Sergej Scheck
email: sergej.scheck@unicaen.fr

Alexandre Niveau
email: alexandre.niveau@unicaen.fr

Bruno Zanuttini
email: bruno.zanuttini@unicaen.fr

Explicit Representations of Persistency for Propositional Action Theories

Keywords: Planification, compilation de connaissances, théories d'actions, persistance, problème du cadre, circonscription Planning, knowledge compilation, action theories, persistency, frame problem, circumscription

Nous envisageons d'enrichir la représentation des actions en logique propositionnelle par des opérateurs syntaxiques pour représenter la persistance des variables. Ceci est motivé par le fait que le problème du cadre n'est pas résolu de manière satisfaisante par les langages propositionnels, tels que les diagrammes de décision binaires ou DNF. Nous introduisons deux de ces opérateurs, permettant de représenter différents types de persistance, et considérons les langages obtenus à partir de la logique propositionnelle en les ajoutant à n'importe quel niveau d'imbrication. Nous étudions les langages résultantes du point de vue de leur concision relative et de la complexité de la décision de successeur. Nous montrons une image intéressante de divers résultats de complexité.

Introduction

In automated planning, a central aspect of the description of problems is the formal representation of actions. Such representations are needed for specifying the available actions, and for the planners to operate on them while computing a plan. PDDL [START_REF] Mcdermott | PDDL-the planning domain definition language[END_REF] is a standard language for this.

More generally, the formal representation of actions is central to reasoning about actions, programs, and change using logic. Frameworks for this include proposals as diverse as the Situation Calculus [START_REF] Reiter | The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression[END_REF], the Event Calculus [START_REF] Kowalski | A logicbased calculus of events[END_REF], PDL [START_REF] Michael | Propositional dynamic logic of regular programs[END_REF], DL-PA [START_REF] Balbiani | Dynamic logic of propositional assignments: A well-behaved variant of pdl[END_REF], and many others. We view such languages as either imperative or declarative. Declarative languages allow one to specify the properties of situations, actions, events, while imperative languages concentrate on how the effects are brought about. In this view, the Situation and Event Calculi are declarative, as well as PDL, while PDDL and DL-PA are imperative. On the other hand, a well-known question when representing action and change is how to succinctly specify the noneffects of actions, that is, to ensure that the specification precludes fluents to change value while this is not intended. This is known as the frame problem. While imperative languages naturally come with a solution to the frame problem, because operational semantics literally transform a situation into another one, the frame problem is crucial in declarative languages, and it has been thoroughly studied, in particular for the Situation Calculus [START_REF] Reiter | The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression[END_REF]. We are interested here in the frame problem for actions specified in the simple language of propositional action theories, that is, as Boolean formulas describing the possible combinations of values for fluents before and after the action is taken. Though this language is very simple, it is indeed used in automated planning, because it makes operations on sets of states (aka belief states) conceptually simple [START_REF] Cimatti | Conformant planning via symbolic model checking[END_REF][START_REF] Bryce | Planning graph heuristics for belief space search[END_REF][START_REF] Son | A generic approach to planning in the presence of incomplete information: Theory and implementation[END_REF]. We consider action theories represented in Negation Normal Form (NNF), which encompasses representations usually used like ordered binary decision diagrams or formulas in disjunctive normal form. Such theories are adequate for representing (purely) nondeterministic actions, which lie at the core of fully observable nondeterministic planning and conformant planning [START_REF] Rintanen | Complexity of planning with partial observability[END_REF][START_REF] Albore | Compiling uncertainty away in nondeterministic conformant planning[END_REF][START_REF] Geffner | A Concise Introduction to Models and Methods for Automated Planning[END_REF][START_REF] Muise | Non-deterministic planning with conditional effects[END_REF][START_REF] Son | A generic approach to planning in the presence of incomplete information: Theory and implementation[END_REF][START_REF] Geffner | Compact policies for fully observable non-deterministic planning as SAT[END_REF]. Our contribution is to propose two different operators for representing the persistency of fluents, and to consider the language of NNF actions theories as enriched by one or the other. The originality of this contribution lies in the facts that (i) the language is enriched with an operator, which, we argue, allows one to specify the persistency of variables more naturally and succinctly than expressions in the plain underly-ing logic (like successor-state axioms for the Situation Calculus), and (ii) we allow the operators to occur anywhere in the formula, including nested occurrences, which again facilitates the description of actions. Our operators are one whose interpretation is dependent on the syntax of the action in its scope, and one whose interpretation depends only on its semantics (as a relation between the states before and after the action). The "semantic" one corresponds to interpreting the action in its scope under circumscription [START_REF] Mccarthy | Circumscription-a form of nonmonotonic reasoning[END_REF], here used as a semantics of minimal change through the action. We consider the resulting extensions of the language of NNF action theories in the formal framework of the knowledge compilation map [START_REF] Darwiche | A knowledge compilation map[END_REF]. This framework deals with the study of formal languages under the point of view of queries (how efficient is it to answer various queries depending on the language?), transformations (how efficient is it to transform or combine different representations in a given language?), and succinctness (how concise is it to represent knowledge in each language?). We focus on queries related to automated planning (deciding whether the action can lead from a state to another one, whether it is applicable at some state) and on succinctness issues. Naturally, there is a tradeoff between tractability of queries and succinctness of the languages. We give a complete picture for the languages which we consider. Precisely, we show that the syntactic operator can be added to NNF action theories without changing complexity of queries nor succinctness, since it can be compiled away in polynomial time; this shows that actions can be specified in the richer language without harming further calculations. On the other hand, we show that the semantic operator yields a more succinct language when allowed only at the root of expressions, and even more succinct when allowed everywhere, but that the complexity of answering queries increases accordingly.

Preliminaries

We consider a countable set of propositional state variables P = {p i | i ∈ N}. Let P ⊂ P be a finite set of state variables; a subset of P is called a P -state, or simply a state. The intended interpretation of a state s ∈ 2 P is the assignment to P in which all variables in s are true, and all variables in P \ s are false. For instance, for P = {p 1 , p 2 , p 3 }, s = {p 1 , p 3 } denotes the state in which p 1 , p 3 are true and p 2 is false. We write V(ϕ) for the set of variables occuring in an expression ϕ; note that expressions may involve both variables in P and variables not in P, so in general we do not have V(ϕ) ⊆ P.

Actions We consider (purely) nondeterministic actions, i.e., actions with which a single state may have several successors.

Definition 1. Let P ⊂ P be a finite set of variables. A P -action is a mapping a from 2 P to 2 (2 P) . The states in a(s) are called a-successors of s.

Note that a(s) is defined for all states s. We will consider a to be applicable in s if and only if a(s) = ∅ holds. Definition 2. An action language is an ordered pair L, I , where L is a set of expressions and I is a partial function on L × 2 P such that, when defined on α ∈ L and P ⊂ P, I(α, P) is a P -action.

We call the expressions in L action descriptions, and call I the interpretation function of the language. Observe that those sets P 's such that I(α, P) is defined are a priori not related to V(α); α may involve auxiliary variables (not in P) which are not part of the state descriptions, and dually, a state may assign variables of P which do not occur in α. If L, I, P are fixed or clear from the context, then we write α(s) instead of I(α, P)(s) for the set of all α-successors of s. In this case we call P the scope of α. In this article we will consider action descriptions α which are intendedly constructed to ensure that I(α, P) is defined. Definition 3. A translation from an action language L 1 , I 1 to another language L 2 , I 2 is a function f : L 1 × 2 P → L 2 satisfying I 1 (α, P) = I 2 (f (α, P), P) for all α ∈ L 1 and P ⊂ P such that I 1 (α, P) is defined.

In words, this means that the L 1 -expression α and the L 2expression f (α, P) describe the same P -action. Again, when P is clear from the context, we write f (α) for f (α, P). The translation f is said to be polynomial-time if it can be computed in time polynomial in the size of α and P , and polynomial-size if the size of f (α, P) is bounded by a fixed polynomial in the size of α and P . Clearly, a polynomial-time translation is necessarily also a polynomial-size one, but the converse is not true in general.

Logic A Boolean formula ϕ over a set Q of variables is in negation normal form (NNF) if it is built up from literals using conjunctions and disjunctions, i.e., if it is generated by the grammar ϕ ::= q | ¬q | ϕ∧ϕ | ϕ∨ϕ, where q ranges over Q. Similarly to other expressions, Q may involve state variables (in P) and other variables (not in P). It is important to note that a formula ϕ with V(ϕ) ⊆ Q for some set of variables Q can be viewed as a formula over Q (and the truth value of the corresponding Boolean function does not depend on the variables in Q \ V(ϕ)). For a Boolean formula ϕ over Q and an assignment t to the variables in Q, we write t |= ϕ if ϕ evaluates to true under the assignment t. For readability, we sometimes use the symbols ↔ and → in Boolean formulas and still call them NNF formulas. Indeed, it will always be the case that there are equivalent NNF formula of the same size, up to a polynomial. We always use notation s, t, . . . for states, α, β, . . . for action descriptions, and ϕ, ψ, . . . for logical formulas.

Action theories

We define the action language of (NNF) action theories, whose extensions we are going to study. To prepare the definition we associate an auxiliary variable p / ∈ P to each variable p ∈ P; p denotes the value of p after the action took place, while p denotes the value before. Definition 4. An NNFAT action description is a Boolean formula α in NNF over P α ∪ {p | p ∈ P α } for some set of state propositions P α ⊂ P. The interpretation of an NNFAT action description α is defined for all P ⊆ P such that P ⊇ V(α)∩P (that is, when all state propositions have a value) by

∀s ⊆ P : I(α, P)(s) = {s | (s, s) |= α}
where (s, s) := s ∪ {p | p ∈ s } is the assignment to P ∪ {p | p ∈ P α } induced by s, s . For P ⊇ V(α) ∩ P, I(α, P) is not defined. In words, an NNFAT expression represents the set of all ordered pairs s, s such that s is a successor of s, as a Boolean formula over variables in P ∪ {p | p ∈ P}. Importantly, NNFAT does not assume persistency of values, so that if, for example, a variable does not appear at all in an NNFAT expression, then this means that its value after the execution of the action can be arbitrary.

Example 5. Let P = {p 1 , p 2 , p 3 }, s 1 = ∅, s 2 = {p 1 }, and α := p 1 ∨ (p 1 ∧ p 2
), which can be read "when p 1 is false before the action is taken, both p 1 and p 2 become true after the action, and when p 1 is true anything can occur". Then α(s 1) = {{p 1 , p 2 }, {p 1 , p 2 , p 3 }}, and α(s 2) = 2 P .

Circuit representation Since we study the succinctness of languages, it is crucial to define the size of action descriptions. For this we use the same setting as typically used in knowledge compilation studies about propositional logic [START_REF] Darwiche | A knowledge compilation map[END_REF], and assume that all action descriptions α are represented by the directed acyclic graph, or circuit, obtained from the syntactic tree of α by iteratively identifying the roots of two isomorphic subexpressions to each other, until no more reduction is possible (like for binary decision diagrams [START_REF] Bryant | Symbolic boolean manipulation with ordered binary-decision diagrams[END_REF]). Clearly, for all expressions α, the circuit associated to α in this manner is unique, and it can be computed in polynomial time from the plain expression or from a nonreduced circuit.

Frame operators

Our proposal is to enrich NNFAT with operators for expressing persistency of variable values. Operators in action languages are used to construct new action descriptions from existing ones, and they can be roughly divided into two types: the interpretation of a syntactic operator depends on its argument action descriptions, while that of a semantic operator depends on the actions but not on their description. It is important to recall that NNF is a complete language for propositional logic and hence, that NNFAT is able to express any action. As a consequence, by enriching NNFAT we mean providing languages in which it is more convenient to express actions, as we will illustrate, but there is no action which those enriched languages can encode, that NNFAT cannot encode itself.

Semantic frame operator

The semantic frame operator which we study builds on circumscription [START_REF] Mccarthy | Circumscription-a form of nonmonotonic reasoning[END_REF], which is a nonmonotonic semantics for formulas enforcing a form of closed-world assumption, and especially by propositional circumscription [START_REF] Eiter | Propositional circumscription and extended closed-world reasoning are πp2-complete[END_REF][START_REF] Nordh | A trichotomy in the complexity of propositional circumscription[END_REF]. However, by introducing an operator for this interpretation, we allow circumscription to be enforced only on some parts of an expression. Let α be an action description and s be a P -state. For all partitions {X, V, F } of P , we introduce the operator C X,V,F so that C X,V,F (α)(s) chooses those α-successors of s which change variables from X minimally among all states with the same values over F . Precisely, we define a state s to be preferred to a state s with respect to a state s and to X, V, F , which we write s ≺ s X,V,F s , if s ∩ F = s ∩ F and (s ∆s) ∩ X ⊂ (s ∆s) ∩ X hold, where ∆ denotes symmetric difference for sets. 1Definition 6. The action language NNFAT C is the language L C , I C , where the expressions with scope P in L C are defined by the grammar

α ::= p | p | ¬p | ¬p | α ∧ α | α ∨ α | C X,V,F (α),
where p ranges over P and X, V, F over partitions of P , and I C is defined as for NNFAT, extended with It can be seen that the C X,V,F operator is convenient in particular for expressing actions which involve external causes (to be put in the set F) of changes of values for variables of interest (set X), in the presence of ramifications (set V).

I(C X,V,F (α), P)(s) = {s ∈ I(α, P)(s) | s ∈ I(α, P)(s) : s ≺ s X,V,F s }
Example 8. Consider encoding the action of driving from work to home. A particularly succinct description is

C {home},{at_work},{flat_tire,engine_ok} (engine_ok ∧ ¬flat_tire) → home) ∧ (home ↔ ¬at_work)
Consider s = {engine_ok, at_work}. Minimization of change over {home} entails that when the causes are not met (for instance, when engine_ok is false), among the possible successors of s only the ones with ¬home are retained, ignoring the ramification at_work ; successors with home are not retained, reflecting the fact that there is no "proof" provided by the action that home should change value. On the other hand, due to their presence in the set F , all combinations of causes will be retained. Precisely, the successors of s are {engine_ok, at_work, flat_tire}, {at_work}, {at_work, flat_tire}, and {engine_ok, home}.

Syntactic frame operator

We now define a syntactic operator, for representing the notion of persistency of languages like PDDL, where a variable does not change value if there is no explicit reason for this. Concretely, we want an operator F such that {p} is an F(p ∨¬p)-successor of s = ∅, but not an F(q ∨ ¬q)-successor for q = p, although p ∨¬p describes the same action as q ∨¬q . Therefore we need to formalize the intuition that some change is "explicitly mentioned" in an action description.

For this, we refine the notion of successor by considering the effects which apply in a state, themselves decomposed into explicit and implicit effects.

Definition 9. An effect (over P ⊆ P) is a quadruple e + , e -, i + , i -such that e + , e -, i + , i -are pairwise disjoint subsets of P . The explicit (resp. implicit) part of such an effect is the pair e + , e -(resp. i + , i -).

The positive (e + ∪ e -) and negative (e -∪ i -) are similar to add-and del-lists in STRIPS: e + , e -, i + , i -provokes a transition from a state s to s = (s ∪e + ∪i +)\(e -∪i -). We now define effects for NNFAT action descriptions. For combinations of effects via ∧, let

ε 1 = e + 1 , e - 1 , i + 1 , i - 1 and ε 2 = e + 2 , e - 2 , i + 2 , i - 2 . If e + 1 ∪ i + 1 = e + 2 ∪ i + 2 holds then we write ε 1 ≈ ε 2 and set ε 1 + ε 2 := e + 1 ∪ e + 2 , e - 1 ∪ e - 2 , i + 1 ∩ i - 1 , i + 2 ∩ i - 2 .
Intuitively, ε 1 ≈ ε 2 means that they provoke exactly the same transitions, but possibly with different explicit/implicit changes, and ε 1 + ε 2 is the effect which makes explicit any change which is explicit in one of them. Definition 10. Let α be an NNFAT action description and s be a state. Then the set of effects of α in s, written E(α, s), is defined inductively by

E(p, s) = { ∅, ∅, A, B | A, B ⊆ P } for s |= p, E(p, s) = ∅ for s |= p;
and dually for E(¬p, s)

E(p , s) = { ∅, ∅, A, B | A, B ⊆ P \ {p}} ∪{ {p}, ∅, A, B | A, B ⊆ P \ {p}} for s |= p, E(p , s) = { {p}, ∅, A, B | A, B ⊆ P \ {p}} for s |= p;
and dually for E(¬p , s)

E(α 1 ∧ α 2 , s) = {ε 1 + ε 2 | ε 1 ∈ E(α 1 , s), ε 2 ∈ E(α 2 , s), ε 1 ≈ ε 2 }; E(α 1 ∨ α 2 , s) = E(α 1 , s) ∪ E(α 2 , s) ∪ E(α 1 ∧ α 2 , s).
where A, B are always disjoint from each other.

Intuitively, the first case says that the action p is not applicable if s does not satisfy p (second line), and otherwise imposes no constraint on the successor state, but moreover does not set any value explicitly: a transition may occur from, say, {p, q} to {r}, but then the positive effects A = {r} and negative effects B = {p, q} are considered to be implicit.

For atomic actions of the form p , we distinguish two cases. When s does not already satisfy p, then all effects of p explicitly set p. Constrastingly, when s already satisfies p, then the action p leaves the value unchanged, and we include both effects with an explicit setting of p (to the same value) and effects with no setting of p at all (neither implicit nor explicit). Of course, for fixed A, B, those two effects provoke a transition from s to the same successor s . Nevertheless, including the effects which do not set p at all turns out to be necessary for ∧ to behave as expected in the extension of NNFAT with the F operator (to be defined soon). Finally, it is worth noting that we include the effects of

α 1 ∧ α 2 in those of α 1 ∨ α 2 .
Of course, the transitions of α 1 ∧ α 2 are already included in those of α 1 and in those of α 2 , but not necessarily with the same explicit parts. For instance, for α 1 = p , α 2 = q , and s = ∅, s = {p, q} is both an α 1 -and an α 2 -successor of s, but the "fully" explicit effect {p, q}, ∅, ∅, ∅ is only one of

α 1 ∧ α 2 .
With this in hand, we can define the framing operator F X . Intuitively, F X (α) retains only those effects of α which include no implicit effect on variables of X. As can be seen, this is equivalent to removing variables of X from the implicit part of all effects. So we define E(F X (α), s) to be { e + , e -, i + \ X, i -\ X | e + , e -, i + , i -∈ E(α, s)} Definition 11. The action language NNFAT F is the language L F , I F , where the expressions with scope P in L F are defined by the grammar

α ::= p | p | ¬p | ¬p | α ∧ α | α ∨ α | F X (α),
where p ranges over P and X over subsets of P , and I F is defined for all α, s, I F (α, P)(s) is defined to be

{(s ∪ e + ∪ i+) \ (e -∪ i -) | e + , e -, i + , i -∈ E(α, s)} Example 12.
Consider the action of leaving one's bike in a garage for them to repair exactly one wheel, but not knowing which one in advance. 2 The action may have two effects: making the front wheel or the back wheel ok (in both cases not affecting the other). However, in the process of repairing the back wheel, it might occur that the gear is changed. Additionally, in no case would the brakes be affected. Such an action could be encoded by

F brakes F f_wheel_ok (b_wheel_ok)∨F b_wheel_ok,gear (f_wheel_ok)
Importantly, in general, pushing all occurrences of F to the root of the expression changes its interpretation. For instance, in Example 12, this would yield the expression F brakes,f_wheel_ok,b_wheel_ok,gear b_wheel_ok ∨f_wheel_ok according to which the gear can never change value. Another important observation is that F X is not a special case of C X,V,F . It might seem that F X is nothing more than C X,∅,P \X . However, taking P = {p}, α = p ∨ ¬p , and s = ∅, it can be seen that both ∅ and {p} are F X (α)-successors of s, while only ∅ is a C X,∅,P \X (α)successor. Indeed, F X (α) takes into account the fact that both alternatives are explicitly mentioned in the formula, while C X,∅,P \X (α) considers only the semantics of α and hence, is equivalent to C X,∅,P \X ().

Restriction on circuits In addition to NNFAT C and NNFAT F , we will also study their natural restrictions where the operator C X,V,F or F X , respectively, occurs only at the root of expressions. Namely, NNFAT C is NNFAT augmented only with expressions of the form C X,V,F (α), where α is an NNFAT action description. We denote by NNFAT rC the resulting language. Similarly, we define the restricted language NNFAT rF . Observe that PDDL, for instance, can be seen as a language without framing, together with an (implicit) operator F P at the root of all expressions.

Compiling the Syntactic Operator Away

In this section, we show that the syntactic operator F X can be eliminated from an NNFAT F expression to yield an expression in NNFAT which has the same interpretation and size (up to a polynomial). Moreover, the elimination can be done in polynomial time. This means that NNFAT F can be used as a convenient language for describing actions, still the algorithms which manipulate those descriptions (e.g. planners) need not be extended to cope with F, since all its occurrences can simply be eliminated in polynomial time and space. Let us mention that the equivalent result is rather obvious for plain (tree-like) representations of formulas, but that we consider here circuit representations, in which a single subcircuit may occur in an exponential number of paths.

Our procedure essentially amounts to replacing all occurrences of F with subformulas similar to successor-state axioms. Before we show the result, we need two lemmas (the proofs are by induction on the structure of α).

The first lemma defines an expression Expl(α, p), and shows that this expression states that if p changes its value via α, then there is at least one effect which does it explicitly. For states s, s and action description α, write E(α, s, s) for the set of effects which lead from s to s : E(α, s, s) := { e + , e -, i

+ , i -∈ E(α, s) | s = (s ∪ e + ∪ i +) \ (e -∪ i -)}.
Lemma 13. Let α be a NNFAT F action description with scope P , s, s ⊆ P be two states and p ∈ s∆s . Then there is an effect e + , e -, i + , i -∈ E(α, s, s) with p ∈ e + e ∪ e - e if and only if (s, s) |= Expl(α, s), where the NNFAT expression Expl(α, s) is defined to be

• α for α = p or α = ¬p ,
• ⊥ for α = q or α = ¬q with q = p,

• ⊥ for α = q or α = ¬q, for all variables q,

• (Expl(β, p) ∧ γ) ∨ (β ∧ Expl(γ, p)) for α = β ∧ γ, • Expl(β, p) ∨ Expl(γ, p) for α = β ∨ γ, • x∈X∪{p} (x ↔ x) ∨ Expl(β, x) for α = F X (β).
The second lemma states properties of sets of effects.

Lemma 14. Let α be an NNFAT F action description with scope P ⊇ s and ε 1 , ε 2 ∈ E(α, s, s). Then it holds:

1. If ε 1 ≈ ε 2 then ε 1 + ε 2 ∈ E(α, s) 2.
There is at least one e + , e -, i

+ , i -∈ E(α, s, s) such that e + ∪ i + = s \ s and e -∪ i -= s \ s Proposition 15. NNFAT F is translatable into NNFAT in polynomial time.
Proof. Let α be a NNFAT F action description with scope P . The translation f (α) is obtained by replacing each node F X (β) (with X ⊆ P) of the circuit of α by β ∧ p∈X (p ↔ p) ∨ Expl(β, p) and keeping the other nodes.

The circuit of Expl(β, p) can be computed in polynomial time (in each step we create a bounded amount of edges and nodes). Thus f (α) can be computed in polynomial time, too. Now we show that f (α) describes the same action as α.

Suppose that f (β) ≡ β and (s, s and(s, s) |= Expl(β, p) for all p ∈ X. Then by lemmas 13 and 14 for every p ∈ (s ∆s) ∩ X there exists an effect e + β,p , e - β,p , i + β,p , i - β,p with p ∈ e + β,p ∪ e - β,p which mentions only variables from s∆s and by lemma 14 the sum e + , e -, i + , i -of these effects is as well in E(β, s, s) and (s∆s) ∩ X ⊆ e + ∪ e -and thus e + , e -, i + , i -∈ E(α, s). This implies s ∈ (F X (β))(s). Conversely, if s ∈ (F X (β))(s) then there exists an effect e + , e -, i + , i -of β in s witnessing this with (s∆s)∩X ⊆ e + ∪e -. Therefore, by Lemma 13 all Expl(β, p) with p ∈ (s∆s)∩X from the definition of f (α) are satisfied by (s, s), and for the rest the expression p ↔ p is satisfied. And β is satisfied by the inductive assumption. For α = α 1 ∧ α 2 or α = α 1 ∨ α 2 we trivially have that f (α) describes the same action as α if the claim was proven for α 1 and α 2 .

) |= f (α) = β ∧ p∈X (p ↔ p) ∨ Expl(β, p) . Then s ∈ β(s),
We now turn to studying the complexity of queries to expressions. We concentrate on two natural queries for planning: checking the existence of a transition, and deciding applicability of an action in a state. These queries arguably are at the basis of most other reasonable queries. Let L, I be a fixed action language, and let α denote an expression in L, P ⊆ P denote a set of variables such that I(α, P) is defined, and s, s denote two P -states.

Definition 16. The decision problem SUCC takes as input α, P, s, s , and asks whether s ∈ α(s).

Definition 17. The decision problem APPLIC takes as input α, P, s, and asks whether α(s) = ∅.

SUCC for NNFAT amounts to model-checking of an NNF formula, and for NNFAT F the complexity follows from Proposition 15.

Proposition 18. SUCC is in P for NNFAT and NNFAT F .

To prepare further results we introduce a notation. Notation 19. Let n ∈ N and X n = {x 1 , . . . , x n } be a set of variables. Observe that there are a cubic number N n of clauses of length 3 over X n . We fix an arbitrary enumeration γ 1 , γ 2 , . . . , γ Nn of all these clauses, and we define P n ⊂ P to be the set of state variables {p 1 , p 2 , . . . , p Nn }.

Write

∈ γ i if the literal occurs in the clause γ i . Then to any 3-CNF formula ϕ we associate the P n -state s(ϕ) = {p i | i ∈ {1, . . . , N n }, γ i ∈ ϕ}, and dually, to any P n -state s, we associate the 3-CNF formula over X n , written ϕ(s), which contains exactly those clauses γ i for which p i ∈ s holds.We set ψ n := Nn i=1 (¬p i ∨ ∈γi). In words, ψ n is satisfied by an assignment t to P n ∪ {x 1 , . . . , x n } if and only if the 3-CNF over {x 1 , . . . , x n } encoded by t ∩ P n , is satisfied by the assignment to {x 1 , . . . , x n } encoded by t ∩ {x 1 , . . . , x n }.

Example 20. Consider an enumeration of all clauses over X 2 = {x 1 , x 2 } which starts with γ

1 = (x 1 ∨x 1 ∨x 2), γ 2 = (x 1 ∨x 1 ∨¬x 2), γ 3 = (x 1 ∨¬x 1 ∨x 2), . . . Then ϕ = (x 1 ∨ x 1 ∨ x 2) ∧ (x 1 ∨ ¬x 1 ∨ x 2) is encoded by s(ϕ) = {p 1 , p 3 }. Proposition 21. SUCC is coNP-complete for NNFAT rC .
Proof. For a formula ψ over the variables {q i | j ∈ J}, write ψ for the formula obtained by replacing all variables q j by q j . Consider the (polynomial-sized) NNFAT rC action description with scope P n := X n ∪ {p 1 , . . . , p Nn } as in Notation 19:

α n := C Pn,∅,∅ ψ n ∨ 1≤i≤Nn p i
Let ϕ be a 3-CNF over X n which is not satisfied by the assignment "∀i : x i = ". We claim that ϕ is unsatisfiable if and only if s(ϕ)∪X n is an α n -successor of s(ϕ). Indeed, if ϕ is satisfiable then by assumption a satisfying assignment (t X n) contains at least one variable set to ⊥. Then by definition of C Pn,∅,∅ the state s(ϕ) ∪ X n can't be a successor of s(ϕ) because s(ϕ) ∪ t changes fewer variables from P n . Conversely, if s(ϕ) ∪ X n is an α n -successor of s(ϕ) then the only subset t ⊆ X n with t ∪ s(ϕ) ∈ α n (s(ϕ)) is t = X n , which is by a assumption not a satisfying assignment. Therefore SUCC is coNP-hard. For membership: s / ∈ C X,V,F (α)(s) can be justified in polynomial time by either showing that s / ∈ α(s) or that there exists s ∈ α(s) with (s ∆s) ∩ X (s ∆s) ∩ X and s ∩ F = s ∩ F (both justifications can be checked in polynomial time since α is in NNFAT).

Proposition 22. SUCC is PSPACE-complete for NNFAT C .

Proof. We modify Notation 19 by introducing for every variable x j two variables q j , r j and write q j ∈ γ i if x j ∈ γ i , and r j ∈ γ i if ¬x j ∈ γ i . We set Q n := {q j , r j | 1 ≤ j ≤ n}. S n := Q n ∪ {p 1 , . . . , p Nn }. We obtain β n n+1 by replacing all x j in ψ n by q j and all ¬x j by r j and then define recursively

β n i := C {qi,ri},∅,Sn\{qi,ri} (q i ∧r i)∨(q i ∧β n i+1)∨(r i ∧β n i+1
) Let Φ := ∀x 1 : ∃x 2 : . . . : ∀x n : ϕ, which is equivalent to ∀x 1 : ¬(∀x 2 : ¬(. . . ¬(∀x n : ϕ) . . .), be a quantified Boolean formula with a 3-CNF ϕ. Deciding the validity of such formulas is obviously PSPACE-complete. We claim that Φ is true if and only if s(ϕ) ∪ Q n ∈ β n 1 (s(ϕ)). Indeed, first observe that for all i and all states s ⊆ S n \ {q i , r i }, t ⊆ {p 1 , . . . , p Nn }: s ∪ {q i , r i } ∈ β n i (t) ⇔ s ∪ {q i }, s∪{r i } / ∈ β n i+1 (t). We set V i := {q j , r j | i ≤ j ≤ n} and W i := {q i , r i } and it follows with t := s(ϕ)

s(ϕ) ∪ Q n ∈ β n 1 (s(ϕ)) ⇔s(ϕ) ∪ V 2 ∪ {q 1 }, s(ϕ) ∪ V 2 ∪ {r 1 } / ∈ β n 2 (s(ϕ)) ⇔∀z 1 ∈ W 1 : ¬(s(ϕ) ∪ V 2 ∪ {z 1 } ∈ β n 2 (s(ϕ))) . . . ⇔∀z 1 ∈ W 1 : ¬ ∀z 2 ∈ W 2 : ¬(∀z 3 ∈ W 3 : ¬ . . . (s(ϕ) ∪ {z 1 , . . . , z n } ∈ β n n+1 (s(ϕ)))) s(ϕ) ∪ {z 1 , . . . , z n } ∈ β n n+1 (s(ϕ))
in the last line is equivalent to ϕ being true under the assignment defined by x i := (z i = q i). We have proven the claim and thus PSPACEhardness of SUCC. For membership: SUCC can be reduced to deciding the truth of a fully quantified boolean formula

(because s ∈ C X,V,F (α)(s) ⇔ ∀s : ((s ∆s) ∩ X (s ∆s) ∩ X ∧ s ∩ F = s ∩ F ⇒ s / ∈ α(s))).
Proposition 23. APPLIC is NP-complete for NNFAT, Σ p 2 -complete for NNFAT rC and PSPACE-complete for NNFAT C .

Proof. Satisfiability of a 3-CNF ϕ can be reduced to applicability in NNFAT by replacing each x by x and checking whether the obtained action description describes an action which is applicable in s = ∅.

For Σ p 2 -hardness in NNFAT rC : let x = (x 1 , . . . , x n), ȳ = (y 1 , . . . , y m), X n = {x 1 , . . . , x n }, Y m = {y 1 , . . . , y m }. A quantified boolean formula ∃ȳ∀xϕ(x, ȳ) is true if and only if the S := {q} ∪ X n ∪ Y m action C Xn∪{q},∅,Ym ((¬q ∧ ¬ϕ(x , ȳ)) ∨ q) ∧ q is applicable in ∅, because it is applicable only if q can be set to true meaning that ¬ϕ(x , ȳ) is unsatisfiable by any assignment to x . For membership: if we have an oracle for SUCC then we can justify applicability in polynomial time by giving a successor and checking successorship with the oracle. For PSPACE-hardness in NNFAT C : s ∈ α(s) if and only if α ∧ p∈s p ∧ p / ∈s ¬p is applicable in s. For membership: to check for applicability of α in s we need to check for all s whether s ∈ α(s).

Succinctness

Recall that all languages are fully expressive, so we use the following definition [START_REF] Darwiche | A knowledge compilation map[END_REF].

Definition 24. A language L 1 is at least as succinct as L 2 if there exists a polynomial-size translation from L 2 into L 1 .

Our separation results rely on yet unproven assumptions on nonuniform complexity classes. Recall that P/poly (resp. coNP/poly) is the class of all decision problems such that for all n ∈ N, there is a polytime algorithm (resp. a nondeterministic polytime algorithm for the complement) which decides the problem for all inputs of size n [START_REF] Arora | Computational complexity: a modern approach[END_REF]. The assumptions coNP ⊆ P/poly and PSPACE ⊆ coNP/poly which we use are standard ones; in particular, coNP ⊆ P/poly would imply a collapse of the polynomial hierarchy at the second level (Karp-Lipton theorem), and PSPACE ⊆ coNP/poly would imply a collapse at the third level [START_REF] Chee | Some consequences of non-uniform conditions on uniform classes[END_REF]. We first observe that since NNFAT is translatable into NNFAT F via the identity function, and NNFAT F is a superlanguage of NNFAT, so they are equally succinct.

Proposition 25. If coNP ⊆ P/poly then NNFAT rC is strictly more succinct than NNFAT.

Proof. Recall from the proof of proposition 21 that s(ϕ) ∪ X n is an α n -successor of s(ϕ) if and only if ϕ (assumed not to be satisfied by assigning to all variables) is unsatisfiable, and that α n depends only on the number n of variables in ϕ (not on ϕ itself). Now suppose that there exists a poly-size translation f from NNFAT rC into NNFAT. Then we can check whether ϕ is unsatisfiable by checking if it is not satisfied by the all-assignment, and whether s(ϕ) ∪ X n is an f (α n)-successor of s(ϕ). This gives a nonuniform polytime algorithm (Proposition 18) for nonsatisfiability, which is a coNP-complete problem.

The next proposition says that nesting of C X,V,F operators contributes to succinctness. We omit the proof since it is very similar to that of Proposition 25 (using Proposition 22).

Proposition 26. If PSPACE ⊆ coNP/poly then NNFAT rC is strictly less succinct than NNFAT C .

Conclusion

We studied extensions of NNF action theories with operators expressing two different types of persistency of variables, with the goal of enriching the language. We gave a picture of the resulting languages à la knowledge compilation map. It turns out that using a frame operator resembling that of PDDL at any level of nesting does not change time nor space complexity; hence this operator can be used when specifying actions, then compiled away efficiently so as to use algorithms designed for (standard) NNF action theories. The languages resulting for our second operator (related to the interpretation of formulas under circumscription) are more succinct but also have a greater complexity for basic queries. Our results raise new open knowledge compilation-related questions. For example, we are interested in comparing these new languages to already well-known languages like variants of PDDL or DL-PPA [START_REF] Herzig | Dynamic logic of parallel propositional assignments and its applications to planning[END_REF] in terms of succinctness. We are also interested in the complexity of queries other than studied here, e.g. whether all successors of a state via a given sequential plan satisfy some property. Our long-term goal is to study action description languages as defined by allowed operators or constructs, so as to get a complete picture.

Example 7 .

 7 Let P = {p 1 , . . . , p 5 }, X = {p 1 , p 2 }, V = {p 3 }, and F = {p 4 , p 5 }. Let α = (p 1 ∨p 3)∧(p 2 ∨p 4)∧(p 5) and s = ∅. Then {p 1 , p 2 , p 5 } is an α-successor, but not a C X,V,F (α)-successor, of s, because s = {p 2 , p 3 , p 5 } is also an α-successor of s with s ∩ F = {p 5 } = s ∩ F and (s ∆s) ∩ X = {p 2 } ⊂ {p 1 , p 2 } = (s ∆s) ∩ X. On the other hand, s is a C X,V,F (α)-successor of s even though s = {p 3 , p 4 , p 5 } changes fewer values over X, since s and s differ over F and hence are incomparable with each other.

As mnemonics, variables in V may vary; those in F are fixed.

E.g., knowing only that they are not aligned which each other.

Acknowledgements

This work has been supported by the French National Research Agency (ANR) through project PING/ACK (ANR-18-CE40-0011).