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Dual decomposition is an efficient tool in dealing with Model Predictive Control (MPC) problems, particularly for distributed MPC. In this paper, we propose to limit the iteration number required in solving that problem, by stopping the iterative process once the solution is close enough to the optimal one. To do so, we introduce the concepts of primal and dual suboptimality, and derive respectively the projection and stopping condition for them. By exploiting the particular structure of the MPC problem where only the first step inputs are applied to the system, we devise an early ϵ suboptimality stopping condition, focusing on components only at the first step of the prediction horizon, thus to further reduce the iteration number needed. Beyond the theoretical proofs that are developed, we illustrate the method's efficiency, both in computation time and iteration number, by various simulations.

Introduction

The linear time invariant system considered in this paper is composed of m subsystems and characterized by coupling dynamics and global linear equality constraints, which is governed by a MPC criterion. Specifically, the coupling dynamics are formulated as:

x l (j) = m ∑ i=1 (A li x i (j -1) + B li u i (j -1)), (1) 
where for ∀ l = 1, ..., m, j = 1, ..., N (N ∈ N + is the prediction horizon), x l (j) ∈ R nx l and u l (j) ∈ R nu l are the states and inputs of l-th subsystem at step j, A li ∈ R nx l ×nxi , B li ∈ R nx l ×nui are system matrix, and x l (0) = xl , xl ∈ R nx l is the initial state of l-th subsystem.

The global equality constraints of input and state vari- ables are imposed to each subsystem as:

m ∑ l=1 A l j x l (j) + m ∑ l=1 B l j u l (j) = a j , (2) 
where A l j ∈ R naj ×nx l , B l j ∈ R naj ×nu l and a j ∈ R naj . Note that local equality constraints are indeed incorporated in [START_REF] Beck | A fast iterative shrinkagealgorithm for linear inverse problems[END_REF].

It is well known that an iterative process in practice [START_REF] Bertsekas | Dynamic programming and suboptimal control: A survey from ADP to MPC[END_REF] [1] [START_REF] Mayne | Model predictive control: Recent developments and future promise[END_REF] typically solves the corresponding optimization problem. A major motivation of this paper is to reduce the iteration needed while achieving a solution close to the optimum.

Due to the attractive accessibility and scalability, the updated mainstream techniques in solving the above optimization problem are based on the first-order gradient or subgradient method [START_REF] Yang | A survey of distributed optimization[END_REF], where the step size is a decisive parameter to determine. And vast research has been implemented in this field, such as: for fixed step size, e.g., exact first-order algorithm (EXTRA) [START_REF] Shi | Extra: An exact firstorder algorithm for decentralized consensus optimization[END_REF], and distributed inexact gradient method and the gradient tracking technique (DIGing) [START_REF] Nedić | Achieving Geometric Convergence for Distributed Optimization Over Time-Varying Graphs[END_REF]; for diminishing step size, e.g., distributed (sub)gradient descent (DGD) algorithm [START_REF] Nedic | Distributed Subgradient Methods for Multi-Agent Optimization[END_REF]. It is worth mentioning that a method originally proposed by Nesterov [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O (1/k 2)[END_REF] has been proved by Theorem 2.2.2 [START_REF] Nesterov | Lectures on Convex Optimization[END_REF] to be the optimal first-order gradient method for strongly convex optimization (with one time continuously differentiable objective function whose first derivative is Lipschitz continuous). The Nesterov method has been developed in [START_REF] Beck | A fast iterative shrinkagealgorithm for linear inverse problems[END_REF] [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O (1/k 2)[END_REF], and has been fitted to MPC in [START_REF] Giselsson | Accelerated gradient methods and dual decomposition in distributed model predictive control[END_REF] named accelerated gradient method, which is adopted for iterative process in this paper.

It has been reviewed in [START_REF] Yang | A survey of distributed optimization[END_REF] that the absolute optimal solution is strictly hard to obtain by iteration in complex constrained distributed optimization. Instead, a numerical tolerance is usually applied, enabling the iterative process to be terminated within finite iterations [START_REF] Tseng | On accelerated proximal gradient methods for convex-concave optimization[END_REF]. As can be expected, the equality constraints are also required to satisfy this numerical tolerance. Here, we introduce ϵ (ϵ > 0), not as a numerical tolerance, but as a specified suboptimality tolerance, which permits the strict feasibility study of the optimization problem.

To generate ϵ suboptimal solution, the updated dual objective value is used to approximate primal optimum generate in [START_REF] Giselsson | On feasibility, stability and performance in distributed model predictive control[END_REF] [START_REF] Patrinos | An accelerated dual gradientprojection algorithm for embedded linear model predictive control[END_REF], but the lasting approximation gap are presumed to cause over conservative solutions. Since the dual problem is exactly unconstrained optimization, we can apply the gradient-based suboptimality condition in [START_REF] Boyd | Convex Optimization[END_REF], whose implementation is spared of approximation gap and requires no knowledge of the optimal solution.

Another key problem that arises after the iterative process termination is how to generate a feasible solution with suboptimality guarantee. One typical way is to employ an adaptable constraint tightening technique during the iteration [START_REF] Giselsson | On feasibility, stability and performance in distributed model predictive control[END_REF] [START_REF] Zhang | Adaptive model predictive control for a class of constrained linear systems with parametric uncertainties[END_REF], yet heuristic adaption may cause extra iterations. Alternatively, an ϵ accuracy feasibility, the largest violation of feasible constraints, is introduced in [START_REF] Patrinos | An accelerated dual gradientprojection algorithm for embedded linear model predictive control[END_REF] as a stopping condition to obtain a "good enough" solution, which is still not strictly feasible. In this paper, we propose a projection mechanism to obtain a primal feasible solution with a suboptimality guarantee based on the gradient norm of dual function. This paper is an extension of our previous work [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF], where a heuristic for reducing the local problem size has been elaborated to diminish the complexity in distributed MPC generated optimization. Our main contribution in this paper is that, by formalizing this heuristic to MPC setting with coupling dynamics and general equality linear constraints, we provide the ϵ suboptimality condition and related mathematical proof. Most significantly, we develop the first step focused ϵ suboptimality condition and feasibility-ensured projection mechanism. This paper is organized as follows. Section 2 sets up the optimization problem and fundamentals. Section 3 proposes gradient-based stopping condition and projection ensured feasibility and ϵ-suboptimality. Section 4 demonstrates the first step focused stopping condition and the first step projection with proof of feasibility and ϵ-suboptimality. Numerical experiments and results discussions are presented in Section 5. And conclusions are given in Section 6.

Notation: The norm || • || denotes the Euclidean norm, for x ∈ R n , n ∈ N + and R ∈ S n + , ||x|| R = √ x T Rx, min eig(R) denotes the minimal eigenvalue of R. For matrix A ∈ R m1×n and B ∈ R m2×n (m 1 , m 2 ∈ N + ), A ⊕ B = (A T , B T ) T ,
and rank(A) denotes the rank of A. By default, all the matrix, vector, scalar, projection operator, set and variable refer to that of full length prediction horizon N if no subscript appears. In contrast, for ∀a, b ∈ N and 1 ≤ a ≤ b ≤ N , the subscript (•) (a:b) refers to its affiliated matrix, vector, scalar, projection operator, set and variable to the steps interval from step a to b in the prediction horizon N . The same notation essence also suits in the context where we specify "from step a to b".

Problem statement and fundamentals

Problem statement

Let U l = ⊕ N j=1 u l (j -1) and X l = ⊕ N j=1 x l (j), each subsystem is governed by a MPC criterion, resulting the local objective function as:

J l (U l , X l ) = 1 2 N ∑ j=1 (||u l (j -1)|| 2 R ul + ||x l (j)|| 2 R xl ), (3) 
where R ul ∈ S nu l ++ and R xl ∈ S nx l ++ .

Accordingly, the local optimization problem for l-th subsystem is formulated as:

J * l = min U l ,X l J l (U l , X l ), (4) 
s.t. (1), (2). 
The global MPC criterion is defined as the sum of J l (U l , X l ) of all m subsystems. Hereby, we formulate the global optimization problem in a compact form as:

J * = min y J (y), (5a) 
s.t. Ay = b, ( 5b 
)
where

J (y) = 1 2 ||y|| 2 R = ∑ m l=1 J l (U l , X l ), y = ⊕ N j=1 y (j:j) , y (j:j) = x (j:j) ⊕ u (j-1:j-1) , x (j:j) = ⊕ m l=1 x l (j), u (j-1:j-1) = ⊕ m l=1 u l (j -1), y ∈ R ny , let n e = N ∑ m l=1 nx l + ∑ N j=1 na j , A ∈ R ne×ny , b ∈ R ne and R ∈ S ny
++ possesses the block diagonal structure.

Assumption 1

We assume that the feasible set of problem (5) is not empty, and all constraints of (5b) are linear independent.

Correspondingly, the dual problem of problem ( 5) is defined as:

g * = max θ g(θ) = max θ min y L(y, θ), (6) 
L(y, θ) = 1 2 ||y|| 2 R + θ T (Ay -b), (7) 
where θ ∈ R ne is the dual variables associated with constraint (5b). Likewise the relation between problem (4) and ( 5), L(y, θ) could be converted into the sum of local Lagrangian, which enables problem (6) to be solved distributively.

Remark 1 Since problem ( 6) is summation of its local counterpart, distributed or centralized manner would deliver the same solution at each iteration. We hence apply a centralized formulation hereafter to keep a concise notation, and to highlight the step-partitioned based methodology straightforwardly.

Remark 2 Since problem (5) by nature is strongly convex, the Slater's condition is satisfied [START_REF] Boyd | Convex Optimization[END_REF]. Then the strong duality holds by Slater's theorem, namely

J * = g * .

ϵ-suboptimality definition

Definition 1 y is said to be an ϵ primal solution of problem [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF] if and only if: Ay = b, and ||J (y)-J * || ≤ ϵ.

As we intend to solve the dual problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF] prior to get a primal solution, correspondingly the ϵ suboptimal solution from the dual point of view is defined as follows.

Definition 2 (y θ , θ) is said to be an ϵ dual solution of problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF] if and only if:

y θ = arg min y L(y, θ) and ||L(y θ , θ) -J * || ≤ ϵ.
Note that, an ϵ suboptimal solution (y θ , θ) of problem ( 6) cannot guarantee that y θ is primal feasible, which consequently demands a further feasibility verification with respect to problem (5).

Accelerated gradient method

To solve dual decomposition based convex optimization problem (6) iteratively, we recall the accelerated gradient method in [START_REF] Giselsson | Accelerated gradient methods and dual decomposition in distributed model predictive control[END_REF] as:

θ k+1 = θk + 1 L (A ỹk -b), ( 8 
)
y k+1 = -R -1 A T θ k+1 , ( 9 
)
where θk =

θ k + k-1 k+2 (θ k -θ k-1 ), ỹk = y k + k-1 k+2 (y k - y k-1 ), and L = ||AR -1 A T ||.

The gradient based stopping condition and projection

In this section, we first study the stopping condition to guarantee a predefined suboptimality ϵ in solving problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF]. Then we propose a linear projection that produces a primal ϵ-suboptimal solution.

Stopping condition of ϵ suboptimal solution

As formulated in [START_REF] Giselsson | Accelerated gradient methods and dual decomposition in distributed model predictive control[END_REF], the Lagrangian is a continuous quadratic function with positive definite hessian, thus differentiable. Given θ ∈ R ne , using the first order necessary optimality condition ∇ y L(y, θ) = 0, we have:

y θ = -R -1 A T θ, (10) 
Substituting ( 10) into (7) yields:

g(θ) = - 1 2 θ T AR -1 A T θ -θ T b. ( 11 
)
Based on the explicit expression of g(θ) in ( 11), we have its first and second order gradient respectively as:

∇g(θ) = Ay θ -b, ( 12 
)
∇ 2 g(θ) = -AR -1 A T . ( 13 
)
Let us define β = min eig(AR -1 A T ), and we have β > 0 since R ∈ S ny ++ .

Lemma 1

In implementing iterative process (8) (9), if

||Ay k -b|| 2 ≤ 2βϵ ( 14 
)
is satisfied, then (y k , θ k ) is an ϵ dual solution of problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF].

PROOF. First, we introduce a convex optimization problem as:

F * = min θ F (θ), (15) 
where

F (θ) = -g(θ) and F * = -g * .
Subsequently, we have :

||∇g(θ)|| 2 = ||∇F (θ)|| 2 = ||Ay θ -b|| 2 , ( 16 
) ||F (θ) -F * || = ||g * -g(θ)||. ( 17 
)
Viewing ( 9) and ( 10), combined with (12), we actually have at each iteration:

∇g(θ k ) = Ay k -b, (18) 
Recall 9.1.2 of [START_REF] Boyd | Convex Optimization[END_REF], for problem [START_REF] Nocedal | NUMERICAL OPTIMIZATION[END_REF] to attain ϵsuboptimality such that F (θ) -F * ≤ ϵ, the sufficient condition is:

||∇F (θ)|| ≤ (2βϵ) 1/2 . ( 19 
)
Using ( 16) ( 17) and ( 19), we can conclude the proof.

From dual ϵ suboptimal solution to primal ϵ suboptimal solution

If (y θ , θ) is an ϵ suboptimal solution of problem (6), we do not necessarily have y ∈ Y = {y | Ay = b}, then an specific projection from y onto feasible set of problem ( 5) is needed. We first propose a matrix F ∈ R ny×(ny-ne) satisfying that AF = 0, and

min eig(F T RF ) = β. ( 20 
)
Particularly, (20) could be fulfilled by the following treatment: given any F ′ ∈ R ny×(ny-ne) with AF ′ = 0 and min eig(

F ′T RF ′ ) ̸ = β, let b = β min eig(F ′T RF ′ )
, then

F = √ bF ′ . Because we have: min eig(F T RF ) = min eig(bF ′T RF ′ ) = b(min eig(F ′T RF ′ )) = β.
Then, we can formulate the feasible set Y as:

Y = {y | Ay = b} = { ŷ + F t | t ∈ R ny-ne }, ( 21 
)
this characterization is based on any ŷ ∈ Y .

Next, inspired by linear projection operator P 1 in [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF], we propose P e from y ∈ R ny onto Y as P e (y): y → y e .

y e = y -A T p (A p A T p ) -1 (A p y -b p ), (22) 
where

A p = F T R ⊕ A, b p = h ⊕ b, let p = ny -n e , h ∈ R ny-ne is any vector satisfying ||h|| ≤ ||∇g(θ)||. ( 23 
)
Lemma 2 If (y θ , θ) is an ϵ suboptimal dual solution of problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF], then y e = P e (y) is an ϵ primal solution of problem [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF].

PROOF. First, we prove that y e is a feasible solution of problem [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF]. Left multiplying the right side of ( 22) by A p , we have A p y e = b p , which could be partitioned as:

Ay e = b, ( 24 
)
F T Ry e = h. ( 25 
)
By (24), we can conclude that y e ∈ Y e is a primal feasible solution of problem [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF].

Next, we prove the ϵ suboptimality of y e . By [START_REF] Yang | A survey of distributed optimization[END_REF], Problem ( 5) is equivalent as:

J * = min t J (t), (26) 
where J (t) = 1 2 || ŷ + F t|| 2 R , and J * = J * .

Accordingly, we have

∇J (t) = F T R( ŷ + F t), ∇ 2 J (t) = F T RF .
By making y e = ŷ + F t e , we have ∇J (t e ) = F T Ry e .

Next, by (23) we have

||∇J (t e )|| 2 = ||h|| 2 ≤ ||∇g(θ)|| 2 = ||Ay -b|| 2 . ( 27 
)
As J (t e ) = J (y e ), then by ( 14) and ( 20), we have ||J (y e ) -J * || ≤ ϵ. And this completes the proof.

Integrating ϵ suboptimality stopping condition [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O (1/k 2)[END_REF] and projection operator P e , Algorithm 1 presents the procedures to generate ϵ primal solution for problem [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF].

Algorithm 1 Full Prediction Horizon Stopping Condition With Projection (FPH-P)

1: Initialize: θ 0 = θ -1 , ϵ, β and k = 0. y -1 and y 0 are given by (9). 2: while (14) is not satisfied do 3:

Update primal and dual variables by ( 9) and ( 8) respectively 

The first step focused stopping condition and projection

In the context of MPC, where only inputs of the first step in the current prediction horizon would be applied, two questions in turn arise. Can we transform [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O (1/k 2)[END_REF] to stopping condition focused only on the first step? Can we find a way to generate a feasible solution only using the first step elements while guarantee the ϵ suboptimality? These two questions are consecutively addressed in this section.

The first step focused stopping condition

Note that in the MPC context, the step separated structure existing in problem (5) for both objective function and constraints enables a step-based partition, which will serve as the basis of methods studied in this section.

Here, we propose to convert the stopping condition ( 14) into the fist step oriented, which consists of 2 steps. The first step is to partition the prediction horizon into two parts: the first step, and from step 2 to N .

As a prerequisite, we decompose A and b into block form as:

A = [ A (1:1) 0 
B (2:N ) A (2:N ) ] , b = [ b (1:1) b (2:N ) ] . ( 28 
)
Based on (28), the gradient ∇g(θ) and iteration of y k are partitioned as:

y k (1:1) = -R -1 (1:1) (A T (1:1) θ k (1:1) + B T (2:N ) θ k (2:N ) ), ( 29 
)
y k (2:N ) = -R -1 (2:N ) A T (2:N ) θ k (2:N ) , ( 30 
)
∇g k (1:1) = A (1:1) y k (1:1) -b (1:1) , ( 31 
)
∇g k (2:N ) = B (2:N ) y k (1:1) + A (2:N ) y k (2:N ) -b (2:N ) , ( 32 
)
where the variables in step partitioned gradient expression are omitted hereafter to lighten the notation.

The second step is to reconstruct [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O (1/k 2)[END_REF]: setting the required gradient norm from step 2 to N as 0. By doing so, we create a less demanding stopping condition for the first step with ϵ suboptimality guarantee, which enables a possible earlier termination of iterative process (8)-( 9). As such, the early stopping condition is proposed as:

||∇g k (1:1) || 2 ≤ 2βϵ. ( 33 
)
Theorem 1 Let ȳ(2:N) and θ be solved by the following equations:

B (2:N ) y k (1:1) + A (2:N ) ȳ(2:N) -b (2:N ) = 0, (34) 
y k (1:1) ⊕ ȳ(2:N) = -R -1 A T θ. ( 35 
)
Then, if (33) is satisfied in implementing iterative process (8) ( 9), (y k (1:1) ⊕ ȳ(2:N) , θ) is an ϵ dual solution of problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF].

PROOF.

By Assumption 1, all constraints of (5b) are linear independent, thus A is full row rank. Next, by partition (28), A (2:N ) is correspondingly full row rank.

As such, by (34) (35), ȳ(2:N) and θ could be solved explicitly using Pesudo-inverse as:

ȳ(2:N) = A T (2:N ) (A (2:N ) A T (2:N ) ) -1 (b (2:N ) -B (2:N ) y k (1:1) ), θ = -(AA T ) -1 AR(y k (1:1) ⊕ ȳ(2:N) ).
Since ȳ(2:N) and θ are solvable, by [START_REF] Mayne | Model predictive control: Recent developments and future promise[END_REF] and (35), we have

y k (1:1) ⊕ ȳ(2:N) = arg min y L(y, θ). ( 36 
)
which means (y k (1:1) ⊕ ȳ(2:N) , θ) is a dual solution of problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF].

It remains to prove the following inequality.

g * -L(y k (1:1) ⊕ ȳ(2:N) , θ) ≤ ϵ.
By Lemma 1, we need to have:

||∇g( θ)|| 2 ≤ 2βϵ.
By (31) (32) and ( 35), we have

||∇g( θ)|| 2 = ||∇g k (1:1) || 2 + ||B (2:N ) y k (1:1) + A (2:N ) ȳ(2:N) -b (2:N ) || 2 .
We can conclude the proof by ( 34) and (33).

Lemma 3

In implementing iterative process (8)-( 9), let k 1 and k 2 be defined as:

k 1 = inf{k | ||∇g k (1:1) || 2 ≤ 2βϵ}, ( 37 
)
k 2 = inf{k | ||∇g k || 2 ≤ 2βϵ}, ( 38 
)
then k 1 ≤ k 2 . PROOF. Since for ∀k, ||∇g k || 2 = ||∇g k (1:1) || 2 + ||∇g k (2:N ) || 2 , and ||∇g k (2:N ) || 2 ≥ 0, we have ||∇g k2 (1:1) || 2 ≤ ||∇g k2 || 2 ≤ 2βϵ.
As a consequence, by (37) we have k 1 ≤ k 2 . And this completes the proof.

The first step focused projection

In this subsection, we specify the projection operator P e,(1:1) from y (1:1) ∈ R ny = P e,(1:1) (y k

(1:1) ) is the first step components of an ϵ primal solution of problem [START_REF] Censor | On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints[END_REF].

PROOF. By Theorem 1, (y k

(1:1) ⊕ ȳ(2:N) , θ) is an ϵ dual solution of problem [START_REF] Dai | Dynamic Reduction of the Iterations Requirement in a Distributed Model Predictive Control[END_REF]. Implementing projection P e , we have by Lemma 2 an ϵ primal solution of problem ( 5) as ȳe = P e (y k

(1:1) ⊕ ȳ(2:N) ), which could be partitioned as ȳe = ȳe,(1:1) ⊕ ȳe,(2:N) . By (24) (28), for feasibility fulfillment we have:

A (1:1) ȳe,(1:1) = b (1:1) , (40) A (2:N ) ȳe,(2:N) + B (2:N ) ȳe,(1:1) = b (2:N ) . (41) 
By (27) (28) , for ϵ suboptimality fulfillment we have:

||F T (1:1) R (1:1) ȳe,(1:1) || 2 ≤ ||g k (1:1) || 2 = ||A (1:1) y k (1:1) -b (1:1) || 2 , ( 42 
)
||F T (2:N ) R (2:N ) ȳe,(2:N) || 2 = 0. ( 43 
)
Let y k e,(1:1) = P e,(1:1) (y k (1:1) ), we have y k e,(1:1) satisfying (40) and (42). Then substituting ȳe,(1:1) by y k e,(1:1) in (41), we can form a linear equation group (with y k e,(2:N ) being variable to be solved) as:

{ A (2:N ) y k e,(2:N ) + B (2:N ) y k e,(1:1) = b (2:N ) , F T (2:N ) R (2:N ) y k e,(2:N ) = 0. (44) 
As is the first step components. And this completes the proof.

y k e,(2:N ) ∈ R ny (2:N ) , A (2:N ) ∈ R n e,(2:N ) ×ny (2:N ) , F (2:N ) ∈ R ny
Algorithm 2 depicts the mechanism combining the first step focused stopping condition and the first step projection.

Algorithm 2 First Step Stopping Condition With Projection (FS-P)

1: Initialize: θ 0 = θ -1 , ϵ, β and k = 0. y -1 and y 0 are given by ( 9). 2: while (33) is not satisfied do 3:

Update primal and dual variables by ( 9) and ( 8) respectively Note that in this section, the presence of ȳ(2:N) , θ and y k e,(2:N ) are purely to complete the mathematical proof, we only need to obtain y k (1:1) and y e,(1:1) in implementing FS-P.

Numerical experiments

Table 1 Suboptimality performance comparison (with J * as the benchmark) among FS, FS-P, FPH and FPH-P. (The magnitude of 1 × 10 -3 , 1 × 10 -4 and 1 × 10 -5 are omitted from the results according to the relative suboptimality referred for space-saving. As a result, any result showed with absolute value less than 1 means predefined suboptimality is guaranteed.) Table 1 shows that the predefined suboptimality of all N cases is guaranteed by implementing FS, FPH, and their projections. The discrepancies of both average and maximal relative error between FS and FPH are comparably small, so as that between FS-P and FPH-P, first stopping condition does not impact fulfillment of feasibility and ϵ suboptimality. ) are presented respectively for FS and FS-P, note that only inputs of the first time step would be applied.) 1 The relative suboptimality is computed as suboptimality divided by J * . In Fig. 1, by projection mechanism, the trajectory of FS-P and FPH-P are closer to the optimal solution than FS and FPH. Furthermore, the latter the step appeared in input sequence of FS-P and FPH-P, the tighter the gap between them and the optimal solution.

From Fig. 2, Fig. 3 and Fig. 4, statistically, FS consumes significantly fewer iterations compared to FPH in majority tests of all N cases and of all relative suboptimality. Note that, ratio as 1 denotes that k 1 = k 2 in Lemma 3, which is the worst case that could happen to FS in terms of iteration number. Generally, the ratio of FS to FPH in computation time are even smaller than that in iteration number. Observing (33) and ( 14), at each iteration FS only needs to calculate gradient for the first step, while the full prediction horizon calculation is required of FPH, resulting in an even larger time advantage as N increases.

Conclusion

In this paper, in tackling MPC resulted optimization, we have proposed projection onto the primal feasible set with ϵ-suboptimality guarantee based on a ϵ dual solution. We have demonstrated the early stopping condition in the MPC context through a step-based partition technique by focusing on the first step components. To generate the system's applicable inputs, we have also introduced the first step focused projection with ϵ-suboptimality and feasibility guarantee.

Through random numerical experiments, the ϵsuboptimality condition has been verified for both algorithms. Due to less demanding stopping condition and computation burden, the first step focused algorithm has generally outperformed the full prediction horizon algorithm largely in iteration number and computation time.

The technique demonstrated in this paper can be extended to MPC setting with linear inequality constraints, which could be either eliminated by barrier function [START_REF] Boyd | Convex Optimization[END_REF], or transformed into equality constraints by active constraint identification technique [15] [16] or active set method [START_REF] Wong | Active-Set Methods for Quadratic Programming[END_REF]. Hessian approximation/factorization and eigenvalue approximation could also be adopted in solving L and β in large scale system or in cases containing sparse structure. Input sequence showed in Fig. 1 endows the potential for stability study.
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Lemma 4

 4 (1:1) onto Y (1:1) as P e,(1:1) (y (1:1) ): y (1:1) → y e,(1:1) . y e,(1:1) = y (1:1) -A T p,(1:1) (A p,(1:1) A T p,(1:1) ) -1 (A p,(1:1) y (1:1) -b p,(1:1) ),(39)where A p,(1:1) = F T (1:1) R (1:1) ⊕ A (1:1) , b p,(1:1) = h (1:1) ⊕ b (1:1) , ∇g (1:1) (θ (1:1) ) = A (1:1) y (1:1) -b (1:1) , let p (1:1) = ny (1:1)n e,(1:1) and h (1:1) ∈ R p (1:1) is any vector satisfying ||h (1:1) || ≤ ||∇g (1:1) (θ (1:1) )||. If y k (1:1) satisfies (33), then y k e,(1:1)

  (2:N ) ×p (2:N ) and R (2:N ) ∈ S ny (2:N ) ++ , by Assumption 1 we have rank(A (2:N ) ) = n e,(2:N ) , rank(F T (2:N ) R (2:N ) ) = p (2:N ) , thus (44) has the unique solution of y k e,(2:N ) .Consequently, y k e,(1:1) ⊕ y k e,(2:N ) is indeed an ϵ primal solution of problem (5) by Definition 1, of which y k e,(1:1) 
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 1 Fig. 1. Input sequence comparison of one subsystem in a test among optimal solution, FS, FPH, FS-P and FPH-P with N = 10 and relative suboptimality being 1 × 10 -3 . (y k(1:1) ⊕ ȳ(2:N) and y k e,(1:1) ⊕ y k e,(2:N ) are presented respectively for FS and FS-P, note that only inputs of the first time step would be applied.)
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 23 Fig. 2. Iteration number and computation time ratio of FS to FPH with relative suboptimality being 1 × 10 -3 (sample value exceeded +/ -2.7σ shows as whisker, same setting for other box plots)

Fig. 4 .

 4 Fig. 4. Iteration number and computation time ratio of FS to FPH with relative suboptimality being 1 × 10 -5

  The tested system, with A li and B li randomly generated by Matlab command syss, consists of 5 subsystems, each of which contains 2 inputs and 2 outputs. More in details, each element of x 0 is randomly drawn from uniform distribution [-0.5, 0.5]. The equality constraints are ∑ m i=1 u l (j) = 1. The penalty matrix R = I, and the relative suboptimality 1 tested are 1 × 10 -3 , 1 × 10 -4 and 1 × 10 -5 .

	Particularly, for projection treatment, we simply make									
	the first element of h equal to ||∇g(θ k )|| and rest ele-									
	ments equal 0 in Step 6 of FPH-P to get y k e ; and make the first element of h (1:1) equal to ||∇g k (1:1) || and rest el-									
	ements equal 0 in Step 6 of FS-P to get y k e,(1:1) . Subse-									
	quently, y k e,(2:N ) is solved by (44) using y k e,(1:1) .									
	In Table 1, FPH refers to g(θ k ) when (14) in FPH-P									
	is satisfied. Specifically, FS refers to the full length pre-diction objective value g( θ), and θ is solved by (34)									
	(35) when (33) is satisfied. The benchmark value J *									
	for relative error comparison is solved by commercial									
	optimization solver MOSEK programmed in platform									
	Yalmip [9].									
				Ave. Rel. Error			Max. Rel. Error
	Rel. ϵ Alg.		Prediction Horizon			Prediction Horizon
			10	20	30	40	50	10	20	30	40	50
		FPH -0.58 -0.48 -0.47 -0.44 -0.46 -0.94 -0.91 -0.92 -0.89 0.95
	10 -3	FS	-0.48 -0.56 -0.58 -0.67 -0.70 -0.91 -0.95 -0.96 -0.99 -0.98
		FPH-P 0.89 0.87 0.86 0.83 0.85 0.99 0.99 0.99 0.99 0.99
		FS-P 0.83 0.85 0.84 0.86 0.85 0.99 0.99 0.99 0.99 0.99
		FPH -0.54 -0.51 -0.51 -0.50 -0.50 -0.91 -0.93 -0.93 -0.97 -0.92
	10 -4	FS	-0.55 -0.50 -0.50 -0.50 -0.47 -0.98 -0.97 -0.94 -0.98 -0.99
		FPH-P 0.88 0.87 0.88 0.86 0.85 0.99 0.99 0.99 0.99 0.99
		FS-P 0.85 0.83 0.83 0.86 0.85 0.99 0.99 0.99 0.99 0.99
		FPH -0.57 -0.56 -0.54 -0.51 -0.50 -0.92 -0.94 -0.96 -0.94 -0.92
	10 -5	FS	-0.53 -0.48 -0.45 -0.46 -0.50 -0.92 -0.96 -0.94 -0.98 -0.91
		FPH-P 0.89 0.89 0.87 0.84 0.85 0.99 0.99 0.99 0.99 0.99
		FS-P 0.81 0.81 0.80 0.81 0.81 0.99 0.99 0.99 0.99 0.99
	In this section, FPH-P and FS-P are tested under 5 pre-
	diction horizons, from 10 to 50 with the incremental in-
	terval of 10. Of each prediction horizon, 100 independent
	randomly generated numerical experiments are carried
	out using Matlab 2018b on a Windows 10 PC with 2.20
	GHz Core i7-8750H CPU and 16GB RAM.	
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