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Abstract: This work concerns the design of a multi-objective unified qLPV observer for the
state estimation problem in LPV systems with a parameter-dependent control input matrix.
The standard forms of the system and the observer are first presented, where the observer
matrices are functions of the estimated states (qLPV problem). The effects of bounded unknown
input disturbances are decoupled from the estimation error thanks to the parameterization of
the observer matrices. To treat the disturbance caused by inexact scheduling parameters, we
introduce an upper bound on the parameter estimation error, which is considered uncertainty.
Then, the effects of the control input and the random measurement noise on the estimation error
are minimized using the H∞ and generalized H2 conditions, respectively, as a multi-objective
optimization problem. In the solution of the LMI sets, the projection lemma is applied to reduce
the high conservativeness that would otherwise lead to suboptimal results. Then this observer is
applied to a semi-active automotive suspension system written in LPV form, using simulations
with real data measured from our experiment test platform, and compared with the linear
time-invariant H∞ and H2 observers.

Keywords: Unified observer, linear parameter-varying systems, H∞, generalized H2, projection
lemma, semi-active suspension.

1. INTRODUCTION

Control of semi-active automotive suspension systems has
been an exciting topic of automatic control, as these allow
to enhance driving comfort with better performance than
passive suspension and come with less energy consump-
tion compared to active suspension. To effectively control
and monitor automotive suspension systems, we need to
know the damper force, which is of high importance for
performance and diagnosis purposes. However, the direct
measurement of this force is usually difficult and costly,
which provokes the need for developing state observers to
estimate it.

Different damper force estimation strategies have been
introduced, including the Kalman filter (Koch et al., 2010),
an H∞ observer based on a nonlinear dynamic model of
the electro-rheological (ER) damper (Vela et al., 2018), an
LPV-H∞ approach (Tudon-Martinez et al., 2018; Pham
et al., 2019b), and recently a unified H∞ observer for
nonlinear Lipschitz condition (Pham et al., 2019). In the
last-mentioned work, the authors establish the appropriate
forms of the system and the observer, then thanks to a
procedure called parameterization, the effects of bounded
unknown input disturbances are decoupled from the state
estimation error. The H∞ conditions are then applied
to minimize the effects of measurement noise on the

estimation error. Note that we use throughout the paper
H∞ instead of L2-induced by the abuse of language.

Motivated by the fact that the generalized H2 condition
can be very interesting for the unified observers, where
the measurement noise is important and may induce a
large bias on the estimation error, we propose here a
multi-objective unified observer. Compared to H∞, the
generalized H2 framework is considered more suitable for
the type of noise we are faced with in the considered
application case (sensors are accelerometers). We extend
from the existing work (Pham et al., 2019), where the
authors propose an H∞ (static) observer for nonlinear
Lipschitz systems, into an LPV one that uses the multi-
objective H∞ and generalized H2 condition. This observer
is then applied to an automotive’s semi-active suspension
system, for which the damper nonlinearity is considered a
varying parameter in a quasi-LPV model.

The main contribution of this work is the design of a multi-
objective unified qLPV observer for LPV systems with a
parameter-dependent control input. This observer is uni-
fied because it has a structure that allows its matrices to
be parameterized, thus decoupling the effects of bounded
unknown input disturbances from the estimation error.
It is quasi-LPV (qLPV) since its matrices are scheduled
depending on the set of parameters estimated using the



system’s states, which was not the case in our previous
studies. Finally, it is a multi-objective observer, as the
H∞ and generalized H2 conditions are used to minimize
the effects of the control input and the measurement noise,
respectively, on the estimation error through solving linear
matrix inequality (LMI) sets. We model the parameter
estimation error as bounded uncertainty. The solution
of the observer design problem is presented as a three-
step procedure wherein the projection lemma is applied
that breaks the LMIs into ones with fewer variables so
as to reduce the high level of conservativeness that would
otherwise reduce the observer into a proportional (P) one.

1.1 Notation

In this work, W> denotes the transpose of matrix W .
Moreover, W−1 is the inverse of the square matrix W . The
notation W+ denotes any general inverse of W satisfying
WW+W = W , including the pseudo-inverse. Lastly, W⊥

denotes the left null space of W , i.e., W⊥W = 0.

2. DEFINITION AND PARAMETERIZATION OF
THE UNIFIED QLPV OBSERVER

2.1 Problem Formulation

Consider the following class of LPV systems with a
parameter-dependent control input matrix

Σ :

{
ẋ = Ax+B(ρ)u+D1wr
y = Cx+D2wn,

(1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
wr ∈ Rl is the unknown disturbance input, wn ∈ Rf is
the measurement noise input, y ∈ Rp is the measured
output, and ρ is the vector of varying parameters. As
usually assumed for LPV systems, ρ is known or estimated,
and is bounded, i.e., ρ(t) ∈ [ρ, ρ],∀t.
Note that here the matrix A is supposed independent
of varying parameters, which is true for some particular
systems, including the semi-active suspension system with
an ER damper we are considering in this study. Moreover,
in such an application case, the parameter ρ is a function
of some state variables. This is, therefore, a qLPV system.

Consider a state observer of the following form

Σobs :

{
ż = Nz + Jy +H(ρ̂)u+Mv
v̇ = Pz +Qy +Gv
x̂ = Rz + Sy,

(2)

where x̂ ∈ Rn is the estimated state and z, v ∈ Rn are the
state and auxiliary vectors of the observer. By designing
the unified observer, we determine all the matrices N , J ,
M , P , Q, G, R, S, as well as H(ρ̂) at all the vertices,
such that the conditions related to the decoupling of the
bounded unknown input disturbance and the minimization
of the effects of the control input and random measurement
noise on the estimation error are all satisfied. It can be
seen that when M is null, the observer is reduced to a
P observer. Therefore, to preserve the dynamics of the
arbitrary state z, we aim to get M , P , Q, G as non-null
matrices.

Let us define the dynamic error as

ε = z − Tx, (3)

where T ∈ Rn×n is an arbitrary matrix.

Differentiating (3) with respect to time, using (1) and (2),
and denoting ζ = (ε v)> lead to
ζ̇ =

(
N M
P G

)
ζ +

(
NT − TA+ JC

PT +QC

)
x+

(
TD1

0

)
ωr+

+

(
H(ρ̂)− TB(ρ)

0

)
u+

(
JD2

QD2

)
ωn

x̂ = (R 0) ζ + (RT + SC)x+ SD2ωn.
(4)

Denoting B(ρ) = B(ρ̂) + (B(ρ) − B(ρ̂)), it then follows
that if the following decoupling conditions are satisfied

NT − TA+ JC = 0, (5)

TD1 = 0, (6)

H(ρ̂)− TB(ρ̂) = 0, (7)

PT +QC = 0, (8)

RT + SC = I, (9)

the system in (4) is reduced toζ̇ =

(
N M

P G

)
ζ +

(
−T (B(ρ)−B(ρ̂))

0

)
u+

(
JD2

QD2

)
ωn

e =
(
R 0

)
ζ + SD2ωn,

(10)
where e = x̂− x is the state estimation error.

The multi-objective unified qLPV observer design problem
is equivalent to determining the observer matrices N , J ,
H(ρ̂), M , P , Q, G, R, S such that all the decoupling
conditions (5)-(9) are satisfied, and such that the effects
of the control input u and the measurement noise ωn on
the state estimation error e are minimized according to a
multi-objective H∞ and generalized H2 condition.

2.2 Parameterization of Observer Matrices

In order to determine the observer matrices N , J , H(ρ̂),
M , P , Q, G, R, S of the proposed observer satisfying all
the conditions (5)-(9), parameterization is performed by
using the general solution of (5)-(9) as explained in (Gao
et al., 2016) and (Pham et al., 2019).

Firstly, equations (8) and (9) are rewritten as(
P Q
R S

)(
T
C

)
=

(
0
I

)
. (11)

The equation (11) is solvable iff

rank

TC0
I

 = rank

(
T
C

)
= n. (12)

Let E ∈ Rn×n be a full row rank arbitrary matrix s.t.

rank

(
E
C

)
= rank

(
T
C

)
= n. (13)

Then there always exists a parameter matrix K s.t.(
T
C

)
=

(
I −K
0 I

)(
E
C

)
⇔ T = E −KC. (14)

Consequently, equation (11) becomes(
P Q
R S

)(
I −K
0 I

)(
E
C

)
=

(
0
I

)
, (15)

whose exact solution is(
P Q
R S

)
=

[(
0
I

)
Σ+ − Ym

(
I − ΣΣ+

)](I K
0 I

)
, (16)



where Σ =

(
E
C

)
and Ym is a free matrix of appropriate

dimension. This is equivalent to

P = −Ym1β1, Q = −Ym1β2,
R = α1 − Ym2β1, S = α2 − Ym2β2,

(17)

where Ym1 = (I 0)Ym, Ym2 = (0 I)Ym, α1 = Σ+

(
I
0

)
,

α2 = Σ+

(
K
I

)
, β1 = (I − ΣΣ+)

(
I
0

)
, β2 = (I − ΣΣ+)

(
K
I

)
.

Besides, from the equations (6) and (14), we obtain

KCD1 = ED1, (18)

which is solvable iff

rank

(
ED1

CD1

)
= rank

[(
E
C

)
D1

]
= rankD1 = rankCD1,

(19)
and the exact solution of (18) is

K = ED1(CD1)+. (20)

From the condition (7), we have

H(ρ̂) = TB(ρ̂) = (E−KC)B(ρ̂) = (E−ED1(CD1)+C)B(ρ̂).
(21)

On the other hand, substituting (14) into the decoupling
condition (5), we obtain

N(E −KC)− (E −KC)A+ JC = 0

⇔ (N J −NK) Σ = (E − ED1(CD1)+C)A, (22)

which can also be parameterized as

(N K1) Σ = Θ, (23)

where

K1 = J −NK,Θ = (E − ED1(CD1)+C)A, (24)

and the solution set of (23) is given by

(N K1) = ΘΣ+ − Ym3(I − ΣΣ+), (25)

which is equivalent to

N = α3 − Ym3β1, (26)

K1 = α4 − Ym3β3, (27)

where Ym3 is a free matrix of appropriate dimension and

α3 = ΘΣ+

(
I
0

)
, α4 = ΘΣ+

(
0
I

)
, β3 = (I − ΣΣ+)

(
0
I

)
.

(28)

Remark 1. If the matrices P , Q, R, S, H(ρ̂), N , and J
can be chosen according to (17), (21), (26), and (24),
respectively, then all the decoupling conditions (5)-(9) are
satisfied.

As mentioned above, since the conditions (5)-(9) are
satisfied, the system (4) is rewritten as (10) and the
effects of the unknown disturbance input ωr are effectively
decoupled from the estimation error e.

2.3 Effect of the Parameter Estimation Error

The presence of inexact scheduling parameters is a key
issue in observer design (Heemels et al. (2010); Chandra
et al. (2017)). In our case, it is worth mentioning (as seen
in the system (10)) that this uncertainty only affects the
input matrix, which does not affect the stability of the
estimation error.

Let us denote B(ρ) − B(ρ̂) as the inexact varying pa-
rameter, which we treat as uncertainty. We assume, for

simplicity, that this uncertainty is bounded by a constant
matrix in a similar way as in (Gómez-Peñate et al. (2020))
as

|B(ρ)−B(ρ̂)| ≤ B∆. (29)

Note that such an assumption may lead to conservative
results. Therefore, in the future, more accurate represen-
tations of such effects might be considered as recently
proposed in (Sato (2020)).

It follows that the minimization of the effects of u and ωn
on e in the system in (10) is achieved if it is also achieved
with the system

ζ̇ =

(
N M

P G

)
ζ +

(
−TB∆

0

)
u+

(
JD2

QD2

)
ωn

=: A1ζ + Bu,1u+ Bn,1ωn
e =

(
R 0

)
ζ + SD2ωn =: C1ζ + D1ωn,

(30)

where

A1 =

(
N M
P G

)
= A11 − ZA12, (31)

Bu,1 =

(
−TB∆

0

)
, (32)

Bn,1 =

(
JD2

QD2

)
= Bn,11 − ZBn,12, (33)

where A11 =

(
α3 0
0 0

)
, A12 =

(
β1 0
0 −I

)
, Bn,11 =ΘΣ+

(
K
Ip

)
D2

0

,Bn,12 =

(
β2D2

0

)
, and Z =

(
Ym3 M
Ym1 G

)
.

Note that the estimation error e is independent of the
matrix R. The following matrices are obtained

C1 = (R 0) = (α1 0), (34)

D1 = SD2 = (α2 − Ym2β2)D2. (35)

Note that all the matrices A11, A12, Bu,1, Bn,11, Bn,12, C1,
D1 are known and finding all the observer matrices reduces
to finding Z, which is discussed in the following part.

3. MULTI-OBJECTIVE DESIGN OF THE UNIFIED
QLPV OBSERVER

First, to apply the generalized H2 condition, the parame-
terized estimation error system has to be strictly proper,
i.e., D1 = 0. The free matrix Ym2 is thus chosen s.t.
(α2 − Ym2β2)D2 = 0. E.g., we can let

Ym2 = (α2D2)(β2D2)+. (36)

Now that the system is strictly proper, the multi-objective
unified qLPV observer design problem is to find Z s.t.

• The system (30) is stable for u(t) = 0 and ωn(t) = 0;

•
∥∥∥ e(t)u(t)

∥∥∥
∞
< γ∞ and

∥∥∥ e(t)
ωn(t)

∥∥∥
2
< γ2;

• The poles of the observer, i.e., of the matrix A1

in (31), are sufficiently fast to ensure an efficient
estimation.

The multi-objective problem is solved considering a single-
objective one defined as a combination of the two consid-
ered norms as

[α · γ∞ + (1− α) · γ2] ,

where α ∈ [0, 1] is a constant, to be minimized for u(t) 6= 0
and ωn(t) 6= 0.



Proposition. The multi-objective unified qLPV observer
design problem is solved, given a constant α ∈ [0, 1], as

min [α · γ∞ + (1− α) · γ2] ,

s.t. there exists X = X> > 0 satisfying

(
−A12

0

)⊥
(
A>

11X +XA11 + C>
1 C1 XBu,1

B>
u,1X −γ2∞I

)(
−A12

0

)⊥>
< 0(

−A12

−Bn,12

)⊥
(
A>

11X +XA11 XBn,11

B>
n,11X −I

)(
−A12

−Bn,12

)⊥>
< 0(

X C>
1

C1 γ22I

)
> 0.

(37)
Then, given the found X and a positive constant xα

(the pole placement decay rate), Y is found by solving
both LMIs below, including the pole placement condition
to improve the numerical efficiency of the observer to be
embedded.(

A>
11X +XA11 −A>

12Y
> − Y A12 XBn,11 − Y Bn,12

B>
n,11X −B>

n,12Y
> −I

)
< 0, (38)

A>11X +XA11 −A>12Y
> − Y A12 + 2xαX < 0. (39)

Finally, Z in (31) is given by Z = X−1Y .

Proof. The proof uses the projection lemma in a three-step
procedure. We need to solve for X = X> > 0 minimizing
the given convex combination of γ∞ > 0, and γ2 > 0 using
the set of LMIs formed hereafter. First, the H∞ condition
is used to minimize the effect of u, i.e., the control input,
on the estimation error(

A>1 X +XA1 + C>1 C1 XBu,1
B>u,1X −γ2

∞I

)
< 0. (40)

Note that here in this multi-objective problem we need
D1 = 0 (not required by H∞) so as to satisfy the H2

condition. The same X appears in the generalized H2

condition used to minimize the effect of ωn, i.e., the
random measurement noise, on the estimation error, that
is D1 = 0 (already satisfied using (36)) and that (Scherer
and Weiland (2000))(

A>1 X +XA1 XBn,1
B>n,1X −I

)
< 0,

(
X C>1
C1 γ

2
2I

)
> 0. (41)

Substituting the equations for A1, Bu,1, and Bn,1 above
into conditions (40) and (41) gives

(
A>

11X +XA11 −A>
12Z

>X −XZA12 + C>
1 C1 XBu,1

B>
u,1X −γ2∞I

)
< 0(

A>
11X +XA11 −A>

12Z
>X −XZA12 XBn,11 −XZBn,12

B>
n,11X −B>

n,12Z
>X −I

)
< 0(

X C>
1

C1 γ22I

)
> 0.

(42)
Letting Y = XZ, we obtain the following four-variable

LMI set

(
A>

11X +XA11 −A>
12Y

> − Y A12 + C>
1 C1 XBu,1

B>
u,1X −γ2∞I

)
< 0(

A>
11X +XA11 −A>

12Y
> − Y A12 XBn,11 − Y Bn,12

B>
n,11X −B>

n,12Y
> −I

)
< 0(

X C>
1

C1 γ22I

)
> 0.

(43)
It is worth noting that, if we try to solve the above

LMI set for X, Y and γ∞ and γ2 simultaneously, the
matrices M , P , Q and G may be reduced to zero due
to the high conservativeness caused by the too numerous

decision variables, which leads to the observer being a P
observer, as stated in (Pham et al., 2019). In order to get a
“full-dynamics” observer, so to prevent M from being null,
we here apply the projection lemma (Skelton et al., 1998).
The LMI set (43) is rewritten in the mentioned form as

[(
I
0

)
Y
(
−A12 0

)]
+

[(
I
0

)
Y
(
−A12 0

)]>
+

+

(
A>

11X +XA11 + C>
1 C1 XBu,1

B>
u,1X −γ2∞I

)
< 0[(

I
0

)
Y
(
−A12 −Bn,12

)]
+

[(
I
0

)
Y
(
−A12 −Bn,12

)]>
+

+

(
A>

11X +XA11 XBn,11

B>
n,11X −I

)
< 0(

X C>
1

C1 γ22I

)
> 0.

(44)
From the projection lemma, the resulting LMI set that

we need to solve for X, γ∞ and γ2 are

(
I
0

)⊥
(
A>

11X +XA11 + C>
1 C1 XBu,1

BT
u,1X −γ2∞I

)(
I
0

)⊥>
< 0(

−A12

0

)⊥
(
A>

11X +XA11 + C>
1 C1 XBu,1

B>
u,1X −γ2∞I

)(
−A12

0

)⊥>
< 0(

I
0

)⊥
(
A>

11X +XA11 XBn,11

B>
n,11X −I

)(
I
0

)⊥>
< 0(

−A12

−Bn,12

)⊥
(
A>

11X +XA11 XBn,11

B>
n,11X −I

)(
−A12

−Bn,12

)⊥>
< 0(

X C>
1

C1 γ22I

)
> 0,

(45)

where the first and third LMIs reduce to −γ2
∞ < 0

and −1 < 0, respectively, which are trivial inequalities.
This means we only must solve the other three LMIs for
X, γ∞ and γ2 as given in (37). Then, Y is found from
the second equation of (43) (to prioritize the generalized
H2 condition), together with a pole placement constraint,
which leads to both LMIs (38) and (39). Finally, Z =
X−1Y . The proof is completed. �
Remark 2. Using the projection lemma, we solve for the
variables consecutively instead of simultaneously. This ap-
proach reduces the high conservativeness, thus preventing
the matrices M , P , Q, and G from being null, and so the
observer is of full scale instead of being reduced to a P
observer.

4. FORCE OBSERVER DESIGN FOR THE
SEMI-ACTIVE SUSPENSION SYSTEM

4.1 System Modeling

The proposed observer is applied to a semi-active suspen-
sion system used to mitigate the vertical oscillations in
automotive vehicles with better performance than passive
suspension and less energy consumption compared to ac-
tive suspension (Savaresi et al., 2010; Unger et al., 2013).
The main objective is to estimate the damper force, which
is achieved by estimating the system’s states. This problem
is of high importance not only for diagnosis purposes
(evaluating the state of health of the damper) but also for
control purposes when a local force control of a semi-active
damper is included in the suspension control architecture.

The system’s LPV state-space representation has the form
(1). Taken measurements from the accelerometers as input,



the observer estimates x̂ ∈ R5 from which the estimated
damper force is given as

F̂d = k0x̂1 + c0(x̂2 − x̂4) + x̂5. (46)

The observer is implemented according to the following
block diagram:

Figure 1. Implementation of the observer.

The complete system description and parameters are
found in (Pham et al., 2019). Note that in the automotive
industry, two accelerometers are more economical and
easily installed compared to a displacement sensor.

4.2 Observer Design and Analysis

The proposed observer is designed for the described system
in the same way as in (Pham et al., 2019a). Here, the
bound on inexact scheduling parameter estimation uncer-
tainty is assumed equivalent to |ρ− ρ̂| ≤ 0.1 and the decay
rate for pole placement is xα = 2.

It is known that in multi-objective optimization (here H∞
and generalized H2), there is a trade-off between both
objectives. In our case, if α is close to 0, the minimization
of the combined norm is oriented towards the generalized
H2 norm, thus decreasing the influence of ωn on the
estimation error while increasing the one of u, and vice-
versa when α is close to 1. To balance the trade-off, we
have chosen α = 0.6. The resulting norms are γ∞ = 1.12
and γ2 = 3.8. The frequency-domain plot below shows the
effects of u and ωn on the estimation errors of the five
states, which are greatly attenuated.
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Figure 2. Bode plot of the estimation error system (10).

5. APPLICATION RESULTS

In this part, the performance of the designed multi-
objective unified qLPV observer is examined using sim-
ulations with data obtained from a real testbed. It is also
compared with that of the previously proposed linear time-
invariant (LTI) H∞ and H2 ones in (Pham et al., 2019a).
We denote, for brevity:

• Our observer as observer 1;
• The LTI H∞ observer as observer 2;
• The LTI H2 observer as observer 3.

5.1 Simulation Results

The simulation scenario is as follows:

• A chirp road profile of amplitude 4 mm and frequency
varying from 0 to 5 Hz in 10 s is used;

• The control input u is given by the ADD output-
feedback controller (u ∈ [0.1, 0.35] in this case).
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-4

-2

0

2

4

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Figure 3. Simulation scenario: Road profile (left) and
control input (right).

The simulation results are as follows:
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Figure 4. Simulation results: Damper force (left) and
varying parameter estimation (right).

5.2 Simulation with Real Data Results

Experiments are performed with INOVE, our test platform
at GIPSA-lab, which is equipped with semi-active sus-
pension systems and force sensors (see http://www.gipsa-
lab.fr/projet/inove/ for more details).

The experiment scenario is as follows:

• An ISO road profile of type C is used;
• The control input u is constant at 0.1.
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Figure 5. Simulation with real data scenario: Road profile
(left) and control input (right).



We collect the resulting sensor measurements and perform
simulations with these real data. The results are as follows:
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Figure 6. Simulation with real data results: Damper force
(left) and varying parameter estimation (right).

5.3 Result Analysis

To compare the observers’ performance in damper force
estimation, the root-mean-square error (RMSE) between
the real and estimated force is calculated for each case and
shown in Table 1.

Table 1. Damper force estimation RMSE (N)

Observer Simulation Simulation with real data

Observer 1 0.3692 0.8295
Observer 2 0.9651 0.8767
Observer 3 0.9588 0.9478

Evidently, our observer provides a more accurate damper
force estimation performance where the RMSE is smaller
with the same initial conditions, road profile, and control
input. Especially for this observer, as the effects of the
unknown disturbance input are effectively decoupled from
the estimation error, the force estimation performance
does not depend on the road profile, which is not the case
for the LTI observers (without parameterization).

6. CONCLUSION

This work proposes a multi-objective unified qLPV ob-
server for LPV systems with a parameter-dependent con-
trol input matrix. Such an observer not only decouples the
effects of bounded unknown input disturbance from the
estimation error, but it minimizes the combined effects of
the control input and the measurement noise on this error
as well. The matrices of the unified observer are obtained
by solving a multi-objective problem. This observer is
then applied to an ER semi-active automotive suspension
system for damper force estimation. Simulations with real
data from the vehicle test platform confirm the effective-
ness of this observer (compared to LTI ones).
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Vela, A., Alcántara, D., Menendez, R., Sename, O.,
and Dugard, L. (2018). H∞ Observer for Damper
Force in a Semi-Active Suspension. IFAC Proceedings
Volumes (IFAC-PapersOnline), 51(11), 764–769. doi:
https://doi.org/10.1016/j.ifacol.2018.08.411.


