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'Singing on the wing' as a mechanism for species recognition in the malarial mosquito Anopheles gambiae

Summary

Anopheles gambiae, responsible for the majority of malaria deaths annually, is a complex of seven known species and several chromosomal/molecular forms. The complexity of malaria epidemiology and control is due, in part, to its remarkable genetic plasticity, enabling its adaptation to a widening range of human-influenced habitats, which leads to rapid ecological speciation as soon as reproductive isolation mechanisms start to develop [START_REF] Powell | Population structure, speciation, and introgression in the Anopheles gambiae complex[END_REF][START_REF] Costantini | Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae[END_REF][START_REF] Della Torre | Speciation within Anopheles gambiae-the glass is half full[END_REF][START_REF] Ayala | Chromosome speciation: humans, Drosophila, and mosquitoes[END_REF][START_REF] Besansky | Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation[END_REF][START_REF] Della Torre | Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa[END_REF]. Although reproductive isolation is essential for speciation, little is known about how it occurs in sympatric populations of its incipient species [START_REF] Costantini | Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae[END_REF]. We show that in such a population of the 'M' and 'S' molecular forms a novel mechanism of sexual recognition (male-female pairs of mosquitoes match flight-tones [START_REF] Gibson | Flying in tune: sexual recognition in mosquitoes[END_REF][START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF][START_REF] Cator | Harmonic convergence in the love songs of the dengue vector mosquito[END_REF]), also confers the capability of mate recognition, an essential precursor to assortative mating; frequency-matching occurs more consistently in same-form pairs than in mixed-form pairs (P > 0.001). We also show that the key to frequency-matching is 'difference tones' produced in the nonlinear vibrations of the antenna by the combined flight-tones of a pair of mosquitoes, and detected by the auditory Johnston's organ. Through altering their wing-beat frequencies to minimise these difference tones, mosquitoes can match flight-tone harmonic-frequencies above their auditory range. This is the first description of close-range mating interactions between males and females of incipient An. gambiae species.

Results and Discussion

Anopheles gambiae s.l. has become a focus of research on the evolution of species complexes to understand how populations diverge and become distinct species [START_REF] Ayala | Chromosome speciation: humans, Drosophila, and mosquitoes[END_REF].

The essential mechanism leading to speciation is the evolution of reproductive isolation between diverging populations. Within the Anopheles gambiae complex, several degrees of reproductive isolation among its members can be observed in field populations. On one hand, formally recognized species such as An. gambiae s.s. and An. arabiensis have evolved strong reproductive isolation, although a permeable species barrier still exists leading to a small degree of introgressive hybridization [START_REF] Powell | Population structure, speciation, and introgression in the Anopheles gambiae complex[END_REF][START_REF] Besansky | Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation[END_REF]. On the other hand, within An. gambiae s.s. cryptic incipient speciation has led to the recognition of two molecular forms, named 'M' and 'S' [START_REF] Della Torre | Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa[END_REF], that assortatively mate [START_REF] Tripet | DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae[END_REF] at different frequencies across different eco-geographical settings [START_REF] Della Torre | Speciation within Anopheles gambiae-the glass is half full[END_REF][START_REF] Caputo | Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s[END_REF].

The mechanisms responsible for reproductive isolation between M and S are not fully understood and appear to vary across populations. In Mali, for example, unknown behavioural cues used by the two forms to identify swarm sites have diverged and, since they mate in segregated swarms, hybrids are rarely produced [START_REF] Diabate | Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae[END_REF]. In Burkina Faso, only 500 km away, M and S form mosquitoes can be found in the same swarm [START_REF] Della Torre | Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa[END_REF][START_REF] Tripet | DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae[END_REF][START_REF] Diabate | Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso[END_REF][START_REF] Diabate | The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena[END_REF]] and yet hybrids are also rare, indicating the potential existence of a close-range barrier to interbreeding.

There are no published reports of close-range mate recognition in the An. gambiae complex, and attempts to demonstrate mate recognition in the field with volatile pheromones have not been successful (J.D. Charlwood, personal communication, 2009). In this paper we report the first evidence of form-specific, close-range (~ 2 cm) interactions between males and virgin females, characterized by continuously monitored audio-motor feedback between individual mosquitoes. This behaviour, which provides the capability of mate recognition in mosquitoes, may contribute to the observed assortative mating between M and S form mosquitoes where they meet in mixed swarms.

Behavioural Interactions

We recorded the flight tones and flight tone interactions produced by tethered wild male and virgin female M and S form mosquitoes, individually and in same-and mixed-form pairs under semi-natural conditions in Bobo Dioulasso, Burkina Faso (Figure 1 inset). Individual male and female mosquitoes flew at mean fundamental wing-beat frequencies (WBFs) similar to those reported previously [START_REF] Tripet | The "wingbeat hypothesis" of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly[END_REF], with males flying at significantly higher WBFs (mean ± SD; M males = 704 ± 25 Hz, n=4; S males = 682 ± 27 Hz, n=5) than their conspecific females [M females = 467 ± 31 Hz, n=6; S females = 460 ± 26 Hz, n=5; P < 1.0 x 10 -7 , Tukey's honest significant difference (HSD), Experimental Procedures] for flight records of mean length = 8.7 s.

When male-female pairs of same-form and mixed-form were flown within auditory range (~2 cm) of each other's flight tones, their flight behaviour altered significantly; males and females of both molecular forms significantly increased their mean WBFs (ANOVA; F=5.103; df=1,101; P = 0.026, for solo v. paired flight), with males continuing to fly at significantly higher mean WBFs (M males = 771 ± 42 Hz, n= 30; S males = 715 ± 55 Hz, n = 14) than their conspecific females (M females = 489 ± 33 Hz, n = 24; S females = 475 ± 28 Hz, n = 20; P < 1.0 x 10 -7 for both comparisons, Tukey's HSD), irrespective of whether they were in same-or mixed-form pairs. All types of mosquito also significantly increased the variability of their respective WBFs (mean interquartile range, IQR) when flying in pairs (F = 20.137; df =1, 101; P = 1.9 X 10 -5 ) from a mean value for males of 10 Hz for solo flights to 27 Hz for paired flights, and for females from 5 Hz to 22 Hz, irrespective of the form they were paired with.

The phenomenon of frequency-matching is, however, the most remarkable feature of auditory interactions we observed in pairs of An. gambiae mosquitoes.

Frequency-matching is defined here as the maintenance of a relatively constant ratio (± 1%; Experimental Procedures) between the fundamental WBFs of two mosquitoes through continuous audio-motor feedback interactions between them, as shown in Figure 1. The closest audible frequency shared by females and males of both molecular forms occurs at the 3 rd harmonic of the female and the 2 nd harmonic of the male, given that the basic ratio between male and female WBFs is ~ 1.5 and the range of sensitivity of An. gambiae antennae is < 2,000 Hz when they are flying ~ 2 cm apart (see below, Frequency Tuning). On the basis of our definition for frequencymatching, 92% of matching sequences in our records occurred at the 3:2 harmonic frequency, with matching frequencies that differed by < 22 Hz (see discussion of 'difference tones' below).

Samples of male-female pairs of M and S form mosquitoes matching at a ratio of 3:2 shown in Figure 1A & B illustrate our finding that the absolute mean matching frequency is variable, unique to each interaction, and can change during a matching sequence with one mosquito frequency-tracking the other. For example, in Figure 1A & B the pairs of mosquitoes frequency-match for a few seconds at a time (light coloured regions), reducing the variability in their respective WBFs when the ratio between them is close to 3:2, but when they come back together after breaking apart, the mean matching frequency has generally changed. It is worth noting that both males and females actively respond to the other during these interactions.

To accommodate this variability in behaviour between individual mosquitoes, we developed a set of criteria for scoring the frequency-matching status of each record, based on a minimum proportion of the record with matching and a minimum duration of matching (frequency-match for > 20% of a record and for > 1s, Experimental Procedures). Hence, based on the definition of frequency-matching, the M-form pair in Figure 1 A matched for 25.5% (2.8 s) of the 11.0 s record, the Sform pair in Figure 1B matched for 38.0% (4.9 s) of the 13.0 s record, the mixed-form pair (S female-M male) in Figure 1E matched for only 5.4 % (0.7 s) of the 13.0 s record, and the M female-S male pair in Figure 1F matched for 4.0% (0.5 s) of the 13.0 s record. Based on our set of scoring criteria, the pairs in A and B scored 'positive' and the pairs in E and F scored 'negative' for frequency-matching.

The results of this analysis show that frequency-matching occurred significantly more often in same-form pairs (14 out of 24 pairs) than in mixed-form pairs (2 out of 20 pairs) (χ 2 = 11.013; df =1; P=0.001), thus demonstrating the capability of M and S form mosquitoes to discriminate between 'same' and 'other' form to a greater level of accuracy than any other adult phenotype assay described so far [START_REF] Lehmann | The molecular forms of Anopheles gambiae: a phenotypic perspective[END_REF].

Why does frequency-matching occur more often in same-form pairs? We have evidence of physiological and behavioural factors that may potentiate sustained frequency-matching in same-form pairs. The relative wing-beat frequencies of M and S males and females at higher harmonics may constrain the range of possible WBF ratios within mixed-form pairs. M-form pairs frequency-matched at significantly Evidently there is a mechanism, or behavioural strategy yet to be identified, that favours same-form frequency-matching. For example, having increased their mean WBFs on hearing the sound of a nearby mosquito, if M-form males then decrease and M-form females further increase their respective mean WBFs, they would increase the likelihood of frequency-matching, whereas the reverse is true for S-form mosquitoes (after the initial increase in WBFs, females decrease and males further increase their respective WBFs to match). Were each type of mosquito to respond always as if it were flying in a same-form pair, the chance of frequencymatching in mixed-form pairs would be much reduced because the difference between their respective 3:2 WBFs would increase.

Previous attempts to detect potential mate recognition characteristics in the mean WBFs of An. gambiae species may have failed because WBFs were measured only in solo flying mosquitoes. Our findings that mosquitoes increase the overall frequency and variability of their wing beats when encountering others and the potential importance of the relative WBFs of males and females at higher harmonic ratios had not yet been appreciated [START_REF] Tripet | The "wingbeat hypothesis" of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly[END_REF][START_REF] Clements | The antennae and hearing[END_REF].

The interactive aspect of frequency-matching appears to be essential; presentation of pure tones or pre-recorded mosquito flight tones to individual tethered-flying Anopheles mosquitoes did not elicit frequency-matching in either form. Analysis of factors controlling frequency-matching and subsequent mating behaviour must be undertaken in free-flight experiments.

Frequency-matching may have evolved due to a selected advantage of mating in free-flight; males are known to chase females by localising the source of their flight tone [START_REF] Clements | The antennae and hearing[END_REF][START_REF] Belton | An analysis of direction finding in male mosquitoes[END_REF], and frequency-matching at close-range would enable the relatively small male to form a copula with the larger female in mid-flight by synchronising with the potentially turbulent air stream generated by her wing beats [START_REF] Sane | The aerodynamics of insect flight[END_REF][START_REF] Lehmann | When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings[END_REF].

The findings presented here represent the first breakthrough in furthering our understanding of mosquito mating interactions since Belton's analysis of male mate localisation by sound > 35 years ago [START_REF] Belton | An analysis of direction finding in male mosquitoes[END_REF]. They are also the first documentation of form-specific close-range interactions related to mating behaviour since Coluzzi first put forward his theory of the evolution of reproductive isolation in diverging populations [START_REF] Ayala | Chromosome speciation: humans, Drosophila, and mosquitoes[END_REF][START_REF] Coluzzi | Spatial distribution of chromosomal inversions and speciation in anopheline mosquitoes[END_REF].

Frequency Tuning and Sensitivity of Mosquito Hearing

The physiological mechanism that controls frequency-matching is based on the characteristics of one of the most sensitive hearing organs in the animal kingdom [START_REF] Gibson | Flying in tune: sexual recognition in mosquitoes[END_REF][START_REF] Gopfert | Mosquito hearing: soundinduced antennal vibrations in male and female Aedes aegypti[END_REF][START_REF] Gopfert | Nanometre-range acoustic sensitivity in male and female mosquitoes[END_REF][START_REF] Gopfert | Active auditory mechanics in mosquitoes[END_REF]. Sounds are detected by the complex arrangement of sensillae (~15,000 in males, ~7,500 in females) of the Johnston's organ (JO) in the pedicel of the antenna (Figure 3A). The sensillae mechanoelectrically transduce and amplify the nanometre displacements of the flagellum caused by the near-field component of sound [START_REF] Gopfert | Nanometre-range acoustic sensitivity in male and female mosquitoes[END_REF][START_REF] Gopfert | Active auditory mechanics in mosquitoes[END_REF].

There is evidence for three species of mosquito, Culex quinquefasciatus [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF], Aedes aegypti [START_REF] Cator | Harmonic convergence in the love songs of the dengue vector mosquito[END_REF] and now An. gambiae, that frequency-matching of flight tones occurs at frequencies that are about three times higher than the fundamental WBF of females.

How do these high frequencies compare with the frequency bandwidth and tuning of the flagellum and the JO? Male An. gambiae mosquitoes hydraulically extend and collapse the fibrillae of their antennae [START_REF] Nijhout | Antennal hair erection in male mosquitoes: a new mechanical effector in insects[END_REF] (Figure 3A, photo) on a diurnal cycle linked to the swarming periods at dusk and dawn when mating occurs [START_REF] Clements | The antennae and hearing[END_REF][START_REF] Nijhout | Control of antennal hair erection in male mosquitoes[END_REF]. These mechanical changes in the antennae alter the response characteristics of the JO [START_REF] Keppler | Uber Das Richtungshoren Von Stechmucken[END_REF].

Accordingly, we obtained antennal-mechanical and JO-receptor-potential frequencytuning-curves both during their diurnal phase of inactivity, when the fibrillae were collapsed and at dusk when they were extended. Mechanical threshold-tuning curves (0.2 nm criterion, noise floor 0.13 nm R.M.S) measured with a laser-diode interferometer directed at the base of the flagellum [START_REF] Lukashkin | A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea[END_REF] from two male An. gambiae are shown in Figure 3B. With fibrillae collapsed (solid symbols), the minima is at a frequency of 235 ± 14 Hz and at a particle velocity of 4.1 x 10 -6 ± 2.0 x 10 -7 ms -1 (n = 7). With fibrillae extended (open symbols), tuning shifts significantly upwards in frequency (P = 0.003) to 540 ± 45 Hz, but sensitivity is decreased to 1.8 x 10 -5 ± 5.7 x 10 -6 ms -1 (n = 5), largely through loss of the sensitive minima at ~ 200 Hz. Extension of the fibrillae is, therefore, associated with an upwards shift in the most sensitive frequency of the antennae at the expense of low-frequency mechanical sensitivity. Similar measurements from female An. gambiae (red symbols, Figure 3B) did not reveal diurnal shifts in the sensitivity and tuning of the flagellum (tuning frequency minima = 209 ± 33 Hz; particle velocity = 1.4 x 10 -5 ± 6.0 x 10 -6 ms -1 , n = 5). The sensitivity and tuning of the female flagellum, which was similar to that of the male's with collapsed fibrillae, had noticeable and repeatable notches of sensitivity around the 1 st and 2 nd harmonics of the male's flight tone (arrows, Figure 3B), similar to that reported for Ae. aegypti [START_REF] Gopfert | Mosquito hearing: soundinduced antennal vibrations in male and female Aedes aegypti[END_REF].

Accordingly, it can be observed from Figure 3B that the frequencies at which the mosquitoes frequency-match are within the frequency range of the vibrations of the flagellum (i.e., up to ~ 2,000 Hz at the particle velocity expected of mosquito wings beating 2 cm away [START_REF] Lehmann | When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings[END_REF]B. Warren,unpublished].

Voltage responses recorded from the JO are dominated by receptor currents from the sensory cells (supplemental material S1) and henceforth, in this paper they 9 will be referred to as compound phasic receptor potentials. The phasic receptor potentials are twice the frequency (2f) of the applied sound stimulus [START_REF] Tischner | Über den Gehörsinn von Stechmüchen[END_REF][START_REF] Wishart | Orientation of the males of Aedes aegypti(L) (Diptera: Culicidae) to sound[END_REF][START_REF] Belton | The physiology of sound reception in insects[END_REF] and preserve the temporal information necessary for frequency-matching [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF] for Ae. aegypti [START_REF] Cator | Harmonic convergence in the love songs of the dengue vector mosquito[END_REF] that the auditory range of the DC component of the JO receptor potential extends far above that of the phasic response and encompasses the frequency-matching range. We measured DC components of the receptor potential and plotted DC frequency tuning curves (insets to Figure 3C). We also plotted DC component tuning curves for Cx. pipiens mosquitoes (supplemental material S2). It is clear from our findings that DC component frequency tuning curves are bounded by the phasic receptor potential tuning and do not extend the auditory range of the JO.

Changes in the frequency tuning and sensitivity of the JO during extension of fibrillae are complex and may not entirely be due to mechanical changes in the flagellum. The electrical responses of the JO and mechanical responses of the flagellum are metabolically vulnerable when the fibrillae are extended, and can collapse within 5 min when disturbed by experimental procedures. It would be interesting to discover if there is metabolic enhancement of the sensitivity of the JO during the increased hydrostatic pressure that causes erection of the fibrillae.
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We conclude that An. gambiae match their flight tones at frequencies that are outside the bandwidth of the JO's phasic responses to acoustic stimulation. It appears that the near-field auditory systems of Anopheles and Culex species [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF] are similar.

Each consists of a broadly-tuned, non-linear, detector (flagellum) that oscillates spontaneously at frequencies close to the female's WBF and can detect, through distortion, the higher harmonics of the flight tones. When pairs of tones (frequencies f1 and f2, or the mosquito's own flight tones and those of the other) are presented simultaneously, the flagellum generates distortion products, including one at the difference frequency (f2 -f1), as can be seen in the amplitude spectra measured from the vibrations of the flagellum (Figure 4A,C,D). This difference tone is detected by the receptors of the JO even though the stimulus tones are beyond the frequency range of the JO and cannot be detected by it (Figure 4B,E,F). It is essential for the purpose of frequency-matching that difference tones can be generated at low frequencies by the flagellum and be detected by the JO. The JO can, for example, generate a strong difference tone at 12 Hz in response to pairs of tones at 1399 and 1411 Hz (Figure 4C), which is within the frequency-matching range when in free flight and at stimulus levels equivalent to the flight tones mosquitoes produce when 10 mm apart [START_REF] Gopfert | Mosquito hearing: soundinduced antennal vibrations in male and female Aedes aegypti[END_REF]. We detected difference tones at 22 Hz in the receptor potentials (Figure 4E), which is similar to the magnitude of the differences in frequency between two mosquitoes when frequency-matching. Difference tones at lower frequencies were masked by low-frequency electrical noise that is generated in the JO. The basis of this noise was beyond the scope of this study, but a strong candidate is the pulsating antennal heart [START_REF] Clements | The antennal pulsating organs of mosquitoes and other diptera[END_REF].

The detection of difference tones provides mosquitoes with a strategy for matching the harmonic components of their flight tones at frequencies they cannot 11 hear (Figure 3B). By analogy with violinists who tune their instruments by detecting beats, mosquitoes adjust their wing-beat frequencies to within a few Hz of each other until the difference tones drop in frequency and disappear when the harmonics are perfectly matched.

Conclusions

We report here the first quantifiable means of discriminating two molecular forms of adult An. gambiae s.s. on the basis of an observed behaviour. This behaviour uses the detection of difference tones as the basis of audio-motor interactions that occur reliably between a male and a virgin female of the same form. The discovery of this potential mate recognition mechanism constitutes the first evidence of a critically necessary, albeit not sufficient, step in the process of assortative mating at closerange, which is known to occur in this species complex. Our discovery of a matingrelated phenotype that is associated with genotype in the An. gambiae complex also represents a breakthrough in research on how reproductive isolation can occur in sympatric populations of incipient species.

Experimental Procedures

Mosquito larvae were collected from breeding sites typical of the respective forms; M form from rice paddies (VK7 village) and S form from rain-fed pools (Soumousso village), and identified to form-level by PCR [START_REF] Favia | Molecular characterization of ribosomal DNA polymorphisms[END_REF] at the end of experiments. Flight 12 tones were recorded with a particle velocity microphone [START_REF] Gopfert | Mosquito hearing: soundinduced antennal vibrations in male and female Aedes aegypti[END_REF] located within 2.0 cm of tethered mosquitoes [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF] and equidistant between them when two mosquitoes were flown together (Figure 1). Factors known to affect wing-beat frequency [START_REF] Tripet | The "wingbeat hypothesis" of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly[END_REF] were controlled for [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF]. Behavioural and biophysical experiments were conducted on 4 -7day old males and virgin females only during the 2 hours preceding dusk (period of inactivity) and the 2 hours following the onset of dusk (peak of maximum activity).

Methods for generating stimulus tones, recording flight tones from tethered flying mosquitoes, making and analysing mechanical measurements of the flagellum of the antenna with a self-mixing laser diode interferometer [START_REF] Lukashkin | A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea[END_REF] and electrophysiological measurements from the JO, were as described previously [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF].

Measurements were made within half an hour of preparation because sensitivity, distortion products and spontaneous emissions usually deteriorated or disappeared after this period. Fundamental WBFs were digitized from recordings [START_REF] Warren | Sex Recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion[END_REF] of duration = 4-18 s, (mean = 8.7 s), and analysed by three-way ANOVA (df= 1,101), followed by Tukey's honest significant difference (HSD) test for multiple comparisons of means to test effect of sex, form and solo vs paired flight on the mean WBF and associated interquartile ranges (IQR). Mean WBF data for frequency-matching same-form pairs were analysed using a linear model in R [START_REF] Clements | The antennal pulsating organs of mosquitoes and other diptera[END_REF], which produced a significant difference between the weighted WBF means the M and S form pairs (F=9.347, d.f.= 1,10, P=0.0121. A Q-Q plot for the model of standardised residuals against theoretical quantiles showed a reasonable fit to the straight line, and a symmetrical distribution of points above and below the line.

'Frequency-matching' defined as a harmonic-based integer ratio between the fundamental WBFs of two mosquitoes ± 1% (i.e., ± 0.02; since the range of values = 13 0 -2). 'Positive' score for frequency-matching ( > 20 % and >1 second) based on analysis of the frequency distributions of the proportion and duration of records that contained frequency-matching, which showed two overlapping curves for sameand mixed-form data in proportion frequency-matching, with a clear breakpoint at '20% of record matching'. To avoid false positives when scoring frequency-matching due to multiple short bursts and crossing-over, a second criterion was added, that required matching for > 1 s, based on the frequency distribution of matching duration, which showed that all but two records had matching sequences that lasted more than 1 s, and matching in these two records was mainly due to cross-over matching.
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Figure captions

  Fine time-scale interactions are shown in Figure1C& D to illustrate the ability of mosquitoes to respond to changes other's WBF on a moment-to-moment basis with a brief (~50 -60 ms) delay.

  higher frequencies than S-form pairs (Fig 2A thick symbols, M-form = 1510 ± 78 Hz v. S-form 1440 ± 72 Hz, F=9.347; df= 1,10; P=0.0121, Experimental Procedures).

  . Threshold receptor-potential frequency-tuning curves (criterion = 1.4 times recording noise floor, 19.3 µV R.M.S) are shown in Figure 3C. With fibrillae collapsed (solid symbols), the minima frequency is 200 ± 15 Hz (particle velocity = 1.0 x 10 -6 ± 9.1 x 10 -7 ms -1 , n = 4). With fibrillae extended (open symbols), tuning shifts upwards (300 ± 25 Hz) with increased sensitivity (1.5 x 10 -7 ± 6.2 x 10 -8 ms -1 , n = 4). In contrast to the frequency range of the flagellum vibrations, the frequencies at which the mosquitoes match their flight-tones is outside the bandwidth of the JO phasic receptor potentials and thus outside the auditory range of An. gambiae mosquitoes. It has been reported
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 12023234 Figure 1 Auditory interactions between tethered flying mosquitoes. Inset: Arrangement of particle velocity microphone and tethered mosquitoes during sound recordings; A -F) Spectrograms (reconstructed from digitised fundamental
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 1 from JO of male M-type Anopheles gambiea mosquito in response to a 300.3 Hz tone (particle velocity 0.56 mms -1 ) before (black) and after (red) injecting 1 µM TTX in insect saline (ref) into the thorax.We assumed that the TTX had blocked neural activity when we no longer observed spontaneous, reflexive, or mechanically evoked motor responses from the palps, legs and wings. Note the phasic (2f) and DC (negative baseline shift) components of the voltage response remains unchanged but the initial negative peak (arrow) is greatly reduced following TTX injection. We conclude that the voltage response recorded from the JO is dominated by the compound receptor current of the sensory cells but the compound potential at the onset of the voltage response to the tone is dominated by compound neural responses. Extracellular potentials in response to tones recorded from the JO are, therefore, similar to those recorded from the cochlea. Extracellular voltage responses recorded from the cochlea are dominated by receptor currents from the outer hair cells and synchronised firing of nerve fibre contribute to a compound action potential at the onset of the voltage response.S2. DC and phasic voltage responses and frequency tuning curves recorded from the Johnston's organ of a maleCulex pipiens mosquito the JO to a tone at 300.3Hz at a particle velocity of mthe JO to a tone at 300.3Hz at a particle velocity of 3.the JO to a tone at 300.3Hz at a particle velocity of mthe JO to a tone at 300.3Hz at a particle velocity of 3., B Compound electrical responses (expanded view in B) recorded from the JO in response to a 300 Hz tone (particle velocity, 4.0 µm s -1 ). The red, superimposed trace is the DC component of the voltage response. C)Compound receptor potential (2f) (black) and DC receptor potential (red) threshold tuning curves recorded from the JO of a male mosquito based on the particle velocity necessary to produce a receptor potential 10 dB above the recording noise floor.
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