
HAL Id: hal-03248572
https://hal.science/hal-03248572

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Chaotic ultrasound generation using a nonlinear
piezoelectric microtransducer

Martial Defoort, Libor Rufer, Skandar Basrour

To cite this version:
Martial Defoort, Libor Rufer, Skandar Basrour. Chaotic ultrasound generation using a nonlinear piezo-
electric microtransducer. Journal of Micromechanics and Microengineering, 2021, 31 (5), pp.054002.
�10.1088/1361-6439/abf365�. �hal-03248572�

https://hal.science/hal-03248572
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


CHAOTIC ULTRASOUND GENERATION USING A NONLINEAR 
PIEZOELECTRIC MICROTRANSDUCER 

 
Martial Defoort*, Libor Rufer, and Skandar Basrour 

Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000 Grenoble, France 
 

 
ABSTRACT 
 

We report on a piezoelectric micromachined 
ultrasonic transducer (PMUT) driven in a nonlinear 
regime, generating chaotic amplitude modulated ultrasonic 
waves. At large enough drives, the PMUT enters in the 
Duffing regime which opens a hysteresis with two 
available states. By modulating the frequency of the 
driving signal, the system may switch between both states, 
and selecting the appropriate modulation frequency 
enables to enter in the chaotic regime. The chaos is then 
imprinted as a modulation of the PMUT’s amplitude. We 
characterize this regime in the three accessible domains: 
electrical, mechanical and acoustic, and demonstrate they 
are fully correlated. We then focus on the generated 
acoustic signals and demonstrate that the chaotic 
modulation propagates according to the PMUT’s linear 
regime. Remarkably, the detected acoustic waves are 
strongly correlated to the on-chip piezoelectric 
measurements, regardless of the acoustic beam profile. The 
frequency spectrum of the chaotic modulation spreads 
around the ultrasonic career, mimicking a noise modulated 
career signal. 

We exploit this property for jamming applications 
where the chaotic PMUT is used to mask surrounding 
acoustic waves. Unlike most jamming applications, our 
approach does not require driving signals with a broad 
frequency spectrum, the noisy pattern arising directly from 
the structure’s dynamics. Using two PMUTs, one in the 
linear and the other in the nonlinear regime, we realize a 
proof-of-concept where the ultrasound generated by the 
first PMUT is drowned out by the chaotic PMUT signal. 
We demonstrate that the career frequency of the jamming 
PMUT does not need to match perfectly the one of the 
linear PMUT. This chaos generation is generic and could 
be adapted to any PMUT, and thanks to the rich frequency 
spectrum of the chaotic modulation, the frequency of the 
signal to jam does not need to be precisely known. 
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INTRODUCTION 
 

Microelectromechanical Systems (MEMS) are 
versatile devices present in most recent technologies. They 
can be found as accelerometers [1], gyroscopes [2] 
microphones [3] or RF switches [4], with a broad range of 
geometries. Amongst these various MEMS applications, 
PMUTs enable to generate ultrasonic waves that are mainly 

used as position sensors through time-of-flight (TOF) 
measurements [5], for power transfer [6] or for wireless 
communication [7]. Because of their mechanical nature, 
MEMS are prone to present nonlinearities. Driven at large 
enough amplitude, these devices will present new 
properties enabling displacement amplification [8] or 
frequency stabilization [9]. These disruptive applications 
directly arise from the complex dynamics of the nonlinear 
process involved, reaching an apex with chaotic systems. 

For a few decades, chaotic systems were found to 
present unique properties that the nonlinear physics 
community is still challenging [10]. The chaotic regime is 
at the boundary between stochastic and linear processes. 
On the one hand it is non-periodic, presenting a broad 
frequency spectrum and therefore sharing properties with 
white noise. On the other hand, it is a deterministic system, 
such that a full knowledge of initial conditions enables to 
completely predict the signal behavior. The richness of the 
chaotic regime arises from its sensitivity to initial 
conditions. In a real, physical chaotic system, noise 
(intrinsic or extrinsic) limits the full knowledge of its 
dynamics. This uncertainty exponentially increases with 
time, until it reaches the amplitude of the signal itself, 
losing all the information of the initial conditions. This 
property is at the essence of many applications in secured 
communication, especially for random number generators 
[11] and cryptography [12], but chaos has yet to reveal its 
full potential. 

The generation of chaos in nonlinear MEMS has 
been a challenge for more than twenty years [13], with very 
few experimental realizations. By buckling a mechanical 
structure, the system enters in a bistable configuration, and 
if the device is driven with a large enough force and the 
appropriate frequency, it switches between the up and the 
down states with a chaotic pattern [13]. However, buckling 
a structure requires a large power, unconventional 
geometries, and / or specific materials, making the chaotic 
regime difficult to access and limiting its applications. 
Recently, a few works demonstrated a generic method to 
generate chaos, exploiting the Duffing regime of the 
nonlinear mechanical structures [14]–[16]. Through this 
technique, any device driven in the nonlinear regime could 
present a chaotic regime, extending the range of 
applications of this complex phenomenon. 

In the acoustic community, chaos is at the core of 
a broad range of discoveries and applications. In liquid, 
chaos theory explains the complex behavior of strongly 
driven cavitation bubbles [17]. In infrared imaging, chaotic 
waves revealed cracks that standard waves could not probe 
[18]. In sonars, chaotic pulse position modulation (CPPM) 
enables to identify the origin of the acoustic signal amongst 
several transducers [19]. Generating chaotic acoustic 
waves from a PMUT could provide new applications by 



combining the sensitivity of the chaotic regime with the 
transduction properties of the microstructure. 

In this work, we use a PMUT set in the nonlinear 
Duffing regime to generate chaotic acoustic waves. We 
present the correlations between the electrical, mechanical 
and acoustic properties of the generated signal. We then 
focus on the chaotic acoustic waves and characterize their 
propagation and directionality. Because of its rich 
spectrum, we demonstrate how this chaotic ultrasound can 
be used to jam a signal emitted by a second, linear PMUT. 
Due to the large bandwidth of the chaotic signal, the 
driving frequency of the jamming PMUT does not need to 
match exactly the resonance frequency of the linear PMUT. 
This chaotic transducer will give new opportunities and 
will provide disruptive applications ranging from 
rangefinder to wireless communication security. 
 
RESULTS 
Chaos generation setup 
 

The PMUT we use consists of a silicon 
microdiaphragm with a radius of 750 µm and a thickness 
of 10 µm, fabricated with the PiezoMUMPS process of the 
Memscap company. A similar device using the same 
process and geometry was previously reported, presenting 
interesting properties for rangefinder applications [20]. The 
device can be seen as a two-port network with the inner and 
outer electrodes of the AlN piezoelectric layer enabling its 
actuation and detection (Fig. 1, inset), performed with an 
Agilent InfiniiVision oscilloscope and a Zurich Instrument 
HF2LI lock-in amplifier (LIA) assisted by a HF2TA 
current amplifier. In addition to the piezoelectric 
transduction scheme, we performed mechanical 
measurements of the structure velocity with a laser-based 
Polytech velocimeter OFV3001 and an acoustic detection 
of the ultrasonic waves generated by the PMUT with a 
Brüel & Kjaer 4939-A measuring microphone. All 
measurements are performed in air, and all amplitudes 
present in the paper are in root-mean-square. 

The mechanical dynamics of the structure follows 
at first order the canonical equation: 
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with 𝑥 the displacement of the membrane, 𝑚 its mass, 
𝜔( = 2	𝜋 ×	71.3 kHz the angular resonance frequency and 
∆𝜔 = 2	𝜋 ×	750 Hz the angular bandwidth of the 
resonator, leading to the quality factor of 95 (Fig. 1). As the 
amplitude 𝐹( of the driving force 𝐹 = 𝐹( cos𝜔	𝑡 increases 
(in our case, resulting from a voltage applied on the 
piezoelectric layer of the device), the structure enters in the 
Duffing regime. This regime is mainly known to induce a 
shift in the resonance frequency proportional to the square 
of the amplitude of the vibrating MEMS [21], [22], and we 
measure in our case a nonlinear Duffing coefficient of 𝛼 =
2	𝜋 ×	54.5 kHz/V2. In this Duffing regime, the resonator 
presents a hysteresis with two available states, vibrating 
either at low or at high amplitude depending on its history 
(Fig. 1, blue line). As the driving angular frequency 𝜔 
reaches one of the edges of the hysteresis, the system 
bifurcates from one state to the other one [23]. This 

switching is at the core of the chaotic regime exploited in 
this paper, already introduced as a dynamical bistability 
based chaos [16].  
 

 
Figure 1: Frequency sweep of the PMUT in the linear 
(black line, 0.5 V) and in the Duffing regimes (blue line, 
5 V), highlighting the frequency shift and bistability of the 
nonlinear regime compared to the linear resonance. Inset: 
microphotography of the PMUT.  
 

By modulating the frequency of the driving force 
with 𝐹 = 𝐹( cos[𝜔	𝑡 + sin(𝛿𝜔	𝑡)] over a large enough 
range within the hysteresis, the resonator periodically 
switches between the two states, following: 
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with 𝑅 the amplitude of the vibration, 𝜑 its phase delay 
with the driving signal, 𝜔 the driving angular frequency 
and 𝛿𝜔 the angular modulation frequency. 

 As the modulation rate increases, the system 
leaves the adiabatic regime where the two states represent 
stable amplitudes, to enter in a chaotic regime where the 
state of the resonator oscillates erratically between the high 
and low branches of the hysteresis. To enter in this exotic 
state, the driving parameters should be chosen according to 
the resonator Duffing nonlinearity, first with the 
appropriate driving amplitude to open the hysteresis, and 
then with the appropriate frequency driving and 
modulation in order to switch between the two available 
states [16]. 

 
Electrical characterization 

 
Considering the different parameters of the 

nonlinear micromechanical resonator, we drive the PMUT 
by applying 5 V at 73.6 kHz (within the hysteresis) on the 
outer electrode and we perform a frequency modulation of 
𝛿𝜔 = 2	𝜋 ×	2 kHz throughout the paper. As a result, the 
structure vibrates at the modulated frequency with an 
amplitude that is modulated by a chaotic pattern (Fig. 2). 
To characterize the chaotic behavior of the system, we 
focus on the demodulated signal from this point forward, 
obtained with the LIA by probing the inner electrode of the 

200µm

low

high



PMUT. Note that electrically speaking, the two-port 
network is nearly symmetric, such that switching drive and 
probe connections almost leads to the same results. 

 

 
Figure 2: Raw (gray line, output of the oscilloscope) and 
demodulated (blue line, output of the LIA) measurements 
of the generated signal in the chaotic regime, representing 
respectively the displacement x described in (1) and the 
amplitude R described in (2). This experimental 
measurement highlights the presence of the chaotic pattern 
within the envelop of the signal. 

 
One of the most important property of a chaotic 

system is its sensitivity to the initial conditions. To 
demonstrate that the PMUT is in a chaotic regime, we 
initialized the PMUT three times in a row with very similar 
initial conditions (amplitude, frequency, phase) before 
switching on the frequency modulation (Fig. 3). All three 
measurement initially present very similar complex 
behaviors until they diverge from one another. 

 

 
Figure 3: Three successive measurements of the PMUT 
after demodulation. At t = 0 s, the frequency modulation is 
turned on to trigger the chaotic behavior of the PMUT. 
Each set of data was acquired using similar initial 
conditions just before the modulation. 
 

These different behaviors, at the core of the chaos 
theory, are the result of the small deviations in the initial 
conditions that exponentially spread over time, until 
reaching the size of the signal itself. In this example, the 

signal amplitude is drastically different after 4 ms in the 
chaotic regime. 
 
Mechanical characterization 
 

The acoustic waves generated by a PMUT result 
from the displacement of the mechanical structure. While 
the piezoelectric layer of the MEMS provides information 
on the device displacement, the complexity of the chaotic 
regime and its non-periodicity require to characterize how 
accurate the piezoelectric signal reflects indeed the 
structure chaotic dynamics. We therefore compared the 
electrical signal obtained from the piezoelectric layer to 
that of the velocimeter, measured simultaneously for 
100 ms, to demonstrate that the piezoelectric coupling 
provides most of the information of the microdiaphragm 
vibration (partially shown in Fig. 4).  

 

 
Figure 4: a) Electrical measurement of the chaotic signal; 
b) Velocimeter output of the same signal, demonstrating 
high fidelity between piezoelectric and mechanical 
measurements.  

 

 
Figure 5: Absolute value of the correlation function 
between the electrical and mechanical measurements. 
Because of the non-periodicity of chaos, correlation only 
exists at t = 0 s, where it reaches more than 99%. 
 

Note that the displacement needed to obtain such 
chaotic regime is of the order of the thickness of the 
microdiaphragm. The correlation between the two 
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measurements is above 99 % at t = 0 s (Fig. 5), 
demonstrating that the piezoelectric detection reflects the 
structure dynamics. The lack of correlation elsewhere is 
another demonstration of the non-periodicity of the chaotic 
regime, at the core of the CPPM technique for transducer 
identification [19].  

 
Acoustic characterization 
 

To characterize the ultrasounds generated by the 
PMUT, we placed a microphone in front of the 
microdiaphragm to probe the acoustic signals emitted, 
which we compare with the electrical measurements of the 
structure’s vibration. Special care was taken to avoid 
acoustic reverberation using foam to damp the acoustic 
waves reflected by the equipment. We demonstrate that the 
chaotic modulation propagates in the air with a waveform 
similar to the that of electrical measurement (Fig. 6). The 
delay of the microphone measurement arises from the TOF 
of the acoustic wave from the device to the microphone, 

 

 
Figure 6: a) Electrical measurement of the chaotic signal; 
b) Acoustic measurement of the same signal. Because the 
microphone is 25 cm away from the PMUT, there is a delay 
due to the TOF of 0.73 ms. 
 

 
Figure 7: Comparison between the delay of the 
microphone and the distance to the PMUT. The dotted line 
corresponds to the speed of sound. 
 

which is consistent with the speed of sound in air at room 
temperature (Fig. 7). While the delayed waveform is 
mostly the same from the piezoelectric (and therefore 
mechanical) to the acoustic domains, some features in Fig. 
6 a are not reproduced in Fig. 6 b, which is attributed to 
residual acoustic reflections altering the measurement. 

To exploit the complex behavior of the chaotic 
wave, understanding its directionality is of paramount 
importance. We characterized the acoustic beam profile at 
25 cm from the PMUT in the linear regime, presenting 
expected lobes but slightly distorted, which we attribute to 
the non-anechoic experimental setup and the non-
optimized packaging (Fig. 8 a). We compared this beam 
profile with the one measured in the chaotic regime. The 
overall shape presents similar features, revealing that the 
chaotic modulation does not alter the acoustic propagation 
of the signal, even for a non-ideal beam profile.  

Chaotic signals can be associated to noise, and its 
dynamics possesses unique properties with applications in 
cryptography [24] or weak signals detection [25]. In 
acoustics, chaos enables complex and reliable 
communication schemes [19]. The integrity of the chaotic 
waveform as it propagates is therefore essential to preserve 
its properties for further applications. Remarkably, despite 
the anisotropic beam profile of the PMUT, the correlation 
between the electrical and acoustic measurements remains 
close to 1 in all directions (Fig. 8 b). In average, the 
measured correlation is above 95%. For comparison, 
distinct acoustical chaotic signals generated by the PMUT 
lead in average to a correlation smaller than 5%. 

 

 
Figure 8: a) Acoustic beam profile of the PMUT in the 
linear (black line) and chaotic (dark cyan line) regimes, 0° 
corresponding to a perfect alignment between the PMUT 
and the microphone; b) Correlation between the acoustic 
and piezoelectric signals as a function of directionality. 
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Ultrasonic jammer 
 

One of the primary use of a PMUT is as a 
rangefinder, using the echolocation principle known from 
bat’s sonar [26]. This technique is the primary hunting tool 
of this predator, such that their preys learned to counteract 
their sonar by generating interfering ultrasonic waves 
themselves [27]. In addition, bats jam other bats using 
frequency modulated signals during food competition [28]. 
In a similar fashion, the broad frequency spectrum of the 
chaotic signal generated by a PMUT could be used to jam 
signals emitted by other ultrasound transducers. 

To demonstrate the jamming potential of PMUT 
based chaotic ultrasounds, we will use two similar PMUT 
devices, one working in the chaotic and the other in the 
linear regime. The chaotic PMUT device, excited by a 
harmonic signal of 5 V at 73.6 kHz with a frequency 
modulation of 2 kHz, is placed close to the other PMUT 
driven in the linear regime at its resonance frequency of 
71.3 kHz by a sinusoidal signal of 0.5 V. Note that both 
driving frequencies are more than three PMUT bandwidths 
away. When both PMUTs are simultaneously driven, 
pointing towards the measuring microphone, the linear 
PMUT signal is mixed with the one of the chaotic PMUT, 
which may result in a total loss of information. 

In a standard rangefinder operation, the PMUT is 
alternatively used as an actuator and as a sensor, generating 
and receiving the ultrasonic waves. As an actuator, it is 
turned on by applying a short burst at the resonance 
frequency, which length is the result of a compromise to 
probe both long and short distances. The minimum number 
of cycles to obtain large enough acoustic waves is 
traditionally given by the quality factor of the resonator, 
leading to a burst time length of 𝑡N =

)	O
∆+

, also 
corresponding to the PMUT acquisition time as a sensor. 

For the jammer proof-of-concept, we drove the 
PMUTs with a continuous signal instead of a burst, but 
using a limited acquisition time to mimic the sensing phase 
of rangefinders. If we use an acquisition time of 𝑡N (in our 
case, around 1 ms) in the presence of the chaotic PMUT, 
all the information of the harmonic wave is lost within the 
broadband chaotic signal (Fig. 9 a). Such short acquisition 
times lead to poorly resolved Fourier transforms, on top of 
which the noisy structure of the chaotic ultrasound drowns 
the linear signal. However, with a longer acquisition time, 
this noise-like pattern can be averaged down to recover the 
ultrasound of the linear PMUT (Fig. 9 b). To demonstrate 
this, we analyze the fast Fourier transform of the output of 
the microphone at the driving frequency of the linear 
PMUT (71.3 kHz) as a function of the acquisition time. 
This study is done with two sets of measurement: when the 
chaotic PMUT alone is driven and when it is combined 
with the linear PMUT. Each measurement was performed 
one hundred times to obtain enough statistics. We then 
define that the linear acoustic signal can be unambiguously 
detected if the amplitude difference between the two sets is 
larger than three standard deviations. We observe that the 
harmonic signal emerges back after an acquisition time of 
16 𝑡N (Fig. 10). This longer acquisition time could have 
disastrous consequences, as it blinds the PMUT 
rangefinder for a substantial amount of time. This jamming 

application is directly related to the unique properties of 
chaos, because it is a non-periodic and an unpredictable 
signal that cannot simply be filtered or subtracted. Note that 
reducing the burst time implies a lower acoustic wave 
amplitude, being even more difficult to probe, and 
therefore does not bypass this problem. 
 

 
Figure 9: a) Acoustic frequency spectrum of the chaotic 
PMUT alone (dark cyan) and combined with the linear 
PMUT (black) vibrating at 71.3 kHz (black dashed line), 
after a standard acquisition time of 𝑡N ≈ 1	𝑚𝑠. This low 
acquisition time leads to a poorly resolved Fourier 
transform, where the harmonic signal is completely 
drowned out by the broad spectrum of the chaotic 
ultrasound. b) Similar frequency spectrum after a longer 
acquisition time of 32 𝑡N. The higher frequency resolution 
enables to see the career signal of the chaotic PMUT at 
73.6 kHz as well as satellites peaks at ± 2 kHz 
corresponding to the frequency modulation. The inset zoom 
in the frequency range of the linear PMUT, which peak is 
now clearly distinguishable from the chaotic signal. 
 

 
Figure 10: Amplitude of the FFT at 71.3 kHz of the chaotic 
PMUT alone (dark cyan) and combined with the linear 
PMUT (black) for different acquisition times, averaged 
over 100 measurements. The error bars represent the three 
standard deviations of the chaotic PMUT, above which the 
linear signal can be considered as recovered. 

 
This jamming application only requires for the 

PMUT to be driven in the nonlinear regime with a 

a

b



frequency modulation configuration, where the broad 
frequency spectrum directly arise from the nonlinear 
dynamics of the structure. It is therefore directly applicable 
to any PMUT, and more generally to any acoustic 
transducer, as long as its Duffing regime is accessible. By 
carefully selecting the appropriate set of parameters, this 
chaotic regime could spread over a wider spectrum with a 
higher amplitude, enabling to cover stronger signals on a 
large frequency range. 

 
CONCLUSION 
 

This work presents the generation and 
characterization of a chaos modulated ultrasound wave. 
This acoustic signal was generated by a PMUT set in the 
Duffing regime, which driving frequency was modulated 
to enter in the chaotic regime. The propagation of the 
chaotic waves follows the properties of the linear PMUT 
and the specific pattern of the chaotic modulation remains 
unaltered in all directions. We finally demonstrate that the 
rich spectrum of the chaotic signal can be used as a jammer 
to cover nearby ultrasonic waves. 

Beside its noisy-like structure, chaotic signals 
demonstrated to have unique properties, in particular for 
secured communication [12]. The implementation of chaos 
in a physical microtransducer described in this paper brings 
new opportunities to develop wireless, acoustic-based 
cryptography and tackle the long-standing challenge of 
security in IoT technologies. 
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