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Computing the positioning error of an upper-arm robotic prosthesis from the
observation of its wearer’s posture.

Alexis Poignant, Mathilde Legrand, Nathanaël Jarrassé and Guillaume Morel

Abstract— When the arm prosthesis worn by an amputated
Human being is not adequately configured with respect to
the end-effector task, body compensations are often observed.
Namely, to compensate for a wrong joint positioning on the
robotic distal side, a subject trying to reach a desired po-
sition/orientation of his/her hand mobilizes his/her proximal
joints, thus exploiting the redundancy of the human+robot
kinematic chain.

In this paper, we explore the possibility of exploiting this
well-known behavior to reverse the causality: if we observe
the posture of an amputated subject wearing a prosthesis
during a hand positioning task, to what extent can we infer
the positioning error of the prosthesis?

To answer this question, we make the assumption that the
adequate, or natural posture for a given task is one that
optimizes a postural score. The proposed approach then consists
in i) measuring the joint posture of the subject fitted with the
prosthesis; ii) search for an alternative posture that optimizes
a postural score within the null space of the human+robot
kinematic chain and iii) compute the position error for the
robot joints between the initial and the optimized posture.

An experimental evaluation is provided with non amputated
subjects who emulate erratic positioning of their distal joints
during hand positioning tasks. Results show that joint errors
are estimated with a precision that seems compatible with the
implementation of a real time control algorithm.

I. BACKGROUND

Mechanical achievements, such as the augmentation of the
number of DoF and the weight reduction [1], have paved the
way for a new generation of prosthetic arms, both more func-
tional and comfortable. These electrical prosthesis should,
with time, match the benefits of body-powered prosthesis
(precision and design for heavy work [2]) while being more
comfortable and providing a greater range of functions [3]).

Commercially available upper-limb electric prostheses are
controlled by their wearer through voluntarily generated aux-
iliary signals, most often electromyograhic signals (EMG).
Though, surface EMG measurement highly depends on skin
surface factors [3], considerably reducing the control robust-
ness, while requiring extended learning phases from users,
especially when dealing with the control of multiple active
DoF. Meanwhile, the use of auxiliary signals generates two
parallel control loops for the users: the body natural sen-
sorimotor close-loop and the auxiliary prosthetic open-loop.
The management of these two parallel loops is complex and
non-natural. Therefore, users tend to underuse the prosthetic
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Fig. 1: A subject equipped with a robotized elbow, and
having his wrist and hand locked, is asked to position a distal
point at a given location materialized by a robot manipulator.
On the left, a correct elbow positioning (135◦ between the
human humerus and the robotic ulna) results in a global
posture that seems natural. On the right, with an erratic elbow
joint position (90◦ between humerus and ulna) the subject
has to lean his trunk to achieve the task. This is called a
body compensation.

joints to the benefit of residual functional joints with body
compensations [1].

In the present paper, we aim at exploiting this natural
behavior to evaluate whether a robotic prosthesis is correctly
positioned during a manipulation task. The general idea,
when looking at Fig. 1, consists in trying to compute the
natural posture adopted on the left image from the mea-
surement of the erratic posture adopted on the right image.
Given a task, computing a natural posture, or, reciprocally,
characterizing an ergonomically erratic posture, is a problem
that is widely studied in the domain of industrial workstation
optimization, and more specifically in the specific context of
human-robot cooperation in the factories.

A first approach is based on dynamic simulation of a
virtual manikin, using energy and forces based criteria mixed
with task criteria, [4], [5], [6]. These methods have proven
to be efficient but the transposition from the virtual to the
real world strongly depends on the human model accuracy,
leading to the identification of subject specific parameters
for real-world applications [7]. Besides, these methods return
trajectories, and relies on quadratic programming, requiring
heavy computation power, as well as complex sensors (force
sensors for example) that may difficulty be integrated to light
and movable cobots or prostheses for real-world assessments.

A second approach relies on lighter kinematic models.
This can be done while accounting for ergonomic criteria
[8] and task specific criteria [9] to continuously control the
behavior of the cobot. These methods optimize the global
RULA-score (which evaluates the exposure to risk factors
associated with work related upper limb disorders [10]),
either discretely [8] – and therefore controlling sequentially
the postural objective – or by continuously fitting polynomial
functions, requiring a large set of pre-recorded postures to do



such interpolation [11]. Further, these approaches propose to
correct the user posture by moving the manipulated tool or
instrument in the task space. Rather, in a prosthetic approach,
there is no possible control on the task. In fact, the task is
a priori unknown. For this reason, we propose to assume
that the task is correctly realized by the user thanks to
compensation, and therefore to search for a possibly better
joint configuration inside the null-space of the redundant
human+prosthesis kinematic chain.

To this aim, generalized weighted inverse [12][13] can be
used to link the end-effector velocity to the adequate pros-
thesis’ motion. These models are computationally efficient
but their weights are calculated by minimizing a criteria on
previously recorded data, which requires important dataset
from prosthesis users. These weights are also task specific,
yet could be extended to multiple tasks by adding neural
networks for classification [12], [14] but, again, the required
dataset increases. Moreover, the weights do not ensure that
the prosthesis movement will be ergonomically adequate, and
the generalization from one user to another is complex.

To use ergonomic criteria without modifying the null-
space, we can exploit a projector [15], [16]. Commonly
employed for the control of redundant robotic arms with
a high number of DoF, null-space control can here be
transposed to human + prosthesis kinematic model. Instead
of looking for the appropriate weights to minimize a criteria
on recorded data, the null-space allows to minimize an
ergonomic criteria projected on the solution space. Moreover,
this criteria is neither task specific nor user specific, making
its extrapolation easier from one user to another without any
records. This is why this approach was chosen.

The rest of the paper is organized as follows. We first
detail the proposed optimization approach (Section II). Then
we present the experimental protocol and setup that was used
to gather data in order to evaluate the performance of our
method (Section III). Experimental results are then provided
(Section IV) and discussed (section V).

II. PROPOSED APPROACH

We parameterize the human+prosthesis kinematic chain
by a joint angular position : q = (qi), i ∈ {1 · · ·n} with n
representing the total number of DoFs, including those of
the prosthesis and those used to model the human kinematic
chain. We suppose that a sensory device provides a measure
qm of the joint posture q at any time t.

We aim at computing q̂, an optimized joint vector that
results in the same end-effector position and orientation as
qm, while minimizing a cost function C. Inspiring from
ergonomic scores such as RULA table, widely used to
evaluate the goodness of a given posture defined by joint
angles, [17], we consider that the optimal joint position
corresponds to an upper body at rest, characterized by a
desired position qd.

The computed optimal position is defined by:

q̂ = argmin
q

C(q, qd) s.t f(q) = f (qm)

where f(.) denotes the kinematic model of the hu-
man+prosthesis chain, mapping the joint position q into the
the hand position and orientation. This problem is iteratively
solved by computing a null-space reconfiguration:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q ← qinit
δ ← 2ε
while δ > ε,
δ ← J†(q) [f (qm)− f (q)]

−
[
I − J†(q)J(q))

]
grad (C(q, qd))

q ← q + δ
end while
q̂ ← q

(1)

where J(q) ∈ Rn×6 denotes the Jacobian matrix for a given
joint position angle q; † the generalized inverse operator.

The step δ is formed of two terms: the task-space
step J(q)† [f (qm)− f (q)], which ensures the respect of
the constraint f (qm) = f (q) and the null-space step[
I − J†(q)J(q))

]
grad (C(q, qd)) that locally minimizes the

cost function C. The convergence is obtained when the step δ
is as small as a tunable positive threshold ε.

Finally, the postural error, between the natural and opti-
mised model, is computed as the difference between qm and
q̂ the joint angle at convergence.

For the cost function C we chose:

C(q − qd) =M ‖Z(q − qd)‖22 , (2)

where M ∈ Rn×n
+ is a diagonal matrix of positive weights

and Z denotes a dead zone along each component of q, i.e.,

Zi(q − qd) =


qi − qd,i + zi if qi − qd,i > +zi

qi − qd,i − zi if qi − qd,i < −zi
0 otherwise

Therefore the i-th component of the gradient function g =
grad(C) writes:

gi(q − qd) =


2Mi(qi − qd,i + zi) if qi − qd,i > +zi

2Mi(qi − qd,i − zi) if qi − qd,i < −zi
0 otherwise

III. MATERIAL AND METHODS

A. Kinematic model

We consider the theoretical case of a person amputated at
the humerus level, equipped with a 2 DoF prosthesis: elbow
flexion + wrist prono-supination. The person is sat on a stool
(thus legs are not involved in body compensations at this
stage). The task consists in positioning/orienting the hand at
a desired location.

The global kinematic model involves 9 revolute joints :
• 7 human actuated joints (consisting in a 3 DoF spherical

pelvis joint, a 1 DoF scapula elevation joint and a 3 DoF
spherical shoulder joint;

• 2 robotic joints (1 DoF elbow and a 1 DoF wrist).
The Dennavit and Hartenberg parameters of this model are
described in Table I, where the length of the skeleton bones



TABLE I: Denavit-Hartenberg parameters of the torso and right arm kinematic model

Denavit-Hartenberg parameters
Joint Trunk1 Trunk2 Trunk3 Scapula Shoulder1 Shoulder2 Shoulder3 Elbow Wrist
α π/2 −π/2 −π/2 0 π/2 −π/2 π/2 π/2 0

θoffset 0 0 0 0 0 −π/2 0 π 0
a 0 0 0 lscapula 0 0 0 0 0
d 0 0 ltorso 0 0 0 la 0 lfa

are noted ltorso, lscapula, la, lfa, for respectively the torso,
the scapulae, the arm and the forearm.

Such a kinematic model is the one provided by the
skeleton tracking functionality of a Microsoft Kinect V2
sensor which is used to measure qm. Figure 2 shows a
photo of a subject observed by the Kinect together with the
superimposed extracted skeleton.

Fig. 2: View of the experimental setup used: a subject (with
his measured skeleton added in red), performing a compen-
satory movement (while maintaining his hand position and
orientation) in front of the Kinect V2; A visual interface
indicates the hand position/orientation to reach and displays
the subject’s skeletal model, from different perspectives

B. RULA-inspired criteria

Since the RULA score is a discrete score, it cannot be
directly used as an optimization criteria. We rather use the
ergonomically ideal joint angles to define a continuous cost
function. Some joints, such as the trunk, are defined with
the ideal position of 0◦, whereas some joints are defined
ergonomically good when within a given range. For example,
the elbow is ideally position when its angle fits within 80◦±
20◦. The ideal ergonomic posture is thus defined by the joint
vector qd with associated deadzone vector z.

This criteria relies on the hypothesis that compensatory
movements always degrade ergonomics, and that the desired
posture qd remains the same, no matter the performed task.

To avoid having a cost function being weighted the same
for all joints (which would make the trunk as ergonomically
significant as the shoulder), the weighting matrix M was
designed in order to reflect the specificity of the RULA score
for the different joints. Those weights were adjusted the fol-
lowing way: the higher a joint angle denotes a compensatory

movement, the higher the associated weight should be, while
a purely functional joint is not weighted.

TABLE II: Chosen optimization weights

Optimization weights for each joint
Joint Trunk1,3 Trunk2 Scapula Shoulder1,2,3 Elbow Wrist
M 100 300 100 0 10 0

In order to avoid over-fitting, the weights were tuned by
hand (Table II). The shoulder and wrist weights are set to
0 ◦as they are purely functional joints during the performed
tasks. The elbow being highly functional (closely related to
the distance of the target if the trunk is straight), its weight
is also low.

More complex criteria can be derived from discrete scores,
for example by fitting polynomial functions on sets of
postures [9] but this requires to learn from a dataset of
postures, which is difficult to obtain especially for specific
population such as prosthesis users. Rather, the chosen cost
function can be easily configured with a very small dataset.

C. Protocol

An experiment was conducted on 15 non-amputated sub-
jects from 20 to 55 years old, from 1.60 to 1.90m tall, 6
women and 9 men. Those had to perform hand positioning
tasks at a given location. The positioning was first done in
a natural way (without constraints). Second, subjects were
asked to adopt an erratic positioning of their distal joints
so as to mimic the case of an amputated subject with a
prosthesis exhibiting an erroneous posture, and to reach the
same given location for the hand. They were sat on a stool in
order to limit the displacement of the pelvis and to compare
more accurately the different posture with and without com-
pensation. They were wearing a wrist splint to block their
wrist flexion and abduction, to mimic a 2 DOF prosthesis
configuration. Each subject performed 18 reaching tasks with
their right arm, with and without (provoked) compensations.
The 18 tasks consist of 6 positions: 2 distances (80% and
60% maximum reach) × 3 horizontal positions (in front of
the right shoulder position and ± the shoulder width) × 1
height ( sternum height), across 3 different hand orientation:
palm vertical, palm horizontal, palm at a 45◦ to the ground.
These 18 couples position/orientation represents 18 targets
normalized to the subjects’ size.

Each task goes as follow: I) The subjects are asked to reach
the target naturally, and this ”Natural Posture” is recorded.
Then, while maintaining hand position and orientation, they
are instructed to move their distal joints (wrist and elbow)
according to pseudo-randomly drawn instructions : flexion



or extension of the elbow and pronation or supination of
the wrist (4 total compensations, each being accounting for
25% of the total compensated posture set). II) While keeping
their distal joints blocked, they were asked again to reach the
target. To do so, a visual feedback is provided on a screen.
A ”Compensated Posture” is then recorded. III) Offline,
the optimization algorithm is run and return an ”Optimal
Posture”. The total dataset is constituted of 15 ∗ 18 = 270
sets of postures, each set being composed of 1 natural posture
(Nat), 1 compensated posture (Comp), and 1 optimal posture
(Opt) returned by the algorithm.

Fig. 3: Examples of recorded kinematics for one participant
reaching two different targets and seen from two different
angles. On the left the subject compensated by bending the
trunk forward, while on the right, he compensated backward
(because of imposed elbow extension). The computed opti-
mized postures appear to be close to the natural ones in both
cases. The data is centered on the pelvis’ natural posture.

D. Joint offset and jitter from the Kinect sensor

The Kinect v2 Camera’s joint detection faces important
offsets and jitter [18][19]. In our protocol, we estimated, at
5 feet, the maximum jitter to be about 2.5 cm. Consequently,
we estimated the elbow angle’s noise to be around ±5◦ for
a 35 cm elbow-hand bone.

Similarly, the measure of the wrist pronosupination might
suffer of equivalent noise, as well as the fact that subjects,
between the compensated and natural posture, do not exactly
orient their hand the same way; to solve this, the end-effector
constraint fqm is set as the measurement of the natural
posture. The same observation occurs for the bone’s length
that varies between measures; therefore, during optimization,
it is set as the natural posture lengths. And, finally, the base
of the kinematic model being the position of the pelvic, for
the same reason, we set the base of the optimized model to
be the base of the natural kinematic model.

Joint offsets are strongly undesired for the pelvic joint
which defines the base of our kinematic model, and strongly
impact the back’s leaning angle, which is the most weighted
criteria of our optimization. In sitting position, the pelvis
measured position is always overshot by a few centimeters,
and consequently the trunk angle is over-estimated. Even
when leaning backwards, the trunk angle is almost always
positive. To compensate that offset, we do not set the trunk
leaning angle desired qd,2 at 0◦ but it is instead set as the
mean angle of the natural posture for each subject (out of
the 18 natural postures). That mean trunk angle qnat,T is,

depending on the subject, between 5 and 18◦. The same
thing is performed for the scapula angle qnat,B as the natural
scapula elevation detected by the Kinect strongly depends on
the subject physiognomy and clothing. The desired angles
and the dead zones Z chosen are summed up in Table III

TABLE III: Chosen Desired angle in◦

Desired angles for each joint
Joint Trunk1,3 Trunk2 Scapula Elbow
qd 0 qnat,T qnat,B 80◦

Z 0 0 0 ±20◦

IV. EXPERIMENTAL RESULTS

A. Postural errors between conditions

The RMSE of the absolute errors between the ”Natural”
and ”Compensated” measured postures (Nat-Comp) and be-
tween the ”Natural” and the computed ”Optimum” postures
(Nat-Opt) are shown in the Table IV, which indicates that,
globally, the Optimum postures are closer to the Natural
ones, than the Compensated ones do.

TABLE IV: RMSE of the absolute errors

RMSE of the absolute errors in ◦

Joint Trunk2 Scapula Elbow Wrist
Nat-Comp 10.3354 8.4725 26.4834 12.8714
Nat-Opt 2.6812 3.7261 4.6764 3.4311

B. Distribution of errors

Figure 4 shows the histograms of errors, comparing the
error between the ”Natural” and ”Compensated” measured
postures (in orange) and the one between the ”Natural”
and the computed ”Optimum” postures (in blue) for the
trunk, scapula elevation, elbow joint angle and wrist joint
angle. The histogram indicates that the distribution of the
errors between Natural and Optimum postures are unimodal,
centered on zeros and with a limited spread, clearly showing
that the Optimum computed postures are closer to the
Natural ones than the compensated ones. Looking at the
Natural-Compensated error (orange), it can be noticed that
for the elbow, the distribution looks like the sum of two
Gaussian distributions, one representing the flexion and one
the extension of the elbow that the experimenter asked the
subjects to perform. Similar observations should be seen for
the wrist, with pronation and supination, but with a flatter
distribution as subjects tend to unintentionally move their
wrist while trying to reach the targets. This also explains
why no errors were sometimes observed between Natural
and Compensated postures while a compensatory movement
was asked. Finally, the trunk distribution shows that subjects
prefer to lean forward than backward.

C. Relative evaluation of errors

Figure 5 presents the error between Natural and Optimum
postures (Opt-Nat) as a function of the error between Nat-
ural and Compensated (Comp-Nat) ones. Oppositely to the
histograms, these figures show paired input and output errors



Fig. 4: From left to right: Histograms of the elbow, wrist, trunk and scapula angle error, before optimization (in orange, the
error between natural and compensated) and after optimization (in blue, the error between natural and optimum)

of the optimisation, as we want each posture to be improved,
and not just a general improvement of the mean error. On
the proposed figure, a postural improvement for a given
posture is defined by a point placed below the axis defined
by y = x (dashed black lines). The green zones denotes an
improvement of the joint position for the given joint. The
red zone denotes a deterioration. We also plotted margins
of ±5◦ (black lines) that represent the estimated noise due
to the Kinect. Therefore, points inside these margins may
be considered as neither improved nor deteriorated. Finally,
Figure 6 presents the same data but computed for the sum
of the absolute errors of the 4 considered angles : trunk,
scapula, elbow and wrist. This figure can be seen as a global
classifier for detecting compensatory motions. Indeed, when
a subject does not compensate, the Natural-Compensated and
Natural-Optimised errors are equal and close to 0◦ (less than
5 or 10◦ for example, depending on the chosen threshold),
while otherwise there is an important difference.

Out of the 270 postures, only 4 postures were misclassified
(in the red zone Figure 5. for the elbow. These misclassified
points have a null error Natural-Compensated regarding the
elbow angle, meaning the algorithm identified high com-
pensations on the other angles and cancelled them while
increasing the elbow error. While only 2 postures were
globally misclassified with a 5◦ threshold (Figure 6), these
postures have a global error Natural-Compensated close to
0◦, meaning the subject actually did not compensated while
asked. Finally, it can be seen that every postures with a global
compensated-natural error of more than 20◦ were correctly
classified, meaning the global detection of compensatory
motions was effective.

V. DISCUSSION

The experimental results indicates that the proposed null-
space optimization approach with its RULA-inspired score
was able, for a given task (i.e. hand positioning and ori-
enting), to compute, from a typical erroneous posture, a
postural solution close to the natural and comfortable strategy
exhibited by users. For all angles, the global RMSE was
highly improved comparing before and after optimization.
The method appeared to be effective on every tested posture
and not only with a limited set of them as shown in Fig. 5.

A. Extension to more complex models

This results were obtained with a 9 DoF kinematic model,
and a 6 DoF task, thus within a 3 DoF redundancy problem
to optimize. As seen, we used important weights for the 3
DoF pelvic joint, and, in this configuration, converging to
the 3 correct trunk angles should be sufficient to have a null
error between the optimum and the natural position. This
means that, in this specific case, there is only one viable
strategy to reach the target without compensations. If we
were to increase the complexity of the kinematic model with
more DoF, the choice of the weight would be more critical
to converge towards the natural posture within a larger set
of solutions. For example, the weights of the optimization
cost-function should probably be tuned more carefully for a
4-DoF prosthesis (with a spherical wrist), as the redundancy
of the kinematic model would require 5 angles to be correctly
estimated through optimization instead of 3 (for example, the
flexion and abduction of the wrist should be close to 0◦) but
we think that this method could correctly be implemented
on a 4-DoF prosthesis.

B. Kinect limitations

It should also be mentioned that optimum that is computed
strongly depends on the end-effector position and orientation
measured f(qm). The noise of the wrist, palm and thumb
position strongly impacting f(qm) and therefore considering
the global convergence for a spherical wrist, the Kinect might
not be precise enough. However, for a 1 DoF wrist model, the
Kinect has proven to be precise enough in our experiment.
Similarly, it is important to highlight that the Kinect noise
affects the measured lengths of the bones from one posture
to another (as previously mentioned in II.E). These lengths
variations impact the determined joint position q. The natural
and optimized joint positions are calculated for the same
bone lengths, while the bone lengths of the non-natural
posture vary by a couple of centimeters. Consequently,
because of such difference, the error improvement should
be nuanced. However, the results still remain significant and
the visual postural improvement of the kinematic model is
flagrant, as shown in Figure 3.
Nevertheless, RGB-D cameras might be viable for medical
rehabilitation applications, as it is quite cheap and could



Fig. 5: The relative error (from left to right and top to bottom: elbow, wrist, trunk, scapula) after optimization as a function
of the error before optimization. The dark dashed-dotted line represents the y = x and y = −x axis, and the thin black lines
the ±5◦ margin of our estimated noise. An improve point prediction is located in the green zone, between the y = x and
y = −x axis. The closer it is to the horizontal axis, the better the prediction is.

Fig. 6: Absolute error after optimization as a function of
the error before optimization for the sum of the trunk,
scapula, elbow and wrist angle. The dark dashed-dotted line
represents the y = x axis, and the thin black lines the ±5◦
margin of our estimated noise.

easily be set at patients’ home, as well as industrial context
in front of a worker’s bench. The Kinect noise might even
be reduced for real-time applications by using an Extended
Kalman Filter [18]. However, for daily-life prosthetic imple-
mentations, the algorithm should be transposed to alternative
technologies, such as Inertial Measurement Units to estimate
the subjects postures for a use outside of a laboratory
environment.

C. Computational power

The optimization algorithm being linear, it does not require
high computational power: on a generic Intel core i5 laptop
running non-optimized Matlab code, the optimization timing
was about 10ms (30 iterations) for a 0.1◦ of precision
error set as stopping criteria ε. Additionally in a real-time
application to a prosthesis control such as in [20], since
the optimization initial guess would be set to the posture

obtained for the previous computation step, the error to
cancel would be reduced and so would be the number of
optimization iterations.

VI. CONCLUSION

In this study we presented a simple approach to search for
an alternative posture that optimizes an ergonomic postural
score within the null space of a human kinematic chain. The
results of a preliminary experimental campaign on a group
of non-amputated subjects (emulating compensatory move-
ments similar to the ones exhibited by amputated users with
inadequate prosthesis position) indicates that this method is
effective and able to precisely determine more ergonomic
and natural solutions for the distal joints (wrist and elbow)
angles as well as for the trunk and scapula. Unlike existing
approaches, this was achieved with a simple extension of a
discrete ergonomic score which is not task nor user specific,
do not require any training data, and is computationally much
more efficient that dynamic manikin based simulations as
well as easier to parameterize.

While further work has to be conducted for this method
to be implemented in realistic scenarios exploiting wearable
motion sensors to reconstruct postural data, the proposed
approach paves the way for multiple DoF prosthesis con-
trol. Indeed, it could be used as a joint error computation
stage within a movement-based compensation cancellation
control approach described in [20]. Further, this method
could also be used to quantify compensatory motions in
industrial or medical context, possibly extending existing
discrete ergonomic scores.
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