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Abstract

This paper considers an epistemic interpretation of formal contexts, inter-
preting blank entries in the context matrix as absence of information, which
is in agreement with the usual focus on the extraction of implications between
attributes. After recalling non-classical connections induced by rough sets
and possibility theory in formal concept analysis (FCA), and the standard
theory of attribute implications in FCA, this paper presents the notion of
disjunctive attribute implications, which reflect additional information that
can be extracted from an epistemic context. We show that they can be com-
puted like standard attribute implications from the complementary context.
The paper also recalls the logic of classical attribute implications, relying on
works pertaining to functional dependencies in database theory, and proposes
a dual logic for disjunctive attribute implications. A method for extracting
the latter kind of rules from a formal context is proposed, using a counter-
part of pseudo-intents. Lastly, the paper outlines a generalization of both
conjunctive and disjunctive attribute implications under the form of rules,
with a conjunction of conditions in the body and a disjunction of conditions
in the head, that hold in a formal context under the epistemic view.
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1. Introduction

Formal context analysis (FCA) was developed in the eighties [37] as a tool
for extracting knowledge from data describing objects in terms of Boolean
attributes, a topic that has a great impact nowadays [3, 4, 5, 6, 9, 10, 26,
32, 39, 40, 45, 46, 48]. The data take the form of a relation between objects ←??

Why so
many
refer-
ences??
Are they
closely
related
to our
topic?

and attributes called a formal context. Knowledge is extracted from formal
contexts in the form of if-then rules. Such data mining methods have been
widely studied from a theoretical and applicational point of view [6, 14,
16, 26, 28, 36, 39, 40]. Traditionally, in FCA, only rules taking the form
of Horn clauses are extracted (aka attribute implications, relating positive
atoms representing attributes). They express information of the form “if
objects of a context possess some attributes, then they also possess some
other ones”. Efficient techniques have been devised to extract these rules,
using notions such as Galois connections, formal concepts, pseudo-intents
[26], and stem bases [29].

However, there is an ambiguity as to the actual meaning of a formal
context, described by a matrix containing crosses and blanks, whose lines
are objects and columns are attributes or properties. A cross means that
some object possesses a property. Nevertheless, the meaning of blank entries
is more problematic.

Many authors and well-cited introductions to FCA (see [7]) interpret a
blank in terms of one object that does not possess a property. However, it
is noticeable that in their book [26], page 17, Ganter and Wille only give
the meaning of crosses in the context matrix but do not say anything about
the blank entries. Likewise Guigues and Duquenne [29] explicitly focus on
extracting implications involving positive properties, and do not exploit the
possibility of implications involving explicit negation of properties, which
would be natural when interpreting blank entries as negative information.
In our paper, we stick to interpreting blank entries as lack of knowledge,
which we call the epistemic interpretation of formal contexts (as opposed to
the standard complete information view of contexts, which could be named
ontic. This is the natural assumption if we insist that extracted implications
should only involve the presence of (positive) attributes.
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Unknown or incomplete information has been studied in the framework
of formal concept analysis, using so-called incomplete formal contexts [29,
47, 48] or partially-known formal concepts [33, 38]. The epistemic context
considered in this paper, which follows the original view of Ganter and Wille,
is in fact a more general framework in which the negative information is not
known.

This paper then revisits the logic of attribute implications, in the scope
of epistemic contexts. Moreover, we try to extract more general kinds of
rules relating positive atoms, especially so-called disjunctive attribute impli-
cations. They express information of the form “if objects of a context possess
a certain attribute, then they also possess one or more among some other
ones”. We show that these rules are naturally obtained from the comple-
mentary dual context, swapping blanks and crosses. Hence, the aim of this ←The

phrase
”comple-
mentary
dual” is
unclear,
dual is
enough

paper is different from the developments given in other papers with negative
attributes, such as [34, 35, 36, 40]. By increasing the expressivity of attribute
implivations, we try to extract more information from formal concepts, with-
out the consideration of explicitly negative information (blank entries are
associated with lack of information).

Based on preliminary results in [2], we show that the theory of disjunctive
attribute implications is a mirror image of the theory of standard attribute
implications, replacing a formal context by its complement. We also intro-
duce counterparts of formal concepts, pseudo-intent and minimal rule bases
for disjunctive attribute implications, using non-classical connections in for-
mal concept analysis. Finally, we outline a framework for extracting more
general rules involving conjunctions of positive atoms in the body and dis-
junctions of positive atoms in the head.

The paper is structured as follows: Section 2 recalls basic notions useful
in the sequel, especially non-classical connections induced by rough sets and
possibility theory in FCA, stressing the epistemic view of contexts. Section
3 recalls the theory of attribute implications in FCA. We presents a logic
for them, relying on works pertaining to functional dependencies in database
theory, and discussing the meaning of the rules in the epistemic context.
Section 4 presents disjunctive attribute implications and their logic. Section 5
proposes a method for extracting such rules from a formal context, using non-
standard connections a counterpart of pseudo-intents. Section 6 generalises
conjunctive and disjunctive attribute implications to rules of the form “A
and B imply C or D”.
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2. Preliminaries

This section recalls basic operators in FCA, namely the original ones
leading to a Galois connection (whose definition is recalled in the Appendix),
and newer ones related to modal logic, rough sets and possibility theory.
Relationships between one another are highlighted.

2.1. Formal concept analysis

Relational datasets are interpreted in Formal Concept Analysis (FCA) as
a set of properties or attributes P , a set of objects O and a crisp relation
between them R ⊆ O × P . The triple (O,P ,R) is called formal context, or
simply context, and mappings ↑ : 2O → 2P , ↓ : 2P → 2O between subsets of
objects X ⊆ O and subsets of attributes Y ⊆ P are defined as follows:2

X↑ = {a ∈ P | for all x ∈ X, (x, a) ∈ R}
= {a ∈ P | if x ∈ X, then (x, a) ∈ R} (1)

Y ↓ = {x ∈ O | for all a ∈ Y, (x, a) ∈ R}
= {x ∈ O | if a ∈ Y, then (x, a) ∈ R} (2)

A concept in the context C = (O,P ,R) is defined to be a pair (X, Y ),
where X ⊆ O, Y ⊆ P , which satisfies X↑ = Y and Y ↓ = X. The element X
of the concept (X, Y ) is the extent and Y the intent. Alternatively, one may
define a concept (X, Y ) as a maximal subset of the form X × Y ⊆ R. If we
represent relations R by Boolean matrices R where R(x, y) = 1 if and only
if (x, y) ∈ R, a formal concept in R is a maximal rectangle of 1’s in matrix
R.

Nonetheless, in formal concept analysis, the statement R(x, y) = 0 3 could
be ambiguous: it may mean either that x does not possess property y, or
that it is unknown whether this is so or not as first highlighted in [8]. As
mentioned in the introduction, the first view, which could be called ontic
(x does not possess property y) is often adopted. However, interpreting the
entries of matrix R with the epistemic view, R(x, y) = 1 means that it is
known that x possesses property y, and then its negation R(x, y) = 0 means

2Ganter and Wille used originally the notation ′ for this operator, hence they were called
derivation operators. We have changed the notation in order to differentiate between the
mapping on the set of objects and the mapping on the set of attributes.

3 Despite the fact that this notation may suggest falsity.
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that it is not known whether x possesses property y. Then, the original
definition of formal context can also represent incomplete information.

The epistemic view has been advocated by Holzer [8, 30], Obiedkov [33],
noticeably. These authors highlight the fact that you need three kinds of
entries in a context, to fully account for incomplete information, namely
whether an object is known to possess a property, known not to possess it
or not known to possess it. It yields a three-valued context. They point
out that usual contexts can be obtained by assuming complete information
(without the “don’t know” entries). However we would also get a usual
context assuming there is no negative information (thus yielding a positive
epistemic context). We believe that this assumption is less committing and
more realistic than assuming complete information.4

Let C(O,P ,R) be the set of concepts in a context (O,P ,R), which is
a complete lattice [12, 26], with the inclusion order on the left argument or
the opposite of the inclusion order on the right argument, that is, for each
(X1, Y1), (X2, Y2) ∈ C(O,P ,R), we have (X1, Y1) ≤ (X2, Y2) if X1 ⊆ X2 (or,
equivalently, Y2 ⊆ Y1). The meet ∧ and join ∨ operators are defined by:

(X1, Y1) ∧ (X2, Y2) = (X1∩X2, (Y1∪Y2)↓↑)

(X1, Y1) ∨ (X2, Y2) = ((X1∪X2)↑↓, Y1∩Y2)

for all (X1, Y1), (X2, Y2) ∈ C(O,P ,R).

Example 1. We consider an example of formal context (O,P ,R) given in
Table 1 where O = {x1, x2, x3, x4, x5, x6} and P = {a1, a2, a3, a4, a5}. The
cross mark “×” indicates that the related object satisfies the corresponding
attribute, otherwise the entry is blank and indicates lack of information.

2.2. FCA operators, possibility theory and modal operators

The standard FCA operator ↑ is one among four modal operators that
can be defined on a formal context, viewing it as an accessibility relation.
Given a context (O,P ,R), these modal operators respectively denoted by

4Positive epistemic contexts can be turned into complete contexts applying the closed
world assumption as often done in the database setting. However, it makes sense for
properties which are usually not satisfied, so that we can assume that the property does
not hold unless it is explicitly known that it holds. This assumption is hardly ever made
in FCA, and we shall not make it in the sequel.

5



Table 1: Relation R of the formal context K.
R a1 a2 a3 a4 a5

x1 × × ×
x2 × ×
x3 ×
x4 × × × ×
x5 × × × ×
x6 ×

↑Π : 2O → 2P , ↑N : 2O → 2P , ↑∆ : 2O → 2P , ↑∇ : 2O → 2P can be defined for
each subset of objects X ⊆ O as follows [15, 28, 39]:5

X↑Π = {a ∈ P | there exists x ∈ X, such that (x, a) ∈ R}
X↑N = {a ∈ P | for all x ∈ O, if (x, a) ∈ R, then x ∈ X}
X↑∆ = {a ∈ P | for all x ∈ O, if x ∈ X, then (x, a) ∈ R}
X↑∇ = {a ∈ P | there exists x ∈ X, such that (x, a) ∈ R}

where X and R are the complement of X and the complement relation
of R, respectively. The indices Π, N,∆,∇ refer to the four set functions in
possibility theory, to which the above connections are similar [15]. Clearly the
operator ↑∆ is nothing but the usual operator ↑ of formal concept analysis
defined in (1), and we drop the index ∆ in the following. The operators ↑Π

and ↑N were inspired by classical modal operators [28], but also rough set
upper and lower approximations [39] and possibility theory [15].

These mappings can analogously be defined on subsets of attributes,
namely: ↓Π : 2P → 2O, ↓N : 2P → 2O, ↓ : 2P → 2O and ↓∇ : 2P → 2O

are defined, for each Y ⊆ P , as follows:

Y ↓
Π

= {x ∈ O | there exists a ∈ Y, such that (x, a) ∈ R}
Y ↓

N

= {x ∈ O | for all a ∈ P , if (x, a) ∈ R, then a ∈ Y }
Y ↓ = {x ∈ O | for all a ∈ P , if a ∈ Y, then (x, a) ∈ R}
Y ↓

∇
= {x ∈ O | there exists a ∈ Y , such that (x, a) ∈ R}.

In [21], the above definitions were expressed using rows or columns of

5These notations are borrowed from possibility theory as in [15].
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the relation table associated with the formal context. Specifically, given a
context C = (O,P ,R), the information in the rows of the relation R is
contained in R(x) = {a ∈ P | (x, a) ∈ R}, for every object x ∈ O, and the
one associated with the columns of R is in R−1(a) = {x ∈ O | (x, a) ∈ R},
for every property a ∈ P , and the four above operators can be rewritten as
follows:

X↑Π = {a ∈ P | R−1(a) ∩X 6= ∅}
X↑N = {a ∈ P | R−1(a) ⊆ X}
X↑ = {a ∈ P | X ⊆ R−1(a)}
X↑∇ = {a ∈ P | R−1(a) ∪X 6= O}

Clearly, these definitions are equivalent to the ones given above. Notice that
the equivalence between the two definitions of the dual sufficiency operator
holds because any attribute a ∈ P satisfies R−1(a) ∪ X 6= O if and only
if there exists x′ ∈ O such that x′ 6∈ R−1(a) ∪ X, which is equivalent to
x′ 6∈ R−1(a) and x 6∈ X, i.e., x ∈ X and (x′, a) ∈ R.

The operators ↑Π , ↓Π are called possibility, ↑N , ↓N necessity and ↑∇ , ↓∇

dual sufficiency operators ; the classical ones ↑, ↓ are called sufficiency op-
erators.6 The four above operators of possibility, necessity, sufficiency and
dual sufficiency can be composed in order to form various types of connec-
tions or closure operators [10, 21, 23, 26, 28, 32, 37, 39]. As a consequence,
several variants of lattices can be built, in the style of the classical formal
concept lattice C(O,P ,R) [10]. In this paper, we shall mainly be interested
in so-called “object-oriented concept lattices”, based on the isotone Galois
connection (↑N , ↓

Π
).

The following results recall different well-known properties of the modal
operators, which will be used in this paper. The first one presents the be-
havior with the whole set and the empty set.

Lemma 1. Given two sets O and P, and the subsets X ⊆ O, Y ⊆ P, we
have

6Counterparts of these notions in possibility theory [19] are respectively called potential
possibility, actual necessity, actual possibility and potential necessity.
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O↑N = P
∅↑ = P
∅↑Π = ∅
X↑ ⊆ X↑Π

P↓N = O
∅↓ = O
∅↓Π = ∅
Y ↓ ⊆ Y ↓

Π

The following proposition expresses counterparts, in FCA, of maxitivity
and minitivity properties of set-functions in possibility theory [19, 20, 22]
(see also Proposition 5.1 in [15]), but also modalities in the KD logic, and of
approximations in rough set theory as well.

Proposition 1. Given two sets O and P, two index sets I and J and the
families of subsets {Xi ⊆ P | i ∈ I}, {Yj ⊆ P | j ∈ J}.

(⋃
i∈I

Xi

)↑
=

⋂
i∈I

Xi
↑

(⋃
i∈I

Xi

)↑Π
=

⋃
i∈I

Xi
↑Π

(⋂
i∈I

Xi

)↑N
=

⋂
i∈I

Xi
↑N

(⋂
i∈I

Xi

)↑∇
=

⋃
i∈I

Xi
↑∇

(⋃
j∈J

Yj

)↓
=

⋂
j∈J

Yj
↓

(⋃
j∈J

Yj

)↓Π
=

⋃
j∈J

Yj
↓Π

(⋂
j∈J

Yj

)↓N
=

⋂
j∈J

Yj
↓N

(⋂
j∈J

Yj

)↓∇
=

⋃
j∈J

Yj
↓∇

However, we only have inequalities of the following kind:
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(⋂
i∈I

Xi

)↑
⊇

⋃
i∈I

Xi
↑

(⋂
i∈I

Xi

)↑Π
⊆

⋂
i∈I

Xi
↑Π

(⋃
i∈I

Xi

)↑N
⊇

⋃
i∈I

Xi
↑N

(⋃
i∈I

Xi

)↑∇
⊆

⋂
i∈I

Xi
↑∇

(⋂
j∈J

Yj

)↓
⊇

⋃
j∈J

Yj
↓

(⋂
j∈J

Yj

)↓Π
⊆

⋂
j∈J

Yj
↓Π

(⋃
j∈J

Yj

)↓N
⊇

⋃
j∈J

Yj
↓N

(⋃
j∈J

Yj

)↓∇
⊆

⋂
j∈J

Yj
↓∇

The properties of the operators ↑N and ↓
N

clearly remind of the character-
istic property of necessity measures N(A ∩ B) = min(N(A), N(B)) and the
inequality N(A ∪ B) ≥ max(N(A), N(B)) for subsets A and B of a set U .
They also have counterparts in modal logic, i.e., the theorems of KD modal
logic �(p ∧ q) ⇐⇒ �p ∧�q and �p ∨�q → �(p ∨ q), and counterparts in
rough set theory (e.g., the lower approximation of the intersection of two sets
is the intersection of their lower approximations). Similar remarks can be
made for the operators ↑Π and ↓

Π
, regarding the possibility measure Π and the

modal possibility ♦, as well as rough set upper approximations. The proper-
ties of the operators ↑ and ↓ clearly remind of the characteristic property of
the guaranteed possibility in possibility theory ∆(A∪B) = min(∆(A),∆(B))
and the inequality ∆(A ∩ B) ≥ max(∆(A),∆(B)) for subsets A and B of a
set U [19, 22]. For modal logic counterparts of ↑ and ↑∇ , see the pioneering
work of Gargov et al. [27], and more recently in [16, 24].

The meaning of the four operators was also analyzed in [21] in the FCA
perspective and the following equalities were obtained, based on the rows of
the relation R.

X↑Π =
⋃
x∈X

R(x)

X↑N =
⋂
x 6∈X

R(x)

X↑ =
⋂
x∈X

R(x)

X↑∇ =
⋃
x 6∈X

R(x)

where R(x) = R(x). The above equalities are easy consequences of Proposi-
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tion 1. They also are counterparts of expressions of set-functions in possibility
theory in terms of possibility distributions π(x) = Π({x}) ∈ [0, 1], namely,
Π(A) = maxx∈A π(x), N(A) = minx 6∈A 1−π(x),∆(A) = minx∈A π(x),∇(A) =
maxx 6∈A 1− π(x) [20].

Now, we can express these equalities in terms of sets of properties pos-
sessed by single objects instead of rows of R. Given x ∈ O, we straight-
forwardly obtain that R(x) = {x}↑ = {x}↑Π and so, we directly can ensure
that:

X↑Π =
⋃
x∈X

{x}↑ X↑ =
⋂
x∈X

{x}↑ (3)

For necessity and dual sufficiency operators we get:

X↑N =
⋂
x 6∈X

{x}↑ X↑∇ =
⋃
x 6∈X

{x}↑ (4)

In possibility theory, we have that N(X) ≤ Π(X) as soon as the pos-
sibility distribution π on O is normalized, that is π(x) = 1 for some x in
O [20, 22]. In the case of operator ↑Π , we can see its restriction to singleton
sets as a set-valued possibility distribution, denoted by ↑π : O → 2P and de-
fined as x↑π = {x}↑Π , which provides values in 2P instead of [0, 1], equipped
with the inclusion ordering [15]. Hence, ↑Π is normalized if X↑Π = P for
some X ∈ 2O,7 which implies by the monotonicity of ↑Π that P↑Π = P . It
means, under the epistemic view, that there is no property that is unknown
for all objects, i.e., the relation R does not contain a blank column (for all
a ∈ P , R−1(a) 6= ∅ holds), which also implies that [15]:

X↑N ⊆ X↑Π ,

which is the counterpart of the basic inequality N(X) ≤ Π(X) in possibility
theory. We may require this condition of a non-empty column as an attribute
whose value is unknown for all objects is useless.

In possibility theory, we also have that ∆(A) ≤ ∇(A) as soon as the
possibility distribution π is bottom normalized, that is π(x) = 0 for some x
in O [19, 22]. Hence, we intuitively expect that

X↑∆ ⊆ X↑∇ .

7And not x↑π = P, which would require a row full of crosses in the relation of the
context. This is different from possibility measures defined on a chain, for which Π(O) = 1
is equivalent to the existence of x ∈ O such that π(x) = 1.
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as it means that if a property applies to all objects in X, there is at least
one object outside X to which it is unknown whether this property applies.
Clearly this presupposes that there is no property that applies to all ob-
jects, i.e., the relation R does not contain a column full of crosses (for all
a∈ P , R−1(a) 6= O holds).

Dually, considering the above operators applied to a set of properties Y ,
we should also require that there is no blank row and no row full of crosses
in R. In any case objects obeying all properties or for which all properties in
P are unknown can be harmlessly omitted from O, and likewise properties
that apply to all objects or not known to apply to any object can be deleted
from P .

Definition 1. A formal context without blank rows and columns and without
full rows and columns will be called normalized.

Properties dual to the ones provided in Lemma 1 hold for normalized
contexts. More specifically:

• ∅↑N = {a ∈ P | R−1(a) = ∅} = ∅ except if there are blank columns in
R (i.e., properties unknown for all objects).

• O↑ = {a ∈ P | R−1(a) = O} = ∅ except if there are full columns in R
(i.e., properties known to be satisfied by all objects).

• O↑Π = {a ∈ P | R−1(a) 6= ∅} = P except if there are blank columns
in R (i.e., properties unknown for all objects).

• ∅↓N = {x ∈ O | R(x) = ∅} = ∅ except if there are blank rows in R
(i.e., objects with no known property).

• P↓ = {x ∈ O | R(x) = P} = ∅ except if there are full rows in R (i.e.,
objects satisfying all properties).

• P↑Π = {x ∈ O | R(x) 6= ∅} = O except if there are blank rows in R
(i.e., objects with no known property).

Moreover, using a normalized context the existing inclusions between the
operators can be synthetized in a single one [15]:

X↑∆ ∪X↑N ⊆ X↑∇ ∩X↑Π

11



3. Attribute implications: from FCA to logic

Attribute implications were originally introduced by Guigues and Du-
quenne [29] (see also Ganter and Wille [26]) and they have been one of the
most important parts of formal concept analysis. Attribute implications are
if-then rules involving conjunctions of attributes only, that are universally
valid in the considered formal context. Obtaining attribute implications al-
lows us to induce a rule-based system that can explain the content of the
formal context.

In this section, we will recall and analyze the meaning of the validity of
an attribute implication in a concept lattice, and try to cast the inference
between attribute implications in a classical logic setting.

3.1. Attribute implications in formal concept analysis

First of all, we recall that an implication between attributes (or attribute
implication, in short) is simply a pair of arbitrary subsets of attributes, de-
noted by A ⇒ B, where A and B are interpreted as conjunctions of at-
tributes. A set of attribute implications is called implicational system. The
satisfaction or validity of an attribute implication requires a basic definition.

Definition 2. Given a set P of attributes or properties, and A,B,M ⊆ P,
we say that M satisfies the attribute implication A ⇒ B, or equivalently,
A ⇒ B is valid in M , if either A 6⊆ M or B ⊆ M , and it is denoted by
M |= A⇒ B.

This notion was introduced by Ganter and Wille writing that M respects
the attribute implication A ⇒ B. Hence, the three possible words (satisfy,
valid and respect) can be used. In the rest of definitions we will use only one
of them.

In Definition 2, the property A 6⊆ M or B ⊆ M is equivalent to the
logical implication, in classical logic, saying that if M contains the attributes
of A, then it also contains the attributes in B, that is, if A ⊆ M , then B ⊆
M . Moreover, the contrapositive law can be applied and another equivalent
property is obtained, that is, if B 6⊆ M , then A 6⊆ M . Therefore, the
satisfaction property given in Definition 2 can equivalently be rewritten in
at least three different ways.

This definition is extended to a family of subsets of attributes.

12



Definition 3. Given A,B ⊆ P, a family of subsets M ⊆ 2P satisfies the
attribute implication A⇒ B, if every subset M ∈M satisfies A⇒ B. It is
denoted by M |= A⇒ B.

This last definition intends to formally define the real notion of a valid
attribute implication in formal concept analysis.

Definition 4. Given a formal context C = (O,P ,R), and A,B ⊆ P, we say
that C satisfies the attribute implication A⇒ B if the family RO = {R(x) |
x ∈ O} satisfies the attribute implication, where R(x) = {a ∈ P | (x, a) ∈
R}. In this case, we also say that A ⇒ B is an implication of the context,
and we denote it by C |= A⇒ B.

Notice that the original definition given by Ganter and Wille considers the
system of object intents {x↑ | x ∈ O}, but clearly this is the same set as RO.
If we consider the formal context C introduced in Example 4, for instance,
we have that C satisfies the attribute implication A⇒ B = {a4, a5} → {a3}.

Given an object x ∈ O, the set R(x) and A ⊆ P , clearly we have that
x ∈ A↓ if and only if A ⊆ R(x). Therefore, as a consequence of the definition
above, R(x) satisfies the attribute implication A ⇒ B, if A ⊆ R(x), then
B ⊆ R(x), or equivalently, if for every x ∈ O, such that x ∈ A↓, then x ∈ B↓
also holds, that is, A↓ ⊆ B↓. This is a well-known property in FCA. It
reads: if an object satisfies all properties in A then it satisfies all properties
in B. Because the pair (↑, ↓) is a Galois connection, the previous inclusion is
equivalent to B ⊆ A↓↑ [29]. This last property is fundamental for computing
the attribute implications valid in a formal context [26]. A set of attributes
A such that A = A↓↑ is said to be closed.

An important point is that attribute implications of this kind only involve
positive attributes, and not their negation. This is in agreement with our
assumption that blank entries correspond to a lack of knowledge of whether
one object satisfies a property or not. Indeed if blank entries represent the
fact that some objects satisfy the negation of properties, there is no reason
to assume that attribute implications do not involve such negated properties.

Some attribute implications are informative other ones are not. An at-
tribute implication A ⇒ B is said to be informative if B 6⊆ A. It implies
that an informative attribute implication A⇒ B is such that A is not closed.
Moreover, it can be easily checked that A⇒ B is valid in a context C if and
only if A⇒ B\A is valid as well in C. Among non-informative (tautological)
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attribute implications are A ⇒ A and, thus equivalently A ⇒ ∅,8 but also
P ⇒ B. They are trivially valid in all contexts. Other noticeable extreme
attribute implications are as follows:

• That A ⇒ P is valid in a context C is equivalent to A↓ ⊆ P↓ = {x ∈
O | R(x) = P}. It is satisfied only if all properties in A are satisfied
only by objects that satisfy all properties (a situation not met in normal
contexts). In that case, A↓ 6= ∅.

If the context is normalized, it satisfies the rule A ⇒ P only in the
form A↓ = P↓ = ∅. Two remarks are worth making:

– Given the epistemic interpretation of blank entries, A↓ = ∅ does
not mean that properties in A are conflicting in the given context,
because blanks mean ignorance. It means that there is no object
whose known properties include A. Therefore, A↓ = ∅ does not
exclude the existence of objects having all properties in A, but we
have not enough information about them.

– If A↓ = ∅, the rule A ⇒ P should not be derived from the
context when A 6= P , because this rule is useless for data-mining
purposes. For instance consider the relation in Table 2. Choosing
A = {a1, a2, a3}, A⇒ P clearly holds because A↓ = P↓ = ∅. But
extracting the attribute implication {a1, a2, a3} ⇒ {a4} from this
context would be weird.9

Table 2: Normalized context
R a1 a2 a3 a4

x1 × ×
x2 × ×

8Note that it does not mean that the set A is conflicting since here ∅ expresses a
tautology.

9This problem is due to the fact that an attribute implication behaves like a material
implication, and the latter is true when its antecedent is false. Rules extracted from a
context are extreme cases of association rules in data-mining, i.e., closer to a conditional
object, that is undefined when its antecedent is a contradiction [17, 18]. An attribute
implication A⇒ B where B 6= A and A↓ = ∅ is an association rule with confidence 1 but
with zero support.
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• That ∅ ⇒ B be valid in a context C means ∅↓ = O = B↓ and is
satisfied only if all objects possess all properties in B. In normalized
contexts, this attribute implication never holds.

Now, we must emphasize again the conjunctive nature of sets of attributes
involved in attribute implications. Namely, given A = {a1, . . . , am}, B =
{1, . . . ,m}, we say that A⇒ B is a valid implication of the context C when,
for any object x ∈ O, if a1 and a2 and . . . and am is satisfied by x then
b1 and b2 and . . . and br are also satisfied by x. Therefore, an alternative,
logic-oriented, writing of the attribute implication in a formal context C =
(O,P ,R) can be

a1(x) ∧ a2(x) ∧ · · · ∧ am(x)→ b1(x) ∧ b2(x) ∧ · · · ∧ br(x)

for all x ∈ O, where the attributes ai’s and bi’s are understood as unary
predicates, objects x are constants, and ai(x), bi(x) are grounded atoms, ∧
is a conjunction, and → stands for an implication.

It is interesting to notice that considering the formal context C as a
database, such an attribute implication rule is exactly a functional depen-
dency in database theory, from a syntactic point of view.

It is well-known that inference from this kind of rules can be carried out
via Armstrong axioms [3] for functional dependencies.10 Fagin has shown [25]
that such rules can be viewed as Horn clauses in classical logic, that reason-
ing with such rules with Armstrong axioms comes down to classical logic
inference albeit on a more restricted language. Therefore, the connective ∧
behaves as a classical conjunction, and → as a material implication.

3.2. The logic of attribute implications

From the above considerations, it is natural to define a classical logic ver-
sion of reasoning with attribute implications in FCA. Specifically, we will see
that the logic behind these implications is a restricted first order logic with-
out functions and with less connectives. Notice that, although propositional
logic has usually been considered for interpreting attribute implications in a
logic framework, the required framework for defining a semantics more re-
lated to the semantics of attribute implications is a first order logic. Due

10(a variant of these axioms appear in the seminal paper of Guigues and Duquenne and
the book by Ganter and Wille).
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to the conjunctive character of the attribute implications only a conjunction
and an implication are needed and the logic will be called conjunctive logic
of attribute implications (CLAI).

The syntax of CLAI will be based on an alphabet, denoted by AO,P ,
associated with the formal context (O,P ,R). It is composed of:

• The connective symbols ∧ and →, called conjunction and implication,
respectively.

• The logic symbol >.

• The auxiliary symbols “(” and “)”.

• A variable symbol α.

• A set of constants symbols O.

• A set of predicate symbols P .

Notice that we obtain different alphabets depending on the sets O and
P . Indeed, for each formal context (O,P ,R), we have an alphabet where
the set of constants is interpreted by the set of objects O, and the set of
predicates is associated with the set of attributes P .

Let us define the strings of symbols allowed in the CLAI logic.

Definition 5 (Well-formed conjunctions and rules). Given an alpha-
bet AO,P , the symbol > and the strings a(x), where a ∈ P and x ∈ O,
are called grounded atoms, the set of grounded atoms is denoted by GO,P .
An atom, in general, is an element in GO,P or a string a(α), where a ∈ P.

Well-formed conjunctions (or simply conjunctions) are conjunctions of
atoms, that is, given A = {a1, . . . , am} ⊆ P, A = a1(α)∧ a2(α)∧ · · · ∧ am(α)
is a (well-formed) conjunction.

Well-formed rules take the form A → B, where A and B are (well-formed)
conjunctions or >.

The whole set of grounded conjunctions (resp. rules) is denoted by CGO,P
(resp. RGO,P ), and the set of well-formed conjunctions (resp. rules), grounded
or not, built from alphabet AO,P , is denoted by CAO,P (resp. RAO,P ).

The definition of a CLAI program is given as usual.
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Definition 6. A CLAI program is a set Prog of CLAI well-formed rules of
the form A → B. The antecedent is called head and the consequent body of
the rule. As usual, facts are rules with body >. Free occurrences of variables
in the program are assumed to be universally quantified.

Note that the contradiction ⊥ is not in the language, because there is no
way to express a contradiction by means of attribute implications extracted
from an epistemic context. In particular:

• A⇒ ∅ is expressed by A → >, a tautology.

• A⇒ P is expressed by ∧a∈Aa(x)→ ∧b∈Pb(x)

• ∅⇒ B is expressed as > → B.

where A = {a1, . . . , am} and B = {b1, . . . , bk} are subsets of P , and A =
a1(α) ∧ a2(α) ∧ · · · ∧ am(α) and B = b1(α) ∧ b2(α) ∧ · · · ∧ br(α).

This is due to the epistemic interpretation of blank entries as ignorance: if
one can only express knowledge of positive literals or ignorance about them,
there is no way of expressing contradiction between statements.

Clearly, an implicational system of a formal context (O,P ,R) is syntac-
tically equivalent to a CLAI program associated with the alphabet AO,P . All
the previous notions define the syntax of the logic of attribute implications.
Inference rules can be based on Armstrong axioms, here in the form proposed
by Fagin [25], i.e., one logical axiom and two inference rules:

• Reflexivity `
∧m

i=1 ai(α)→ ai(α), for all i ∈ {1, . . . ,m}

• Closure under right conjunction

–
∧m

i=1 ai(α)→
∧r

j=1 bj(α) `
∧m

i=1 ai(α)→ bj(α), for all j ∈ {1, . . . , r}
– {
∧m

i=1 ai(α)→ bj(α): j ∈ {1, . . . , r}} `
∧m

i=1 ai(α)→
∧r

j=1 bj(α)

• Transitivity:
∧m

i=1 ai(α) →
∧r

j=1 bi(α),
∧r

j=1 bi(α) →
∧p

k=1 ck(α)} `∧m
i=1 ai(α)→

∧p
k=1 ck(α)

Fagin [25] has shown that inference based on this syntax and this axiom and
these inference rules is in agreement with classical logic, namely an attribute
implication A → B is a consequence of a set of attribute implications K, if
and only if, viewed as a material implication, A → B is a consequence of
material implication counterparts of the set of attribute implications K.
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Next, the Boolean semantics of CLAI can be introduced, based on the
first-order model semantics.

Definition 7. An interpretation I is a mapping from the set of grounded
atoms GO,P to the values set {0, 1}, I : GO,P → {0, 1}, defined as follows:

• I(>) = 1.

• I(a(x)) is an element of {0, 1}, for all x ∈ O and a ∈ P.

and I is inductively extended to the whole set of well-formed conjunctions
and rules, then denoted by Î : CAO,P ∪ RAO,P → {0, 1}, as follows. Given two
grounded conjunctions A = a1(x)∧a2(x)∧· · ·∧am(x) and B = b1(x)∧b2(x)∧
· · · ∧ br(x), we have

• Î(a1(x) ∧ · · · ∧ am(x)) = minm
i=1 I(ai(x))

• Î(A → B) =

{
1 if Î(A) ≤ Î(B)

0 otherwise

Therefore, the symbols ∧ and → are interpreted as in classical logic, that
is, as the “and” connective and the material implication, respectively.

For a non-grounded conjunction A ∈ CAO,P and rule A → B ∈ RAO,P (a

formula with the variable) the interpretation Î is defined as follows:

Î(A) = min{Î(A[α/x]) | x ∈ O}
Î(A → B) = min{Î(A → B[α/x]) | x ∈ O}

where A[α/x] and A → B[α/x] respectively denote the grounded conjunction
and rule obtained after substituting the variable α by the constant x.

The set of all interpretations on GO,P will be denoted by I.

From the previous definitions the notion of satisfiability and model can
be defined.

Definition 8. An interpretation I ∈ I satisfies a rule A → B, if Î(A →
B) = 1. An interpretation I is a model of a CLAI program Prog, if all rules
in Prog are satisfied by I.
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In the setting of a context C = (O,P ,R), we define the associated inter-
pretation IC as: IC(a(x)) = 1 if and only if (x, a) ∈ R, for all x ∈ O and
a ∈ P . The following result semantically relates the attribute implications
of a context to the rules in the corresponding CLAI.

Proposition 2. Given a formal context C = (O,P ,R), the subsets A =
{a1, . . . , am}, B = {b1, . . . , br} ⊆ P, and the interpretation IC defined on
GO,P as above, it holds that C satisfies the attribute implication A ⇒ B, if
and only if IC satisfies the rule

a1(α) ∧ a2(α) ∧ · · · ∧ am(α)→ b1(α) ∧ b2(α) ∧ · · · ∧ br(α).

Proof. Let us denote A = a1(α) ∧ a2(α) ∧ · · · ∧ am(α) and B = b1(α) ∧
b2(α) ∧ · · · ∧ br(α). By Definition 4, if C satisfies the attribute implication
A⇒ B, then for every x ∈ O such that A ⊆ R(x), we have that B ⊆ R(x).
Hence, given x ∈ O satisfying that (x, a) ∈ R, for all a ∈ A, we have that
(x, b) ∈ R, for all b ∈ B. Therefore, since

ÎC(A[α/x]) = ÎC(a1(x) ∧ · · · ∧ am(x)) = min{IC(a1(x)), . . . , IC(am(x))}
ÎC(B[α/x]) = ÎC(b1(x) ∧ · · · ∧ br(x)) = min{IC(b1(x)), . . . , IC(br(x))}

given x ∈ O, if Î(A[α/x]) = 1, then we also obtain that ÎC(B[α/x]) = 1, that
is, ÎC(A[α/x]) ≤ ÎC(B[α/x]), which implies by Definition 7 that ÎC(A[α/x]→
B[α/x]) = 1 and so,

1 = min{ÎC(A[α/x])→ ÎC(B[α/x]) | x ∈ O}
= min{ÎC((A → B)[α/x]) | x ∈ O}
= ÎC(A → B)

which proves that I satisfies the rule A → B.
The converse follows analogously. �

Example 2. Given the context C introduced in Example 4, we have that C
satisfies the attribute implication:

a1(α) ∧ a3(α) → a2(α) ∧ a4(α)

since the interpretation IC satisfies the rule as seen below:

ÎC(a1(α) ∧ a3(α)→ a2(α) ∧ a4(α)) =

= min{ÎC(a1(x) ∧ a3(x))→ ÎC(a2(x) ∧ a4(x)) | x ∈ O}
= min{min{a1(x), a3(x)} → min{a2(x), a4(x)} | x ∈ O}
= min{0→ 0, 0→ 0, 0→ 0, 1→ 1, 0→ 0, 0→ 0} = 1
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The soundness and completeness of CLAI with respect to this semantics
is clear, given the results obtained by Fagin [25] on the translation of func-
tional dependencies into Horn clauses in classical logic.

Remark. Note that the attribute implication {a3} ⇒ {a4} is valid
in the context whose relation appears in Table 2. Armstrong axioms en-
able (using reflexivity and transitivity) to derive the attribute implication
{a2, a3} ⇒ {a4} which makes sense in classical logic, but may be viewed as
questionable in the scope of knowledge extraction from data, since no object
in the context satisfies both a2 and a3, so that such rules hold trivially. Find-
ing a proof theory that prevents the deduction of rules whose antecedents
have empty extents, from a set of attribute implications that hold non-trivally
in a context, is a topic for further research.

4. Disjunctive attribute implications in formal concept analysis

This section presents disjunctive counterparts of attribute implications.
Especially, one can try to devise the counterpart of CLAI for this new type
of attribute implications.

4.1. From complementary contexts to disjunctive attribute implications

Different authors [2, 5, 6, 34, 35, 36] have highlighted the importance of
considering information hidden in a formal context in the form of zeros or
empty entries. Indeed such entries are not directly exploited by the usual
derivation operators ↑, ↓. In this section we will consider a dual positive ←dual

positive
=
negative
??? It
would be
clearer

epistemic context in order to apply the previous results for obtaining ex-
tra information in the form of disjunctive implications, where we interpret
(x, a) 6∈ R as the knowledge that x does not possess property a. Then one
possibility to take into account this kind of data is to consider the dual, i.e.,
formally, the complement of the original context.

Definition 9. Given a formal context C = (O,P ,R), its dual context is the
epistemic context C = (O,P¬,R), where P¬ contains the negated versions
of attributes in P, that is, P¬ = {ā | a ∈ P}, and R ⊆ O × P¬ is the
complementary relation, which is defined as (x, ā) ∈ R, if (x, a) 6∈ R.
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Therefore, the object x is related to the attribute ā via R, when it is known
that x does not have the attribute a,11 while a blank entry indicates again
ignorance. For instance, the dual context of the one in Table 1 is in Table 3.

Table 3: Relation R of the dual formal context C.
R ā1 ā2 ā3 ā4 ā5

x1 × ×
x2 × × ×
x3 × × × ×
x4 ×
x5 ×
x6 × × × ×

Notice that, when a cross means that some object possesses a property
and a blank means that it does not possess such property, the notion of
‘dual context’ coincides with the notion of ‘complementary context’ [40] or
yet ‘opposite context’ [34]. The FCA operators defined by Equations (1)
and (2) will be denoted by ↑̄ and ↓̄ on the complementary dual context.
In the following, for any subset of attributes A we denote by A¬ the set
{āi | ai ∈ A}. In particular, operator ↓̄ applied to a subset of attributes
A¬ in R, yields the set of objects which, in R, have no property in A. The
following lemma recalls well-known equalities between the modal operators
introduced in Subsection 2.2 [2, 23].

Lemma 2. Given a formal context C = (O,P ,R), its dual C = (O,P¬,R),
the mappings ↑N : 2O → 2P , ↓Π : 2P → 2O, ↑̄ : 2O → 2P

¬
, ↓̄ : 2P

¬ → 2O,
and the subsets X ⊆ O, Y ⊆ P, the following equalities hold.

X↑N = (X)↑̄ ¬ Y ↓Π = (Y ¬)↓̄

For example, from the dual context of Example 4 (Table 3), the impli-
cation {ā1, ā4} → {ā2, ā5} is valid in C = (O,P¬,R). It corresponds to the
conjunctive rule ā1(α)∧ ā4(α)→ ā2(α)∧ ā5(α) in the associated logic CLAI.
Notice that this implication is interpreted in the dual context as “if an object

11Note that the overbar is not a logical connective, strictly speaking. ā is just another
attribute.
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does not possess a1 and a4, then it does not possess a2 and a5 either”, how-
ever, this meaning completely changes in the original context. In terms of
original attributes, it is clear that such a rule can equivalently be expressed
as “if any of a2, a5 holds for an object, then one of a1, a4 holds too” in the
original context.

We are thus in a position to introduce another kind of attribute implica-
tions we name disjunctive. It is again a pair of arbitrary subsets of attributes
A and B, each one interpreted as the disjunction of its attributes.

Definition 10. Given a set of attributes P and two subsets A = {a1, . . . , am},
B = {b1, . . . , br} ⊆ P, a disjunctive attribute implication between A and B
is denoted by

∨
A 7→

∨
B, or simply A 7→ B. We say that a subset M ⊆ P

of attributes satisfies the disjunctive attribute implication A 7→ B if, when
there exists ai ∈ A ∩M , then there exists bj ∈ B ∩M .

The definition of satisfiability of a disjunctive attribute implication for a
subset of attributes and more generally in a formal context is defined in a
natural way as for conjunctive attribute implications (Definitions 3 and 4).

Definition 11. Given a formal context C = (O,P ,R), and two subsets
A,B ⊆ P of attributes, a disjunctive attribute implication A 7→ B is valid
in C, when for each object x ∈ O, if there exists ai such that (x, ai) ∈ R,
then there exists bj ∈ B such that (x, bj) ∈ R.

Recall again that, in the above definition, disjunctive attribute implica-
tions are interpreted directly on the original epistemic context C, and that
the use of the dual context is only instrumental to compute disjunctive im-
plications by means of the standard technique, since we cannot use negation
in the logical setting for a positive epistemic context.

The reader may have noticed that x↑ = x↑Π . Hence, the validity of a
disjunctive attribute implication can mathematically be also rewritten noting
the equivalence between the statement “there exists ai ∈ A such that ai ∈
R(x)”, in other words “A ∩ x↑Π 6= ∅”, and the statement x ∈ A↓

Π
. As a

consequence, we can define the validity of a disjunctive attribute implication
using a non-classical operator on sets of properties.

Proposition 3. Given a context C = (O,P ,R), the following statements
are equivalent.
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• A 7→ B is valid in C

• A↓Π ⊆ B↓
Π

Proof. A 7→ B valid in C means “for all x ∈ O, if there exists ai ∈ A s.t.
ai ∈ x↑Π then there exists bj ∈ B s.t. bj ∈ x↑Π”. This also means “If x ∈ A↓Π

then x ∈ B↓Π”, since A ∩ x↑Π 6= ∅ is equivalent to x ∈ A↓Π , as we noticed
above. �

From this result we can formally relate conjunctive and disjunctive at-
tribute implications, as follows.

Corollary 1. Let C = (O,P ,R) be a context, and two subsets of attributes
A, B ⊆ P. The following statements are equivalent.

• (A¬)↓ ⊆ (B¬)↓

• A¬ ⇒ B¬ is a valid conjunctive attribute implication rule in C

• B 7→ A is a valid disjunctive attribute implication rule in C

• B↓Π ⊆ A↓
Π

Proof. All that needs to be proven is that B↓
Π ⊆ A↓

Π
is equivalent to

A¬ ⇒ B¬. The latter means

{x | A¬ ⊆ R(x)} ⊆ {x | B¬ ⊆ R(x)}

Now, A¬ ⊆ R(x) means that for all ā ∈ A¬, we have ā ∈ R(x), and since
(x, ā) ∈ R means (x, a) 6∈ R, the inclusion A¬ ⊆ R(x) is equivalent to
the sentence “if a ∈ A, then (x, a) 6∈ R”. Therefore, {x | A¬ ⊆ R(x)} =
{x | A ∩ R(x) = ∅}. Since this reasoning is independent of the subset of
attributes, we obtain that: A¬ ⇒ B¬ is equivalent to

{x | A ∩R(x) = ∅} ⊆ {x | B ∩R(x) = ∅}

By contraposition, this inclusion is equivalent to {x | B ∩R(x) 6= ∅} ⊆ {x |
A ∩R(x) 6= ∅}, that is B↓

Π ⊆ A↓
Π
, which finishes the proof. �

Example 3. In the formal context of Table 3, we can check that the following
conjunctive implication is valid: {ā4, ā5} ⇒ {ā1} and thus its “contraposi-
tive” implication {a1} 7→ {a4, a5} is a disjunctive attribute implication valid
in the formal context of Table 1. �
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Interesting special cases of disjunctive attribute implications are as follows,
for every subset A,B ⊆ P , where A 6= ∅, B 6= P .

• That A 7→ P be valid in C means A↓
Π ⊆ P↓Π , which holds trivially

since A ⊆ P , and is then non-informative. More generally all disjunc-
tive attribute implications of the form A 7→ B where A ⊆ B are not
informative.

• A 7→ ∅ never holds in normalized contexts, because otherwise A↓
Π

=
∅, which implies that no object possesses any property in A. As a
consequence, since A contains at least one attribute, we obtain at least
one blank column, which is not possible in a normalized context.

• ∅ 7→ B is ever true, due to the monotonicity of the operator ↓
Π
.

• P 7→ B is not valid except if no attribute outside B is known to be
satisfied by at least one object.

4.2. The logic DLAI of disjunctive attribute implications

From Proposition 3 and Corollary 1 the relation between the conjunctive
and disjunctive attribute implications is obtained via the complementary
dual context, and the following statements are equivalent:

• A¬ ⇒ B¬ is a valid conjunctive attribute implication rule in C

• B 7→ A is a valid disjunctive attribute implication rule in C

for all A,B ⊆ P . By Proposition 2, A¬ ⇒ B¬, where A = {a1, . . . , am}, B =
{b1, . . . , br} ⊆ P , is expressed in classical logic as

ā1(α) ∧ · · · ∧ ām(α)→ b̄1(α) ∧ · · · ∧ b̄r(α)

As a consequence, noticing that ā(x) is true if and only if a(x) is false, and
because the following formulae are equivalent in classical logic:

¬a1(α) ∧ · · · ∧ ¬am(α) → ¬b1(α) ∧ · · · ∧ ¬br(α)

b1(α) ∨ · · · ∨ br(α) → a1(α) ∨ · · · ∨ am(α),

we can define a counterpart, called disjunctive logic of attribute implications
(DLAI), of the language CLAI with a disjunction ∨ in place of the con-
junction, and contradiction symbol ⊥ instead of a tautology symbol >, in
order to encode, and reason with, disjunctive attribute implications. The
new obtained alphabet for defining DLAI is denoted by DO,P

24



Definition 12 (Well-formed disjunctive rules). Given an alphabet DO,P ,
the symbol ⊥ and the strings a(x), where a ∈ P and x ∈ O, are called
grounded atoms of DLAI. An atom in DLAI is either a grounded atom or a
string a(α), where a ∈ P.

The set of grounded atoms in DLAI is denoted by DO,P and the set of
atoms is denoted by DO,P . Well-formed disjunctive rules in DLAI take the
form A → B where A and B are disjunctions of atoms or ⊥.

The set of grounded disjunctive rules is denoted by RDO,P , and the set
of well-formed disjunctive rules (grounded or not) from alphabet DO,P , is
denoted by RDO,P .

Disjunctive implications are naturally encoded in DLAI:

Definition 13. Given a set of attributes P and two subsets A = {a1, . . . , am},
B = {b1, . . . , br} ⊆ P, a disjunctive attribute implication A 7→ B between A
and B is encoded by the following rule in the associated DLAI:

a1(α) ∨ · · · ∨ am(α)→ b1(α) ∨ · · · ∨ br(α)

Given a context C = (O,P ,R), the associated DLAI is the logic obtained
from the alphabet DO,P .

Special kinds of rules involving ⊥ can be laid bare (they are contrapositive
versions of conjunctive rules > → A and B → > in CLAI):

• a1(α) ∨ · · · ∨ am(α) → ⊥ encodes disjunctive attribute implications
with empty head. Using the classical logic embedding it comes down
to claiming that for all x ∈ O,∧ni=1¬ai(x) holds, which can be called a
negative fact, since it says that all properties ai, with i ∈ {1, . . . , n},
are false for all objects.

• ⊥ → B, which is a tautology in DLAI.

The definition of a DLAI program is given as usual.

Definition 14. A DLAI program is a set of DLAI well-formed disjunctive
rules of the form A → B. Negative facts are disjunctive rules with head ⊥.

The semantics of DLAI is similar to the one of CLAI. An interpretation
I is again a mapping from the set of grounded atoms to {0, 1}, however here
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it satisfies that I(⊥) = 0. Moreover, it is extended to the whole set of well-
formed disjunctive rules, Î : RDO,P → {0, 1}. IfA = a1(x)∨a2(x)∨· · ·∨am(x)
and B = b1(x) ∨ b2(x) ∨ · · · ∨ br(x) are two grounded disjunctions, the well-
formed disjunctive rule A → B ∈ RDO,P is interpreted by Î as follows:

Î(A → B) =

{
1 if maxm

i=1 I(ai(x)) ≤ maxk
i=1 I(bi(x))

0 otherwise.

The interpretation of a non-grounded disjunctive rule A → B ∈ RDO,P is
similarly defined to the conjunctive case, that is,

Î(A → B) = min{Î(A → B[α/x]) | x ∈ O}

where A → B[α/x] denotes the grounded rule obtained after substituting the
variable α by the constant x. The following result shows that the notion of
validity is compatible with the notion of satisfiability in DLAI.

Proposition 4. Consider a formal context C = (O,P ,R), the subsets of
attributes A = {a1, . . . , am}, B = {b1, . . . , br} ⊆ P, and the interpretation IC
defined on DO,P as IC(a(x)) = 1, if (x, a) ∈ R, for all x ∈ O and a ∈ P.
Then C satisfies the disjunctive attribute implication A 7→ B if and only if
IC satisfies the rule

a1(α) ∨ a2(α) ∨ · · · ∨ am(α)→ b1(α) ∨ b2(α) ∨ · · · ∨ br(α)

Proof. The proof is similar to the one given to Proposition 2.

Moreover, using such a duality, the following axiom and rules of inference
can be derived from Armstrong’s for deduction in DLAI:

• Reflexivity
∨m

i=1 ai(α), for all i ∈ {1, . . . ,m}

• Closure under left disjunction

–
∨m

i=1 ai(α)→
∨r

j=1 bj(α) ` ai(α)→
∨r

j=1 bj(α), for all i ∈ {1, . . . ,m}
– {ai(α)→

∨r
j=1 bj(α)| i ∈ {1, . . . ,m}} `

∨m
i=1 ai(α)→

∨r
j=1 bj(α).

• Transitivity:∨m
i=1 ai(α)→

∨r
j=1,

∨r
j=1 bj(α)→

∨p
k=1 ck(α)} `

∨m
i=1 ai(α)→

∨p
k=1 ck(α).

The soundness and completeness of this rule-based system with respect
to the semantics of disjunctive attribute implications is easy to show, again
via duality, based on Fagin’s results [25].

26



5. Object-oriented concept lattices and disjunctive implications

In this section, we define the counterpart of concept lattices for the pos-
sibility and necessity modalities applied to a formal context, and relate them
to usual concept lattices in the dual context.

5.1. Object-Oriented Concept Lattices

Object-oriented concept lattices (OOCL), originally introduced by Yao [38],
and property-oriented concept lattices (POCL), given by Duntsch and Gediga
[23, 28], were introduced as extensions, to formal contexts, of upper and lower
approximations in rough set theory, replacing the indiscernibility relation be-
tween objects by the relation linking objects and properties. Both notions
are in mirror image to each other (exchanging objects and properties) and
they have been studied in many papers [9, 14, 15, 40].

An object-oriented concept is a pair (X, Y ), with X ⊆ O, Y ⊆ P , such
that X = Y ↓

Π
and Y = X↑N . Yao [39] justified this name through the

sentence: “if an object has a property in Y , then the object belongs to X”.
Moreover, X is the set of objects possessing at least one attribute in Y .

Formally, X = Y ↓
Π

means that if x ∈ X then there exists a ∈ Y such
that (x, a) ∈ R. And Y = X↑N means that Y = {a | R−1(a) ⊆ X}.

Actually, Y ⊆ X↑N reads in terms of characteristic functions:

µY (a) ≤ µR(x, a)→ µX(x), for all x ∈ O

and Y ↓Π ⊆ X reads

µX(x) ≥ µR(x, a) ∧ µY (a), for all a ∈ P

Hence the equalities Y = X↑N and Y ↓Π = X are reached by maximizing Y
and minimizing X.

Therefore, it is clear that if X = Y ↓
Π

and Y = X↑N together, then Y is
the maximal subset of P , such that for all x ∈ X, there exists a ∈ Y , with
(x, a) ∈ R, and (x′, a) 6∈ R, for all x′ 6∈ X. Alternatively, X is the minimal
subset of O, such that for all a ∈ Y there exists x ∈ X, with (x, a) ∈ R, and
for all x′ 6∈ X, (x′, a′) ∈ R implies a′ 6∈ Y .

Example 4. Consider the normalized formal context (O,P ,R) given in Ta-
ble 4 where O = {x1, x2, x3} and P = {a1, a2, a3, a4}. Given Y = {a1, a2}
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Table 4: Relation R of C.
R a1 a2 a3 a4

x1 × × ×
x2 ×
x3 ×

and X = {x1}, we have that

Y ↓
Π

= {a1, a2}↓
Π

= {x1} = X

X↑N = {x1}↑N = {a1, a2} = Y

Y = {a1, a2} is the largest subset of properties satisfied by x1 and only by
x1. Likewise, {x1} is the smallest subset of objects satisfying at least one
property in Y = {a1, a2}. �

If we consider the above recalled verbal definition of an object-oriented
concept (X, Y ) by Yao [39], we should complement it as follows: “if an object
has a property in Y , then the object belongs to X, and Y is the largest
subset satisfying this claim”. Dually we also have that “if a property in Y is ←These

remarks
are not
high-
lighted
in the
introduc-
tion.
Should
we do it
?

satisfied by an object, then the object belongs to X, and X is the smallest
set of objects satisfying this claim.”

The set of object-oriented concepts is denoted by Co(O,P ,R). It is a
complete lattice [38], with the meet ∧ and join ∨ operators defined, for each
(X1, Y1), (X2, Y2) ∈ Lo(O,P ,R), as follows:

(X1, Y1) ∧o (X2, Y2) = ((Y1∩Y2)↓
Π

, Y1∩Y2) (5)

(X1, Y1) ∨o (X2, Y2) = (X1∪X2, (X1∪X2)↑N ) (6)

The following result relating object-oriented concepts and concepts in
the usual sense is recalled with the notation considered in this paper as
follows [28, 32].

Proposition 5. A pair (X, Y ) is an object-oriented concept in the context
C = (O,P ,R) if and only if the pair (X,Y ¬) is a concept in the usual sense
in the dual context C = (O,P¬,R), i.e., a maximal subset X × Y ⊆ R.

As a consequence, a pair (X, Y ) is an object-oriented concept in the context

R also means that X × Y is a maximal subset of R, or equivalently X × Y
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is a minimal subset of O × P that contains R, where X × Y expresses the

material implication Y + X where X + Y = X × Y (alternatively, objects
outside X do not have properties in Y ). It means that properties in Y may
be possessed only by objects in X. It is consistent with the terminology
“object-oriented concepts”. Clearly this N − Π connection comes down to
checking for maximal rectangles X × Y of 0’s in matrix R, which ensures
minimal relations of the form Y +X containing R.

5.2. Minimal base of disjunctive attribute implications

The notions of minimal base [1, 11, 26, 29] induced by a formal context
can be easily translated into the object-oriented concept lattice framework.
This subsection introduces such notions and various related results.

The first definition introduces a notion of soundness for a set of disjunctive
implications.

Definition 15. Given a context C = (O,P ,R), an arbitrary set of disjunc-
tive implications is called disjunctive implicational system. When the context
C satisfies every disjunctive implication in a disjunctive implicational system
D, i.e., D is a set of disjunctive implications of the context C, then we say
that D is sound for context C (or C-sound for short).

Next, the notion of (semantic) deduction for conjunctive rules, after the
corresponding definition in [26], is adapted to the disjunctive framework.

Definition 16. A disjunctive implication A 7→ B follows ( semantically)
from a disjunctive implicational system D if each subset of P respecting D
also respects A 7→ B.

More notions can be defined for disjunctive implicational systems.

Definition 17. Given a context C = (O,P ,R), we say that a disjunctive
implicational system D is:

• closed if every implication following from D is already contained in D.

• complete for context C (C-complete, for short) if it is C-sound and every
implication of C follows from D.12

12What we call C-soundness and C-completeness should not be confused with sound-
ness and completeness in the logical sense of equivalence between syntactic and semantic
deduction, e.g., in CLAI or DLAI.
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• minimal or non-redundant, if none of the disjunctive implications A 7→
B, follows from B \ {A 7→ B}; i.e., there is a subset of P that satisfies
B \ {A 7→ B} but does not satisfy A 7→ B.

The use of minimal bases is fundamental in order to provide a compact
description of the information contained in a context.

Definition 18. An implicational system D is a minimal disjunctive base for
a formal context C = (O,P ,R), if it is a C-sound, C-complete and minimal
disjunctive implicational system for C.

As in FCA, the first question is to ensure the existence of this kind of
bases for every context. The next subsection follows the ideas of Guigues
and Duquenne [29] for defining a standard disjunctive base.

5.3. Disjunctive pseudo-intents

Pseudo-intents play an important role in FCA for computing conjunctive
implications of any context (O,P ,R). They were defined recursively in [26]
as follows.

Definition 19. A subset of attributes A ⊆ P is called pseudo-intent of the
context (O,P ,R) if A↓↑ 6= A and B↓↑ ⊂ A holds for every pseudo-intent
B ⊆ P, such that B ⊂ A.

One of the first attribute bases is the well-known Duquenne-Guigues
base [29], often simply called the stem base, consisting of the set of attribute
implications

L = {A⇒ (A↓↑ \ A) | A is a pseudo-intent}.

Theorem 1 ([29]). The Duquenne-Guigues base is non-redundant and C-
complete.

Example 5. The Duquenne-Guigues base of the context C in Example 1
(Table 1), removing the redundant information in the consequent, is the fol-
lowing:

a2(α) → a3(α) ∧ a4(α)

a4(α) → a3(α)

a1(α) ∧ a3(α) → a2(α) ∧ a4(α)

a3(α) ∧ a5(α) → a4(α)
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Explain how to get the rules??? �

From the relationship between FCA and object-oriented concept lat-
tices [31, 32], a suitable notion of disjunctive pseudo-intent is presented next.

Definition 20. Let (O,P ,R) be a context, a subset of attributes A ⊆ P
is an object-oriented pseudo-intent, if A↓

Π↑N 6= A and B↓
Π↑N ⊂ A, for all

object-oriented pseudo-intents B ⊆ P, with B ⊂ A.

Next, we will show that the previous definition is really suitable, namely,
it is a dual definition of the original one. Before that, the following technical
lemma is introduced.

Lemma 3. Given a context (O,P ,R) and A ⊆ P, we have that

A↓
Π↑N = (A¬)↓̄↑̄¬. (7)

Proof. From Lemma 2 we obtain that A↓
Π↑N =

(
(A¬)↓̄

)↑̄¬
= (A¬)↓̄↑̄¬ �

Proposition 6. Given a context C = (O,P ,R) and its dual C = (O,P¬,R),
we have that A ⊆ P is an object-oriented pseudo-intent of C if and only if
A¬ ⊆ P¬ is a pseudo-intent of C.

Proof. The computation of both pseudo-intents and object-oriented pseudo-
intents is similar. It begins from the empty set, from which new (object-
oriented) pseudo-intents are computed. The proof will be done by induction
in the computation of the (object-oriented) pseudo-intents and Lemma 3.

The basic case is when only one (object-oriented) pseudo-intent is com-
puted. In this case, the result straightforwardly arises from Lemma 3. For
example, if this set is the empty set (which is the first set considered by
the algorithm in page 85 of [26]), we clearly have that ∅ ⊆ P is an object-
oriented pseudo-intent of C and ∅¬ ⊆ P¬ is a pseudo-intent of C. Hence, in
this elementary case, the theorem holds.

Now, assume the property is satisfied for a subset of n (object-oriented)
pseudo-intents. Therefore, we have a set of object-oriented pseudo-intents
{B1, . . . , Bn} of C and the set of pseudo-intents {B¬1 , . . . , B¬n} of C.

Let A ⊆ P be the new computed object-oriented pseudo-intent of C.
Hence, we have that A↓̄

Π↑̄N 6= A and so, A 6=
(
(A¬)↓̄↑̄

)¬
holds by Equation 7.

Applying the properties of ¬, we obtain that A¬ 6= (A¬)↓̄↑̄.
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Now, we need to prove that (B¬i )↓̄↑̄ ⊂ A¬, for every pseudo-intent B¬i ⊂
A¬, with i ∈ {1, . . . , n}. If B¬i ⊂ A¬, by the induction hypothesis, we
have that Bi is an object-oriented pseudo-intent in the set {B1, . . . , Bn} and
Bi ⊂ A. Therefore, as A is an object-oriented pseudo-intent, then we have,

by Definition 20, that Bi
↓̄Π↑̄N ⊂ A and, by Equation (7), we have(

(B¬i )↓̄↑̄
)¬

= Bi
↓̄Π↑̄N ⊂ A

which is equivalent to (B¬i )↓̄↑̄ ⊂ A¬.
The converse implication is proved analogously. �

As a consequence, the usual algorithms developed to compute pseudo-
intents, such as Next Closure [26] can be used to compute object-oriented
pseudo-intents.

Example 6. Using Next Closure on the context C associated with Ta-
ble 3, we have that the set of pseudo-intents are:

{{ā3}, {ā4}, {ā1, ā5}, {ā2, ā5}, {ā1, ā2, ā4}}

Thus, by Proposition 6, the set of object-oriented pseudo-intents of the
original context C given in Example 1 is:

{{a3}, {a4}, {a1, a5}, {a2, a5}, {a1, a2, a4}}

�

As a consequence of the definition of object-oriented pseudo-intent, Propo-
sition 6, and Theorem 1, the following result is obtained.

Theorem 2. The set of implications

Lo =
{

(A↓
Π↑N \ A) 7→ A | A is an object-oriented pseudo-intent

}
is non-redundant and C-complete, and it is called disjunctive pseudo-intent
base of disjunctive implications.

Proof. Given an object-oriented pseudo-intent A ⊆ P and the implication
(A↓

Π↑N \ A) 7→ A, by Corollary 1 and Lemma 2, it is valid in C if and only
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if A¬ ⇒ (A¬)↓↑ \ A¬ is valid in C. Moreover, by Proposition 6, A¬ is a
pseudo-intent in C. As a consequence,

(A↓
Π↑N \ A) 7→ A ∈ Lo if and only if A¬ ⇒ ((A¬)↓↑ \ A¬) ∈ L

where L = {A¬ ⇒ ((A¬)↓↑ \ A¬) | A is a pseudo-intent of C}, which clearly
is non-redundant and C-complete by Theorem 1. Thus, Lo is also non-
redundant and C-complete. �

Notice that this result extends Proposition 7 and the appendix given in [2],
and straightforwardly proves the minimality of the set Lo.

Example 7. From Theorem 2 and Proposition 6, the following set of dis-
junctive implications is the disjunctive pseudo-intent base of the context C
given in Example 1.

a2(α) ∨ a4(α) → a3(α)

a2(α) → a4(α)

a2(α) ∨ a4(α) → a1(α) ∨ a5(α)

a1(α) ∨ a4(α) → a2(α) ∨ a5(α)

a5(α) → a1(α) ∨ a2(α) ∨ a4(α)

Note that the second rule could be also considered as a conjunctive rules,
which does not contradict the information given in Example 7. �

6. Toward hybrid conjunctive-disjunctive implications

In this section, we outline a natural extension of conjunctive and disjunc-
tive attribute implications, and show how to define their satisfiability with
respect to a context in terms of operators from FCA.

It is tempting to generalize the syntaxes of CLAI and DLAI so as to
use both disjunctions and conjunctions in the language. We can consider a
generalized language LAI containing rules of the form ϕ → ψ where ϕ be
a propositional formula without negation, in disjunctive normal form (e.g.,
∨ni=1(∧nik=1aik(x))), and ψ be a propositional formula without negation, in
conjunctive normal form (e.g., ∧mj=1(∨mj

`=1bj`(x))).
Such rules are thus of the form µ1 ∨ · · · ∨ µn → κ1∧ . . .∧κm where µi =

∧nik=1aik(x), and κj = ∨mj

`=1bj`(x). They can be interpreted with respect to
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a formal context C as follows. Let Ai be the set of attributes appearing in
µi, and Bj the set of attributes appearing in κj. Let A = {A1, . . . , Am} and
B = {B1, . . . , Bm}.

Definition 21. A hybrid attribute implication associated with a LAI rule
ϕ→ ψ defined as above is of the form A � B.

The validity of a hybrid attribute implication A � B with respect to a
context C can then be defined:

Definition 22. C satisfies A � B if and only if for all objects x in O, there
exists a subset of attributes Ai ∈ A such that if x satisfies all attributes in
Ai, then x satisfies at least one attribute in each Bj ∈ B.

Under this definition, and as in classical logic, every hybrid attribute
implication can be divided into simpler implications. For example, the va-
lidity of implication A � B1 ∪ B2 is equivalent to the implications A � B1

and A � B2. Moreover, the validity of A1 ∪ A2 � B is equivalent to the
implications A1 � B and A2 � B.

Given the above semantics with respect to a context, these hybrid rules
are equivalent to a set of more elementary rules we call conjunctive-disjunctive
implications (cd-implications for short). Namely:

Proposition 7. C satisfies A � B if and only if C satisfies {Ai} � {Bj}
for all i ∈ {1, . . . n}, j ∈ {1, . . .m}.

A cd-rule {A}� {B} can be written as Ac � Bd for short, where the body
set is understood as a conjunction of attributes, and the head as a disjunction
of attributes. It corresponds in the language LAI to a rule of the form

a1(α) ∧ · · · ∧ am(α)→ b1(α) ∨ · · · ∨ br(α)

where A = {a1, . . . , am} and B = {b1, . . . , br}. Extending the semantics of
CLAI and DLAI, the satisfaction of the cd-implication Ac � Bd by a context
C can be defined by:

1 = ÎC(a1(α) ∧ · · · ∧ am(α)→ b1(α) ∨ · · · ∨ br(α))

= min{ÎC(a1(x) ∧ · · · ∧ am(x)→ b1(x) ∨ · · · ∨ br(x)) | x ∈ O}
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which is equivalent to the following inequality for all x ∈ O

min{IC(a1(x)), . . . , IC(am(x))} ≤ max{IC(b1(x)), . . . , IC(br(x))} (8)

The next result describes in terms of FCA operators when a given context
satisfies a cd-implication.

Theorem 3. A context C satisfies a cd-implication Ac � Bd if and only if
A↓ ⊆ B↓

Π
.

Proof. Let A = {a1, . . . , am}, B = {b1, . . . , br}. Assume x ∈ A↓, we have
that (x, a) ∈ R, for all a ∈ A. Consequently, min{IC(a1(x)), . . . , IC(am(x))} =
1, and by Equation (8) we obtain that there exists b ∈ B such that IC(b(x)) =
1, that is, (x, b) ∈ R, which shows that x ∈ B↓Π .

The other implication follows similarly. �

Note that the cd-implication Ac � Bd is non-informative if and only if
A ∩ B 6= ∅. Special cases of cd-implications are worth discussing, when A
or B are the empty set or the whole set:13

• That Ac � ∅ is valid in C means A↓ ⊆ ∅↓Π = ∅. Therefore, we get
A↓ = ∅ which means, if blank entries refer to the negation of properties,
that properties in A are then mutually exclusive in the context.14 In
the epistemic view, A↓ = ∅ only means that there is no object known
to satisfy all properties in A, so that the contradiction inside A is only
potential.

• Ac � Pd is valid when A↓ ⊆ P↓Π , which always holds, since this rule
is not informative.

• If ∅ � Bd is valid in C, then ∅↓ = O ⊆ B↓
Π
, i.e., each object has at

least one property in B, which is equivalent to write > → ∨b∈Bb(α) in
LAI.

13We will avoid writing ∅ with the subscripts c or d.
14This is very different from what the attribute implication A⇒ ∅ means (i.e., it always

holds and is encoded as a tautology ∧a∈Aa(α)→ > in CLAI; see subsection 3.1). On the
contrary, in LAI, Ac � ∅ is encoded as ∧a∈Aa(α)→ ⊥.
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• Pc � Bd is valid in normalized contexts, since P↓ = ∅ ⊆ B↓
Π
, which

is a tautology, and can be written as ⊥ → ∨b∈Bb(α) in LAI. It is then
non-informative.

Next, a particular context will be considered from which different cd-
implications will be derived.

Example 8. Let C = (O,P ,R) be a formal context where the set O =
{x1, x2, x3, x4, x5, x6}, P = {a1, a2, a3, a4, a5} and the relation R is repre-
sented in Table 5.

Table 5: Relation R of the formal context K.
R a1 a2 a3 a4 a5

x1 × × ×
x2 × × ×
x3 ×
x4 × × × ×
x5 × × ×
x6 × × ×

We have that C does not satisfy the implication

a3(α) ∧ a5(α)→ a1(α) ∨ a4(α)

because: {a3, a5}↓ = {x1, x5, x6} 6⊆ {x1, x2, x4} = {a1, a2}↓
Π

. If we consider
now the cd-implication:

a3(α) ∧ a5(α)→ a1(α) ∨ a2(α)

we have that C satisfies this implication since {a3, a5}↓ = {x1, x5, x6} ⊆
{x1, x2, x4, x5, x6} = {a1, a2}↓

Π
. Moreover, this implication cannot be ob-

tained from either Duquenne-Guigues base or disjunctive pseudo-intent base,
as we show next. The Duquenne-Guigues base of the context C, removing the
redundant information in the consequent, is the following:

a2(α) → a3(α)

a4(α) → a1(α)

a1(α) ∧ a2(α) ∧ a3(α) → a4(α)

a1(α) ∧ a3(α) ∧ a4(α) → a2(α)
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On the other hand, the disjunctive pseudo-intent base of the context C is:
←The
4th rule
is
strange
as a2

appears
on both
sides

a4(α) → a1(α)

a2(α) → a3(α)

a1(α) ∨ a4(α) → a2(α) ∨ a5(α)

a1(α) ∨ a2(α) → a4(α) ∨ a5(α)

a1(α) ∨ a5(α) → a2(α) ∨ a3(α) ∨ a4(α)

a5(α) → a1(α) ∨ a2(α) ∨ a4(α)

THE 4th RULE SHOULD BE a1(α)→ a2(α) ∨ a3(α) ∨ a4(α) ???
Notice that, these bases have two common implications. Furthermore,

there is no direct inference for obtaining the cd-implication:

a3(α) ∧ a5(α)→ a1(α) ∨ a2(α)

from the union of these bases. �

Thus, these results indicate that one may extract more information from
a formal context than the one provided by conjunctive and disjunctive rules
independently. There is room for further research, namely

• finding a methodology to efficiently extract cd-implications, and espe-
cially a minimal base of them that is C-sound and C-complete.

• finding a suitable proof system for reasoning with cd-implications.

Note that the language logic of cd-implications LAI is again a fragment of
the one of classical logic. In particular, as seen above, for complete Boolean
contexts, LAI includes connectives ∧,∨,→ and both constants ⊥ and >.
Note that because LAI can encode the rule ∧a∈Aa(α) → ⊥, it can encode
classical logic statements such as a(α)→ ¬b(α) in the form a(α)∧b(α)→ ⊥,
even if LAI does not include the negation symbol (negation statements can
be expressed in the form a(α)→ ⊥).

However, while the method of extraction of disjunctive attribute impli-
cations can take advantage of standard methods applied to the dual view
of a formal context (entries are then interpreted in terms of “known-to-be-
false/possibly true” rather than “known-to-be-true/unknown”), it is clear
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that disjunctive rules as well as cd-implications also make sense in the original
understanding of a formal context in terms of “known-to-be-true/unknown”,
as they are arguably weaker than original attribute implications encoded as
Horn clauses. However, extreme cd-implications of the form a(α)∧b(α)→ ⊥
are questionable under the epistemic view of a formal context (it is not a
Horn clause anyway) and only make sense if crosses mean true and blanks
mean false. Indeed a formal context, in its epistemic view in terms of
known/unknown entries can never express conflicting information between
pieces of positive knowledge, since in that case A↓ is only a lower approxima-
tion of the set of objects that satisfy all properties in A. We may also delete
cd-rules of the form Ac � ∅ as non supported by any example.

The full LAI should arguably be equivalent to classical logic, with the ⊥
symbol included (for context entries interpreted in terms of true/false). The
above discussion suggests that another variant of the LAI formalism, without
the ⊥ symbol (for epistemic contexts where sure falsity is not expressed),
would also be worth studying further.

7. Conclusions and future work

In this paper, we have proposed a variant and a generalisation of standard
attribute implications in formal context analysis, when the Boolean entries
have an epistemic flavor in terms of known/unknown to be true. We have
shown that using the dual context, we can define disjunctive attribute impli-
cations, which enable us to model the fact that one of several properties hold
for all objects satisfying another given property. We have also developed
the counterpart of known approaches for extracting such rules, based on the
disjunctive counterparts of formal concepts and pseudo-intents. We have de-
fined two logics of attribute implications for conjunctive and disjunctive ones
respectively, and outlined a logic where both conjunctions and disjunctions
appear, and where contradiction appears in the language or not depending on
the interpretation of contexts (ontic or epistemic). We provided evidence to
show that such logics are in agreement with classical first order logic, albeit
with a restricted language.

This work differs from frameworks considered in [5, 34, 36] which also use
negative attributes. In such papers, the importance of simultaneously using
positive and negative attributes in the same context has been highlighted,
which departs from our approach. For example, in [36], the authors include
an example in which the relation a → b̄ between the attributes a and b is

38



obtained, when a mixed context is used. It is the result of putting together a
classical standard context where blanks stand for negative information, and
its complement, in order to obtain standard attribute implications involving
negative attributes.

Extracting rules from such mixed contexts under complete information
may require the explicit use of logical negation in the attribute implication
language, which may lead to a framework with the same expressiveness as
classical logic and so, obtaining all relationships among attributes of a formal
context with fully informed objects. All developments and algorithms given
in classical logic could then be used to design computational procedures for
making deductions from datasets interpreted as formal contexts. However,
the question of knowing whether standard attribute implications obtained
from a mixed context are more expressive than sets of cd-implications ob-
tained from a classical context is open.

In the incomplete setting, where contexts are interpreted as positive
knowledge, we may consider using, instead of CLAI and its variants, a frag-
ment of a modal language (with necessity modalities prefixing positive atoms
only) that could be a special case of the frameworks of Holzer [30] and Obied-
kov [33] for more general epistemic contexts involving both positive and neg-
ative information. Its connection to the modal-like logic of incomplete infor-
mation of Banerjee and Dubois [4] with possibilistic semantics would also be
worth investigating.

Appendix

There are two dual versions of Galois connection [12, 13], the antitone and
the isotone ones. The original notion is usually associated with the antitone
version.

Definition 23. Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2, ↑ : P2 →
P1 be two mappings, the pair (↑, ↓) forms an (antitone) Galois connection be-
tween P1 and P2 if and only if:

1. ↑ and ↓ are order-reversing.

2. x ≤1 x
↓↑ for all x ∈ P1.

3. y ≤2 y
↑↓ for all y ∈ P2.

The isotone version is also called adjunction [11, 13].
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Definition 24. Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2, ↑ : P2 →
P1 be two mappings, the pair (↑, ↓) forms an isotone Galois connection be-
tween P1 and P2 if and only if:

1. ↑ and ↓ are order-preserving.

2. x ≤1 x
↓↑ for all x ∈ P1.

3. y↑↓ ≤2 y for all y ∈ P2.

There are arguments for both versions, although the difference is not
significant at the theoretical level, since we can pass from one to the other
one swapping a poset by its dual, for example, going from (P2,≤2) to (P2,≤∂

2),
where ≤∂

2 is the opposite of the ordering ≤2, that is, given y, z ∈ P2, we say
that y ≤∂

2 z, if z ≤2 y, which is also written as y ≥2 x.
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et Sciences Humaines, 95:5–18, 1986.

[26] J. Konecny. Attribute implications in L-concept analysis with positive
and negative attributes: Validity and properties of models. International
Journal of Approximate Reasoning, 120:203 – 215, 2020.

[27] T. Kuhr and V. Vychodil. Fuzzy logic programming reduced to reasoning
with attribute implications. Fuzzy Sets and Systems, 262:1 – 20, 2015.

42
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