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ϵ Suboptimality Based Early Stop in Dual Decomposition
for Model Predictive Control

Xiang Dai, Romain Bourdais, Herv Guguen

Abstract

Dual decomposition is an efficient tool in dealing with Model Predictive Control (MPC) problems, particularly for distributed
MPC. In this paper, we propose to limit the iteration number required in solving that problem, by stopping the iterative process
once the solution is close enough to the optimal one. To do so, we introduce the concepts of primal and dual suboptimality,
and derive respectively the projection and stopping condition for them. By exploiting the particular structure of the MPC
problem where only the first step inputs are applied to the system, we devise an early ϵ suboptimality stopping condition,
focusing on components only at the first step of the prediction horizon, thus to further reduce the iteration number needed.
Beyond the theoretical proofs that are developed, we illustrate the method’s efficiency, both in computation time and iteration
number, by various simulations.

Key words: Model predictive control; Suboptimality; Dual decomposition

1 Introduction

The linear time invariant system considered in this paper
is composed of m subsystems and characterized by cou-
pling dynamics and global linear equality constraints,
which is governed by a MPC criterion. Specifically, the
coupling dynamics are formulated as:

xl(j) =
m∑

i=1
(Alixi(j − 1) + Bliui(j − 1)), (1)

where for ∀ l = 1, ..., m, j = 1, ..., N (N ∈ N+ is
the prediction horizon), xl(j) ∈ Rnxl and ul(j) ∈ Rnul

are the states and inputs of l-th subsystem at step j,
Ali ∈ Rnxl×nxi , Bli ∈ Rnxl×nui are system matrix, and
xl(0) = x̄l, x̄l ∈ Rnxl is the initial state of l-th subsys-
tem.

The global equality constraints of input and state vari-
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ables are imposed to each subsystem as:

m∑
l=1

Al
jxl(j) +

m∑
l=1

Bl
jul(j) = aj , (2)

where Al
j ∈ Rnaj×nxl , Bl

j ∈ Rnaj×nul and aj ∈ Rnaj .
Note that local equality constraints are indeed incorpo-
rated in (2).

It is well known that an iterative process in practice [3]
[1] [10] typically solves the corresponding optimization
problem. A major motivation of this paper is to reduce
the iteration needed while achieving a solution close to
the optimum.

Due to the attractive accessibility and scalability, the
updated mainstream techniques in solving the above op-
timization problem are based on the first-order gradi-
ent or subgradient method [21], where the step size is
a decisive parameter to determine. And vast research
has been implemented in this field, such as: for fixed
step size, e.g., exact first-order algorithm (EXTRA) [18],
and distributed inexact gradient method and the gra-
dient tracking technique (DIGing) [11]; for diminishing
step size, e.g., distributed (sub)gradient descent (DGD)
algorithm [12]. It is worth mentioning that a method
originally proposed by Nesterov [14] has been proved
by Theorem 2.2.2 [13] to be the optimal first-order gra-
dient method for strongly convex optimization (with
one time continuously differentiable objective function
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whose first derivative is Lipschitz continuous). The Nes-
terov method has been developed in [2] [14], and has been
fitted to MPC in [7] named accelerated gradient method,
which is adopted for iterative process in this paper.

It has been reviewed in [21] that the absolute optimal so-
lution is strictly hard to obtain by iteration in complex
constrained distributed optimization. Instead, a numer-
ical tolerance is usually applied, enabling the iterative
process to be terminated within finite iterations [19]. As
can be expected, the equality constraints are also re-
quired to satisfy this numerical tolerance. Here, we in-
troduce ϵ (ϵ > 0), not as a numerical tolerance, but as
a specified suboptimality tolerance, which permits the
strict feasibility study of the optimization problem.

To generate ϵ suboptimal solution, the updated dual ob-
jective value is used to approximate primal optimum
generate in [8] [17], but the lasting approximation gap
are presumed to cause over conservative solutions. Since
the dual problem is exactly unconstrained optimization,
we can apply the gradient-based suboptimality condition
in [4], whose implementation is spared of approximation
gap and requires no knowledge of the optimal solution.

Another key problem that arises after the iterative pro-
cess termination is how to generate a feasible solution
with suboptimality guarantee. One typical way is to em-
ploy an adaptable constraint tightening technique dur-
ing the iteration [8] [22], yet heuristic adaption may
cause extra iterations. Alternatively, an ϵ accuracy fea-
sibility, the largest violation of feasible constraints, is
introduced in [17] as a stopping condition to obtain a
"good enough" solution, which is still not strictly feasi-
ble. In this paper, we propose a projection mechanism
to obtain a primal feasible solution with a suboptimality
guarantee based on the gradient norm of dual function.

This paper is an extension of our previous work [6], where
a heuristic for reducing the local problem size has been
elaborated to diminish the complexity in distributed
MPC generated optimization. Our main contribution in
this paper is that, by formalizing this heuristic to MPC
setting with coupling dynamics and general equality lin-
ear constraints, we provide the ϵ suboptimality condition
and related mathematical proof. Most significantly, we
develop the first step focused ϵ suboptimality condition
and feasibility-ensured projection mechanism.

This paper is organized as follows. Section 2 sets up
the optimization problem and fundamentals. Section 3
proposes gradient-based stopping condition and projec-
tion ensured feasibility and ϵ-suboptimality. Section 4
demonstrates the first step focused stopping condition
and the first step projection with proof of feasibility and
ϵ-suboptimality. Numerical experiments and results dis-
cussions are presented in Section 5. And conclusions are
given in Section 6.

Notation: The norm || · || denotes the Euclidean norm,
for x ∈ Rn, n ∈ N+ and R ∈ Sn

+, ||x||R =
√

xT Rx,
min eig(R) denotes the minimal eigenvalue of R. For
matrix A ∈ Rm1×n and B ∈ Rm2×n (m1, m2 ∈ N+),
A ⊕ B = (AT , BT )T , and rank(A) denotes the rank of
A. By default, all the matrix, vector, scalar, projection
operator, set and variable refer to that of full length pre-
diction horizon N if no subscript appears. In contrast,
for ∀a, b ∈ N and 1 ≤ a ≤ b ≤ N , the subscript (·)(a:b)
refers to its affiliated matrix, vector, scalar, projection
operator, set and variable to the steps interval from step
a to b in the prediction horizon N . The same notation
essence also suits in the context where we specify "from
step a to b".

2 Problem statement and fundamentals

2.1 Problem statement

Let Ul =
⊕N

j=1 ul(j − 1) and Xl =
⊕N

j=1 xl(j), each
subsystem is governed by a MPC criterion, resulting the
local objective function as:

Jl(Ul, Xl) = 1
2

N∑
j=1

(||ul(j − 1)||2Rul
+ ||xl(j)||2Rxl

), (3)

where Rul ∈ Snul
++ and Rxl ∈ Snxl

++.

Accordingly, the local optimization problem for l-th sub-
system is formulated as:

J∗
l = min

Ul,Xl

Jl(Ul, Xl), (4)

s.t. (1), (2).

The global MPC criterion is defined as the sum of
Jl(Ul, Xl) of all m subsystems. Hereby, we formulate
the global optimization problem in a compact form as:

J ∗ = min
y
J (y), (5a)

s.t. Ay = b, (5b)
where J (y) = 1

2 ||y||
2
R =

∑m
l=1 Jl(Ul, Xl), y =⊕N

j=1 y(j:j), y(j:j) = x(j:j) ⊕ u(j−1:j−1), x(j:j) =⊕m
l=1 xl(j), u(j−1:j−1) =

⊕m
l=1 ul(j − 1), y ∈ Rny, let

ne = N
∑m

l=1 nxl +
∑N

j=1 naj , A ∈ Rne×ny, b ∈ Rne

and R ∈ Sny
++ possesses the block diagonal structure.

Assumption 1 We assume that the feasible set of
problem (5) is not empty, and all constraints of (5b)
are linear independent.
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Correspondingly, the dual problem of problem (5) is de-
fined as:

g∗ = max
θ

g(θ) = max
θ

min
y
L(y,θ), (6)

L(y,θ) = 1
2
||y||2R + θT (Ay − b), (7)

where θ ∈ Rne is the dual variables associated with
constraint (5b). Likewise the relation between problem
(4) and (5), L(y,θ) could be converted into the sum of
local Lagrangian, which enables problem (6) to be solved
distributively.

Remark 1 Since problem (6) is summation of its lo-
cal counterpart, distributed or centralized manner would
deliver the same solution at each iteration. We hence
apply a centralized formulation hereafter to keep a con-
cise notation, and to highlight the step-partitioned based
methodology straightforwardly.

Remark 2 Since problem (5) by nature is strongly
convex, the Slater’s condition is satisfied [4]. Then
the strong duality holds by Slater’s theorem, namely
J ∗ = g∗.

2.2 ϵ-suboptimality definition

Definition 1 y is said to be an ϵ primal solution of
problem (5) if and only if: Ay = b, and ||J (y)−J ∗|| ≤
ϵ.

As we intend to solve the dual problem (6) prior to get
a primal solution, correspondingly the ϵ suboptimal so-
lution from the dual point of view is defined as follows.

Definition 2 (yθ,θ) is said to be an ϵ dual solution of
problem (6) if and only if: yθ = arg miny L(y,θ) and
||L(yθ,θ)− J ∗|| ≤ ϵ.

Note that, an ϵ suboptimal solution (yθ,θ) of problem
(6) cannot guarantee that yθ is primal feasible, which
consequently demands a further feasibility verification
with respect to problem (5).

2.3 Accelerated gradient method

To solve dual decomposition based convex optimization
problem (6) iteratively, we recall the accelerated gradi-
ent method in [7] as:

θk+1 = θ̃k + 1
L

(Aỹk − b), (8)

yk+1 = −R−1ATθk+1, (9)

where θ̃k = θk + k−1
k+2 (θk − θk−1), ỹk = yk + k−1

k+2 (yk −
yk−1), and L = ||AR−1AT ||.

3 The gradient based stopping condition and
projection

In this section, we first study the stopping condition to
guarantee a predefined suboptimality ϵ in solving prob-
lem (6). Then we propose a linear projection that pro-
duces a primal ϵ-suboptimal solution.

3.1 Stopping condition of ϵ suboptimal solution

As formulated in (7), the Lagrangian is a continuous
quadratic function with positive definite hessian, thus
differentiable. Given θ ∈ Rne , using the first order nec-
essary optimality condition ∇yL(y,θ) = 0, we have:

yθ = −R−1ATθ, (10)

Substituting (10) into (7) yields:

g(θ) = −1
2
θTAR−1ATθ − θT b. (11)

Based on the explicit expression of g(θ) in (11), we have
its first and second order gradient respectively as:

∇g(θ) = Ayθ − b, (12)
∇2g(θ) = −AR−1AT . (13)

Let us define β = min eig(AR−1AT ), and we have β > 0
since R ∈ Sny

++.

Lemma 1 In implementing iterative process (8) (9), if

||Ayk − b||2 ≤ 2βϵ (14)

is satisfied, then (yk,θk) is an ϵ dual solution of problem
(6).

PROOF. First, we introduce a convex optimization
problem as:

F ∗ = min
θ

F (θ), (15)

where F (θ) = −g(θ) and F ∗ = −g∗.

Subsequently, we have :

||∇g(θ)||2 = ||∇F (θ)||2 = ||Ayθ − b||2, (16)
||F (θ)− F ∗|| = ||g∗ − g(θ)||. (17)

Viewing (9) and (10), combined with (12), we actually
have at each iteration:

∇g(θk) = Ayk − b, (18)
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Recall 9.1.2 of [4], for problem (15) to attain ϵ-
suboptimality such that F (θ) − F ∗ ≤ ϵ, the sufficient
condition is:

||∇F (θ)|| ≤ (2βϵ)1/2. (19)

Using (16) (17) and (19), we can conclude the proof.�

3.2 From dual ϵ suboptimal solution to primal ϵ sub-
optimal solution

If (yθ,θ) is an ϵ suboptimal solution of problem (6), we
do not necessarily have y ∈ Y = {y | Ay = b}, then an
specific projection from y onto feasible set of problem (5)
is needed. We first propose a matrix F ∈ Rny×(ny−ne)

satisfying that AF = 0, and

min eig(F TRF ) = β. (20)

Particularly, (20) could be fulfilled by the following treat-
ment: given any F ′ ∈ Rny×(ny−ne) with AF ′ = 0 and

min eig(F ′TRF ′) ̸= β, let b =
β

min eig(F ′TRF ′)
, then

F =
√

bF ′. Because we have:

min eig(F TRF ) = min eig(bF ′TRF ′)
= b(min eig(F ′TRF ′)) = β.

Then, we can formulate the feasible set Y as:

Y = {y | Ay = b} = {ŷ + Ft | t ∈ Rny−ne}, (21)

this characterization is based on any ŷ ∈ Y .

Next, inspired by linear projection operator P1 in [5], we
propose Pe from y ∈ Rny onto Y as Pe(y): y 7→ ye.

ye = y −AT
p (ApA

T
p )−1(Apy − bp), (22)

where Ap = F TR ⊕ A, bp = h ⊕ b, let p = ny − ne,
h ∈ Rny−ne is any vector satisfying

||h|| ≤ ||∇g(θ)||. (23)

Lemma 2 If (yθ,θ) is an ϵ suboptimal dual solution of
problem (6), then ye = Pe(y) is an ϵ primal solution of
problem (5).

PROOF. First, we prove that ye is a feasible solution
of problem (5). Left multiplying the right side of (22) by
Ap, we have Apye = bp, which could be partitioned as:

Aye = b, (24)
F TRye = h. (25)

By (24), we can conclude that ye ∈ Ye is a primal feasible
solution of problem (5).

Next, we prove the ϵ suboptimality of ye. By (21), Prob-
lem (5) is equivalent as:

J∗ = min
t

J(t), (26)

where J(t) = 1
2 ||ŷ + Ft||2R, and J∗ = J̄ ∗.

Accordingly, we have

∇J(t) = F TR(ŷ + Ft),

∇2J(t) = F TRF .

By making ye = ŷ + Fte, we have ∇J(te) = F TRye.

Next, by (23) we have

||∇J(te)||2 = ||h||2 ≤ ||∇g(θ)||2 = ||Ay − b||2. (27)

As J(te) = J (ye), then by (14) and (20), we have
||J (ye)− J̄ ∗|| ≤ ϵ. And this completes the proof. �

Integrating ϵ suboptimality stopping condition (14) and
projection operator Pe, Algorithm 1 presents the proce-
dures to generate ϵ primal solution for problem (5).

Algorithm 1 Full Prediction Horizon Stopping Con-
dition With Projection (FPH-P)
1: Initialize: θ0 = θ−1, ϵ, β and k = 0. y−1 and y0 are

given by (9).
2: while (14) is not satisfied do
3: Update primal and dual variables by (9) and (8)

respectively
4: k ← k + 1
5: end while
6: yk

e = Pe(yk)

4 The first step focused stopping condition and
projection

In the context of MPC, where only inputs of the first
step in the current prediction horizon would be applied,
two questions in turn arise. Can we transform (14) to
stopping condition focused only on the first step? Can we
find a way to generate a feasible solution only using the
first step elements while guarantee the ϵ suboptimality?
These two questions are consecutively addressed in this
section.
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4.1 The first step focused stopping condition

Note that in the MPC context, the step separated struc-
ture existing in problem (5) for both objective function
and constraints enables a step-based partition, which
will serve as the basis of methods studied in this section.

Here, we propose to convert the stopping condition (14)
into the fist step oriented, which consists of 2 steps. The
first step is to partition the prediction horizon into two
parts: the first step, and from step 2 to N .

As a prerequisite, we decompose A and b into block form
as:

A =

[
A(1:1) 0

B(2:N) A(2:N)

]
, b =

[
b(1:1)

b(2:N)

]
. (28)

Based on (28), the gradient ∇g(θ) and iteration of yk

are partitioned as:

yk
(1:1) = −R−1

(1:1)(A
T
(1:1)θ

k
(1:1) + BT

(2:N)θ
k
(2:N)), (29)

yk
(2:N) = −R−1

(2:N)A
T
(2:N)θ

k
(2:N), (30)

∇gk
(1:1) = A(1:1)y

k
(1:1) − b(1:1), (31)

∇gk
(2:N) = B(2:N)y

k
(1:1) + A(2:N)y

k
(2:N) − b(2:N), (32)

where the variables in step partitioned gradient expres-
sion are omitted hereafter to lighten the notation.

The second step is to reconstruct (14): setting the re-
quired gradient norm from step 2 to N as 0. By doing so,
we create a less demanding stopping condition for the
first step with ϵ suboptimality guarantee, which enables
a possible earlier termination of iterative process (8)-(9).
As such, the early stopping condition is proposed as:

||∇gk
(1:1)||

2 ≤ 2βϵ. (33)

Theorem 1 Let ȳ(2:N) and θ̄ be solved by the following
equations:

B(2:N)y
k
(1:1) + A(2:N)ȳ(2:N) − b(2:N) = 0, (34)

yk
(1:1) ⊕ ȳ(2:N) = −R−1AT θ̄. (35)

Then, if (33) is satisfied in implementing iterative pro-
cess (8) (9), (yk

(1:1) ⊕ ȳ(2:N), θ̄) is an ϵ dual solution of
problem (6).

PROOF. By Assumption 1, all constraints of (5b) are
linear independent, thus A is full row rank. Next, by
partition (28), A(2:N) is correspondingly full row rank.

As such, by (34) (35), ȳ(2:N) and θ̄ could be solved ex-
plicitly using Pesudo-inverse as:

ȳ(2:N) = AT
(2:N)(A(2:N)A

T
(2:N))

−1(b(2:N) −B(2:N)y
k
(1:1)),

θ̄ = −(AAT )−1AR(yk
(1:1) ⊕ ȳ(2:N)).

Since ȳ(2:N) and θ̄ are solvable, by (10) and (35), we have

yk
(1:1) ⊕ ȳ(2:N) = arg min

y
L(y, θ̄). (36)

which means (yk
(1:1) ⊕ ȳ(2:N), θ̄) is a dual solution of

problem (6).

It remains to prove the following inequality.

g∗ − L(yk
(1:1) ⊕ ȳ(2:N), θ̄) ≤ ϵ.

By Lemma 1, we need to have:

||∇g(θ̄)||2 ≤ 2βϵ.

By (31) (32) and (35), we have

||∇g(θ̄)||2 = ||∇gk
(1:1)||

2+
||B(2:N)y

k
(1:1) + A(2:N)ȳ(2:N) − b(2:N)||2.

We can conclude the proof by (34) and (33). �

Lemma 3 In implementing iterative process (8)-(9),
let k1 and k2 be defined as:

k1 = inf{k | ||∇gk
(1:1)||

2 ≤ 2βϵ}, (37)
k2 = inf{k | ||∇gk||2 ≤ 2βϵ}, (38)

then k1 ≤ k2.

PROOF. Since for ∀k, ||∇gk||2 = ||∇gk
(1:1)||

2 +
||∇gk

(2:N)||
2, and ||∇gk

(2:N)||
2 ≥ 0, we have

||∇gk2
(1:1)||

2 ≤ ||∇gk2 ||2 ≤ 2βϵ.

As a consequence, by (37) we have k1 ≤ k2. And this
completes the proof. �

4.2 The first step focused projection

In this subsection, we specify the projection oper-
ator Pe,(1:1) from y(1:1) ∈ Rny(1:1) onto Y(1:1) as
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Pe,(1:1)(y(1:1)): y(1:1) 7→ ye,(1:1).

ye,(1:1) = y(1:1)−
AT

p,(1:1)(Ap,(1:1)A
T
p,(1:1))

−1(Ap,(1:1)y(1:1) − bp,(1:1)),
(39)

where Ap,(1:1) = F T
(1:1)R(1:1)⊕A(1:1), bp,(1:1) = h(1:1)⊕

b(1:1), ∇g(1:1)(θ(1:1)) = A(1:1)y(1:1) − b(1:1), let p(1:1) =
ny(1:1) − ne,(1:1) and h(1:1) ∈ Rp(1:1) is any vector satis-
fying ||h(1:1)|| ≤ ||∇g(1:1)(θ(1:1))||.

Lemma 4 If yk
(1:1) satisfies (33), then yk

e,(1:1) =
Pe,(1:1)(yk

(1:1)) is the first step components of an ϵ pri-
mal solution of problem (5).

PROOF. By Theorem 1, (yk
(1:1)⊕ȳ(2:N), θ̄) is an ϵ dual

solution of problem (6). Implementing projection Pe, we
have by Lemma 2 an ϵ primal solution of problem (5) as
ȳe = Pe(yk

(1:1) ⊕ ȳ(2:N)), which could be partitioned as
ȳe = ȳe,(1:1) ⊕ ȳe,(2:N).

By (24) (28), for feasibility fulfillment we have:

A(1:1)ȳe,(1:1) = b(1:1), (40)
A(2:N)ȳe,(2:N) + B(2:N)ȳe,(1:1) = b(2:N). (41)

By (27) (28) , for ϵ suboptimality fulfillment we have:

||F T
(1:1)R(1:1)ȳe,(1:1)||2 ≤ ||gk

(1:1)||
2 =

||A(1:1)y
k
(1:1) − b(1:1)||2, (42)

||F T
(2:N)R(2:N)ȳe,(2:N)||2 = 0. (43)

Let yk
e,(1:1) = Pe,(1:1)(yk

(1:1)), we have yk
e,(1:1) satisfying

(40) and (42). Then substituting ȳe,(1:1) by yk
e,(1:1) in

(41), we can form a linear equation group (with yk
e,(2:N)

being variable to be solved) as:{
A(2:N)y

k
e,(2:N) + B(2:N)y

k
e,(1:1) = b(2:N),

F T
(2:N)R(2:N)y

k
e,(2:N) = 0.

(44)

As yk
e,(2:N) ∈ Rny(2:N) , A(2:N) ∈ Rne,(2:N)×ny(2:N) ,

F(2:N) ∈ Rny(2:N)×p(2:N) and R(2:N) ∈ Sny(2:N)
++ , by

Assumption 1 we have rank(A(2:N)) = ne,(2:N),
rank(F T

(2:N)R(2:N)) = p(2:N) , thus (44) has the unique
solution of yk

e,(2:N).

Consequently, yk
e,(1:1)⊕yk

e,(2:N) is indeed an ϵ primal so-
lution of problem (5) by Definition 1, of which yk

e,(1:1)
is the first step components. And this completes the
proof.�

Algorithm 2 depicts the mechanism combining the first
step focused stopping condition and the first step pro-
jection.

Algorithm 2 First Step Stopping Condition With Pro-
jection (FS-P)
1: Initialize: θ0 = θ−1, ϵ, β and k = 0. y−1 and y0 are

given by (9).
2: while (33) is not satisfied do
3: Update primal and dual variables by (9) and (8)

respectively
4: k ← k + 1
5: end while
6: yk

e,(1:1) = Pe,(1:1)(yk
(1:1))

Note that in this section, the presence of ȳ(2:N), θ̄ and
yk

e,(2:N) are purely to complete the mathematical proof,
we only need to obtain yk

(1:1) and ye,(1:1) in implementing
FS-P.

5 Numerical experiments

Table 1
Suboptimality performance comparison (with J ∗ as the
benchmark) among FS, FS-P, FPH and FPH-P. (The mag-
nitude of 1 × 10−3, 1 × 10−4 and 1 × 10−5 are omitted from
the results according to the relative suboptimality referred
for space-saving. As a result, any result showed with ab-
solute value less than 1 means predefined suboptimality is
guaranteed.)

Rel. ϵ Alg.
Ave. Rel. Error Max. Rel. Error

Prediction Horizon Prediction Horizon

10 20 30 40 50 10 20 30 40 50

10−3

FPH -0.58 -0.48 -0.47 -0.44 -0.46 -0.94 -0.91 -0.92 -0.89 0.95

FS -0.48 -0.56 -0.58 -0.67 -0.70 -0.91 -0.95 -0.96 -0.99 -0.98

FPH-P 0.89 0.87 0.86 0.83 0.85 0.99 0.99 0.99 0.99 0.99

FS-P 0.83 0.85 0.84 0.86 0.85 0.99 0.99 0.99 0.99 0.99

10−4

FPH -0.54 -0.51 -0.51 -0.50 -0.50 -0.91 -0.93 -0.93 -0.97 -0.92

FS -0.55 -0.50 -0.50 -0.50 -0.47 -0.98 -0.97 -0.94 -0.98 -0.99

FPH-P 0.88 0.87 0.88 0.86 0.85 0.99 0.99 0.99 0.99 0.99

FS-P 0.85 0.83 0.83 0.86 0.85 0.99 0.99 0.99 0.99 0.99

10−5

FPH -0.57 -0.56 -0.54 -0.51 -0.50 -0.92 -0.94 -0.96 -0.94 -0.92

FS -0.53 -0.48 -0.45 -0.46 -0.50 -0.92 -0.96 -0.94 -0.98 -0.91

FPH-P 0.89 0.89 0.87 0.84 0.85 0.99 0.99 0.99 0.99 0.99

FS-P 0.81 0.81 0.80 0.81 0.81 0.99 0.99 0.99 0.99 0.99

In this section, FPH-P and FS-P are tested under 5 pre-
diction horizons, from 10 to 50 with the incremental in-
terval of 10. Of each prediction horizon, 100 independent
randomly generated numerical experiments are carried
out using Matlab 2018b on a Windows 10 PC with 2.20
GHz Core i7-8750H CPU and 16GB RAM.

The tested system, with Ali and Bli randomly generated
by Matlab command syss, consists of 5 subsystems,
each of which contains 2 inputs and 2 outputs. More in
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details, each element of x0 is randomly drawn from uni-
form distribution [−0.5, 0.5]. The equality constraints
are

∑m
i=1 ul(j) = 1. The penalty matrix R = I, and the

relative suboptimality 1 tested are 1 × 10−3, 1 × 10−4

and 1× 10−5.

Particularly, for projection treatment, we simply make
the first element of h equal to ||∇g(θk)|| and rest ele-
ments equal 0 in Step 6 of FPH-P to get yk

e ; and make
the first element of h(1:1) equal to ||∇gk

(1:1)|| and rest el-
ements equal 0 in Step 6 of FS-P to get yk

e,(1:1). Subse-
quently, yk

e,(2:N) is solved by (44) using yk
e,(1:1).

In Table 1, FPH refers to g(θk) when (14) in FPH-P
is satisfied. Specifically, FS refers to the full length pre-
diction objective value g(θ̄), and θ̄ is solved by (34)
(35) when (33) is satisfied. The benchmark value J ∗

for relative error comparison is solved by commercial
optimization solver MOSEK programmed in platform
Yalmip [9].

Table 1 shows that the predefined suboptimality of all
N cases is guaranteed by implementing FS, FPH, and
their projections. The discrepancies of both average and
maximal relative error between FS and FPH are compa-
rably small, so as that between FS-P and FPH-P, which
suggests that using the first step stopping condition does
not impact fulfillment of feasibility and ϵ suboptimality.
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Time step
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V
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 o

f i
np
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Optimal
FS
FPH
FS-P
FPH-P

Fig. 1. Input sequence comparison of one subsystem in a
test among optimal solution, FS, FPH, FS-P and FPH-P
with N = 10 and relative suboptimality being 1 × 10−3.
(yk

(1:1) ⊕ ȳ(2:N) and yk
e,(1:1) ⊕ yk

e,(2:N) are presented respec-
tively for FS and FS-P, note that only inputs of the first
time step would be applied.)

1 The relative suboptimality is computed as suboptimality
divided by J ∗.
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Fig. 2. Iteration number and computation time ratio of FS
to FPH with relative suboptimality being 1 × 10−3 (sample
value exceeded +/−2.7σ shows as whisker, same setting for
other box plots)
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Fig. 3. Iteration number and computation time ratio of FS
to FPH with relative suboptimality being 1 × 10−4

In Fig. 1, by projection mechanism, the trajectory of FS-
P and FPH-P are closer to the optimal solution than FS
and FPH. Furthermore, the latter the step appeared in
input sequence of FS-P and FPH-P, the tighter the gap
between them and the optimal solution.

From Fig. 2, Fig. 3 and Fig. 4, statistically, FS consumes
significantly fewer iterations compared to FPH in major-
ity tests of all N cases and of all relative suboptimality.
Note that, ratio as 1 denotes that k1 = k2 in Lemma 3,
which is the worst case that could happen to FS in terms
of iteration number. Generally, the ratio of FS to FPH
in computation time are even smaller than that in itera-
tion number. Observing (33) and (14), at each iteration
FS only needs to calculate gradient for the first step,
while the full prediction horizon calculation is required
of FPH, resulting in an even larger time advantage as N
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Fig. 4. Iteration number and computation time ratio of FS
to FPH with relative suboptimality being 1 × 10−5

increases.

6 Conclusion

In this paper, in tackling MPC resulted optimization,
we have proposed projection onto the primal feasible set
with ϵ-suboptimality guarantee based on a ϵ dual so-
lution. We have demonstrated the early stopping con-
dition in the MPC context through a step-based par-
tition technique by focusing on the first step compo-
nents. To generate the system’s applicable inputs, we
have also introduced the first step focused projection
with ϵ-suboptimality and feasibility guarantee.

Through random numerical experiments, the ϵ-
suboptimality condition has been verified for both algo-
rithms. Due to less demanding stopping condition and
computation burden, the first step focused algorithm
has generally outperformed the full prediction horizon
algorithm largely in iteration number and computation
time.

The technique demonstrated in this paper can be
extended to MPC setting with linear inequality con-
straints, which could be either eliminated by bar-
rier function [4], or transformed into equality con-
straints by active constraint identification technique
[15] [16] or active set method [20]. Hessian approxima-
tion/factorization and eigenvalue approximation could
also be adopted in solving L and β in large scale system
or in cases containing sparse structure. Input sequence
showed in Fig. 1 endows the potential for stability study.
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