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ABSTRACT: The rate at which land surface soils dry following rain events is an important feature of terrestrial models. It

determines, for example, the water availability for vegetation, the occurrences of droughts, and the surface heat exchanges.

As such, surface soil moisture (SSM) ‘‘drydowns,’’ i.e., the SSM temporal dynamics following a significant rainfall event, are

of particular interest when evaluating and calibrating land surfacemodels (LSMs). By investigating drydowns, characterized

by an exponential decay time scale t, we aim to improve the representation of SSM in the ORCHIDEE global LSM. We

consider t calculated over 18 International Soil Moisture Network sites found within the footprint of FLUXNET towers,

covering different vegetation types and climates. Using the ORCHIDEE LSM, we compare t from the modeled SSM time

series to values computed from in situ SSMmeasurements. We then assess the potential of using t observations to constrain

some water, carbon, and energy parameters of ORCHIDEE, selected using a sensitivity analysis, through a standard

Bayesian optimization procedure. The impact of the SSM optimization is evaluated using FLUXNET evapotranspiration

and gross primary production (GPP) data. We find that the relative drydowns of SSM can be well calibrated using

observation-based t estimates, when there is no need to match the absolute observed and modeled SSM values. When

evaluated using independent data, t-calibration parameters were able to improve drydowns for 73% of the sites.

Furthermore, the fit of the model to independent fluxes was only minutely changed. We conclude by considering the

potential of global satellite products to scale up the experiment to a global-scale optimization.

KEYWORDS: Hydrology; Soil moisture; Data assimilation; Land surface model

1. Introduction

Understanding the dynamics of surface soil moisture (SSM)

storage is vital for developing accurate land surface models

(LSMs). Soil moisture availability regulates a number of key

physical processes of theEarth system, including thepartitioningof

the energy fluxes at the land surface, the biogeochemical cycles,

and streamflows. Since the persistence of the soil moisture anom-

alies, known as soil moisture memory, is longer than the memory

of the atmosphere (days tomonths compared to hours to days), the

residence times of soil moisture are also important for the pre-

diction of heat waves (Lorenz et al. 2010), droughts (Nicholson

2000), floods (Bonan and Stillwell-Soller 1998), crop yield (deWit

and Van Diepen 2008), or wildfires (Krueger et al. 2015).

However, modeling soil moisture dynamics is complex since

it exhibits large sensitivities to meteorological forcing data and

land surface model parameterizations. Fortunately, there are

now a large variety of soil moisture observational products

available with which to confront the models and possibly im-

prove their representation of soil moisture. These range from

local in situ measurements making up the ISMN (International

Soil Moisture Network; Dorigo et al. 2011, 2013) to remotely

sensed global products using active or passive microwave sensors,

such as SMOS (Soil Moisture Ocean Salinity; Kerr et al. 2010),

SMAP (Soil Moisture Active Passive; Entekhabi et al. 2010b), or

the ESA CCI SM (European Space Agency Climate Change

Initiative Soil Moisture) combined product (Dorigo et al. 2017).

Soil moisture observations and retrievals can be used not only

to evaluate the different processes in the model but also to cal-

ibrate the associated parameters, using for example data as-

similation (DA) techniques. DA refers to the act of combining

models and observations, while using the available knowledge

about their respective uncertainties (Tarantola 2005). This can

be used to improve the values of the model state variables (e.g.,

De Lannoy and Reichle 2016; Kolassa et al. 2017) and/or pa-

rameters (e.g., Yang et al. 2016; Pinnington et al. 2018). When

the misfit between modeled and observed soil moisture cannot

be resolved through state or parameter estimation, i.e., the

model cannot reproduce the data within the defined uncer-

tainties after calibration, we gain insight into the model struc-

tural errors and possible directions for model improvement.

Soil moisture DA has been shown to improve the prediction of

root-zone and surface soil moisture estimates as well as drought

and flood modeling (Komma et al. 2008; Bolten et al. 2010; Wang

et al. 2009; Liu et al. 2011; Draper et al. 2012; De Lannoy and

Reichle 2016; Kolassa et al. 2017; Gruber et al. 2019). It has also

been used to improve precipitation data (Román-Cascón et al.

2017) and infer soil textures (Pinnington et al. 2018). Due to its

strong coupling with the carbon cycle, soil moisture observational

products have also been assimilated in conjunction with other

products such as FAPAR (fraction of absorbed photosynthetically

active radiation; Wu et al. 2019), atmospheric CO2 concentrations
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(Wuet al. 2020) and leaf area index (Bonanet al. 2020)with the aim

to improve simultaneously themodelingof carbonandwater cycles.

There are a number of potential biases between the obser-

vations and model output that should be considered prior to

parameter calibration. Bias in observations typically reflects

instrumental inaccuracies, representational errors and, when

considering satellite products, errors in the retrieval algorithms

(De Lannoy et al. 2007), whereas biases in the model are due to

imperfect model structure (e.g., a missing process), forcing data

and initial conditions. Due to the large biases and discrepancies

in the soil moisture climatologies caused by these errors, many

studies perform bias removal prior to calibration. When per-

forming state estimation, it is critical to remove all of these biases

(Reichle and Koster 2004; Drusch et al. 2005; Crow et al. 2005;

Draper et al. 2012). Parameter calibration, on the other hand, can

provide a way to remove some of the biases between the model

mean state variable and the observations. However, separating the

biases that can be corrected through the parameter calibration

from the other types of biases is challenging. Before applying a

Bayesian parameter calibration, we still need to remove all biases

that cannot be alleviated by the parameter calibration. Hence, in

parameter estimation studies it is also common to remove biases

prior to calibration (Scholze et al. 2016; Wu et al. 2020; de Rosnay

et al. 2020).Another approach for dealingwith soilmoisture biases

is to consider only temporal dynamics such as correlation and

autocorrelation. These temporal dynamics, which tend to be less

affected by biases, can be very informative about important model

processes and phenomena controlling the residence time of soil

moisture after a rain event (i.e., the soil moisture memory).

Soil moisture memory can be estimated using a number of

different metrics, most of which are based on the autocor-

relation of the soil moisture time series. These include the

e-folding autocorrelation first proposed by Delworth and

Manabe (1989) and used in many studies such as Koster and

Suarez (2001) and Raoult et al. (2018). Autocorrelation

metrics are applied to the anomalies of the soil moisture

time series where anomalies are defined as deviations from a

mean soil moisture state. However, in most cases, the soil

moisture record is too short to accurately calculate the soil

moisture mean state and so other metrics have been developed

to measure soil moisture memory. One example is mean per-

sistence time—the average time soil moisture spends above or

below a certain threshold (Ghannam et al. 2016). Another is

stored precipitation fraction, which is more dependent on

precipitation events (McColl et al. 2017a). More recently,

drydowns have been used to measure soil moisture memory.

Drydowns are characterized as the rate at which the soil

dries during periods with no precipitation. After a precipitation

event, part of the water input is intercepted by vegetation (if

present), part runs off to surface water and the rest infiltrates

into the soil. According to Laio et al. (2001), the drying rate of

the soil typically follows three simplified different regimes:

(i) While the soil moisture remains above field capacity,

drainage and runoff dominate.

(ii) When the soil moisture gets below field capacity but

remains above a critical point, drying occurs by evapo-

transpiration at the rate of atmospheric demand and is

invariant with respect to soil moisture. This is known as

‘‘stage I’’ evapotranspiration.

(iii) Below the critical point when plants start closing their

stomata to reduce transpiration, the rate of evapotrans-

piration becomes limited by soil moisture availability.

This is known as ‘‘stage II’’ evapotranspiration.

Generally, drainage and stage I evapotranspiration occur

rapidly and so drydowns, the time series of soil moisture after

the infiltration of precipitation into the soil, will, in most cases,

be dominated by stage II evapotranspiration.

Drydowns have been the focus of many recent studies and

drying rates have been shown to vary greatly between different

models, in situ measurements and satellite retrievals. For exam-

ple, Rondinelli et al. (2015) and Shellito et al. (2016) both showed

that satellite data (SMOS and SMAP, respectively) dry out faster

than in situ data and Shellito et al. (2018) further showed that soil

moisture in satellite data candry out faster than that simulated in a

land surface model. Martínez-de la Torre et al. (2019), using

evapotranspiration data to measure drydowns instead of soil

moisture measurements, compared a number of land surface and

hydrological models and found that drydown rates differed be-

tween them. Drying rates have also been shown to change sea-

sonally and spatially within a given LSM (Salvia et al. 2018).

Many previous studies have estimated drying rates for the root-

zone soil moisture (RZSM). This zone covers a depth of approx-

imately one meter and relates to water availability for vegetation.

However, more recently, studies have focused on surface soil

moisture (SSM; McColl et al. 2017a,b), which represents the top

soil moisture (i.e., water content in the first few centimeters of the

soil layer). SSM andRZSMare not directly governed by the same

processes: the surface beingmore influenced by direct evaporation

and runoff, whereas the root zone is more directly influenced by

transpiration and drainage.However, since all these processes and

soil water transfers depend on soil properties and land coverage,

both SSM and RZSM have been shown to be highly correlated in

many cases. Nevertheless, they can be very different, as, for ex-

ample, under dry conditions where there can be a decoupling

between surface and root zone soil moisture. When comparing

modeled and measured soil moisture, it is therefore important to

account for representative depths.When in situ observations are

used, the sensor depth is generally provided. However, for sat-

ellite products, the representative depth is less well defined, es-

pecially if various types of sensors or spectral bands with specific

penetration/representative depths are involved.

In this study we will use the process-based ORCHIDEE

LSM (Krinner et al. 2005) to investigate and calibrate SSM

dynamics.We will focus on the use of in situ data to prepare for

subsequent use of satellite SSM estimates. In light of the above,

we aim to answer the following key questions:

d Can we identify SSM drydowns in the ORCHIDEE LSM in

an automatic and consistent manner?How do thesemodeled

drydowns compare to the ones observed in the in situ data?
d Which key hydrology, and possibly energy and carbon,

parameters control drydown shapes? Can we improve these

parameters through calibration?
d Is it better to constrain the calibration with t estimates

derived from SSM observations or with the full time series of
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(bias corrected) observations? How do these calibrations

affect first the water fluxes and then the energy and car-

bon fluxes?
d What are the implications of these findings for the use of

existing and upcoming soil moisture satellite products?

2. Methods and materials

a. Model and data

1) THE ORCHIDEE LSM

TheORCHIDEE LSM is the land component of the French

Earth System Model (ESM) developed at the IPSL (Institut

Pierre Simon Laplace). It simulates the interactions between

the biosphere and the atmosphere by modeling the water, en-

ergy, and carbon cycles (Krinner et al. 2005). The model can be

run over a wide range of time scales, from 30min to thou-

sands of years, and spatial scales, from single mesh to global.

The version of ORCHIDEE used in this study (Boucher

et al. 2020; Lurton et al. 2020) has been developed from the

most recent phase of the Coupled Model Intercomparison

Project (CMIP6). The only difference with the CMIP6 config-

uration of the model is the activation of the R-SOIL parame-

terization, which accounts for a supplementary resistance to soil

evaporation. This is the version and configuration used inRaoult

et al. (2018).

The model can either be run in coupled mode, where the

atmospheric variables are calculated by another model, or run

offline using meteorological forcing data to drive the model.

When running the model offline, meteorological data mea-

sured at each location are used. These data are gap-filled

(Vuichard and Papale 2015) to produce half-hourly or hourly

data streams of air temperature, humidity, pressure, wind

speed, precipitation rates, and shortwave and longwave in-

coming radiation. In ORCHIDEE, all the physical processes

are treated at a half-hourly time step; however, some processes

like phenology (senescence and mortality) are calculated over

daily time steps.

ORCHIDEE’s multilayered hydrological model discretizes

the first 2m of the soil column over 11 layers with increasing

grid spacing following a geometric progression with common

ratio 2 (de Rosnay et al. 2002). Soil moisture at different levels

is obtained by resolving the Richards equation which repre-

sents the vertical water transfers in the unsaturated zone. With

the finer discretization at the top of the column (i.e., depths of

1mm, 4mm, 1 cm, 2.2 cm, 4.5 cm, etc.), we are able to match

the simulated soil moisture to the depth of the in situ sensor

used to generate the observations. Although the vegetation in

ORCHIDEE is represented by 15 plant functional types

(PFTs), when calculating the soil hydrology, these PFTs are

further aggregated into three groups: bare soil, short vegeta-

tion (grasses and crops), and forests. An independent soil water

budget is calculated for each of these three groups. In this

study, we consider the grid box weighted average SM profile

(based on the fraction of vegetation present). The key water,

energy, and carbon parameters of ORCHIDEE considered in

this study are listed in Table 1 and further described in the

online supplemental material.

2) IN SITU DATA

Two databases of in situ data are used in this study. The first

is from the International Soil Moisture Network (ISMN),

which is an international cooperation that establishes and

maintains a global in situ soilmoisturedatabase (Dorigo et al. 2011,

2013). In situ soil moisture measurements from operational net-

works and validation campaigns are collected and harmonized.

The data are transformed into common volumetric soil

moisture units and checked for outliers and implausible

values (Dorigo et al. 2011). This database provides indis-

pensable soil moisture observations needed for the cali-

bration of LSMs like ORCHIDEE. To comply with the

different measurement techniques and installation positions

of the sensors, this database provides a measurement depth

interval. At each site considered in this study (Table 3), the

maximal depth of this interval is the depth used.

The second in situ database we use in this study is

FLUXNET2015 (Pastorello et al. 2017). In this study we are

running ORCHIDEE offline and so we need to prescribe

the meteorological forcing data. Since soil moisture is

highly influenced by meteorological forcing, especially

precipitation data, it is important to use the most reliable

local measurements. The FLUXNET2015 database pro-

vides in situ half-hourly or hourly meteorological forcing

data. In addition, it provides net carbon flux measurements

[further split into gross primary production (GPP) and

ecosystem respiration (Resp)] and latent (LE) and sensible

(HS) heat fluxes. In this study we use primarily the LE and

GPP estimates to evaluate the optimized model. To select

sites for our experiments (listed in Table 3) we consider

all the ISMN sites which are found within 250 m of a

FLUXNET tower from the FLUXNET2015 database. At

each site, the overlap between both data records is used as the

period of study. We want to ensure that the seasonal cycles are

captured so we only keep sites with at least one year of near-

continuous data.

We do acknowledge that the ISMN sites used may not be in

the direct footprint of a FLUXNET tower, and the additional

factors such as topology, vegetation distribution, soil hetero-

geneity, and prevailing winds may affect the measurements.

However, this is more accurate than the alternatives such as

global reanalysis forcing maps (e.g., CRUNCEP), which work

on a coarser spatial resolution.

b. Selecting drydown events

Methods for identifying drydowns fall into twomain categories.

The first type of method uses precipitation data to determine dry

periods. This is either done by defining two thresholds of signifi-

cant rainfall events separated by at least a few days; one threshold

marks the beginning of the period with a significant wetting of the

soil and a second threshold marks the end of the dry period (e.g.,

Shellito et al. 2016; Salvia et al. 2018). Alternatively, a dry

period can be defined as containing at least a given number of

days without rainfall (e.g., Martínez-de la Torre et al. 2019).

The second type of method analyses the soil moisture time

series directly to find constantly decreasing dynamics, as in

McColl et al. (2017b).
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TABLE 1. List of the key water, energy, and carbon parameters of the ORCHIDEE LSM used in this study. The full list is used in the

sensitivity analysis (section 4c) whereas the sublist (denoted by carets) is used during the calibration experiments. Shown are the pa-

rameter descriptions and default model values, i.e., the values used when performing a standard ORCHIDEE run. Note that a number of

the parameters are PFT specific, while some others are specific to the soil texture used based on the soil composition of the site. Full

parameter descriptions and equations can be found in the supplemental material.

Plant function typea

Parameter Description ENF temp EBF DBF/MF ENF Bor WSA/OSH SAV CRO

Photosynthesis

a1 Empirical factors involved in the

calculation of leaf-to-air vapor pressure

difference

0.85 0.85 0.85 0.85 0.85 0.85 0.85

b1 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Vcmax^ Maximum carboxylation rate

(mmol m22 s21)

40 50 45 35 50 60 60

Tmin Minimal photosynthesis temperature (8C) 24 24 24 24 24 24 24

Tmax Maximal photosynthesis temperature (8C) 55 55 55 55 55 55 55

Phenology

LAImax Maximum leaf area index (m2m22) 4 5 3.5 4 2 5 5

Lagecrit Critical leaf age (days) 730 180 910 180 120 90 90

KLAIhappy Threshold of LAI below which plant uses

carbohydrate reserves

0.5 0.5 0.5 0.5 0.5 0.5 0.5

SLA^ Specific leaf area (m2 g21) 0.02 0.026 0.009 26 0.26 0.26 0.026 0.026

tleafinit Time to attain initial foliage (days) 10 10 10 10 10 10 10

Tsenes Temperature threshold for

senescence (8C)
— — 12 — 21.1375 5 5

Autotrophic respiration

Fracgresp Fraction of GPP that is lost as growth

respiration

0.28 0.28 0.35 0.35 0.28 0.28 0.28

MRoffset Offset and slope of the linear relationship

between temperature and maintenance

respiration

0.14

MRslope 0.16 0.16 0.16 0.16 0.12 0.16 0.12

Soil water availability

z^ Root profile (m21) 0.8 0.8 1.0 1.0 4.0 4.0 4.0

a^ Controls water stress curve 1

Soil texture

Sandy loam Loam Clay loam

Soil hydrology

n^ Van Genuchten water retention curve

coef n

1.86 1.56 1.31

A^ Van Genuchten water retention curve

coef A (mm21)

0.0075 0.0036 0.0019

Ks^ Hydraulic conductivity at saturation

(mm day21)

1060.8 249.6 62.4

uw^ Volumetric water content at wilting

point (m3m23)

0.0657 0.0884 0.1496

uf^ Volumetric water content at field

capacity (m3m23)

0.1218 0.1654 0.2697

ur^ Residual volumetric water

content (m3m23)

0.055 0.078 0.085

us^ Saturated volumetric water

content (m3m23)

0.41 0.42 0.41

p%^ Percent of soil moisture above which

transpiration is max

0.8

slr Slope coefficient for reinfiltration 0.1
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We choose to use precipitation data to identify drydowns for

two reasons. First, we want to be able to compare modeled and

observed SSM time series over the same period. The differences

in the modeled and observed soil moisture temporal dynamics

could mean that different drydown periods would be selected for

each data stream if we used the second method. Second, by using

FLUXNET sites, the precipitation data we have access to are

measured locally and are therefore more reliable.

Using the FLUXNET data at each site, we first select

5-day periods with negligible rainfall (,1 3 1022 mm) for

which we have at least 70% in situ SSM observations.

Unlike Shellito et al. (2016), we do not include any criteria

determining a threshold amount of precipitation accumu-

lated over the previous day. We found that such criteria

were more likely to exclude drydowns and that five dry days

were sufficient to ensure an exponentially decaying drying

of the soils.

Once a period of interest has been selected, an exponential

model of the form

u(t)5 u
A
exp

�
2
t

t

�
1 u

eq
(1)

is fitted to each drydown using a nonlinear least squares

fitting algorithm, where u is surface soil moisture content, t

is the time since the beginning of the drydown in days, uA is

the amplitude of the drydown, t is the temporal e-folding

decay, and ueq is the SSM equilibrium value. Modeled

u approaches but never reaches ueq. In fitting the expo-

nential, bounds are set to keep realistic values. The am-

plitude of the drydown A is set to always be positive. When

fitting the modeled drydowns, ueq is set to be greater than ur.

For the ORCHIDEE run prior to calibration, the default value

of ur is used (see Table 1). During the optimization, this pa-

rameter is allowed to change, adjusting this lower bound.

When fitting the observed drydowns, ueq is set to be between

the lowest value of the whole SSM time series and the lowest

values of SSM during the drydown period considered (following

Shellito et al. 2016).

Consistent with McColl et al. (2017b), the drydown is

then only kept if the coefficient of determination (R2) of the

exponential fit is at least 0.7. We also only consider dry-

downs with t values less than 50 days, following Martínez-
de la Torre et al. (2019). This upper bound was im-

plemented since drying events with t exceeding this value

would represent very slow drying or no drying at all which

could be due to artificial water sourced from irrigation, too

weak solar radiation in winter for soil evaporation, or no

storage of soil moisture in regions of shallow groundwater

table and slow drainage. These criteria are used when

identifying drydowns in both the modeled and observed

time series. No further filtering of drydowns is undertaken.

Since in this study we only consider 18 sites, it would be

possible to look at each drydown and discard the ones that

do not ‘‘look right.’’ However, since we anticipate scaling

the approach to a global scale, we choose instead to have a

systematic procedure for identifying and fitting drydowns.

3. Optimization framework

a. Sensitivity analysis

Before calibrating a model, it is vital to identify the key in-

ternal parameters which have the most impact on the given

model output. This is because (i) calibration methods can be

costly and scale with the number of parameters used in the

optimization, and (ii) attempting to calibrate an excessive

number of parameters can lead to overfitting, and a severe

degradation in model performance when the model is used in

predictive mode, especially with respect to variables not used

in the calibration. The first stage is therefore to carry out a

parameter-sensitivity study by running the model in forward

mode with many sets of feasible parameter values to select

those parameters that will then be estimated in the calibration.

For this task, we used the Morris method (Morris 1991;

Campolongo et al. 2007). TheMorris method is a ‘‘one-at-a-time’’

method using randomized sampling matrices which allow direct

observation of elementary effects. This guarantees that mean-

ingful information can be extracted from each parameter, without

mistakenly attributing effects to that parameter. This method

requires a relatively low number of samples: (p1 1)n, where p is

the number of parameters, and n is the number of trajectories

generated. The method is qualitative; it provides a heuristic score

to intuitively represent the relative sensitivity of parameters.

While it does not inform us on how sensitive the parameters are,

or on the interactions between parameters, and depends heavily

on our choice of parameter intervals, this ranking can help high-

light the important parameters and remove the ones with little to

no effect.

TABLE 1. (Continued)

Energy balance

rs*^ Factor controlling soil resistance to

evaporation

1

stc* Factor controlling soil thermal

conductivity (cnd)

1

hc* Factor controlling heat capacity (pcapa) 1

z0 Reference rugosity length (m) 0.0625

wet Wet soil heat capacity of soils 3.03 3 106

dry Dry soil heat capacity of soils 1.80 3 106

a DBF, deciduous broadleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forest; WSA, woody

savannah; OSH, open shrubland; SAV, savannah; CRO, cropland.
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b. Principles of DA

DA refers to the act of optimally combining observations

(whether measured directly or indirectly) with a numerical

model, usually with the aim of reducing the difference be-

tween them. It can be used either to update the state variables

of the model or improve the values of internal model pa-

rameters. In this study we will use DA for the latter. Using a

Bayesian framework, and assuming the parameters, obser-

vations and model outputs are Gaussian distributed, we aim

to minimize the cost function J(x), where x denotes the vector

of parameters we wish to optimize, i.e., the most sensitive and

uncertain model parameters:

J(x)5 [M(x)2 y]TR21[M(x)2 y]1 (x2 x
b
)
T
B21(x2 x

b
) .

(2)

The first term of this function measures the mismatch be-

tween the observations y and the model M(x), where M is the

composition of the model and observation operators; the

model operator simulates the output for a given set of pa-

rameters x and the observation operator ensures the simulated

output is comparable to the observations treated (here the

identity function). In this study, y is taken to be either a time

sequence of observed t values or the entire time series of SSM

observations. The second term of the cost function measures

the mismatch between the prior xb and parameter values x

(exponent T denotes the transpose).

These two terms are weighted by their error covariance

matrices; R and B are the prior covariance matrices for the

observation and parameter errors, respectively. The error

covariance matrices are hard to estimate, therefore, as in

most studies, these two matrices are kept diagonal, which

offsets equifinality issues of correlated parameters. Following

Bastrikov et al. (2018), we defined the observation errors

(variances) as the mean-squared difference between the ob-

servations and the prior model simulations—this reflects not

only the measurement errors but also significant model er-

rors. When calibrating the t values, the errors are of order

100 days2. For the SSM values, these errors are of order

0.001 (m3m23)2.

To check that the variances used for R were sensible, after

the optimization, we calculated the reduced x2; i.e., the nor-

malized cost function at the minimum (Tarantola 2005). When

this metric is significantly greater than 1, it implies an un-

derestimation of the R and/or B matrices (note that B ma-

trices are likely to be less affected by diagonal elements).

Therefore, for calibrations where the reduced x2 were sig-

nificantly greater than 1, we performed the calibration

again inflating variances. Fortunately, this was only the case

for a couple of calibrations. (See supplemental material for

more information on the reduced x2 and values used to

define R for each optimization).

The optimal set of parameters corresponds to the minimum

of this function. To minimize the cost function, we use the DA

system ORCHIDAS presented in Bastrikov et al. (2018;

https://orchidas.lsce.ipsl.fr/; accessed September 2020) and the

genetic random search algorithm (Goldberg andHolland 1988;

see supplemental material for the justification of algorithm

choice). This iterative method is a type of evolutionary algo-

rithm that follows the principles of genetics and natural se-

lection, where each parameter corresponds to a gene in a

chromosome. At the optimum, assuming Gaussian prior errors

and linearity of the model around the solution, we then ap-

proximate the posterior error covariance matrix A using the

following equation:

A5 [HTR21H1B21]21 , (3)

whereH is the Jacobian (the model sensitivity) at theminimum

of the cost function J(x). This posterior error covariancematrix

can be used to compute the posterior uncertainties of each

parameter.

c. Bias correction

Extra care is needed when using soil moisture observa-

tions or retrievals in DA due to potential large biases be-

tween the observed and the modeled quantities. When

using the full SSM time series to calibrate the model, we will

bias correct the observations using the prior model. There

are a number of different approaches used to rescale the

observations to deal with these biases. These range from

methods which simply rescale to the mean value, to full

cumulative distribution function matching (CDFmatching)

methods, which match the statistical moments of the ob-

servational data to the model ones, typically mean, vari-

ance, skewness, and kurtosis (Reichle and Koster 2004).

Commonly used by the land surface community is the

simplified CDF matching approach proposed by Scipal et al.

(2008), which corrects for the first two moments, i.e., the

mean and the variance. This is the method we will focus on

this study. Note that this method does not account for sys-

tematic differences between the seasonal cycles, and while

we do acknowledge such methods exist and are potentially

more robust (e.g., de Rosnay et al. 2020), they are beyond

the scope of this study.

All bias correction methods directly eliminate some of

the information from measured data. Fortunately, metrics

based solely on the temporal variation of the soil moisture

tend to be little affected by bias correction: consider the fol-

lowing linear bias correction formula, where j is the modeled

time series toward which we wish to rescale the observed time

series u. The rescaled u0, where the prime denotes the rescaled

value, can be written as

u0(t)5
s
j
u(t)2 u
� �

s
u

1 j . (4)

Note that su and sj denote the standard deviation of

each dataset and u and j denote their mean values. By

combining this definition with the drydown equation in

Eq. (1) and rearranging terms, we see that t remains in-

variant under this bias correction formulation since the

other parameters of the exponential equation absorb the

changes:

s
j
u(t)2 u
� �

s
u

1 j5 u0A exp
� t

t0

�
1 u0eq , (5)
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u(t)2 u5
s
u

s
j

u0A exp
� t

t0

�
1
s
u

s
j

ðu0eq 2 j) , (6)

u(t)5
s
u

s
j

u0A
|fflffl{zfflffl}

uA

exp

0
BB@ t

t0|{z}
t

1
CCA1

s
u

s
j

ðu0eq 2 j)1 u

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ueq

. (7)

This relationship can be affected if the bounds on ueq do

not allow this absorption. Fortunately, we have found this

not to be the case in our study when validating this rela-

tionship at the in situ sites. We find it holds to within an

order of 1024, which can be explained by numerical

rounding errors in the nonlinear least squares fitting

algorithm.

d. Additional metrics

In this section, we introduce a few more statistical diagnos-

tics used in the work, as well as outlining how these different

metrics will be applied in this study.

In the first part of this work, we identify drydowns over a

range of different sites. To partition the different sites, we use an

aridity index defined as A 5 Rn/(lP) (Budyko 1961) where l is

the latent heat of vaporization (J kg21), Rn is the mean daily

net radiation (W m22), and P is the mean daily precipitation

(kg m22). The FLUXNET data are used to calculate this

index; higher values indicate greater aridity. While we ap-

preciate that there are more complex metrics out there to

measure aridity, this simple metric is sufficient in parti-

tioning the sites by climate.

The second part of the study is devoted to the calibration ex-

periments. Prior to performing these experiments, we remove

outliers from the calibration to ensure that these data points do

not dominate the cost function. To find these outliers, first we

consider the discrepancies between the observed and prior

modeled values, where the values are either t or SSM daily

values depending on the time series considered. We then cal-

culate the lower (Q1) and upper quartiles (Q3) of this dis-

crepancy time series. An outlier is defined as a data point

where the discrepancy between the observed and prior mod-

eled value is outside the range:

[Q
1
2 1:5(Q

3
2Q

1
), Q

3
1 1:5(Q

3
2Q

1
)]. (8)

Finally, when evaluating the calibration results, we use two

further metrics to assess the fit of the model to the observa-

tions. These are the commonly used root-mean-square error

(RMSE) and its variant, the unbiased RMSE (ubRMSE;

Entekhabi et al. 2010a)

ubRMSE5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(f(u

est
2E[u

est
])2 (u

true
2E[u

true
])g2

q
) . (9)

This latter metric will be used when assessing the model–

data fit between observed and modeled SSM due to the large

biases between the two.

e. Performed experiments

In this study ORCHIDEE outputs are aggregated at daily

time steps (from half-hourly data) over 18 of the ISMN sites

found within the footprint of FLUXNET towers (see section 2).

The FLUXNET data are used to provide the meteorology at

each site and ancillary files are used to prescribe vegetation

cover and soil textures. A spinup procedure is applied to each

site brings the prognostic variables including vegetation state,

soil carbon pools, and soil moisture content to equilibrium. This

is achieved by running the sites for several hundred years cycling

the available meteorological forcing with present-day CO2

concentrations. Each spinup is followed by a historical simula-

tion over the period of interest (i.e., column ‘‘Years’’ in Table 2)

creating the prior runs. The prior runs are what we call the

standard model outputs generated using the default parameter

values of ORCHIDEE (listed in Table 1). These are the stan-

dard model runs prior to the calibration experiment. At each

site, to calculate the simulated SSM in the prior runs, we sum the

SSM values generated in the upper layers of the model down to

the ORCHIDEE layer that matches most the observation sen-

sor depth. Furthermore, we remove frozen soils and snow cover

conditions from our analysis by masking parts of the time series

for which the soil temperature is below 08C. Drydowns do not

occur when the soil is frozen, so this does not affect our results.

The SSM time series are then used to identify drydowns in the

ORCHIDEE land surface model.

For the sensitivity analysis, the 31 parameters listed in

Table 1 are tested using 10 trajectories following the Morris

algorithm, amounting to 320 model runs. The most sensitive

parameters were kept for the optimizations. This resulted

in 13 parameters: the 10 describing the soil hydrology plus 3

others from the carbon and energy parameters. Two opti-

mizations were carried out at each of the 18 sites considered

in the study:

d Opt_t: Time series of observed and modeled t values were

created using the true in situ observations (i.e., no bias

correction) and prior model. The length and variation of

these time series are given in Table 2, and two example t time

series are shown in the appendix. The difference between

these two time series was considered and outliers were re-

moved using Eq. (8). These amounted to 6% of all t over all

sites to be rejected (on average one per site). The modeled

t were then optimized against the observed t time series,

using the observed t as the target.
d Opt_fullSSM: The full SSM time series were used in this

optimization. Here, however, the observed SSM time series

against which we calibrate was bias corrected using Eq. (4)

toward the prior run. Then, in a similar manner to the t time

series, outliers were removed before the calibration; this

equates to between 0.2% and 3.5% of the observed values

from the SSM time series for the majority of sites, and up to

14% of the observed values from the Savannah sites (i.e.,

AU-DaS, SD-Dem, and SN-Dhr).

Opt_t is the main optimization of the study testing the po-

tential of using the t values as the observation operator in a

calibration. Opt_fullSSM follows a more classical approach to

optimization and is used to provide a comparison to the former

method. However, note that since in each case we have opted

for the most practical approaches (e.g., using diagonal R ma-

trices) the optimality of both calibration strategies is not
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equally guaranteed, and so they are not perfectly comparable.

For both optimizations, the first 70% of points are used for the

calibration and the rest are used in the evaluation. We chose to

select the first 70% of point instead of considering a set number

of years due to the fact that the number of drydown events can

vary year to year.

4. Results

a. Identifying drydowns

In Table 3 we show the number of dry periods identified at

each site and the percentage for which we were able to fit t for

both the modeled and observed time series. In fact, for 89.76%

of the dry periods considered, we were able to fit an expo-

nential curve to the modeled time series. In comparison, we

were only able to determine a t value for 42.95% of the dry

periods identified in the observed time series and 39% both for

the modeled and observed time series simultaneously. This is

due to a number of reasons including gaps in the observations,

cases where the local meteorology is out of phase with the

FLUXNET data, and noise in the observed in situ SSM mea-

surements. The observed soil moisture time series tend to be

noisier than the modeled time series (Fig. 1). However, by

requiring the coefficient of determination (R2) of the fitted

exponential to be at least 0.7, we ensure the behavior of the

drydown is captured by t. Since we start the drydown periods

the day after a rainfall event has occurred (i.e., the first dry

day), we occasionally miss the peak of the exponential slope. In

some cases, missing this peak when fitting the observed time

series could also be explained by time lags with local meteo-

rology at the FLUXNET tower. In any case, missing the peak is

not an issue since we are interested in stage II evapotranspi-

ration, i.e., when evapotranspiration is limited by soil moisture

availability. More importantly, by ensuring at least 5-day dry-

downs, we make sure we fit this part of the curve.

For the remainder of the study, we only consider drydowns

that had a successful t fit to them in both observed and

TABLE 2. List of sites used in this study. The experiment years correspond to the overlap between the FLUXNET and ISMN data

record. The latitude and longitude correspond to the location of FLUXNET tower, all of the ISMN are within approximately 250m of the

given tower. We will use the FLUXNET site code to refer to each site henceforth. The soil percentages represent the fraction of different

soil textures for the first 0.3m taken from the ISMN metadata, which in turn are taken from the Harmonized World Soil Database v1.1

(FAO/IIASA/ISRIC/ISS-CAS/JRC 2012) and the depth refers to the depth of the sensor used to measure the observations. The PFT

codes are given in Table 1. The latter half of the table shows the number of dry periods (d.p.) and drydowns (t) identify at each site. First,

we show the total number of dry periods identified in the FLUXNET precipitation record, i.e., periods of at least 5 days without rain.

Second, we show the number (and percentage) of these dry periods that can be fit using an exponential drydown function [Eq. (1)] in both

the modeled and observed time series. The standard deviation of the observed and modeled t values is shown in the following column.

Finally, the number of drydowns in the year with the most drydowns is selected (denoted rep. for representative year).

Site Total No.

FLUXNET ISMN Years PFT Lat (8), lon (8)
Depth

(m)

Soil % (sand,

silt, clay) d.p. t

Std dev t

(obs, mod)

No. t

(rep. year)

AU-DaS Dalya 2011–14 SAV 214.16, 131.39 0.55 65, 10, 21 32 8 (25%) 2.7, 7.7 4 (2012)

AU-Gin Gnangaraa 2011–14 WSA 231.38, 115.71 0.69 89, 7, 4 58 6 (10%) 4.0, 7.5 2 (2011)

AU-Rob RobsonsCreeka 2014–14 EBF 217.12, 145.63 0.19 48, 25, 28 19 1 (5%) — 1 (2014)

AU-Tum Tumbarumbaa 2011–14 EBF 235.66, 148.15 0.14 53, 12, 34 74 2 (2.7%) 3.8, 3.9 1 (2011)

DE-RuS Selhausenb 2013–14 CRO 50.87, 6.452 0.19 36, 40, 28 35 12 (34%) 6.9, 3.6 7 (2014)

FI-Sod SOD013c 2011–14 ENF 67.36, 26.64 0.05 88, 9, 4 25 20 (80%) 3.9, 3.8 7 (2013)

SD-Dem SD-DEMd 2008–09 SAV 13.28, 0.48 0.05 90, 6, 5 17 12 (71%) 6.1, 1.7 6 (2008)

SN-Dhr DAHRAe 2010–13 SAV 15.40, 215.43 0.05 90, 5, 6 29 13 (45%) 8.9, 4.3 4 (2011)

US-ARM ARM-1a 2010–12 CRO 36.61, 297.49 0.19 29, 41, 29 34 16 (47%) 5.9, 4.2 6 (2011)

US-GLE GLEESa 2011–14 ENF 41.37, 2106.24 0.10 33, 44, 32 18 17 (94%) 4.8, 4.4 8 (2013)

US-Ha1 HarvardForesta 2011–12 DBF 42.54, 272.17 0.11 86, 10, 4 26 3 (12%) 1.2, 0.2 2 (2012)

US-Me2 Metoliusa 2011–14 ENF 44.45, 2121.56 0.17 75, 12, 11 43 25 (58%) 5.5, 2.9 7 (2013)

US-MMS MorganMonroea 2011–13 DBF 39.32, 286.41 0.09 40, 32, 31 62 5 (8.1%) 3.0, 1.1 3 (2013)

US-Ne2 NebField3a 2011–13 CRO 41.16, 296.47 0.13 30, 41, 34 41 17 (41%) 5.7, 3.8 6 (2012)

US-PFa ParkFallsa 2011–14 MF 45.95, 290.27 0.24 84, 11, 5 38 14 (37%) 3.8, 2.2 5 (2013)

US-Ton TonziRanchf 2001–12 WSA 38.43, 2120.97 0.02 39, 29, 34 120 78 (65%) 10.3, 7.3 11 (2007)

US-UMB UMBSa 2011–14 DBF 45.56, 284.71 0.29 84, 11, 5 58 26 (45%) 5.3, 4.5 11 (2012)

US-Whs LuckyHillsa 2012–14 OSH 31.74, 2110.05 0.31 44, 29, 28 26 18 (69%) 4.5, 6.2 8 (2012)

Total 755 293 (39%) 6.79, 5.81 99

a COSMOS.
b TERENO.
c FMI.
d CARBOAFRICA.
e DAHRA.
f AMERIFLUX.
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simulated time series since we want to be able to compare and

later calibrate our model. For each site, we identify a number

of drydowns varying in length. The longest drydown periods

are found in arid and semiarid regions where there is a long dry

season. These drydowns are associated with the largest t values

(example drydown G in Fig. 1). On average, we find between 1

and 10 drydowns per year, with a mode of the distribution at 5.

The number of drydowns is relatively uniform over the dif-

ferent climates, be they boreal or semiarid. For boreal sites,

time series are shorter due to the masked snow-covered pe-

riods. Similarly, the semiarid sites experience less rainfall

events but more clearly defined dry periods, which are more

likely to be eligible in our analysis. The number of drydowns

per year is comparable to McColl et al.’s (2017b) study.

b. Comparing observed and modeled drydowns

The t values for both the observed and the modeled time

series tend to be similar in value. Nevertheless, we do observe

some differences. For example, the observations can suggest a

more gradual decrease in moisture than in the model (e.g., D in

Fig. 1a), i.e., a shallower slope where the water is preserved

longer in the soils. We also find opposite cases where soils dry

out faster in the observation than in the model (e.g., F in

Fig. 1b). Big disparities between observed and modeled

t values can be used to identify different reactions to rainfall

events. For SD-Dem (Fig. 1a), we note that the model is more

sensitive to rainfall events, increasing the amount of SSMwhen

the observations display no change. For two examples in Fig. 1,

model–observation difference is mostly of the same sign for

each site over all displayed drydowns. However, in Fig. 2 we

see that even at the same site, the model can dry out faster than

the observations for some drydowns and slower for others.

We observe a greater spread in t values from the observa-

tions than from the modeled time series (Fig. 2). This is also

visible when considering the variation of t at a given site

(Table 2); the range of t values calculated at a given site is

larger for the observed SSM time series than the modeled SSM

time series. The standard deviation of observed t is the largest

for savannah sites, where there can be a large t value associ-

ated with long dry periods and smaller t values calculated

during the rainy seasons. This trend is not observed for the

modeled t.

In Fig. 2, we show all identified drydowns in a given repre-

sentative year for all sites in this study. With 54% of t values

found above the 1:1 line in Fig. 2, and the rest below, we see a

mix of differences between themodeled and observed t values.

The model generally dries out slower than the observations for

longer dry periods (78% of t fit over dry periods exceeding

20 days), however, for the longest periods (lasting nearly half a

year) the model dries out faster. The model also tends to dry

out faster than the observations for shorter dry periods (60%of

t values fit over dry periods less than 20 days).

In Table 3, we further show these drydowns classified ac-

cording to vegetation cover (PFT), soil texture (% of sand

present), climate (through the aridity index), and sensor depth

used at themeasurement site, as listed in Table 2. First consider

Table 3, where identified t values are split by vegetation type.

Omitting the t values found over the EBF sites since sample

size is too small over this vegetation type for a proper analysis,

we see that for the observed t values, the forest sites (DBF and

ENF) have slightly lower values than the grass/savannah sites,

by a few days. However, this is not observed in the modeled

t values resulting in higher RMSE over the grass/savannah

sites than over the forested ones. In contrast, Martínez-de la

Torre et al. (2019) found that tree sites did yield higher values

of t than the grass sites. However, by considering evapo-

transpiration from the FLUXNET towers, Martínez-de la

Torre et al.’s (2019) t values apply to the root zone, whereas,

in our study, we consider SSM from the ISMN and so our

recession times apply to the SSM. SinceMcColl et al. (2017b)

also considered drydowns in the SSM and found no trends

between t values and vegetation types, it is likely that the

influence of vegetation on recession times is more important

in the root zone than over the first few centimeters of the

soil column.

There appears to be an impact of sensor depth on the value

of t. Sites where the measurements are taken at larger depths

have larger t values, meaning the soil takes longer to dry out.

However, given the small sample size of sites and indeed dry-

downs at the large depths, these finding are not statistically

significant.

The decay parameter t does not appear correlated to soil

type, consistent with Martínez-de la Torre et al. (2019) but not

TABLE 3. Identified t values partitioned by different properties

of the measurement site including vegetation (PFTs—definitions

explained in Table 2), aridity index, sand fraction, and sensor

depth. The total number of t values for each category is shown by i;

tm and to denote the modeled and observed t values, respectively;

and ~x and x denote the median and mean of each set. The last

column in each case shows the RMSE between the modeled and

observed t values.

PFT i ftm eto tm to RMSE (tm, to)

Vegetation type

DBF 28 7.64 4.24 8.28 6.56 7.99

EBF 2 20.87 20.19 20.87 20.19 17.43

ENF 22 5.17 5.69 6.52 7.68 7.09

WSA/OSH 21 9.66 8.32 12.13 11.46 12.93

SAV 14 5.56 8.23 7.0 14.67 15.52

CRO 12 8.89 8.24 9.8 11.17 9.31

Aridity index

0–1 17 4.78 4.29 6.9 5.28 7.81

1–2 38 7.93 5.15 8.76 8.16 7.91

2–3 18 5.81 9.87 7.44 14.35 11.8

3–4 8 5.74 22.62 11.75 20.97 20.87

4–5 12 10.31 5.19 11.44 6.87 11.1

Sand fraction

0.2–0.4 41 6.05 5.05 7.05 9.75 8.96

0.4–0.6 13 10.96 3.51 13.12 8.03 12.92

0.6–0.8 11 7.07 6.6 9.53 9.71 10.63

0.8–1.0 37 7.09 7.95 9.0 10.46 11.73

Sensor depth (m)

0.0–0.2 63 5.95 6.56 7.73 9.89 9.77

0.2–0.4 30 8.95 7.14 9.77 10.0 12.06

0.4–0.6 4 9.44 5.96 11.53 5.55 9.09

0.6–0.8 2 30.44 13.92 30.44 13.92 19.07
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with McColl et al. (2017b). The latter found a clear decrease in

drydown rates with increasing sand fraction explained by sandy

soils having larger pores with lower suction caused by surface

tension forces and therefore releases water more readily to the

atmosphere via transpiration. In addition, McColl et al. (2017b)

found a clear anticorrelation of t with aridity, whereas the

present modeled values show an opposite trend, namely, a

positive correlation. These discrepancies between McColl et al.

(2017b) (treating SMAP retrievals) and our study (treating

in situ observations) may be due to the different types of ob-

servational data considered, especially since satellite data have

been shown to dry out faster than in situ data. It is also due to the

different sample sizes used to determine these relationships; by

using satellite retrievals, McColl et al. (2017b) consider a much

larger set of sites from which to draw conclusions. Overall, due

to the limited number of eligible sites and drydowns in our study

(only 18 sites covering a range of vegetation, climates, and soil

textures), we cannot generalize to a global scale the (de)

FIG. 1. Examples of surface soil moisture (SSM) temporal evolutions used to identify drydowns at (a) an arid site in the Sudan (SD-

Dem) and (b) a temperate site in the United States (US-UMB). In each case, raw time series are shown (no bias correction), with rainfall

shown in the bottom panel and the SSM time series for the in situ observations (gray) and modeled values (red) shown in (a). Shaded in

orange are periods identified as having at least 5 days without significant rainfall (,0.001mm shown by the dotted gray line). The periods

retained are shown by a darker shade of orange. Values of t (days), which determine the shape of each drydown [see Eq. (1)], can be found

at the top of each drydown, and the exponential fit to each drydown shown by a dotted black curve. Each drydown is labeledwith a letter to

help cross referencing.
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correlations between t and the classification categories found

here without more data.

c. Identifying key parameters

Parameters used in the upcoming ORCHIDEE calibration

were selected using a Morris sensitivity experiment (Fig. 3).

Unsurprisingly, we find that the t values are sensitive tomost of

the soil hydrology parameters, notably to n and, to a lesser

extent, to A. These parameters control the water retention

curve and so directly influence the water content of the soil.

The only soil hydrology parameter for which we observe no

sensitivity is slR. This parameter controls the fraction of runoff

which could be stored at the surface and reinfiltrated later in

flat terrain conditions. It is likely that after the precipitation

events no runoff was generated over the flat sites considered in

this study. Furthermore, this parameter is only important for

one time step after the precipitation event and so will not

greatly affect the shape of the drydown.

All t values over all sites show a strong sensitivity to the

phenology parameters such asVcmax and SLA, especially at the

boreal site. The size of the leaf will determine transpiration

rates which are intrinsically linked to soil moisture. The sa-

vannah site shows the least sensitivity to the phenology pa-

rameters between all of the sites, however, this may be more

linked to a poor representation of the complex phenology in

savannah regions in the ORCHIDEE model.

Finally, we also find that t is highly sensitive to the soil re-

sistance to evaporation, since it controls the rate at which soil

moisture is directly transferred to the atmosphere. We there-

fore choose to optimize over the 10 key soil hydrology pa-

rameters, plus Vcmax, SLA, and rs* since these are the highest

ranked nonhydrology parameters over the three sites. These

identified parameters are listed in Table 1.

d. Optimization results

1) CHANGES TO SIMULATED t AND SSM

The first optimizations focus on calibrating all t at each given

site (Fig. 4a). In this Opt_t calibration, the RMSE is reduced at

all sites. For sites with high prior errors like AU-Rob, AU-

DaS, FI-Sod, and US-Whs, the percentage reduction in RMSE

is over 80%. Sites which have a smaller initial error, like US-

Ha1, US-MMS, and US-Me2 do not improve as much,

showing a reduction closer to 10%.

This behavior is generally mirrored when the sites are con-

fronted by independent data, i.e., the evaluation drydowns. Sites

experiencing a large reduction during the calibration show a

similarly large reduction in the evaluation. For sites with a small

reduction in the calibration (e.g., US-Me2, US-MMS), the fit

during the evaluation remains the same, or, in some cases (e.g.,

FIG. 3. Morris sensitivity scores used to identify the key parameters to which the shapes of drydowns are sensitive are shown in this

figure. Three sites covering a range of vegetation and climate are shown: (top) temperate broadleaf forest (TeBF; US-Ha1), (middle)

boreal needleleaf forest (BoNF; FI-Sod), and (bottom) semiarid grassland (SaG; SD-Dem). For each site, the year with themost drydowns

was selected and the response of each drydown during that year is shown here. For each drydown, the sensitivity scores are normalized to

[0, 1] with 1 as most sensitive and 0 as least sensitive. Full descriptions of each tested parameter and site can be found in Tables 1 and 2,

respectively.

FIG. 2. Scatterplot showing the modeled vs observed t values.

Each t value is associated with a drydown identified during a

representative year for each of the 18 sites used in this study. The

length (in days) of each drydown period (i.e., number of days with

no rain) over which the exponential is fitted is represented by the

size of the dot.
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DE-RuS, US-Ne2), degrades slightly. One notable exception is

US-GLE, which has a large reduction in RMSE during the

calibration but a slight degradation during the evaluation. For

this site, the prior RMSE of the evaluation set starts very low. In

contrast, forUS-Ton, the calibration does not improvemuch but

the evaluation shows a marked improvement. In this case, the

prior RMSE of the evaluation set is larger and the posterior

RMSE is similar to that of the calibration set prior.

In total, 11/15 of the sites improve, or remain the same

during the evaluation. Overall, counting all sites, we observe a

total reduction of 48% in RMSE during the calibration and a

total reduction of 27% during the evaluation. This is compared

to a 3% increase in total RMSE when using the Opt_fullSSM

parameters on the calibration set.

At least half of the t values in the time series get closer to the

observed estimates for 15/18 sites during the calibration and for

11/15 sites during the evaluation (Fig. 4a, top). For the latter,

at a handful of sites, this result does not correspond to the

observed change in total t RMSE. DE-RuS and SN-Dhr

show a degradation in fit to all t taken together, but improve

over half of the drydown events evaluated against. FI-Sod, on

the other hand, shows one of the largest reductions in total

RMSE but improves only 40% of the individual events. This is

due to one or more drydown events dominating the cost

function.

For 10 out of the 18 sites, the Opt_fullSSM calibration is also

able to improve at least half the recession events. The fraction of

t values improved is not as high as in the Opt_t optimization.

This is to be expected since the Opt_fullSSM optimization

calibrates other parts of the time series as well as the drydowns

whereas the Opt_t calibration focuses only on the drydown

values. However, even though at most sites approximately half

the t values are improved, the total t RMSE generally in-

creases, or stays the same, meaning an overall degradation, or

no change, in matching the modeled t values to the observed

ones. Only 7/18 sites show an improvement and only 4 of these

show an improvement greater than 4%, i.e., AU-DaS, FI-Sod,

US-ARM, and US-UMB. The largest degradations can be

found over the sites where the Opt_t calibration improved the

most i.e., AU-Rob and US-Whs. However, in the case of AU-

Rob, only one t is being optimized so the Opt_t optimization

overcalibrates to the specifics of that one drydown. To be more

robust, it would be better to ensure that time series of t values

havemore events. This highlights one of the issues using a short

data record, with only one year of in situ data, the number of

identified drydown events against which to calibrate is limited.

A short data record is also an issue when using Opt_fullSSM

since multiple years are needed to properly calculate and re-

move the mean-state bias. Moving to satellite retrievals will

increase the length of data records with which we can confront

the model.

Overall we have shown the ability to optimize drydowns. To

improve drydowns, it is better to optimize t only (Opt_t) than

to use whole time series (Opt_fullSSM). Optimizing the full

time series can still improve drydowns in some cases but to a

lesser extent; in most cases, however, the total t RMSE re-

mains close to the prior showing little change.

In Fig. 4 we also consider the effect of Opt_t andOpt_fullSSM

on thewhole non-bias-corrected SSMtime series at each site using

the ubRMSE diagnosis. Overall for Opt_fullSSM, the total re-

duction over all sites of SSM ubRMSE is of 7.8% during the

calibration and 8.3%during the evaluation. In contrast, forOpt_t,

the total reduction of the calibration set is only 3.1% and we

observe significant degradation for four of the sites (i.e., SD-Dem,

SN-Dhr, US-ARM, and US-GLE). However, we do also observe

cases where the Opt_t outperforms the Opt_fullSSM (e.g., AU-

DaS and US-UMB).

Although Opt_fullSSM does not show any severe degra-

dations in fit, the improvement is limited with many sites

remaining close to unchanged during both the calibration

and evaluation stages. There are two main reasons why the

Opt_fullSSM results are mixed. First, when calibrating the

model, the cost function uses a metric resembling an RMSE,

whereas in the analysis, we are considering the ubRMSE.

Second, prior to the Opt_fullSSM calibration, the observations

FIG. 4. (a) Changes to the modeled t values and (b) changes to

the full modeled SSM time series. In each case, the top panels show

the fraction of individual events that are closer to the observed

values, where for (a) the events are the drydowns and for (b) the

events are the daily SSM values. At 0, all modeled events are far-

ther from the observations than before and at 1, all modeled events

were improved. The bottom panel shows the RMSE and ubRMSE

for all the t and raw (i.e., nonbias corrected) SSM values, respec-

tively. In each case, two parts of the time series are considered: a

calibration part (first 70%of the time series) and an evaluation part

(last 30% of the time series). This is with the exception of three

sites in the t experiment where, since there were less than three

drydown events total, the full time series was used for the cali-

bration and no events were saved for the evaluation. These are

marked by an asterisk.
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were bias corrected. In Fig. 4b, however, the raw observations

are used. At sites where the Opt_fullSSM calibration does not

perform as well as the Opt_t experiments, information for

SSM improved modeling is lost when the optimization is per-

formed on bias-corrected SSM observations. This emphasizes

further an advantage of the Opt_t approach: by removing the

need for bias correction in the Opt_t calibration, the assimi-

lation valorizes the information carried by the first two mo-

ments of the observations. Alternatively, the Opt_fullSSM

calibration might be improved with more complex and more

robust methods when rescaling the data to deal with biases;

methods such as the inclusion of seasonality or using longer data

periods to calculate the mean state.

For half of the sites, the fractions of daily points in the SSM

time series that are improved by the Opt_t optimization are

much lower than in the Opt_fullSSM calibration. This is to be

expected, since the full SSM time series is made up from more

than just drydown events. Similarly, the fraction of daily points

improved overall during either optimization is less that the

fraction of the drydown events improved. This is because there

are significantly more points in the full time series (365 per year)

compared to the drydown time series (closer to 5 points a year).

Overall, the SSM ubRMSE remains close to the prior for a

number of sites after to Opt_fullSSM assimilation, whereas

the results using parameters from the Opt_t assimilation are

mixed for this diagnosis. This shows that different parameters

or even the structure of the code may need to be consid-

ered in order to minimize this error. Since we performed a

sensitivity analysis to find the most sensitive parameters to

use during the optimization, it is more likely that model

structural errors are at play and that parameterizations of

different soil moisture processes need to be reassessed.

Another reason for irreducible t discrepancies could be

related to the forcing data: local meteorology may slightly

differ between the SSM measurement sites and their

neighboring FLUXNET towers.

2) OPT_t POSTERIOR PARAMETER VALUES

In addition to considering the fit between model and

observations, it is important to assess the effect of cali-

bration on the parameters themselves (Fig. 5). The volu-

metric water content parameters, which provide thresholds

for the simulated SSM time series, show little change after

optimization but do have a high error reduction in posterior

parameter uncertainty. We find that the van Genuchten param-

eters A and n also yield a relatively high error reduction.

However, parameter uncertainty is not greatly reduced for

the hydraulic conductivity at saturation Ks, nor is it greatly

reduced either for the Vcmax parameter.

We generally find that soil resistance to evaporation—through

parameter rs*—is increased after assimilation. Since we

found that the model generally dries out faster than the

observations, this result is consistent with our prior analy-

sis. We also find rs* to be the parameter with the highest

reduction in error highlighting its importance in accurately

modeling drydowns.

The value of root profile z is reduced for most sites, espe-

cially for deciduous forests. This againmay be linked to the fact

that the model was drying out faster than the observations. By

reducing the root profile, the roots do not reach as deep in the

soil and therefore have access to less water. More water is kept

in the root zone and transferred to the surface layers by vertical

diffusion (because of the larger hydraulic conductivity). For

sites with predominant grass cover, the prior SLA parameter

was too low whereas for the boreal evergreen forests, this pa-

rameter is set too high. The SLA parameter directly affects the

LAI and thus the transpiration. Finally, the water stress pa-

rameter a also comes out as one of the most important pa-

rameters. For half of the sites, a is reduced suggesting that the

plants are less sensitive to water stress at these sites than cur-

rently modeled in ORCHIDEE.

By calibrating drydowns, since we are directly consider-

ing one feature of the SSM time series, there is potential to

better understand the processes involved and to pinpoint

exactly how the parameters affect the processes. For example,

the suggested changes to rs* parameter highlight the impor-

tance of this parameterization in modeling drying rates in

the soil.

3) IMPACT OF OPT_t ON CARBON AND ENERGY FLUXES

There is a strong coupling between water and carbon cycles,

and a number of parameters optimized in this study will affect

FIG. 5. Posterior parameter values and their uncertainties for the

Opt_t assimilation for each of the sites in this study (parameter and

site descriptions can be found in Tables 1 and 2, respectively). The

outer color (fromblue to red) signifies how the parameter value has

changed as a percentage from its prior value. The inner color

represents the posterior uncertainty of that parameter, where the

greater the reduction in error, the darker the diamond. This is

calculated using prior minus the posterior error all divided by the

prior error and is normalized for each site.
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other processes in the model. Therefore, it is important to

consider the impact of calibrating the model using solely hy-

drologic fluxes on the other fluxes. In this section, we compare

the fluxes (LE, GPP, Resp) from the calibrated model to the

FLUXNET data (see Table 2) that are in the vicinity of the

SSM measurements.

For over half of the sites, using the parameters from Opt_t

assimilation maintains or improves at least one of the three

investigated fluxes (Table 4), particularly the evapotranspira-

tion LE which is more related to hydrologic variables. All the

fluxes are also improved for a handful of sites when using the

Opt_fullSSM results. However, for other sites the fit is de-

graded by up to a factor between 2 and 3 (e.g., AU-Tum,

FI-Sod, SD-Dem, and US-GLE). The amplitude of such a

worsening is reduced when it happens after Opt_t assimilation.

The time series themselves (Fig. 6) show that the Opt_t opti-

mization induces minor changes, whereas Opt_fullSSM assimila-

tion inducesmore significant ones. For example, at FI-Sod site, the

Opt_fullSSM parameters lead to a decrease in LAI which in turn

reduces the presence of vegetation. In contrast, the fluxes hardly

change when the Opt_t parameters are used, even though these

parameters resulted in one of the greatestRMSE reductionswhen

fitting the drydowns. For the SD-Dem site, the production peak is

delayed when using the Opt_fullSSM parameters whereas for

Opt_t, it is the magnitude of the peak which is reduced.

Overall, the changes to the fluxes are minimal for the Opt_t

optimization. However, this is encouraging. With a complex

process-based model like ORCHIDEE, it is likely that improving

some parts of the model may degrade other simulated quantities

because of potential compensating errors. The fact thatOpt_t does

not significantly degrade the fit against these fluxes, and for

some sites Opt_fullSSM does, is an important result. This

suggests that the Opt_fullSSM optimization may lead to

suboptimal parameters. It should also be noted that the

ORCHIDEE model has been previously optimized, calibrat-

ing these fluxes using FLUXNET data from a number of the

same sites (Kuppel et al. 2014). Therefore the initial fit to the

observations was already very good (with the exception of sa-

vannah sites like US-Whs, which remains poorly represented by

the model).

5. Discussion

a. Scaling up to a global calibration

TheORCHIDEELSM is a globalmodel and a component of a

larger ESM. It can be run at different resolutions, from individual

pixels, as in this study, to small catchment areas up to fully global

runs. As such, it is important to be able to calibrate themodel at a

larger scale covering a greater selection of vegetation, climates,

and soil types. The global coverage satellite products can provide

an opportunity to calibrate themodel at this scale.However, extra

care will be needed when considering satellite data since soil

moisture memory metrics are dependent on the sampling fre-

quency of the observations (McColl et al. 2017b; Ruscica et al.

2020). If t is less than the revisit time of the sensor, then the

drydown will not be captured. Combined products such as ESA

CCI SM (v4.4; Dorigo et al. 2017) do provide daily SSMvalues, by

merging different satellites. However, such a product runs the risk

of introducing conflicting sources of information, since the merge

currently depends on an auxiliary model. Alternatively, if we use

raw products like SMOS SSM or SMAP we will have less cov-

erage, possibly less information content, and the risk of missing

fast drydowns from our analysis.

We briefly tested our drydown identification approach on the

ESA CCI SM (v4.4) satellite product but could only identify a

handful of drydowns using the FLUXNET precipitation data.

Instead we would need to use a precipitation product of the same

resolution. During our previous study (Raoult et al. 2018), we

found that the ESACCI SM product and soil moisture simulated

in ORCHIDEE using the satellite-era Coupled ECMWF

Reanalysis (CERA-SAT) forcing data (Schepers et al. 2018)

were highly correlated (with average correlations of 0.7 in

tropics and southern latitudes). Such a dataset could be used to

determine periods without precipitation; however, further

study will be needed to really understand the comparable

strengths and weaknesses of different reanalysis products.

There will be many advantages in moving to satellite data.

With a lot more data, it should be easier to identify more trends

linked to soil textures and types of climate. We will be able to

include nonvegetated areas in the analysis, which currently are

poorly represented in the FLUXNET database, to understand

better bare soil evaporation. In addition, satellite SM obser-

vations represent only the top few centimeters of the soil col-

umn. Therefore we will be able to use a relatively consistent

depth for the whole world matching the instruments theoreti-

cal global mean sensing depth of 5 cm.

Wewill also be able to consider the calibration of multiple data

streams using a range of other satellite products. Simultaneous

calibration of SSM drydowns in conjunction with other data

streams will provide valuable insights into the links between the

carbon, energy, and water cycles. Using, for example, LAI or

TABLE 4. Relative change of flux RMSE after calibration on

t and full SSM. Bold indicates improved or unchanged RMSE.

Values higher than 1 imply a degradation.

Opt_t Opt_fullSSM

Site GPP Resp LE GPP Resp LE

AU-DaS 1.24 1.23 1.35 1.32 1.18 1.1

AU-Gin 1.04 1.03 0.9 1.02 1.04 0.91

AU-Rob 1.0 1.0 1.0 1.16 1.07 1.17

AU-Tum 1.0 1.0 1.0 1.03 0.97 2.37

DE-RuS 1.01 1.02 1.04 1.06 1.06 1.21

FI-Sod 1.04 1.02 0.97 3.38 1.9 2.23

SD-Dem 1.44 1.6 1.4 2.21 1.27 1.18

SN-Dhr 1.07 0.99 1.03 1.1 1.03 1.05

US-ARM 1.06 1.07 0.91 1.01 1.04 0.96
US-GLE 1.01 1.01 1.04 2.93 1.63 1.62

US-Ha1 0.99 0.99 0.97 0.79 1.13 0.94

US-MMS 1.05 1.14 1.05 1.55 1.19 0.82
US-Me2 0.94 0.97 0.92 1.08 1.02 1.25

US-Ne2 0.98 1.01 1.0 1.1 1.14 1.16

US-PFa 1.07 1.06 1.2 1.25 1.13 0.73

US-Ton 0.99 0.99 0.98 0.97 0.99 0.9
US-UMB 1.05 1.08 1.94 1.15 1.18 0.95

US-Whs 0.97 1.0 0.59 0.74 0.93 0.92

1038 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Unauthenticated | Downloaded 06/09/21 03:54 PM UTC



solar-induced fluorescence (SIF) data to constrain plant activity,

and therefore transpiration, could help investigate the impact of

droughts on vegetation. Alternatively, SSM drydowns could be

calibrated alongside land surface temperature to constrain the

energy budget. By including more data streams into the calibra-

tion, we ensure that the optimizations have less of a deteriorating

effect on the other model outputs.

b. Limitations

Our analysis is subject to several limitations. The first are linked

to themethodology.Outliers—here defined by pointswhich differ

toomuch between themodel and the observations—are currently

removed in order not to dominate the cost function. A more ro-

bust way of dealing with outliers would be to have a dynamic

observation error which would change at each time step. That

way, outliers could be included in the analysis but with a higher

uncertainty weight during the optimization.

For the optimizations, we have used a diagonal R matrix.

While this is commonly used in land surface model parameter

estimation studies, this is not ideal since observations tend

to be correlated. This will be especially true in the case of

Opt_fullSSM optimization since SSM observations are strongly

autocorrelated, whereas the Opt_t optimization deals with inde-

pendent events. Fortunately, when checking the reduced x2 fit at

each site we find that this metric is generally close to 1, meaning

that we did not over/under use the information content brought

by the observations in the calibration. Nevertheless, we did find

that the calibration on tmuchmore often leads to large x2 values,

whereas calibration on SSM leads to small x2 values, high-

lighting the differences between both optimization strate-

gies, especially with respect to the optimality of their setup.

Alternatively, there are a number ofmethods that can be used to

compensate for these correlations; for example, we can choose to

inflate the variances (Chevallier 2007), or using diagnostics such as

the one proposed by Desroziers et al. (2005) to help define the

off-diagonal elements. These methods, while out of the scope of

this study, will be considered in future optimizations.

Second, there are limitations linked to the data used. The

in situ measurements assessed in this study, while being

grouped by the ISMN, use different probes and different

measurement protocols which result in probes installed at

different depths. ORCHIDEE’s multilayered soil column has

allowed us to match as closely as possible the sensor’s depth.

However, when using cosmic ray neutron sensors to measure

soil moisture, as used by the COSMOS network, the sampling

depth of the soil moisture measurement changes with soil

moisture (Antoniou et al. 2019). Unfortunately, the estimate of

this sampling depth is not provided in the ISMN database so

instead we matched to the interval’s maximal depth. If we had

had access to this depth, we could have used a weighted depth

approach to calculate the average soilmoisture corresponding to

the estimated sampling depth (as in Cooper et al. 2020). In

comparison, the estimated sensing depth of satellite retrievals is

more uniform and will be better for proper comparison and

analysis between sites. Furthermore, the number of years used

in this study was limited by the small overlap between the

FLUXNET2015 and ISMN data records. For both types of op-

timizations considered, a longer data stream would be prefera-

ble.A longer recordwould provide a clearer seasonality over the

sites, needed for bias correction (important for Opt_fullSSM)

and would ensure drydowns at different times of the year are

captured (important for Opt_t).

Finally, compared to forest sites, which have one clear

dominating ORCHIDEE PFT, savannah sites are not ex-

plicitly described in ORCHIDEE. As such ancillary files are

used to describe the different vegetation fractions at these

sites. Generally the largest fraction of a prescribed PFT is less

than half (e.g., 40% of C4 crops). During the calibration, the

parameters for this PFT are optimized but the rest of the

vegetation remains unchanged. In future experiments, it may

be necessary to do simultaneous calibration of the different

types of vegetation present to improve all the different

parameters.

6. Conclusions

We have shown that the drydowns in the ORCHIDEE LSM

can be fitted using an exponential curve. This curve is character-

ized by t, which is invariant under simple bias correction algo-

rithms as performedprior to calibration experiments. The t values

from the model were compared to t calculated using in situ SSM

data. The valueswere generally comparable but a greater range of

t values were found in observed time series and overall themodel

was found to dry out faster than the observations. Calibrating an

ensemble of parameters (13 parameters here covering a range of

hydrology and photosynthesis parameters)with the objective to fit

t was shown to be promising. At least half of the drydowns were

improved at each site and the ubRMSE of the overall SSM time

series was maintained or improved at half of the sites. In

contrast, a standard calibration of thewhole SSM time serieswas

generally not able to improve drydowns. The latter calibration

also had amore significantly deteriorating effect on noncalibrated

fluxes such as GPP and LE, whereas these other fluxes were only

FIG. 6. Seasonal time series of (top) GPP, (middle) Resp, and

(bottom) LE for three representative sites. In each case, the prior

model run (black) and the posterior model runs from the Opt_

t assimilation (blue) and the Opt_fullSSM assimilation (yellow)

are compared to the FLUXNET observations (gray).
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minutely affected by the t calibration. Both optimizations, how-

ever, do not improve much the overall simulated SSM, with the t

calibration performing less well than the full SSM optimization.

Furthermore, there is scope to improveboth calibration strategies,

through for example the inclusion of off-diagonal elements in the

R matrices, which may change the results.

Both the absolute values of SSM and the drydown velocity

(measured by t) reflect integrated variables related to obser-

vation scale and support volume, soil texture, vegetation, and

potential evaporation. While in situ derived t will still be bi-

ased relative to gridscale t values, as an intrinsic temporal

metric, using t, however, removes the need of mean-state bias

correction prior to comparison or model calibration. The ob-

jective of the ORCHIDEE model is not to represent the ab-

solute values of SSM, which are not comparable to point

measurements since, in most cases, these measurements are

not representative of the model scale. Rather ORCHIDEE seeks

to represent some physical behaviors that are crucial for simu-

lating the temporal dynamics of model state variable responses

(linked to rainfall and drought events). These results give

us a potential avenue in using t observations to calibrate the

model. The next step is to use this t metric at a global scale

by optimizing against SSM satellite data and possibly si-

multaneously with other satellite products linked to the

water and carbon cycles, such as surface temperature or

vegetation optical depth.
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APPENDIX

Drydown Time Series

Drydown events are independent. Since they are calculated

from rainfall events, they can occur at regular intervals.

Figure A1 shows events for two contrasting sites. The first

example is over US-Whs, a semiarid site, where the observa-

tions dry out faster than the observations. The second example

is for US-PFa, a temperate site, where the model dries out

faster than the observations. These t values are used in the

calibration—we used the observed values as the target for the

modeled valued.
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