

Section IV provides an analysis and discussion of the achieved

results while section V concludes this paper.

II. PROPOSED FAULT EVENT-TRIGGERED DIAGNOSIS

METHODOLOGY

The proposed bearing fault diagnosis methodology is illus-

trated by Fig. 1 flowchart, where a VMD approach is adopted

for fault detection then triggering to diagnosis using a machine

learning approach, namely 1D-CNN.

The following subsections will detail the operating flow of the

proposed diagnosis methodology.

A. Variational Mode Decomposition-based Fault Detection

As above-mentioned in the state of the art review, signal

processing is the step of choice to handle the issue of acquired

signals corrupted by noise and harmonics. This is particularly

the case of vibration signals related to mechanical components

generating low amplitudes pulses [25]. Signal processing tech-

niques are therefore used to isolate these components [2], [20].

Among the adaptive mode decomposition family, the VMD is

proposed. Indeed, it has been introduced to improve the EMD

and becomes the technique of choice for the analysis of non-

stationary and nonlinear data for detection in a wide range of

applications [26], [27], [28], [29]. VMD has the advantageous

ability to decompose complex signals into several stationary

signals, regardless of their origin, using Wiener filter [13].

xn(t) =
k
∑

i=1

uk(t) + res(t), (1)

where xn is the acquired signal, {uk} = {u1, u2, ..., un} are

decomposition modes, and res is the residual signal after

optimisation.

The decomposition process lies in solving an optimization

problem formulated as:

min
{uk},{ωk}

{

∑

k

∥

∥

∥

∥

∂t

[(

δ(t) +
j

πt

)

.uk(t)

]

e−jωkt

∥

∥

∥

∥

2

2

}

, (2)

subject to
∑

k

uk = f .

where f is the original signal, {ωk} are center frequencies
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Fig. 1. Flowchart of the proposed fault event-triggered detection and
diagnosis methodology.

of each {uk}, δ(t) is an impulse function, and k is modal

component number.

The new formulation of the variational constrained problem is

an augmented Lagrangian equation formulated as follows [18]:

L({uk}, {ωk}, λ) = α
∑

k

∥

∥∂t
[(

δ(t) + j
πt

)

.uk(t)
]

e−jωkt
∥

∥

2

2

+

∥

∥

∥

∥

f(t)−
∑

k

uk(t)

∥

∥

∥

∥

2

2

+

〈

λ(t), f(t)−
∑

k

uk(t)

〉

(3)

where λ is the Lagrange multiplier, and α is a quadratic

penalty factor.

Resolution is done by iterative techniques that allow estimating

modes uk and their central frequencies ωk as well as the

Lagrangian operator λ(t), formulated iteratively in (4), (5),

and (6), respectively [30]

ûn+1
k (ω)←

f̂(ω)
∑

i<k û
n+1
k (ω)−

∑

i>k û
n
k (ω) +

λn(ω)
2

1 + 2α(ω − ωn
k )

2

(4)

ωn=1
k ←

∫∞

0
ω
∣

∣ûn+1
k (ω)

∣

∣

2
dω

∫∞

0

∣

∣ûn+1
k (ω)

∣

∣

2
dω

(5)

where ûn+1
k are obtained by Wiener filtering.

λn+1(ω)← λ̂n(ω) + τ

(

f̂(ω)−
∑

k

ûn+1
k (ω)

)

(6)

The stopping criterion is formulated as follows:

∑

k

∥

∥ûn+1
k − ûn

k

∥

∥

2

2

‖ûn
k‖

2
2

< ε (7)

where, τ is noise tolerance, and ε is convergence error.

B. Pearson Correlation Coefficient

Correlation between two signals A and B of size N is

the measure of their linear dependence. It is positively or

negatively assessed if the correlation coefficient ρ is close to

1 or -1, respectively [31]. Pearson correlation coefficient is

calculated as:

ρ(A,B) =
1

N − 1

N
∑

i=1

(

Ai − µA

σA

)(

Bi − µB

σB

)

(8)

where µA, σA, µB , and σB are mean and standard deviations

of A and B, respectively.

C. Dominant Mode Filtering

This technique starts by decomposing signal xn(t) into n

modes, where at least one of them is closer to the original

signal and called the dominant mode Moded. In this case,

signal xn(t) can be expressed as [31]:

xn(t) =
d−1
∑

i=1

Modei(t)+Moded(t)+
n
∑

i=d+1

Modei(t)+res(t)

(9)

where d in Moded refers to dominant between the n modes.

Location of the dominant mode is of major interest, espe-

cially for bearing fault early detection, as the sensed signal

is usually dominated by other faults or even shaft rotating

frequencies as previously shown in [32], [33]. Hence the need

to eliminate this mode to keep a filtered signal xc(t) containing

only information related to the bearing fault. Dominant mode

determination for elimination purpose is therefore an important

step to increase bearing fault detection accuracy.

The filtered signal is the result of:

xc(t) = xn(t)−Moded (10)

3



All Data

Training data

Validation Train

Testing data

Test

Test

Test

Test

Test

Validation

Validation

Validation

Validation

Train

Train

Train Train

Train Train

Train Train

Train Train

Train Train

Train TrainTrain Train

Train

Train

Train

Metrics evaluation 
Fold_1

Metrics evaluation 
Fold_2

Metrics evaluation 
Fold_3

Metrics evaluation 
Fold_4

Metrics evaluation 
Fold_5

Average metrics
evaluation

Fig. 2. Holdout test, 5-folds cross validation procedure [38].

D. Convolution Neural Network

CNN design is mainly based on the convolution of inputs

with filters of different sizes to generate more discriminat-

ing output features, which will be inputs of the next layer.

Pooling layers (Max, Average, or L2-norm) allow information

compression and complexity reduction [9], in addition to

overfitting control ensuring a better learning [34].

Convolution between input features u and Kernel filters k is

provided by:

f = ϕ(u ∗ k + b) (11)

where f represents the obtained new features, ∗ denotes the

convolution operator, b is the bias, and ϕ is the activation

function [35].

Feature extraction convolution and pooling layers are followed

by feature learning layers (fully connected layers), which

are traditional neural networks with an input, hidden, and

classification layers [34].

E. Evaluation and Classification

Learning reliability is ensured by random sub-sampling

technique [36]. The dataset is split randomly into subsets of

training and testing data. Training data are then divided into

training and validation for k-folds cross-validation technique,

as shown in Fig. 2, to ensure a better reliability of prediction

results. Evaluation is made according to universal metrics,

such as accuracy [37] and confusion matrix.

III. EXPERIMENTAL EVALUATION AND VALIDATION

A. Experimental Dataset

The proposed VMD/1D-CNN fault detection and diagnosis

methodology is evaluated using the well-known Case Western

Reserve University (CWRU) database [39] that has been

extensively exploited in the literature for validation purposes

[4], [10], [22].

The CWRU experimental setup, shown in Fig. 3, consists in a

1.49kW (2HP) three-phase Reliance electric motor driving a

shaft on which a torque transducer and encoder are mounted.

The used equipment includes an induction motor, a loading

motor, and an axle attached to it.

The investigated bearing (SKF deep-groove ball bearings:

  

 

Fig.5. Bearing fault simulation test-bed.
Fig. 3. CWRU test bench.

TABLE I
BEARING FAULT TYPES.

Fault type Class label

Ball fault with a size of 0.007inch C1

Ball fault with a size of 0.014inch C2

Ball fault with a size of 0.021inch C3

Ball fault with a size of 0.028inch C4

Inner race fault with a size of 0.007inch C5

Inner race fault with a size of 0.014inch C6

Inner race fault with a size of 0.021inch C7

Inner race fault with a size of 0.028inch C8

Outer race fault centered with size of 0.007inch C9

Outer race fault orthogonal with size of 0.007inch C10

Outer race fault opposite with size of 0.007inch C11

Outer race fault centered with size of 0.014inch C12

6205-2RS JEM and 6203-2RSJEM) real faults concern inner

race, outer race, and rolling elements with different severity

and sizes (0.007, 0.014, 0.021, and 0.028inch). The CWRU

dataset is enriched with 4 operating modes (0, 1, 2, and 3HP)

at a speed of 1730rpm, with a sampling frequency of 12kHz.

The proposed methodology is tested on drive-end

accelerometer data for 12 different faults with different

severities: Ball (0.007, 0.014, 0.021, and 0.028inch), inner

race (0.007, 0.014, 0.021, and 0.028inch), outer race

(centered, orthogonal, and opposite) for 0.007inch, and outer

race centered for 0.014inch. These are summarized in Table

I.

As illustrated in the methodology flowchart (Fig. 1), the

above-presented data are pre-processed, i.e. segmented.

Pre-processing consists in this case in data segmentation

with overlap and window length of 8192 samples for each

sub-signal. This is a sufficient length to maintain bearing

faults features while increasing the number of sequences,

resulting in a total of 28 sequences per fault.

B. Signal Processing

In this step VMD is used as a notch filter for dominant mode

removing [25], [31]. In this study, decomposition consists in

a maximum of 8 modes (Fig. 4) with center frequencies and

bandwidth illustrated in Fig. 5.
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Fig. 4. Ball fault case VMD decomposition.

In this context, dominant mode identification is carried out

using Pearson correlation between each decomposed mode and

the original signal xn(t). The dominant mode (best correlation

with ρ = 1) is then subtracted from original signal leading

to the filtered signal xc(t) that will thereafter be used for

detection purposes.

C. Bearing Fault Detection and Diagnosis

Fault detection is in fact a binary classification between

healthy and faulty states using 1D-CNN. In this context,

VMD-based filtered signals xc(t) first undergo treatment con-

sisting in splitting signal into training and testing data with

70% and 30% for each class, respectively. Data-augmentation

is then carried out with Additive White Gaussian Noise

(AWGN) [40], with different Signal to Noise Ratio (SNR)

levels (10, 15, 20, 25, 30, 35, and 40 dB), as shown in Fig. 6.

The data preparation step is important as it allows improving

learning quality by increasing the number of data, while

improving fault detection robustness in a noisy environment

[41].

For diagnosis purposes, the same 1D-CNN network is used

with a difference in the last classification layer as illustrated

by Fig. 7. For fault detection, the last layer allows a binary

classification (healthy or faulty state). When a fault is detected,

the fault diagnosis process is switch-on (event-triggered pro-

cess).
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Fig. 5. Central frequencies and bandwidth of VMD decomposition.

Figs 8 and 9 illustrate the adopted CNN architecture for

multi-scale features extraction ensuring fault detection and

classification. This architecture is manually designed and tuned

and consists in: (1) two 1D-convolution layers with 64 filters

and kernel size of 10, (2) a dropout layer to control overfitting

with a rate of 0.5 [42], (3) a max-pooling layer with pool-size

of 2 for down-sampling and compressing useful information

[22], and (4) a flattening layer to arrange features into vector.

Features learning for classification uses a fully connected net-

work of 300, 200, and 100 nodes for each layer, respectively,

with a ReLU activation function and ends with a classification

layer Softmax using a trial and error search technique. The

training, tuned by a grid search mechanism [40], is done under

the CPU with an early stopping option and batch size equal

to 10 samples using Adam optimizer [43].

IV. ACHIEVED RESULTS ANALYSIS AND DISCUSSION

Bearing faults detection has been achieved with 100%

accuracy for the four operating modes (0, 1, 2, and 3HP). The

proposed fault detection method was successful and efficient

in discriminating healthy and faulty states. This is mainly due

to the VMD use, as a notch filter removing the dominant mode

that is common to healthy and faulty states, and the 1D-CNN

use, allowing good discriminant features extraction.

In terms of diagnosis, 5-folds cross validation is used. The

VMD choice relevance, in addition to the above-mentioned
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Fig. 6. AWGN with different SNR levels.

TABLE II
PROCESSING TECHNIQUES ACCURACY COMPARISON.

0 HP 1 HP 2 HP 3 HP

EMD 67.04% 75.74% 78.70% 71.30%

VMD 80.93% 75.56% 83.70% 79.44%

VMD(-) 91.30% 95.37% 93.15% 92.22%

validation, is evaluated versus the EMD, which is a sim-

ilar adaptive time-frequency analysis technique but without

a clearly mathematically basement [44]. Moreover, dominant

mode filtering impact on detection accuracy is also evaluated

(noted VMD(-)) versus a classical VMD (without dominant

mode subtraction). The carried out comparison study clearly

shows that the VMD(-) approach outperforms the two others

in terms of accuracy, as illustrated by Table II, even under

different working loads. Fault diagnosis performances are also

highlighted by Figs. 10 to 13 in terms of confusion matrix.

Convolution layers (1D-CNN) learning relevance is also

evaluated versus well-known machine learning approaches,

namely multi-layer perceptron (MLP) and RNN, which are a

simple networks without convolution layers, and LSTM, which

Fig. 7. Faults detection and diagnosis.

Fig. 8. Proposed 1D-CNN network for detection.

Fig. 9. Proposed 1D-CNN network for diagnosis.
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TABLE III
COMPARISON OF MACHINE LEARNING NETWORKS.

1D-CNN MLP RNN LSTM

Accuracy 92.22% 45.74% 22.96% 64.44%

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Predicted Class

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

T
ru

e
 C

la
s
s

9

10

7

5

2

1

24 3

1

9

45

45

45

44

39

45

35

45

45

36

45

Fig. 10. Confusion matrix for faults diagnosis under 0HP.

has the ability to learn short- and long-terms information

and is dedicated to time series signals. For comparison

purposes, same number of layers and nodes per layer are

kept while using same CWRU dataset (3HP). The achieved

results are given in Table III and clearly show that 1D-CNN

(trained with VMD(-)) achieve the highest diagnosis accuracy.

The above-presented achieved results clearly highlight the

robustness of the proposed methodology to accurately diag-

nose different type of bearing faults with different severity

(0.007, 0.014, 0.021, 0.028inch, centered, orthogonal, and

opposite) and under different operating loads (0, 1, 2, and

3HP). In addition high diagnosis accuracy is achieved despite

the noise levels (10, 15, 20, 25, 30, 35, and 40dB).

In this context, it could be concluded that the carried out

CWRU-based dataset simulations allow validating the pro-

posed VMD-based 1D-CNN bearing fault diagnosis approach

in conditions that are close to operational environments (i.e.

varying load, noise) [45].

V. CONCLUSION

This paper has proposed a specific approach for bearing

fault detection and diagnosis. In this context, the variational

mode decomposition (VMD) was used as a notch filter for

dominant mode cancellation that clearly enhance fault de-

tection even in presence of high harmonics pollution. For

diagnosis purposes, a one dimensional convolution neural

network (1D-CNN) was adopted.

The proposed bearing faults detection and diagnosis ap-

proach was clearly validated using the well-known Case

Western Reserve University experimental dataset. In particular,

it has been highlighted the ability of the proposed diagno-

sis methodology to discriminate a given fault with different

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Predicted Class

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

T
ru

e
 C

la
s
s

2

3

1

7

1 5

1

1

1

3

44

45

45

41

45

45

35

39

45

45

45

41

Fig. 11. Confusion matrix for faults diagnosis under 1HP.
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Fig. 12. Confusion matrix for faults diagnosis under 2HP.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Predicted Class

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

T
ru

e
 C

la
s
s

3

1

2

1

14

5

2

27

7 30

1

2

2

1

1

45

45

43

45

44

45

44

45

40

45

Fig. 13. Confusion matrix for faults diagnosis under 3HP.

7



severities. The detection and diagnosis performance have also

been compared to the relevant state of the art corresponding

techniques. In terms of fault detection, it has been shown

that the VMD used as a notch filter is the solution of choice

when compared to EMD and traditional VMD. In terms of

features extraction for classification, convolution layers (1D-

CNN) have been found worthwhile when compared with MLP,

RNN, and LSTM.

Future investigations should consider exploring the proposed

VMD-based 1D-CNN approach using LSTM for bearing fail-

ure prognosis. Indeed, LSTM is dedicated to time-series mon-

itoring and clearly exhibit high learning ability of long- and

short-terms dependencies, which can be useful for prognosis.
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