

Nanoscience et chimie atmosphérique

B. Demirdjian, D. Ferry et J. Suzanne *CINaM / UPR CNRS 3118 Campus de Luminy 13009 Marseille*

E-mail: demirdjian@cinam.univ-mrs.fr

Equipe de recherche :

"Particules atmosphériques et environnement"

2 thématiques :

- Réactivité de surface de la glace (nuages)
- Propriétés physico-chimiques des nanoparticules carbonées (suies)

V. Tishkova (doctorante, co-tutelle avec Moscou)

Permanents :

- B. Demirdjian, CR1 CNRS
- D. Ferry, CR1 CNRS

Environnement Climat

Journées « C-Nano PACA », 23-25 mai 2009, PORQUEROLLES

0

Jun

Jul

Aug

Sep

Month

Source : NASA, 2009

Dec

Nov

Oct

Contexte: déplétion de l'ozone stratosphérique polaire

- 80's : échec des modèles classiques de chimie en phase gazeuse pour expliquer l'amplitude du phénomène
- 90's : nouvelle hypothèse : rôle clé de la chimie hétérogène <u>dans les nuages strastosphériques polaires</u> (S. Solomon et al., Nature 321 (1986)755 ; M.B. Mc Elroy et al., Nature 321 (1986) 759 ; M.J. Molina, Atmos. Environ. 25A (1991) 2535)

- Que devient la surface de la glace quand on adsorbe HCI ?
- Modification de la structure ? Effet de la température et θ_{HCI} ?
- Existence et rôle d'une couche quasi-liquide ?

Etude structurale du système HCI / glace par diffraction de neutrons

T=250K

glace + 1MC HCI

LLB (Saclay)

Adsorption de H_2O sur des poudres de MgO (001) (5 bicouches de glace)

 $T = 190 ; 220 ; 250K, \\ \theta_{HCI} = 0,3 ; 0,6 ; 1 MC$

12000

10000

(hkl) Ice I_h

(hkl) HCl dihydrate

- Augmente le désordre à l'intérieur du film : film amorphe T ≥ 250K
- Pour θ_{HCI} : 1 MC : le di-hydrate de HCI existe à 220 \leq T(K) \leq 250
- Pour θ_{HCI}: 0.3 et 0.6 MC : pas de formation d'hydrate quelle que soit la température

Étude dynamique du système HCI / glace par DQEN

LLB (Saclay)

a préfusion s'observe.	e à 250 K,
15 K au dessous du fi	m de glace pure)

Temperature (K)	190	250	265	270
Film glace pur				
Liquid fraction (%)	0	0	25	35
D_{t} (10 ⁻⁵ cm ² .s ⁻¹)	<0.1	<0.1	1.5	1.5
D _r (10 ¹⁰ s ⁻¹)	0.4	0.4	0.65	1.2
<u>Glace + 0.3 MC HCI</u>				
Fraction liquide (%)	0	30		
D _t (10 ⁻⁵ cm ² .s ⁻¹)	<0.1	0.8		
D _r (10 ¹⁰ s ⁻¹)		1.8		
<u>Glace + 0.6 MC HCI</u>				
Fraction liquide (%)	0	45		
D _t (10 ⁻⁵ cm ² .s ⁻¹)	<0.1	0.8		
D _r (10 ¹⁰ s ⁻¹)		1.8		
<u>Glace + 1 MC HCI</u>				
Fraction liquide (%)	0	9		
D _t (10 ⁻⁵ cm ² .s ⁻¹)	<0.1	0.8		
D _r (10 ¹⁰ s ⁻¹)		0.7		

Les suies d'avion : contexte scientifique

Production de la suie de laboratoire

Co-encadrement Thèse V. Tishkova Collab. IPC, Moscou

Suie de chambre de combustion (collab. Institut d'Aviation, Moscou)

Aviation kerosene TC1 sulfur content: 1100 µg.g⁻¹

Suie de lampe

Morphologie, structure et composition chimique des suies de lampe

Journées « C-Nano PACA », 23-25 mai 2009, PORQUEROLLES

Popovicheva et al., Geophysical Research Letters, 2004

Caractérisation des groupes fonctionnels de surface par FTIR (INAM) CIN

Suies de chambre de combustion

	Bandes (cm ⁻¹)	Hydrophilicité
C=O carbonyle, aliphatique	1673	haute
C=O carbonyle, aromatique	1583	haute
HSO ₄ - ion	1355,1230 1050, 878, 582	haute
Sulfates organiques	1350, 1420	haute

X - TRACOR Serie II)

%)	O (weight %)	Fe (weight %)	S (weight %)
	< 11	33-43	< 2

ie de lampe es fonctionnels de surface hydrophiles

Mesures d'isothermes d'adsorption d'eau (hygroscopicité)

- Suie de chambre de combustion adsorbe de grandes quantités d'eau à faible RH et à T = 295 K
 → sites actifs de surface (sulfates, carbonyles)
- Adsorption (suie de chambre de combustion) >> adsorption (suie de lampe)
- \rightarrow Suie de lampe relativement hydrophobe (forme de l'isotherme)
- → Fraction d'impuretés responsable de la forte hydrophilicité

- <u>Réactivité de glace / HCI</u>: détermination, à l'échelle moléculaire, la structure et la dynamique du système HCI / glace
 - → informations sur les mécanismes de l'adsorption et de la diffusion du Cl dans cristaux de glace (intérêt pour la communauté des atmosphériciens)
- <u>Particules de suie</u>: caractérisation des propriétés physico-chimiques des nanoparticules de suie

→ étape nécessaire pour comprendre les interactions eau/suie et la formation des contrails

 Membres de l'équipe « Particules atmosphériques et environnement » (doctorants et permanents)

- •O.B. Popovicheva, N.M., Persiantseva, N.K. Shonija (Univ Moscou)
- •B. Beuneu, I. Mirebeau, R. Kahn, (LLB, Saclay)
- •Tous les services communs du laboratoire, en particuliers le service de <u>Microscopie Électronique</u> (D. Chaudanson et S. Nitsche)