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ABSTRACT
This work reports on new developments of an unsteady-state method to measure the permeability and porosity of permeable porous materials, 
extending the so-called Gas Research Institute method beyond its classical use. These extensions allow one to carry out measurements on 
samples having a cylindrical shape in the case of one- or three-dimensional (or axisymmetric) flows. They rely on the derivation of the quasi-
analytical solutions that are required to interpret the experimental data by solving an inverse problem. The only simplifying assumption is that 
the compressibility of the probing gas can be treated as a constant over the range of pressure variations during measurement. The relevance of 
the method, together with the validity of this hypothesis, is checked over a wide range of porosity and permeability values through a sensitivity 
analysis and a comparison with direct numerical simulations of the complete initial boundary value problem. The efficiency of the method 
is further illustrated with experiments performed on four different porous materials in one-dimension and axisymmetric configurations for 
permeabilities ranging between 10−14 and 10−19 m2. The potential capability of diagnosing heterogeneous and/or anisotropic materials is 
highlighted. These new developments open the way for further extensions to samples of arbitrary shapes or partially saturated by a trapped 
fluid.

I. INTRODUCTION

Permeability and porosity are fundamental properties of nat-
ural or manufactured porous materials, which are of interest in
numerous applications in the domains of petroleum, civil, and
chemical engineering to cite only a few. These quantities are of cen-
tral importance for oil or gas recovery predictions, efficiency assess-
ment of cap rocks or concrete for confinement sites, or air renewal
design for bio-based thermal insulation materials in buildings, for
instance. While the porosity, denoted by ε in what follows, is a static
quantity that characterizes the pore volume fraction of the mate-
rial, the permeability is a signature of its resistance to viscous fluid
flow. Its value can range over several orders of magnitude, typically
from ∼10−12 to ∼10−20 m2 for hydrocarbon-bearing reservoir rocks
or from ∼10−17 to 10−20 m2 for concrete.

For a homogeneous isotropic material, the permeability can
be considered as a scalar quantity (denoted by k in the following)
that can be measured via several different methods depending on its
value (see Refs. 1 and 2 and references therein).

For large to moderate values of k (down to roughly 10−18 m2),
a steady-state method can be employed,3,4 consisting in perform-
ing a 1D stationary flow in a sample whose end faces are submit-
ted to a pressure difference, while the sides are sealed. Measure-
ments of the pressure drop and flow rate across the sample allow
the determination of k on the basis of Darcy’s law. However, as
k becomes smaller, the method requires instruments of increasing
precision in order to accurately measure smaller flow rates.5 In addi-
tion, the time required to reach steady-state (gas) flow increases as
1/k. For these reasons, unsteady-state methods may be preferred for
k typically smaller than ∼10−18 m2. Among them, the pulse-decay,

Rev. Sci. Instrum. 92, 065102 (2021); doi: 10.1063/5.0043915 

https://doi.org/10.1063/5.0043915
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0043915
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0043915&domain=pdf&date_stamp=2021-June-1
http://orcid.org/0000-0002-6360-1642
http://orcid.org/0000-0002-6080-8226
mailto:didier.lasseux@u-bordeaux.fr


initially proposed by Brace et al.6 and further developed over the
two following decades,5–9 is one of the most popular ones. For
this method, a 1D cylindrical sample is employed. It is sealed on
its outer peripheral surface, and each extremity is connected to a
reservoir. Starting from a pressure equilibrium state in the gas sat-
urating the system, a pressure pulse is imposed in the upstream
reservoir, and the pressure difference between the upstream and
downstream tanks is registered over time. The permeability is esti-
mated from this pressure signal, usually in the long-time range,
using a simplified model in which the dynamic viscosity, den-
sity, and compressibility of the flowing gas are considered as con-
stant.6 Another method, referred to as the oscillating pore pressure
method, was devised in the 1990s10,11 (see also Ref. 12). In this
method, a sinusoidal pressure is imposed in the upstream reser-
voir, and the steady-state periodic pressure signal is recorded in
the downstream tank. Estimation of the permeability relies on the
upstream/downstream pressure amplitude ratio along with their
phase shift.

More recently, an alternative method, the step-decay, was pro-
posed.13,14 The experimental device for this method is the same
as for the pulse-decay, but several successive pressure pulses are
imposed in the upstream reservoir. The method does not require a
state back to equilibrium between each pulse (which may be long)
as would be needed if several different pressure levels would be used
in a pulse-decay experiment. The step-decay is a potential–potential
type of method. It is based on the transfer function estimate
between the upstream and downstream pressures yielding the phys-
ical parameters of the sample, which are free of errors due to uncer-
tainties on the upstream parameters of the experiment, such as
dead volumes and thermal effects resulting from sudden pressure
variations.

The gas slippage effect often occurs when measurements are
performed at certain pore pressure levels and permeabilities.15,16

In that case, k is an apparent permeability, which includes the
Klinkenberg effect,17 and is given by k = kl(1 + b

P ), where kl is
the intrinsic permeability, b is the Klinkenberg coefficient, and
P is the average pressure over the sample at which k is esti-
mated. When steady-state experiments are used, the identifica-
tion of kl and b is achieved by repeating the experiment at sev-
eral average pressures. Conversely, the step-decay was shown to
allow the simultaneous identification of kl, b, and ε from a single
experiment.

In all the methods mentioned above, the measurement is per-
formed on a cylindrical sample that must be perfectly sealed on
its sides. This is commonly achieved by inserting the sample in a
soft impermeable jacket over which a confining pressure is applied
in order to avoid a preferential flow-path, which would seriously
bias the sample permeability estimate (in particular, in the range
of small k). However, most of the time, the stress induced by the
confining pressure induces a deformation resulting in a permeability
modification.

A technique, which advantageously circumvents this last diffi-
culty, was developed in the early 1990s by the Gas Research Insti-
tute (GRI).18,19 The eponymous technique, also referred to as the
pressure fall-off method or inflow measurement method, consists in
placing the porous sample to be characterized in a closed tank. A
pressure increment is imposed in the tank, and the ensuing pres-
sure decrease due to the gas penetration in the porous material is

registered from which the permeability and porosity are extracted.
This method has been applied to crushed porous materials of var-
ious forms and dimensions20,21 or to cylindrical samples.22 In the
former case, the porous grains are assimilated to spheres to simplify
the interpretation with semi-analytical solutions.23 In the latter case,
analytical solutions were derived in two configurations: (i) for sam-
ples featuring a ratio of the diameter to the length much smaller than
unity for which the pressure within the sample is uniform along the
sample axis and only depends on the radial position; (ii) for sam-
ples sealed on their peripheral surface for which the pressure is the
only function of the axial position. Approximated models were also
proposed, applicable at early and late times of the pressure signal. In
the latter case, which is the most widely used, a normalized pressure
decline curve is derived as a function of time, and the permeability is
estimated from the slope at late times. The porosity is not identified
with this method. In all the models, an instantaneous initial pressure
excitation (under the form of a Dirac delta) is assumed. Moreover,
the gas compressibility, β = 1

P , is taken as constant over the pres-
sure decay period. This hypothesis is also retained in this work after
testing its validity.

A limitation toward a more extensive use of the GRI method
certainly lies in the absence of operational interpretative models
available to date, the models being limited to the two situations
mentioned above. The objective of the present work is hence to
propose new developments of this method by deriving a complete
two-dimensional model for a cylindrical sample, regardless of its
aspect ratio, as well as complete one- and three-dimensional models
for parallelepipedic samples, using integral transforms on the initial
boundary value problem for the gas pressure evolution during the
measurement. These models allow accounting for the pressure vari-
ation in the sample over the entire experimental duration in order to
extract the parameters of interest. A detailed analysis of the reduced
sensitivities of the pressure signal to the parameter D = k

ε and to
the porosity is carried out, showing that these two parameters can
be simultaneously extracted from the time evolution of the pressure
variation in the tank (i.e., at the sample surface). This is further illus-
trated by performing a parameter estimation on synthetic pressure
signals obtained from a direct numerical simulation of the model
for which the compressibility is not constant, assuming, in addition,
that the apparent permeability obeys a Klinkenberg relationship.
These tests show that both parameters, D and ε, are correctly esti-
mated (with a better accuracy for the former) and that the constant
compressibility hypothesis does not induce any significant bias in
the estimation. The analysis also indicates that the extended GRI
method, together with the estimation procedure developed here,
allows the measurement of permeabilities in the interval 10−14–10−19

m2 as proved by measurements carried out on four different porous
materials with permeabilities in this range.

With these purposes in mind, this article is organized as fol-
lows: In Sec. II, the principle of the method is recalled. The 1D and
3D models for a parallelepipedic sample as well as the 2D axisym-
metric one for a cylindrical sample of circular cross section are
developed. Section III is dedicated to the parameter estimation pro-
cedure using an inverse method. Section IV is devoted to experi-
ments. After presenting the experimental device and protocol, mea-
surements performed on samples of two different insulating mate-
rials and two different rocks are reported. Conclusions are drawn
in Sec. V.



II. PRINCIPLE OF THE METHOD AND MODELS
Before developing the models for parallelepipedic and cylindri-

cal samples of circular cross section, which are used in the remainder
of this work, it is of interest to recall the main features of the GRI
method.

A. Principle
A schematic diagram of the device employed in a GRI method,

similar to that envisaged by Profice et al.23 or Cui et al.5 to carry out
measurements on crushed porous media, is represented in Fig. 1.

Two temperature regulated tanks (tank 0 and tank 1 of respec-
tive volume V0 and V1) are connected through a tubing equipped
with a valve V1, which is closed at the initial stage of the experiment.
The sample, in which permeability, k, and porosity, ε, are to be mea-
sured, is placed in tank 1. The pressure of the gas present in tank 0 is
set to a different value, P0, (larger or smaller) than that of the same
gas present in tank 1. At t = 0, the valve V1 is opened and then closed
(at time t = tc) in order to put both tanks in communication over a
short period of time. This creates a pressure pulse in tank 1, whose
evolution over time, P1(t), back to equilibrium due to the presence
of the porous sample, is recorded. As shown in what follows, the
shape of the pressure evolution curve allows one to determine the
parameter D = k

ε of the material, regardless of the amplitude of the
pressure variation. In addition, the porosity, ε, can also be identified
independently from D.

In the following, the method to extract these parameters is
detailed considering two types of sample shapes, namely, parallelepi-
pedic and cylindrical of circular cross section. While the former can
be of interest for anisotropic materials, if the sample edges are paral-
lel to the direction of anisotropy, the latter is of interest for isotropic
(and poorly permeable) materials.

B. 1D and 3D Cartesian models
1. 1D case

In order to ensure a 1D gas transfer within the material, all faces
of the sample of length L are sealed, except the one orthogonal to the

direction for which permeability is to be estimated, as schematically
represented in Fig. 2. The direction of measurement (x) is supposed
to be a principal direction of the permeability tensor.

Assuming that the pressure inside the sample, denoted Pi, is
uniform, equal to that in tank 1 at the initial stage, and that the gas
obeys ideal gas law, the initial boundary value problem (IBVP) for
P ≡ P(x, t) is given by23

∂P
∂t
− 1

εμ
∂

∂x
(kP

∂P
∂x
) = 0, (1)

B.C.1 P = P1(t) at x = 0, (2)

B.C.2
∂P
∂x
= 0 at x = L, (3)

I.C. P = Pi at t = 0. (4)

In Eq. (1), μ represents the gas dynamic viscosity, whereas the appar-
ent permeability, k, in the direction of measurement may include a
Klinkenberg correction, i.e.,

k = kl(1 + b
P
), (5)

with kl being the intrinsic permeability and b being the Klinkenberg
coefficient (in Pa). To arrive at Eq. (1), the mass and the steady form
of Darcy’s law were combined (see Refs. 24 and 25 for the details).

Boundary condition B.C. 2 in Eq. (3) expresses the fact that the
gas flux is zero at x = L since this face is sealed.

The pressure evolution in the system is initiated by opening the
valve V1 allowing a gas flux, q̇m0(t), in (or out of) tank 1. The flux
is maximum at the valve opening and may be taken as zero at t = tc
when the pressure, denoted Pmax, tends to equilibrate between the
two tanks. It is hence reasonable to represent q̇m0(t) by the triangle
function,

q̇m0(t) =
2q0

tc
(1 − t

tc
)[1 − γ(t − tc)], t ≤ tc, (6)

FIG. 1. Schematic representation of the
experimental device employed in a GRI
method.

FIG. 2. 1D configuration for a parallelepi-
pedic sample.



where γ is the Heaviside function and q0 is the mass of gas entering
or leaving tank 1 over tc.

In order to close the formulation of the IBVP, it is necessary to
make explicit the coupling between the pressures P1(t) in tank 1 and
P inside the sample (see B.C. 1) resulting from the excitation. This is
achieved by expressing the gas mass flux balance at t in the system
including tank 1 and the sample, which gives

M
RT
(V1 − V)d(P1 − Pi)

dt
= −εV

M
RT

d(Pm − Pi)
dt

+ q̇m0. (7)

Here, Pm represents the average pressure inside the sample at t, i.e.,

Pm =
1
L∫

L

0
P(x, t)dx. (8)

In Eq. (7), M is the gas molar mass and R = 8.314 J mol−1 K−1 is the
ideal gas constant.

The pressure equation (1) is non-linear and, under this form,
does not admit any analytical solution. To make further progress, it
is of interest to assume that P experiences small variations compared
to its average value over the measurement period, denoted Pc, and is
given by

Pc =
1

t f − tc
∫

t f

tc

Pm(t)dt, (9)

with t f being the time at which the experiment ends. This assump-
tion is consistent with the fact that the gas compressibility, β, can
be considered as constant, taken as β = 1

Pc
. Under these circum-

stances, it is reasonable to use the approximation kP ≅ kl(1 + b
Pc
)Pc

in Eq. (1), which can be simplified to the following form:

∂2P
∂x2 =

1
a
∂P
∂t

. (10)

Here, a denotes the diffusivity (in m2 s−1) given by

a = k
εμβ
= D

μβ
= Pc

μ
D. (11)

The solution of the above IBVP can then be carried out in the
Laplace domain. Denoting θ(x, p) = L[P(x, t)] = ∫ ∞0 P exp(−pt)dt
as the Laplace transform of P = P − Pi, the solution of Eq. (1) is given
by26

θ(x, p) = A cosh(qx) + B sinh(qx), (12)

with q =
√

p
a . The Laplace transform of B.C. 1 in Eq. (2) yields

θ1 = θ(0, p) = L[P1(t)] = A. (13)

Moreover, B.C. 2 [Eq. (3)] gives

B = −A tanh(qL). (14)

The Laplace transform of the mass flux balance expressed in Eq. (7)
yields

Φ1 =
M(V1 − V)

RT
pθ(0, p) + εV

M
RT

pθm, (15)

where Φ1 = L[q̇m0] and θm = L[Pm]. By making use of Eqs. (8) and
(12), θm is given by

θm =
1
L∫

L

0
θ(x, p)dx = 1

L∫
L

0
[A cosh(qx) + B sinh(qx)]dx

= A tanh(qL)
qL

. (16)

When this result is introduced back into Eq. (15), the expression of
A can be obtained as

A = Φ1
RT
M

1
(V1 − V)p + ε√pa V

L tanh(qL) = θ1. (17)

For the subsequent use of this solution, it is convenient to write it as

θ1 =
X1

p
1

1 + X2
X3
√

p tanh(X3
√

p)
, (18)

in which
X1 = Φ1(p)

RT
M(V1 − V) , (19)

X2 =
εV

V1 − V
, (20)

X3 = L

√
1
a

. (21)

If q̇m0(t) is taken as the triangle function expressed in Eq. (6), Φ1 is
given by27

Φ1(p) =
2q0

tc
[1

p
− 1 − exp(−ptc)

tcp2 ]. (22)

From Eq. (18), it can be observed that θ1 behaves as X1
p when p tends

to infinity. It can hence be deduced that X1 represents the extremum,
Pmax, of the pressure P1 imposed by the initial pulse.

Finally, the pressure in Tank 1, P1(t), is obtained from an
inverse Laplace transform of Eq. (18) making use, for instance, of
the De Hoog algorithm.28 The solution depends on the three param-
eters X1, X2, and X3 and, more precisely, on ε (involved in X2) and
D (through X3).

It must be noted that the development in the 1D case pre-
sented here was carried out for a sample of length L, assuming that
only one end is left open. Nevertheless, the solution is still applica-
ble when both opposite faces of the sample are left open. However,
V and L in the solution given in Eqs. (18)–(21) must, respectively,
be understood as half the sample volume and length in that case.
Leaving one or the two faces open to gas transfer may be of inter-
est depending on the sample length and permeability in order to
design a long enough experiment allowing an accurate parameter
estimate.

2. 3D case
If the material can be considered as isotropic and homoge-

neous, a 3D experiment, for which all the six faces are left open to
gas transfer, can be of interest. The methodology to derive the solu-
tion, albeit more cumbersome, is similar to the one detailed above



in the 1D case. The steps to arrive at the solution are provided in
Appendix A. If the dimensions of the sample are ℓ, L, and h, the
solution, θ1, on P1 − Pi in the Laplace domain takes the following
form:

θ1 =
X1

p
1

1 + 64 X2∑∞n=1∑∞m=1Fnm
. (23)

In this expression, X1 and X2 are given by Eqs. (19) and (20), while
Fnm has the following expression:

Fnm = (
1

αn2Lℓ
+ 1

γm2Lℓ
) 1

δnm
2Lℓ
{[ δnm

2h2

αn2h2 + γm2h2 − 1]

× 2
δnmh

sinh(δnm
h
2 )

cosh(δnm
h
2 )
+ 1
⎫⎪⎪⎬⎪⎪⎭

, (24)

with
αn =

(2n − 1)π
ℓ

, (25)

γm =
(2m − 1)π

L
, (26)

δnm =
√

αn2 + γm2 + p
a

, (27)

and a given in Eq. (11). Again, P1(t) is obtained from an inverse
Laplace transform of Eq. (23). Apart from the dimensions of the
sample, this solution depends on the physical parameters ε and D
(respectively, involved in X2 and δnm), as in the 1D case.

C. 2D axisymmetric model
In this configuration schematically represented in Fig. 3, a

cylindrical sample, of length L and of circular cross section of radius
r1, is placed in tank 1 with all the faces left open. As for the 3D case
envisaged above, this configuration is of interest when the material is
homogeneous and isotropic. For convenience, the inner radius and
height of the tank are denoted by rc and Lc, respectively.

With the origin of coordinates placed at the center of the sample
and assuming again that the variations of P during the experiment
(tc ≤ t ≤ t f ) remain small compared to Pc [see Eq. (9)], the IBVP is
given by the following system of equations:

∂2P
∂x2 +

1
r
∂P
∂r
+ ∂2P

∂r2 =
1
a
∂P
∂t

, (28)

FIG. 3. Schematic representation of the axisymmetric configuration.

B.C.1
∂P
∂x
= 0 at x = 0, (29)

B.C.2 P = P1(t) at x = L
2

and r = r1, (30)

I.C. P = Pi at t = 0, (31)

with a being the diffusivity defined in Eq. (11). A condition must be
added here, imposing that P remains finite at r = 0. The mass balance
of the gas in the system, including the sample and the tank, leads to
Eq. (7), in which Pm represents the mean pressure in the sample at t
[see Eq. (8)] and q̇m0 is the gas flux between tank 0 and tank 1 at the
initial stage of the experiment (0 ≤ t ≤ tc).

The solution to this problem is obtained using a double inte-
gral (Laplace and Fourier) transform. Details on the derivation are
provided in Appendix B, yielding

θ1(p) =
X1

p
1

1 + 8X2∑∞n=1
1

δn
2L2 [2 L

r1
( δnL

αn
2L2 − 1

δnL)
I1(δnr1)

I0(δnr1)
+ 1]

. (32)

In this expression, I0 and I1 are the zeroth and first order Bessel func-
tions of the first kind, θ1 denotes the Laplace transform of P1 − Pi, X1
and X2 are again given in Eqs. (19) and (20), while αn and δn have
the following expressions:

αn = (2n − 1)π
L

, (33)

δn =
√

αn2 + p
a

, (34)

where a is the diffusivity expressed in Eq. (11). The solution for P1(t)
is finally obtained from an inverse Laplace transform of Eq. (32).
It depends again on ε and D (contained in X2 and δn) as for the
parallelepipedic sample in 1D and 3D.

At this point of the analysis, a difficulty regarding the value of
β = 1

Pc
, with Pc being given in Eq. (9), must be addressed. Indeed,

with this definition, Pc depends on P, which means that a solution
for P can only be obtained in an iterative manner. For the sake of
simplicity, in practice, this may be simplified by making use of an
approximated constant value of Pc based on the observation that P1
varies first from Pi to Pmax, while the valve V1 remains open and then
would reach the value P f at final equilibrium. This leads to propose
the following approximation for Pc:

Pc =
Pi+Pmax

2 + P f

2
. (35)

Note that P f does not necessarily corresponds to P1(t f ). The validity
of this approximation will be assessed in Sec. III A 3. It should be
noted that Pmax is not known a priori and is difficult to measure in a
real experiment. As a consequence, the idea is to estimate q0 involved
in X1 [see Eq. (19)] in addition to D = k

ε present in X3, δnm, or δn
[Eqs. (21) and (27) or Eq. (34)] and ε involved in X2 [Eq. (20)] from
the time evolution record of P1(t).



III. PARAMETER ESTIMATION
The purpose is now to investigate how the parameters q0, ε,

and k
ε , on which the solutions always depend, can be estimated

from a recording of P1(t) using the quasi-analytical solutions pre-
sented in Sec. II. The feasibility of this estimation may be checked
by analyzing, first, the signal amplitude and, second, its reduced
sensitivities to the parameters to be estimated. The numerical tests
reported in this section were carried out using the following param-
eters: V = 2 ⋅ 10−3L, V1 = 1.2V , T = 298 K, and Pi = 105 Pa. More-
over, air was assumed as the probing gas for which M = 29 g mol−1

and μ = 1.8 ⋅ 10−5 Pa s. The values of q0 and tc were chosen such that
Pmax ≅ 1.3 ⋅ 105 Pa using the triangle function given in Eq. (6) with
tc = 0.2 s.

A. The 1D flow case in a parallelepipedic sample
A thorough analysis is carried out in the case of a parallelepi-

pedic sample in which flow only takes place along the sample axis, as
described in Sec. II B 1.

1. Range of measurement
The solution of Eq. (18), once inverse Laplace transformed, was

computed for four values of L, namely, L = 5, 10, 50, and 100 mm; a
porosity ε = 0.1, yielding Pc = 1.175 ⋅ 105 Pa; a permeability, k, rang-
ing between 10−15 and 10−21 m2; and t f = 3600 s. This time limit was
chosen as a reasonable period over which temperature can be easily
regulated in a real experiment without any sophisticated device.

The corresponding signals of P1(t) = P1(t) − Pi are reported in
Fig. 4. If a criterion for a significant signal amplitude, Pmax − P f , is

thought to be 5% of Pmax − Pi, which seems reasonable for a stan-
dard pressure transducer, this figure allows one to conclude that for
the measurement period and the parameters under consideration,
the estimation of D can be envisaged in the range from D = 10−20

m2 (with L = 5 mm) to D = 10−14 m2 (with L = 100 mm) (see curves,
respectively, labeled 1 and 2 in Fig. 4). Nevertheless, to further eval-
uate the estimation feasibility, it is necessary to carry out a sensitivity
analysis.

An example of the pressure evolution inside a sample with L
= 100 mm, k = 10−14 m2, and ε = 0.9 is provided in Fig. 5. In the first
half of the sample (0 ≤ x ≤ 50 mm), the pressure evolution is non-
monotonic as it starts to increase and then decreases to reach the
final equilibrium value P f , whereas in the second half (50 ≤ x ≤ 100
mm), the pressure increases from Pi to P f [see Fig. 5(a)]. Moreover,
as shown in Fig. 5(b) where the pressure evolution is represented
inside the tank (at x = 0) at x = 10 and x = 20 mm at the early stage
of the experiment, i.e., for 0 ≤ t ≤ 1 s, a pressure change is noticeable
close to the sample entrance (at x = 10 mm). Even if this obser-
vation corresponds to a permeability in the upper range of those
envisaged here, it justifies why q̇m0 should be carefully taken into
account in the derivation of the model to interpret the experimental
data.

2. Analysis of the reduced sensitivities
The reduced sensitivity of P1(t) to a parameter Xi is defined by

Xi
∂P1
∂Xi

. Estimation of the parameter Xi is possible if the reduced sen-
sitivity to Xi is larger than the sensibility of the pressure transducer
employed to record P1(t) and if it is not proportional to the reduced
sensitivity of any other parameter Xj, i ≠ j, to be estimated. The

FIG. 4. 1D simulations of P1(t) for four values of the sample length L = 5, 10, 50, and 100 mm and D = k
ε ranging from 10−14 to 10−20 m2. ε = 0.1.



FIG. 5. Pressure evolution in the 1D case within a sample with k = 10−14 m2, ε = 0.9, and L = 100 mm (a) in the range 0 ≤ t ≤ 120 s every 10 mm within the sample and
(b) in the tank (x = 0) at x = 10 and x = 20 mm for 0 ≤ t ≤ 1 s.

reduced sensitivities of P1(t) to the parameters q0, ε, and D = k
ε were

computed to verify whether they are correlated or not in order to
consider their simultaneous estimation from an inverse procedure.

The time evolution of the reduced sensitivities in six different
cases is reported in Fig. 6 along with the corresponding pressure
signals P1(t). This figure shows that, in all cases, the sensitivity to
D is not correlated with the sensitivities to q0 and ε, which means
that D can be estimated from P1(t) in the ranges of k and ε consid-
ered here. For a large porosity (i.e., ε = 0.9) and a large permeability
(i.e., k = 10−14 m2) sensitivities to q0 and ε become correlated after
a short period of time. This indicates that the accuracy on q0 and
ε would decrease in these limits and that it would be preferable to
measure ε separately, for instance, with a pycnometry experiment as
described by Bal et al.29 and for which a larger value of Pmax can be
employed. Nevertheless, these limits are barely reached in practical
situations.

3. Parameter estimation
In the 1D case investigated here, the three parameters to be esti-

mated from P1(t) are q0 [involved in X1, see Eq. (19)], X2, and X3
[see Eqs. (20) and (21)]. These estimations are performed through
a minimization of the quadratic difference between the recorded
(P1exp) and simulated (P1mod) values of P1 at tc ≤ ti ≤ t f , i = 1, . . . , N,
defined as ∑N

n=1 [P1exp(ti) − P1mod(ti)]2. This is performed using a
Levenberg–Marquart algorithm.30 The values of D = k

ε and ε are
then, respectively, obtained from

D = μβL2

X3
2 , (36)

ε = X2
V1 − V

V
. (37)

Equation (36) shows that D does not explicitly depend on V1, V , tc,
q0, and T and hence that these parameters do not need to be known
accurately in the inverse procedure to estimate D.

At this point, it is of interest to investigate the validity of the lin-
earization of Eq. (1) yielding Eq. (10) and to the solution in Eq. (18).
To do so, the flow problem was solved in its complete form consider-
ing the pressure equation (1) instead of its linearized version, which
means that the compressibility is not assumed to be constant. The
solution of this problem was carried out using Comsol Multiphysics
in order to obtain P1(t) as a result of a numerical experiment. More-
over, a Klinkenberg-corrected permeability, as given in Eq. (5), was
considered for these experiments, assuming that the Klinkenberg
coefficient, b, follows a correlation proposed by Jones,8

b = 0.189kl
−0.36, (38)

where b is in Pa and kl in m2.
More specifically, numerical modeling was carried out with

a Comsol Multiphysics module allowing to use a pressure depen-
dent permeability. The geometrical configuration was exactly that
reported in Fig. 2. Equations (1)–(5) were solved in the sample (vol-
ume V). In addition, the flux equation (6) was enforced by choos-
ing q0 such that Pmax = 1.3 ⋅ 105 Pa and tc = 0.2 s and was applied
as a boundary condition at the entrance of the 1D domain. All
other parameters were taken to their values recalled at the begin-
ning of Sec. III. The computational domain was meshed using 129
elements, a value that satisfies mesh convergence. The default solver
was employed.

Tests were performed in six different cases for which L, kl, and
ε, along with the corresponding values of Pc obtained from Eq. (9),
took values reported in Table I.

The numerical results obtained on P1(t) were subsequently
used as experimental data from which the estimated values, εest
and kest , were determined from the inverse procedure using the
solution of the linearized model [Eq. (18)] in which Pc in the
expressions of β and k is given by Eq. (35). The values of εest and
kest are also reported in Table I, together with those of k com-
puted from Eq. (5) with P = Pc and the relative errors on D, k,
and ε.



FIG. 6. Evolution of P1(t) and of its sensitivities to q0, ε, and D = k
ε for different values of ε, k, and L.

The largest relative error between the estimated and input val-
ues of ε is observed for ε = 0.9, as expected from the sensitivity anal-
ysis. Correspondingly, the relative error between the estimated and
computed values of k is also maximum in this range of porosity. It
must be noted, however, that the relative error on D, in these cases,
is much smaller than that on k. This results from the fact that Dest is
the parameter that is directly obtained from the inverse procedure,
whereas kest is computed a posteriori with εest and hence includes
errors from this last parameter. For smaller values of ε, the rela-
tive error remains smaller than 0.6% on k and is barely noticeable
on ε. These errors justify the use of the linearized model involv-
ing a constant compressibility that corresponds to the pressure Pc
approximated with Eq. (9) that is also employed to compute k when

this parameter is pressure dependent according to a Klinkenberg
relationship.

For case 2, the evolution of P1, obtained from simulations
with Comsol Multiphysics (P1exp) solving the complete problem (i.e.,
using a permeability that includes Klinkenberg effects and without
assuming a constant compressibility), is compared to the predic-
tion (P1mod) from the quasi-analytical solution [Eq. (18)] in which
compressibility and permeability are assumed to be constant. This
comparison is depicted in Fig. 7. The residues, P1exp − P1mod, are also
reported in this figure showing the excellent agreement between the
two up until the final time at which equilibrium is reached. This fur-
ther illustrates the performance of the linearized model and of the
inverse procedure.



TABLE I. Parameters used for the simulations and results of the estimated values. 1D case.

Case No. 1 2 3 4 5 6

kl m2 10−14 10−14 10−16 10−16 10−18 10−18

B Pa 0.207 ⋅ 105 0.207 ⋅ 105 1.087 ⋅ 105 1.087 ⋅ 105 5.708 ⋅ 105 5.708 ⋅ 105

ε ⋅ ⋅ ⋅ 0.1 0.9 0.05 0.9 0.05 0.2
L m 0.1 0.1 0.05 0.05 0.01 0.005
Pc [Eq. (35)] Pa 1.182 ⋅ 105 1.106 ⋅ 105 1.194 ⋅ 105 1.104 ⋅ 105 1.196 ⋅ 105 1.150 ⋅ 105

εest ⋅ ⋅ ⋅ 0.1 0.862 0.0501 0.880 0.05 0.2
εest−ε

ε % 0.0 −4.1 0.0 −2.2 0.0 0.0
k [Eq. (5) with P = Pc] m2 1.175 ⋅ 10−14 1.187 ⋅ 10−14 1.910 ⋅ 10−16 1.985 ⋅ 10−16 5.772 ⋅ 10−18 5.963 ⋅ 10−18

kest m2 1.169 ⋅ 10−14 1.116 ⋅ 10−14 1.909 ⋅ 10−16 1.935 ⋅ 10−16 5.777 ⋅ 10−18 5.945 ⋅ 10−18

kest−k
k % −0.6 −6.0 −0.1 −2.5 0.1 0.3

D [Eq. (5) with P = Pc] m2 1.175 ⋅ 10−13 1.319 ⋅ 10−14 3.822 ⋅ 10−15 2.206 ⋅ 10−16 1.155 ⋅ 10−16 2.982 ⋅ 10−17

Dest m2 1.169 ⋅ 10−13 1.319 ⋅ 10−14 3.809 ⋅ 10−15 2.181 ⋅ 10−16 1.154 ⋅ 10−16 2.977 ⋅ 10−17

Dest−D
D % −0.5 0.0 −0.3 −1.1 −0.1 −0.2

Since a constant value of kest yields excellent match of the pres-
sure signal generated with a pressure dependent k, it can be con-
cluded that the two constants kl and b involved in kest cannot be
estimated simultaneously from a single experiment (a single value
of Pc) using the linearized model as there is not a unique pair of kl
and b giving the same value of kest . However, several experiments, at
different values of Pc, can be performed in order to obtain the depen-
dence of kest on Pc, which, upon using the Klinkenberg form kest

= kl(1 + b
Pc
), allows one to determine both kl and b. This procedure

was further employed in the experiments detailed in Sec. IV.

4. Uncertainty estimate
In addition to the errors inherent to the inverse procedure

employing a linearized simplified model, errors due to uncertainty

FIG. 7. (Case 2) Pressure evolution in tank 1 obtained from the numerical exper-
iment resulting from the simulation with Comsol Multiphysics (P1exp) and compar-
ison with the solution of the linearized model [P1mod , see Eq. (18)] obtained with
the estimated parameters. The residues are denoted as P1exp − P1mod .

on the input parameters of the model must also be considered. Equa-
tion (36) shows that the relative error, ΔD, induced on D by the
errors ΔL and Δμ on L and μ, respectively, is given by

ΔD
D
= 2

ΔL
L
+ Δμ

μ
. (39)

For instance, a relative error of 1% on L yields a relative error of 2%
on D.

Similarly, Eq. (37) shows that the relative error on ε can be
expressed as

Δε
ε
= ΔV

V
+ ΔV + ΔV1

V1 − V
. (40)

The variation of P1(t) is enhanced by a small value of (V1 − V).
However, the above relationship indicates that this induces a large
error on ε, implying a compromise that is difficult to solve a pri-
ori. As an example, if the dimensions of a sample being 0.1 × 0.1
m2 in cross section with L = 0.03 m are known with an absolute
error of 0.1 mm, while considering V1 = 1.2V and a relative error
of 1% on V , this leads to ΔV

V =
10−4

0.03 +
10−4

0.1 +
10−4

0.1 = 0.53% and Δε
ε

= 0.0053 + 0.0053×V+0.01×1.2×V
0.2×V = 9.2%. This shows that the expected

relative error on ε induced by uncertainties on the input parameters
is larger than that expected on D.

With the two estimated parameters being D and ε, k is com-
puted from k = Dε, which implies

Δk
k
= ΔD

D
+ Δε

ε
. (41)

In order to decrease the error on k, it would be preferable to measure
ε separately with a pycnometry experiment in which only the values
of Pmax and P f at the final equilibrium are necessary. This can be
performed using the same experimental device as in the dynamic
experiment under study in this work.29 Since there is no constraint
on the interpretative model to determine ε from this experiment, a
large pressure variation Pmax − P f can be employed to improve the
accuracy on ε and, consequently, on k estimated from the current
dynamic procedure.



B. 2D axisymmetric flow in a cylindrical sample
The estimation procedure reported above in Sec. III A 3 in

the 1D case was repeated in the case of a cylindrical sample with
all faces open to gas flow in order to verify the validity of the
approach in that case, making use of the model given in Eq. (32).
The series in this solution was approximated with 200 terms to
ensure convergence. Numerical experiments were carried out by
solving the complete pressure equation (1) (i.e., without assuming
a constant compressibility) in the axisymmetric case considering a
cylindrical sample of 40 mm in diameter and L = 60 mm, tank 1
being 44 mm in diameter and 64 mm in height. The other physi-
cal parameters were those given at the beginning of Sec. III. As in
the 1D case, these simulations were performed using Comsol Mul-
tiphysics. Again, the flux equation (6) was enforced by choosing q0
such that Pmax = 1.3 ⋅ 105 Pa and tc = 0.2 s, and it was applied as a
boundary condition at the entrance of the computational domain.
A zero flux boundary condition was applied on all other faces of
the domain. A triangular mesh, including 4375 elements with a
local refinement at the porous sample interfaces, was employed after
verifying that it fulfills mesh convergence. The default solver was
used.

Simulations were performed for the values of k, b, and ε of
cases 7–12 reported in Table II. The permeability was taken as to
account for Klinkenberg effects according to the relationships given
in Eqs. (5) and (38).

The range of intrinsic permeability was chosen in agreement
with the fact that such an experiment is dedicated to poorly perme-
able materials. For kl > 10−16 m2, the time to reach final equilibrium
is on the order of a second or smaller, which is too short to carry
out an experiment. As in the 1D case, D and ε were estimated in
the least squares sense using an inverse procedure with the simpli-
fied linearized model [Eq. (32)], and k was computed as k = Dε. The
corresponding values, Dest , εest , and kest , together with the relative
errors, are reported in Table II.

As in the 1D case, the relative errors resulting from the linear
approximation remain small. The maximum error on εest is 2.8%
and, as expected, is observed for the largest value of ε (i.e., ε = 0.9,
case 8) combined to the largest value of kl under investigation here.

Moreover, the largest relative error on kest , which remains, how-
ever, smaller than 4.3%, is also observed in that case. Relative errors
on Dest are also very small, less than 1.4%, over the whole range
of parameters, confirming the validity of the linearized model. As
already mentioned for the 1D configuration, D is better estimated
than ε, and the error on kest results from the cumulated errors on
Dest and εest .

IV. EXPERIMENTS
A. Materials and method

The device used for permeability (and porosity) measurement
of parallelepipedic samples is composed of the two tight tanks 0
and 1 of respective volumes V0 and V1 machined in a single mas-
sive aluminum part ensuring a uniform and constant temperature
of the whole device. The two volumes are connected by the valve
V1 normally closed. Pressures in the two volumes are measured
with Keller LEO3 pressure transducers having a range of 0–4 bars
and a precision of 0.1%. The pressure transducers are connected to
a data acquisition system ALMEMO 2290-4, which records pres-
sures at a time-rate of 0.1 s. Tank 0 is connected to a pressur-
ized bottle (HP) of dry air used for the probing gas, and tank 1
is connected to the atmosphere via a normally closed valve that is
used to bring the system to atmospheric pressure and flush it with
dry air prior to an experiment. A picture of the device is shown
in Fig. 8.

Assuming the ideal gas law for dry air in the experimental con-
ditions, a temperature variation ΔT induces a pressure variation ΔP
in the closed system such that ΔP

P =
ΔT
T . For a pressure of 105 Pa and

a temperature of 293 K, this indicates that ΔP = 34 Pa (respectively,
340 Pa) for ΔT = 0.1 K (respectively, 1 K). This suggests that the
sample and the experimental device must be at thermal equilibrium
and kept at a constant temperature for an accurate measurement.
For this reason, the whole system is placed in a climatic enclosure
Binder KBF115 to ensure a perfectly constant temperature over the
measurement period.

The device used for permeability (and porosity) measurement
of cylindrical samples of circular cross section is presented in Fig. 9.

TABLE II. Parameters used for the simulations and results of the estimated values in the 2D axisymmetric case.

Case No. 7 8 9 10 11 12

kl m2 10−16 10−16 10−18 10−18 10−20 10−20

B Pa 1.087 ⋅ 105 1.087 ⋅ 105 5.71 ⋅ 105 5.71 ⋅ 105 29.95 ⋅ 105 29.95 ⋅ 105

ε 0.05 0.9 0.05 0.2 0.05 0.2
Pc Pa 1.228 ⋅ 105 1.112 ⋅ 105 1.208 ⋅ 105 1.167 ⋅ 105 1.208 ⋅ 105 1.180 ⋅ 105

εest ⋅ ⋅ ⋅ 0.0510 0.875 0.050 0.200 0.050 0.200
εest−ε

ε % 2.0 −2.8 0 0 0 0
k [Eq. (5) with P = Pc] m2 1.886 ⋅ 10−16 1.978 ⋅ 10−16 5.725 ⋅ 10−18 5.891 ⋅ 10−18 2.580 ⋅ 10−19 2.639 ⋅ 10−19

kest m2 1.939 ⋅ 10−16 1.896 ⋅ 10−16 5.724 ⋅ 10−18 5.867 ⋅ 10−18 2.578 ⋅ 10−19 2.637 ⋅ 10−19

kest−k
k % 2.8 −4.3 −0.0 −0.4 −0.1 −0.1

D [Eq. (5) with P = Pc] m2 3.772 ⋅ 10−15 2.197 ⋅ 10−16 1.145 ⋅ 10−16 2.946 ⋅ 10−17 5.157 ⋅ 10−17 1.319 ⋅ 10−18

Dest m2 3.801 ⋅ 10−15 2.166 ⋅ 10−16 1.144 ⋅ 10−16 2.938 ⋅ 10−17 5.159 ⋅ 10−17 1.320 ⋅ 10−18

Dest−D
D % −0.8 −1.4 −0.1 −0.3 0.0 0.1



FIG. 8. Experimental device for parallelepipedic samples and samples used in the experiments (LUX500 and D1000).

1. Measurement of volume V1

For both devices, the volume V1 was determined prior to any
experiment on a porous material. For this purpose, two experiments
were carried out, the first one (i = 1) with both tanks empty and
the second one (i = 2) with a piece of non-porous material (metal)
of volume V2 placed in tank 1. A careful measurement of the metal

piece dimensions was performed, allowing to determine V2 accu-
rately. For the two experiments (1 and 2), tank 0 was initially filled
with a gas under a pressure P0i and then connected to tank 1 ini-
tially filled with the same gas under pressure P1i. The final equilib-
rium pressure, P fi, was then measured. The protocol is schematically
represented in Fig. 10.

FIG. 9. Experimental device used for cylindrical samples and samples used in the experiments (pyrophyllite and K5R5).



FIG. 10. Schematic representation of the two experiments performed to determine volumes V1 (and V0).

From the mass balance equations between the two stages of
these two experiments, the volume V1 can be determined as

V1 =
(P01 − P f 1)(P f 2 − P12)

(P01 − P f 1)(P f 2 − P12) + (P f 2 − P02)(P f 1 − P11)
V2. (42)

Note that V0 can also be obtained as

V0 =
(P f 1 − P11)(P f 2 − P12)

(P01 − P f 1)(P f 2 − P12) + (P f 2 − P02)(P f 1 − P11)
V2. (43)

2. Experimental protocol
The dynamic experiment, aiming at the determination of k (and

ε), is carried out as follows: The sample is placed in tank 1, which is
sealed with the cap. While the valve V1 is closed, the pressure of dry
air is raised in tank 0 to Pi + ΔP. The pressure recording in tank 1
[P1(t)] is started (t = 0) and V1 is opened and closed shortly after
(t = tc) in order to create a pressure pulse in tank 1. The value of
ΔP is set to a value so as to create a pressure increment in tank 1
of about 3 ⋅ 104 Pa. It can be predicted from the knowledge of V0
and V1. The recording of P1(t) ends when no noticeable variation is
observed, corresponding to equilibrium at t = t f .

At this stage, V1 is opened and the pressure is eventually
adjusted to the desired initial value. After a new equilibrium is
reached, V1 is closed. A new pressure increment ΔP is set in tank
0 and pressure recording is started in tank 1. The valve V1 is open
and rapidly closed. The recording of P1(t) is stopped when equilib-
rium is reached again. The procedure is repeated as many times as
desired, featuring different values of Pc whose expression is given in
Eq. (9). In this way, the dependence of k on pressure due to Klinken-
berg effects can be investigated, allowing the determination of the
Klinkenberg coefficient, making use of the relationship in Eq. (5). In
the present work, it was repeated until the initial pressure reaches
3.5 ⋅ 105 Pa. A lower bound constraint for the time interval of pres-
sure recordings used for the estimation was fixed to 2 s, a value that
typically corresponds to the time required to reach pressure equi-
librium after a pressure pulse is set in tank 1 in the absence of a
porous sample. In other words, the two first seconds of pressure
recordings after valve opening were not considered in the inverse
procedure.

B. Results in the 1D case: LUX500 and D1000
The volume V1 was measured according to the procedure

described in Sec. IV A 1 yielding V1 = 3.74 × 10−4 m3. Two different
insulating materials, namely, LUX500 and D1000, were employed

(see Fig. 8). The dimensions of the LUX500 and D1000 samples were
99.5 × 99.5 × 30 mm3, all the faces being sealed except one of section
99.5 × 30 mm2 for the former, which means L = 99.5 mm, whereas
the open section for the latter was 99.5 × 99.5 mm2, i.e., L = 30 mm.
Prior to dynamic experiments, ε was determined from pycnometry
tests, yielding ε = 0.68 for LUX500 and ε = 0.48 for D1000. Dynamic
experiments were then carried out, and the inverse procedure was
run on the recorded signals of P1(t), making use of the linearized
model given in Eq. (18) in order to determine D from Eq. (36).
The porosity was also estimated from this procedure using Eq. (37).
Note that X1 [see Eq. (19)] was also estimated, albeit of no special
interest regarding the material characterization. The permeability,
k, was computed as k = Dε, taking the value of ε obtained from the
pycnometry experiments.

Examples of pressure recordings, P1exp, together with the corre-
sponding signals, P1mod, computed with the optimal estimated values
of D and ε are reported in Figs. 11(a) and 11(c) for the LUX500
and D1000 samples, respectively. In both cases, the two signals are
perfectly superimposed, showing the excellent performance of the
identification process and the relevance of the estimations. This is
confirmed by the residues, P1exp − P1mod, amplified by a factor of 10
and also reported in these figures. For both materials, the residues
are on the order of 5 × 103 Pa at the early stage of the experiment
and rapidly decrease, after few seconds, down to around 103 Pa
(LUX500) and 1.6 ⋅ 103 Pa (D1000). They remain very small com-
pared to the amplitude of P1 and well centered on zero. In Figs. 11(b)
and 11(d), the reduced sensitivity of P1 to D is represented vs the
reduced sensitivity to ε, respectively, for the LUX500 and D1000
materials. These graphs clearly show that the two sensitivities are
not proportional, justifying that the two parameters are uncorrelated
and can therefore be estimated from the inverse procedure for both
materials. This confirms the relevance of the estimation.

Six different experiments were carried out at different values of
Pc ranging from 1.17 ⋅ 105 to 3.67 ⋅ 105 Pa, both for the LUX500 and
D1000 samples, and each experiment was repeated three times The
variations of k with respect to 1

Pc
are reported in Fig. 12(a) (LUX500)

and Fig. 12(c) (D1000) along with the standard deviations computed
from the three distinct tests. These graphs show that the apparent
permeability can be satisfactorily correlated with 1

Pc
with a linear

fit, confirming that k follows a Klinkenberg relationship. The linear
correlations lead to an intrinsic permeability, kl, and a Klinkenberg
coefficient, b, whose values are reported in Table III.

The values of porosity estimated from six different experiments
are represented in Figs. 12(b) and 12(d) vs Pc for the LUX500 and
D1000 samples, respectively. The standard deviations on the three



FIG. 11. (a) and (c) Pressure evolutions in tank 1 obtained experimentally (P1exp) and simulated with the optimal estimated parameters (P1mod ). Residues (P1exp − P1mod )
are represented with an amplification factor of 10. (a) Pi = 3.5 ⋅ 105 Pa. (c) Pi = 2105 Pa. (b) and (d) Reduced sensitivity to D vs reduced sensitivity to ε. (a) and (b) LUX
500. (c) and (d) D1000.

tests performed at each value of Pc are also reported in these fig-
ures. The maximum relative difference on these estimated values,
taking the average value as the reference, is 7.3% (LUX500) and 3%
(D1000).

The average values are indicated in Table III and are very close
to the values obtained from the pycnometry measurements, the rel-
ative difference being around 0.6% and 1% for the LUX500 and
D1000 samples, respectively.

C. Results in the 2D axisymmetric configuration
Using the same method as in the 1D case, the volume of tank

1 was measured to be V1 = 7.85 × 10−5 m3. Two different materials,
a rock denoted K5R5 and a pyrophyllite, were tested using cylindri-
cal samples (see Fig. 9), which were 38.0 mm in diameter and 60.0
mm in length, with all faces left open. Experiments were performed

following the protocol described in Sec. IV A 2. The parameters D
and ε (as well as X1) were estimated by making use of the inverse pro-
cedure with the model given in Eq. (32) in which the series was eval-
uated keeping 200 terms to ensure convergence. The permeability, k,
was determined from k = Dε with ε obtained from the pycnometry
experiments.

1. Rock K5R5
The porosity measured with the pycnometry experiment is ε =

0.051. Dynamic experiments were carried out at eight different val-
ues of Pc ranging between 0.35 ⋅ 105 and 3.8 ⋅ 105 Pa. Only one test
was performed for each experiment.

Estimated values of the apparent permeability corresponding
to each value of Pc are represented in Fig. 13(a) vs 1

Pc
. These results

show that the dependence of k on Pc can be interpreted with a
Klinkenberg relationship [Eq. (5)]. A linear regression on the data



FIG. 12. (a) and (c) Estimated values of the apparent permeability, k, obtained from six different experiments, each of them repeated three times, carried out at different
values of Pc vs 1

Pc
. The error bars correspond to the standard deviations computed from the three tests. The linear regressions agree with a Klinkenberg relationship. (b)

and (d) Estimated values of ε and error bars corresponding to the standard deviations obtained from the six experiments. Solid lines materialize the porosity values obtained
from pycnometry experiments. (a) and (b) LUX500. (c) and (d) D1000.

points of Fig. 13(a) leads to b = 3.95 ⋅ 105 Pa and an intrinsic per-
meability kl = 3.49 ⋅ 10−17 m2. In Fig. 13(b), the estimated values of
the porosity obtained from the six experiments are represented vs
Pc. The average value is ε = 0.0506, which gives an error of less than

TABLE III. Results on the intrinsic permeability, Klinkenberg coefficient, and porosity
obtained from the estimation using the inverse procedure within the range of Pc con-
sidered in the experiments. The values of ε determined from pycnometry experiments
are also recalled. LUX500 and D1000.

Material LUX500 D1000

Pc range (Pa) 1.17 ⋅ 105–3.67 ⋅ 105 1.17 ⋅ 105–3.67 ⋅ 105

kl (m2) 1.17 ⋅ 10−14 7.16 ⋅ 10−17

b (Pa) 0.44 ⋅ 105 4.06 ⋅ 105

ε (average) 0.684 0.475
ε (pycnometry) 0.68 0.48

0.8% with respect to the value obtained from pycnometry, taking the
latter as the reference. The maximum difference on the six estimated
values is 3%, taking the average as the reference.

2. Pyrophyllite
The pycnometry test was first performed on the pyrophyllite

sample yielding ε = 0.048. Six dynamic experiments were then car-
ried out in a range of Pc between 0.38 ⋅ 105 and 2.18 ⋅ 105 Pa. Only
one test was performed at each value of Pc.

The estimated values of k are represented in Fig. 14(a) vs 1
Pc

.
Although they seem to obey a linear correlation, these results can-
not be interpreted by a Klinkenberg relationship, as given in Eq. (5),
which, indeed, would lead to unphysical negative values of kl and b.
The porosity, estimated from the dynamic experiments, is reported
in Fig. 14(b) yielding an average value ε = 0.0465, a maximum rela-
tive difference over the six values of about 8%, and a relative error



FIG. 13. K5R5: (a) estimated values of k obtained from experiments carried out at eight different values of Pc and (b) estimated values of ε from the eight experiments
performed at different values of Pc . The solid line represents the value of ε obtained from pycnometry.

with respect to the value obtained from pycnometry of about 3%.
For this sample, it must be pointed out, however, that the esti-
mated values of k and ε depend on the interval of time-recording
of P1exp considered for the inverse procedure. Moreover, as shown
in Fig. 15(a), representing P1exp for an experiment at Pi = 0.93 ⋅ 105

Pa and the corresponding P1mod obtained with the estimated values
of k and ε considering P1exp up to 3000 s in the inverse procedure,
the experimental pressure decrease is not captured by the model
for t > 3000 s, yielding residues that are not well centered on zero.
This is further illustrated in Fig. 15(b) in which the estimated values
of k and ε are represented vs the upper bound of the time inter-
val employed in the inverse procedure to evaluate them. This figure

shows that k decreases while ε increases when a longer recording
of P1exp is considered in the estimation procedure. Nevertheless,
these variations remain moderate. In fact, taking the values esti-
mated with the upper bound of the time-recording of P1exp equal to
4000 s shows that k and ε do not vary by more than around 20% and
3%, respectively, for all the other time intervals considered for the
estimation.

These results are consistent with the idea that this clay-rich
material is heterogeneous and/or anisotropic with the presence of
micro-fissures. The assessment of this conjecture would require
further investigations with more sophisticated means that are
beyond the scope of the present work. This example illustrates the

FIG. 14. Pyrophyllite: (a) estimated values of k obtained from experiments carried out at six different values of Pc and (b) estimated values of ε from the six experiments
performed at different values of Pc . The solid line represents the value of ε obtained from pycnometry.



FIG. 15. (a) Experimental pressure evolution, P1exp, and predicted signal, P1mod , from the model [Eq. (32)] with the values of k and ε estimated on P1exp(t) up to 3000 s.
The residues (×10) decrease beyond t = 3000 s at which the model predicts quasi-equilibrium. (b) Estimated values of k and ε vs the interval of time-recording of P1exp

considered for the estimation. Pc = 1.29 ⋅ 105 Pa.

potential capability of the procedure developed in this work to diag-
nose non-homogeneous and/or non-isotropic permeable porous
materials.

V. CONCLUSIONS
New developments of the GRI method to determine the perme-

ability of porous media (together with the porosity and Klinkenberg
coefficient), widely extending the technique far beyond its classical
use on crushed porous materials, are proposed in this work. They
allow one to carry out measurements on samples having a cylin-
drical shape. In both cases, a quasi-analytical solution is provided
when the probing gas flow is in one direction, assuming that it cor-
responds to a principal direction of the permeability tensor. Quasi-
analytical solutions are also developed for a three-dimensional flow
(parellelipidedic sample) and a two-dimensional axisymmetric flow
(cylindrical sample of circular cross section) with the hypothesis
that the material is homogeneous and isotropic. A general hypoth-
esis is that the flow during measurement is weakly compressible,
allowing to treat the probing gas compressibility as a constant.
These solutions are employed to interpret the experimental pres-
sure recording by solving an inverse problem. The validity of the
method, together with the relevance of the constant compressibil-
ity assumption, were checked over a wide range of permeability by
a sensitivity analysis and a comparison with the results obtained
from direct simulations of the complete non-linear initial bound-
ary value problem. The efficiency of the experimental protocol and
interpretation procedure were illustrated with experiments on four
different porous materials featuring permeabilities in the range 10−14

to 10−19 m2 in the one-dimensional and axisymmetric configura-
tions. The potential capability of diagnosing heterogeneous and/or
anisotropic materials was highlighted on a pyrophyllite sample.
Moreover, repeating the experiment in the 1D and 3D configura-
tions on the same sample would provide an efficient way of diagnos-
ing anisotropy and/or inhomogeneity of the porous material under
concern.

The method reported here has the advantage of requiring a
simple experimental device. Some issues of efficient sealing and/or
unwanted stress effects associated with the sample confinement
required in many other experimental methods are circumvented. It
is fast and can be applied over a very wide range of permeability
values. It allows the simultaneous determination of the permeabil-
ity, porosity, and Klinkenberg coefficient when slip effects may be
present. However, it is restricted to measurements on homogeneous
samples.

As a matter of perspective, a similar methodology could be
further developed to the case of a (homogeneous) sample of arbi-
trary shape. This could be achieved by first determining the shape
and dimensions of the sample and applying the inverse procedure
by making use of a direct numerical simulation of the mass and
momentum governing equations with the appropriate boundary and
initial conditions. This would also allow one to remove the hypoth-
esis of a constant compressibility used in the present work while
considering larger pressure variations during the measurements. As
a further extension, one may also consider this procedure to be
applied to the estimation of the effective (or relative) permeability
of a porous material partially saturated with another (wetting) fluid.
This could be envisaged, provided that gas flow during the measure-
ment would not induce any evaporation (which would otherwise
produce a probing gas pressure perturbation) and would not lead
to a redistribution of the fluid in place.

APPENDIX A: SOLUTION FOR A PARALLELEPIPEDIC
SAMPLE

In this appendix, the main steps to derive the solution for the
pressure evolution in tank 1, when a parallelepipedic sample is used
with all its faces open to gas flow, are provided. The sample is sup-
posed to be of size ℓ, L, and h in the x, y, and z directions, respec-
tively. Assuming the origin at the center of the sample and assuming,
as in the 1D case, that P experiences small variations compared to
Pc [see Eq. (9)], the initial boundary value problem can be stated as
follows:



∂2P
∂x2 +

∂2P
∂y2 +

∂2P
∂z2 =

1
a
∂P
∂t

, (A1)

B.C.1
∂P
∂x
= 0 at x = 0, (A2)

B.C.2
∂P
∂y
= 0 at y = 0, (A3)

B.C.3
∂P
∂z
= 0 at z = 0, (A4)

B.C.4 P = P1(t) at x = ℓ

2
, (A5)

B.C.5 P = P1(t) at y = L
2

, (A6)

B.C.6 P = P1(t) at z = h
2

, (A7)

I.C. P(x, 0) = Pi at t = 0. (A8)

In Eq. (A1), a is given by Eq. (11), i.e., a = k
εμβ . Boundary condi-

tions in Eqs. (A2)–(A4) express the fact that the fluxes are zero at
the midplanes in the sample as a result of symmetry.

To complete the model, the gas mass flux balance at t in the
system including tank 1 and the sample can be expressed by writing

M
RT
(V1 − V)dP1

dt
= −εV

M
RT

dPm

dt
+ q̇m0. (A9)

Here, Pm denotes the mean pressure within the sample at t [see
Eq. (8)], whereas q̇m0 is the flux of gas entering tank 1 to initiate
the experiment.

At this stage, the problem is solved in the Laplace–Fourier
domain. To do so, a Laplace transform,L, is first applied to the above
equations. Denoting θ = L(P − Pi) and θ1 = L(P1 − Pi) leads to

∂2θ
∂x2 +

∂2θ
∂y2 +

∂2θ
∂z2 =

p
a

θ, (A10)

∂θ
∂x
= 0 at x = 0, (A11)

∂θ
∂y
= 0 at y = 0, (A12)

∂θ
∂z
= 0 at z = 0, (A13)

θ = θ1(p) at x = ℓ

2
, (A14)

θ = θ1(p) at y = L
2

, (A15)

θ = θ1(p) at z = h
2

. (A16)

A cosine Fourier transform, defined by θ = ∫
ℓ
2

0 θ cos(αnx)dx, is now
applied, yielding

∂2θ
∂y2 +

∂2θ
∂z2 − αn

2θ + αnθ1 sin(αnℓ

2
) = p

a
θ, (A17)

∂θ
∂y
= 0 at y = 0, (A18)

∂θ
∂z
= 0 at z = 0, (A19)

θ = θ1

αn
sin(αnℓ

2
) at y = L

2
, (A20)

θ = θ1

αn
sin(αnℓ

2
) at z = h

2
, (A21)

where αn are the eigenvalues given by αn = (2n−1)π
ℓ

.
A second cosine Fourier transform, defined by

=

θ = ∫
L
2

0 θ cos(γmy)dy, is again applied to the above equations
to obtain

∂2
=

θ
∂z2 − γm

2=θ + γm
θ1

αn
sin(αnℓ

2
) sin(γmL

2
) − αn

2=θ

+ αnθ1 sin(αnℓ

2
) 1

γm
sin(γmL

2
) = p

a

=

θ, (A22)

or, equivalently,

∂2
=

θ
∂z2 − (αn

2 + γm
2 + p

a
)
=

θ + θ1(
αn

γm
+ γm

αn
) sin(αnℓ

2
)

× sin(γmL
2
) = 0, (A23)

∂
=

θ
∂z
= 0 at z = 0, (A24)

θ = θ1

αnγm
sin(αnℓ

2
) sin(γmL

2
) at z = h

2
. (A25)

Here, γm are the eigenvalues, whose expression is γm = (2m−1)π
L .

The solution to Eq. (A23) is

=

θ = A cosh(δnmz) + B sinh(δnmz) + C, (A26)



with
δnm

2 = αn
2 + γm

2 + p
a

(A27)

and

C =
θ1( αn

γm
+ γm

αn
) sin( αnℓ

2 ) sin( γmL
2 )

δnm
2 . (A28)

Making use of the boundary conditions given in Eqs. (A24) and
(A25), respectively, yields

B = 0 (A29)

and

A =
θ1 sin( αnℓ

2 ) sin( γmL
2 )[

1
αnγm
− ( αn

γm
+ γm

αn
) 1

δnm
2 ]

cosh(δnm
h
2 )

. (A30)

As a result, the solution in Eq. (A26) can be written as

=

θ = θ1 sin(αnℓ

2
) sin(γmL

2
)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ 1

αnγm
− ( αn

γm
+ γm

αn
) 1

δnm
2 ]

× cosh(δnmz)
cosh(δnm

h
2 )
+
( αn

γm
+ γm

αn
)

δnm
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (A31)

From this expression and the definition of the Fourier transform, the
expression of θ is obtained as

θ = 16∑∞n=1∑
∞

m=1

=

θ cos(αnx) cos(γmy)
ℓL

. (A32)

A Laplace transform can now be applied to the flux relationship
expressed in Eq. (A9), leading to

θ1 +
εV

V1 − V
θm =

RT
M(V1 − V)

Φ1

p
, (A33)

in which θm and Φ1 are the Laplace transforms of, respectively, Pm
and q̇m0. Keeping in mind that Pm is the mean pressure in the sample
allows one to write for θm,

θm =
8
ℓLh∫

ℓ
2

0
∫

L
2

0
∫

h
2

0
θdxdydz, (A34)

where θ is given by Eq. (A32). Performing the three integrations in
the above equation yields

θm = 64θ1∑∞n=1∑
∞

m=1(
1

αn2Lℓ
+ 1

γm2Lℓ
) 1

δnm
2Lℓ

×
⎧⎪⎪⎨⎪⎪⎩
[ δnm

2h2

αn2h2 + γm2h2 − 1] 2
δnmh

sinh(δnm
h
2 )

cosh(δnm
h
2 )
+ 1
⎫⎪⎪⎬⎪⎪⎭

. (A35)

Introducing this last result back into Eq. (A33) provides the expres-
sion of θ1 given by

θ1 =
RT

M(V1 − V)
Φ1

p
1

1 + 64 εV
V1−V∑

∞

n=1∑∞m=1Fnm
, (A36)

in which Fnm is given by

Fnm = (
1

αn2Lℓ
+ 1

γm2Lℓ
) 1

δnm
2Lℓ
{[ δnm

2h2

αn2h2 + γm2h2 − 1]

× 2
δnmh

sinh(δnm
h
2 )

cosh(δnm
h
2 )
+ 1
⎫⎪⎪⎬⎪⎪⎭

. (A37)

The solution for P1(t) is finally obtained from an inverse Laplace
transform of Eq. (A36).

APPENDIX B: SOLUTION FOR A CYLINDRICAL SAMPLE

The objective of this appendix is to provide the solution of the
initial boundary value problem governing the pressure evolution in
the sample (P) and in tank 1 [P1(t)] for a cylindrical sample of cir-
cular cross section with all its faces left open. Using the notations
P = P − Pi and P1 = P1 − Pi and the definition of a given in Eq. (11),
the system of equations can be written as

∂2P
∂x2 +

1
r
∂P
∂r
+ ∂2P

∂r2 =
1
a
∂P
∂t

, (B1)

B.C.1
∂P
∂x
= 0 at x = 0, (B2)

B.C.2 P = P1(t) − Pi = P1(t) at x = L
2

and r = r1, (B3)

I.C. P = P1 = 0 at t = 0. (B4)

The constraint imposing that P remains finite at r = 0 must be added
to these equations. The complete statement of the problem requires
the expression of the mass balance of gas in the system, which takes
the following form:

M
RT
(V1 − V)dP1

dt
= −εV

M
RT

dPm

dt
+ q̇m0. (B5)

The solution is carried out by first applying a Laplace trans-
form to the above equations. Using the nomenclature θ = L(P)
= ∫ ∞0 P exp(−pt)dt, this yields

∂2θ
∂x2 +

1
r
∂θ
∂r
+ ∂2θ
∂r2 =

p
a

θ, (B6)

∂θ
∂x
= 0 at x = 0, (B7)

θ = θ1 at x = L
2

and r = r1, (B8)

M
RT
(V1 − V)pθ1 + εV

M
RT

pθm = Φ1, (B9)

while θ remains finite at r = 0.
At this point, a cosine Fourier transform, defined as θ

= ∫
L
2

0 θ cos(αnx)dx with the eigenvalues αn, given by αn = (2n−1)π
L ,

is applied to Eq. (B6), yielding

∫
L
2

0

∂2θ
∂x2 cos(αnx)dx + 1

r
∂θ
∂r
+ ∂2θ
∂r2 =

p
a

θ. (B10)



Carrying out the integration of the first term on the left-hand side of
the above equation leads to

1
r
∂θ
∂r
+ ∂2θ
∂r2 − δn

2θ + αnθ1 sin(αn
L
2
) = 0 (B11)

with
δn

2 = αn
2 + p

a
. (B12)

The solution of Eq. (B11) is given by

θ = AI0(δnr) + R, (B13)

where I0 is the zeroth order Bessel function of the first kind and R is
given by

R =
αnθ1 sin(αn

L
2 )

δn
2 . (B14)

The Fourier transform applied to the boundary condition at r = r1
[Eq. (B8)] yields

θ = θ1
1

αn
sin(αn

L
2
) at r = r1. (B15)

This allows one to determine A, which is given by

A = θ1

I0(δnr1)
( 1

αn
− αn

δn
2 ) sin(αn

L
2
). (B16)

Thus, the solution for θ is

θ = θ1(
1

αn
− αn

δn
2 )

I0(δnr)
I0(δnr1)

sin(αn
L
2
) +

αnθ1 sin(αn
L
2 )

δn
2 . (B17)

Using the definition of the Fourier transform, the solution for θ is
given by

θ = 4
∞

∑
n=1

θ cos(αnx)
L

. (B18)

This solution can now be used to express θm as

θm =
4

r12L∫
L
2

0
∫

r1

0
θ rdr dx. (B19)

Carrying out the two integrations leads to

θm =∑∞n=1
4

αnL
θ1 sin(αn

L
2
)[( 1

αn
− αn

δn
2 ) sin(αn

L
2
) r1

δn

I1(δnr1)
I0(δnr1)

+ αn

δn
2 sin(αn

L
2
) r1

2

2
] (B20)

with I1 the first order Bessel function of the first kind and, according
to the definition of the eigenvalues, sin2(αn

L
2 ) = 1. This allows one

to rewrite θm as

θm = 16 θ1∑∞n=1
1

δnL
[ L

r1
( 1

αn2L2 −
1

δn
2L2
) I1(δnr1)

I0(δnr1)
+ 1

2
1

δnL
].

(B21)
Introducing this result back into Eq. (B9) yields

θ1[
M
RT
(V1 − V)p + 8 εV

M
RT

p∑∞n=1
1

δn
2L2

× [2 L
r1
( δnL

αn2L2 −
1

δnL
) I1(δnr1)

I0(δnr1)
+ 1]] = Φ1, (B22)

from which the solution for θ1 can be finally extracted to give

θ1 =
Φ1(p)

p
RT

M(V1 − V)

× 1

1 + 8 εV
V1−V∑

∞

n=1
1

δn
2L2 [2 L

r1
( δnL

αn
2L2 − 1

δnL)
I1(δnr1)

I0(δnr1)
+ 1]

. (B23)

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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