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Abstract—This paper presents the closed-form solution for a
new type of lens beamformer, which consists of two stacked
parallel plate waveguides (PPWs) of circular shape. The rays
launched by a source at the rim of the bottom PPW are collimated
in the top PPW after being reflected at a cylindrical metallic
wall that surrounds both layers. Since it reproduces the behavior
of the Luneburg lens for reflected rays, this lens is hereinafter
referred to as Reflecting Luneburg lens (RLL). The refractive
index profile for the azimuthally symmetric circular domain
is found by solving the non-linear integral equation of ray-
congruence through a truncated Abel transform method. The
validity of the derived exact formula is verified by full-wave
simulations, practical implementation and possible applications
of RLLs in antenna systems are also briefly discussed.

Index Terms—Beamforming, flat optics, Luneburg lens, surface
wave.

I. INTRODUCTION

Flat Luneburg lenses have been pervasively studied in the
literature [1], [2], [3] as a compact solution for the generation
of fan beams. The main advantage of Luneburg lenses is
that one can steer the beam without suffering scan losses by
changing the position of the source in the focal circumference.
More recently, Luneburg lenses have been also used as beam-
formers for the excitation of modulated metasurfaces [4]. Such
structure enables two-dimensional scanning of a pencil beam
in the upper half-space. However, the Luneburg lens and the
radiating aperture are at the same level in this architecture, so
the total antenna footprint increases and the overall aperture
efficiency is reduced.

To solve this problem, one can resort to pillbox quasi-optical
beamformers [5], [6], which consist of two stacked parallel
plate waveguides (PPWs). Both PPWs are connected through
a 180o bend with parabolic profile, so a source in the focus of
the parabola generates a plane-wave in the top PPW. This plane
wave can be gradually radiated using a slotted array [5], [6]
or a modulated metasurface [7]. Despite the elegance of this
approach, the scanning performance of the parabolic reflector
degrades (deterioration in side-lobe levels arising from coma
phase errors) when the source is displaced from the focal point
to steer the beam.

The aforementioned shortcomings could be solved if one
could reproduce the behavior of the Luneburg lens for rays

Fig. 1. Comparison between (a) Luneburg Lens and (b) Reflecting Luneburg
Lens (RLL). In the RLL, the rays emerging from a point at the periphery
undergo longer paths and, after reflecting at the boundary, they are coupled
to an upper uniform guiding layer, where they form a plane wave.

reflected in a cylindrical wall of perfect electric conductor
(PEC). The main contribution of this paper is the analytical
derivation of the refractive index of such device, hereinafter
referred to as Reflecting Luneburg Lens (RLL). Anticipating
the result in Section III, Fig. 1(b) shows the refractive index
profile and the ray-paths in a RLL. The rays launched by
a source at the rim of the bottom PPW (white lines) are
collimated in the top PPW after being reflected at a cylindrical
PEC wall that surrounds both layers.

This paper is structured as follows. Section II describes
the ray-optics problem. In Section III, the non-linear integral
equation of ray-congruence is solved through a truncated
Abel transform method. The analytical refractive index profile
derived in the previous sections is validated in Section IV
by full-wave simulations, and Section V presents one of the
possible applications of RLLs in antenna systems. Finally,
conclusions are drawn in Section VI.

II. RAY OPTICS FORMULATION AND EXPRESSION FOR
THE RAY-PATHS

The following analysis stands for circular apertures of radius
R, and a cylindrical reference system (ρ, φ, z) centered in the
circular area. The problem at hand consists in determining the
refractive index profile neq(ρ) required in the bottom PPW to
obtain a plane-wave in the top one. After simplifying (11) in



Fig. 2. Ray-path in a PPW filled with a radially graded index medium for two
cases: (a) 2ξ(R) < π, (b) 2ξ(R) > π. Case (a) represents the ray-path in
a conventional Luneburg lens and case (b) represents the ray-path in a RLL,
when a PEC wall is around the lens rim and reflected rays are canalized in
an upper PPW with refractive index n1.

[8] for the case of an azimuthally symmetric medium, one can
write:
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d

d`
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neqρ

2 dϕ

d`

]
= 0, (1)

where d` is the elementary length along a curvilinear ray-path.
From (1), it is clear that neqρ2dϕ/d` will be constant along the
ray-path (except at ρ = 0). To further simplify the calculation
of the ray trajectory, the angle ψ is defined between the ray
direction and the radial coordinate (see Fig. 2) such that

dρ/d` = cosψ (2a)
ρdϕ/d` = sinψ (2b)

Substituting (2b) in the expression between brackets in (1),
one obtains the generalization of the Snell’s law for radially
graded index (GRIN) medium

neqρ sinψ = L, (3)

where L is constant along the ray-path and it can be interpreted
as a ray angular momentum.

Furthermore, one can divide (2b) by (2a) and use (3) to
write the ray-path trajectory just as a function of ρ, φ as

ρ
dϕ

dρ
= ∓ L√

(ρneq(ρ))
2 − L2

, (4)

where the upper/lower sign applies for ψ < π
2 , ψ >

π
2 .

Let us now consider a source placed at (ρ0, ϕ0) = (R, π), as
illustrated in Fig. 2, and denote by α the angle between the ray
departing from the source and the x-axis. Since L is constant
on the ray-path, it can be calculated as L = Rn0 sinα,
where n0 is the refractive index at the rim of the lens.
From (3), one can also define ρmin as the minimum radial
distance for the trajectory of a given ray. This quantity satisfies
neq (ρmin) ρmin = L and it corresponds to the point where
ψ = π/2. Since a ray cannot propagate when its momentum
is larger than L, the ray undergoes a turning point at ρmin,
ψ is larger than π/2 before the turning point and it becomes
smaller after. To determine the ray-path after the turning point,

it is convenient to define the positive angle ξ(ρ) [shown in
Fig. 2(a) and (b)] as

ξ (ρ) =

∫ ρ

ρmin

|L|

ρ′
√
(ρ′neq(ρ′))

2 − L2

dρ′, (5)

Bearing in mind the symmetry of the trajectory around the
turning point, one can write the azimuthal angle covered by
the ray until the observation point as ξ(R)+ sgn(π2 −ψ)ξ(ρ).
In turn, the total angle covered by the ray is 2ξ(R).

Two different cases can be individuated for the ray-path
depending on if 2ξ(R) is larger or smaller than π:

ϕ(ρ) = π −
(
ξ(R) + sgn(

π

2
− ψ)ξ(ρ)

)
; 2ξ(R) < π. (6a)

ϕ(ρ) = −π +
(
ξ(R) + sgn(

π

2
− ψ)ξ(ρ)

)
; 2ξ(R) > π. (6b)

In (6a), ϕ ∈ [0, π), whereas in (6b) ϕ ∈ (−π, π). Equations
(6a)–(6b) give the explicit functional equation in polar coordi-
nates (ρ, ϕ) of the ray trajectory of momentum L for a given
neq(ρ) profile.

One can also observe that, due to the symmetry of the
problem, the ray ends its trajectory inside the lens with the
same angle α with which it is launched from the source.
This property stems from the conservation of the angular
momentum. Therefore, at the exit point P the angle ϕ assumes
the values

ϕout = ± (π − 2ξ(R)) for 2ξ(R) ≶ π. (7)

The ray-paths given by (6a) and (6b) represent two quite
different situations, illustrated in Fig. 2(a) and Fig. 2(b),
respectively. When 2ξ(R) < π (6a) the behavior is that of
the Luneburg lens, and it is possible to collimate outgoing
rays parallel to the x-axis. Conversely, when 2ξ(R) > π (6b),
one can obtain ray congruence in reflection, assuming that a
cylindrical PEC wall surrounds the rim of the lens. The latter
behavior is the one sought for the RLL. Applying Snell’s law
at the circumference (n0 sinα = n1 sinϕout) and using (7)
and (5), one can write

π±arcsin
(
n0

n1
sin |α|

)
= 2

∫ R

ρmin

sin |α|

ρ′
√

(ρ′neq/Rn0)
2 − sin2 α

dρ′,

(8)
where the lower sign corresponds to the condition for the
Luneburg lens, whereas the uper one stands for the RLL.

III. EXACT SOLUTION FOR THE REFLECTING LUNEBURG
LENS

Equation (8) is solved in closed-form when n0 = n1
using the truncated Abel transform method. To that end, we
normalize the radius (R = 1) and define the new variables
N(ρ)=neq(ρ)ρ/n0 and l=sinα with l∈ (0, 1), so N(1)=1
and N(ρmin)= l. Upon substitution in (8) one has

π + arcsin(l) = 2

∫ 1

ρmin

l

ρ

√
(N(ρ))

2 − l2
dρ. (9)

Next, we apply the change of variables x′ = ln ρ and use
η(x′) = N(ex

′
) in (9), thus obtaining

π + arcsin(l) = 2

∫ 0

ln ρmin

l√
η2(x′)− l2

dx′. (10)



Fig. 3. (a) Radial profile of the refractive index of the RLL (blue line) and
of the equivalent Luneburg Lens (red line) for n0 = n1 = 1. (b) Ray-paths
of the RLL (red lines) and direction of reflected rays in upper PPW (blue
arrows).

A second change of variables, η′ = η(x′), is applied in (10).
Since x′ = x(η′), (10) may be written as

π + arcsin(l) = 2

∫ 1

l

dx′

dη′
l√

η′2 − l2
dη′, (11)

where we have used N(1)=1 in the upper limit of the integral.
The left-hand side of (11) is the truncated Abel transform of
the inverse function η′=η(x′). After applying the inverse Abel
transform [8] to both members, one obtains∫ 1

η

π + arcsin(l′)√
l′2 − η2

dl′ = −π ln ρ. (12)

The sum of integrals in the left-hand side of (12) can be written
in closed form as in [8]. Upon substitution in (12), one has

ln
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1 +

√
1− η2
η

)
+

1

2
ln
(
1 +

√
1− η2

)
= − ln ρ. (13)

Considering that η(ln ρ) =N(ρ) = neq(ρ)ρ/n0, the inversion
of (13), after re-normalizing by R, leads to

neq = n0

−1 +
√
1 + 8 (ρ/R)

2

2 (ρ/R)
2

3/2

, (14)

which is the exact form of the refractive index profile of
the RLL. Although the condition in (8) for Luneburg lenses
and RLLs simply differs in a sign, the RLL refractive index
profile in (14) is quite different from that of the Luneburg lens

neq = n0

√
2− (ρ/R)

2. Fig. 3(a) compares the radial profile
of the refractive index for the RLL (blue line) with that of
the Luneburg lens (red line). The ray-paths for the RLL are
shown in Fig. 3(b), where the red and blue lines represent
the rays in the bottom and top PPWs, respectively. It is also
important to note that an inner focal region arises around
the point (ρ, φ) = (0.46R, 0); this fact will be exploited in
Section V.

Fig. 4. (a) Perspective view of simulated RLL cutted in the yz plane, and
inset with detail of the corner reflector. Real part of the vertical component
of the electric field in logarithmic scale for (b) the bottom and (c) the top
PPWs. Phase distribution in degrees for (d) the bottom and (e) the top PPWs.

IV. NUMERICAL RESULTS

The performance of the RLL is verified in this section
by full-wave simulations in CST Microwave Studio [9]. The
simulated structure, shown in Fig. 4(a), consists of two stacked
circular PPWs with radius R = 7λ0, with λ0 being the free-
space wavelength. The bottom PPW is filled with a variably
dielectric medium with the radial refractive index profile given
by (14) and plotted in Fig. 3(a). Both parallel plates have
a thickness d = 0.15λ0 and are connected by a 180o bend
implemented by a corner reflector with the geometry presented
in the right inset of Fig. 4(a). Fig. 4(b) and (c) show the
amplitude of the vertical component of the electric field in
the bottom and top PPWs, respectively. On the other hand,
Fig. 4(d) represents the corresponding phase in the bottom
PPW, whereas Fig. 4(e) depicts the phase in the top PPW.
One can observe that a plane-wave is neatly formed in the top
PPW, thus achieving the desired behavior. Given the azimuthal
symmetry of the GRIN profile, it is clear that one avoids phase
errors when moving the source around the focal circumference,
as opposed to pillbox systems based on parabolic reflectors.

V. APPLICATION IN ANTENNA SYSTEMS

In addition to their potential for eliminating the scan loss
in pillbox systems, RLLs can be also used as beamformers



Fig. 5. Left: Mapping between the height of a metallic pin and equivalent
refractive index where r = 0.3 mm, a = 1.25 mm, and d = 3.75 mm for
an operating frequency of 30 GHz. Right: Bottom PPW for the multibeam
RLL beamformer implemented by a bed of nails, the radius of the structure
is R = 7λ0, where λ0 is the free-space wavelength at 30 GHz.

enabling a complete azimuthal coverage. To that end, instead
of placing the primary feed at the focal circumference, one can
put it in the focal region highlighted in Fig. 3(b). Fig. 5 depicts
the bottom PPW of the proposed structure with multiple
excitation ports. It is to be observed that, in this case, the
variable dielectric has been implemented by metallic pins, as
suggested in [10], [11]. The correspondence between the pins’
height and the equivalent refractive index is shown in the left
inset in Fig. 5 for a simulation frequency of 30 GHz. The
top parallel plate has been also replaced by an open structure
consisting of a metasurface sinusoidally modulated in the x
direction, implemented likewise by a bed of nails (see inset
on left side of Fig. 6(a)). Fig. 6 also shows the 3D directivity
patterns and color-maps in the reciprocal (u − v) plane for
sources placed at φ=0o, φ=20o and φ=40o. The azimuth
and elevation angles of the pencil beam change as one switches
ports.

The obtained operation is similar to that of Variable Incli-
nation Continuous Transverse Stub (VICTS) array, where the
beam is steered by changing the relative orientation of a planar
wavefront and a slotted plate [12].

VI. CONCLUSION

This paper presents the analytical derivation of the refractive
index profile for the Reflecting Luneburg lens (RLL). It
consists of two stacked parallel plate waveguides (PPWs)
with circular shape. The refractive index profile in the bottom
PPW is such that the rays are collimated in the top one,
after being reflected at the cylindrical PEC wall. To the
best of our knowledge, despite their simple expression, RLLs
have never been studied before. The validity of the derived
close-form formula has been verified by full-wave simulations
and possible applications in antenna systems have been also
discussed.
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l’UBL (Université Bretagne Loire) and the Conseil Régional
de Bretagne.

REFERENCES

[1] Young-Jin Park, A. Herschlein, and W. Wiesbeck, “A photonic bandgap
(PBG) structure for guiding and suppressing surface waves in millimeter-
wave antennas,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 10,
pp. 1854–1859, Oct. 2001.

[2] C. Pfeiffer and A. Grbic, “A printed, broadband Luneburg lens antenna,”
IEEE Trans. Antennas Propag., vol. 58, no. 9, pp. 3055–3059, Sep. 2010.

[3] M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci,
“Non-uniform metasurface Luneburg lens antenna design,” IEEE Trans.
Antennas Propag., vol. 60, no. 9, pp. 4065–4073, Sep. 2012.

[4] Y. B. Li, R. Y. Wu, W. Wu, C. B. Shi, Q. Cheng and T. J. Cui,
“Dual-Physics Manipulation of Electromagnetic Waves by System-Level
Design of Metasurfaces to Reach Extreme Control of Radiation Beams,”
Adv. Mater. Technol., vol. 2, no. 1, p. 1600196, 2017.



[5] M. Ettorre, R. Sauleau, L. Le Coq, and F. Bodereau, “Single-folded
leaky-wave antennas for automotive radars at 77 GHz,” IEEE Antennas
Wireless Propag. Lett., vol. 9, pp. 859–862, Sep. 2010.

[6] M. Ettorre, R. Sauleau, and L. Le Coq, “Multi-beam multi-layer leaky-
wave SIW pillbox antenna for millimeter-wave applications,” IEEE
Trans. Antennas Propag., vol. 59, no. 4, pp. 1093–1100, Apr. 2011.

[7] J. Ruiz-Garcı́a, M. Faenzi, A. Mahmoud, M. Ettorre, P. Potier,
P. Pouliguen, R. Sauleau, and D. González-Ovejero, “Quasi-optical
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