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1Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education,

School of Mathematical Sciences, Anhui University,

Hefei 230601, China

2Telecom ParisTech, Palaiseau, France

3I2M,(Aix-Marseille Univ., Centrale Marseille, CNRS), Marseille, France

4 Corresponding Author

Abstract

A finite metric space is called here distance degree regular if its distance

degree sequence is the same for every vertex. A notion of designs in such spaces

is introduced that generalizes that of designs in Q-polynomial distance-regular

graphs. An approximation of their cumulative distribution function, based

on the notion of Christoffel function in approximation theory is given. As an

application we derive limit laws on the weight distributions of binary orthogonal

arrays of strength going to infinity. An analogous result for combinatorial

designs of strength going to infinity is given.
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1 Introduction

In a celebrated paper [21] Sidelnikov proved that the weight distribution of binary

codes of dual distance d⊥ going to infinity with the length is close deviates from the

normal law up to a term in inverse square root of the dual distance [19, Chap. 9,

§10]. Since the times of Delsarte [5], it is known that the quantity d⊥ − 1 is the

strength of the code viewed as an orthogonal array. Further, this is a special case of

designs in so-called Q-polynomial association schemes [2, 4, 5, 19]. The name designs

comes from the Johnson scheme where this notion coincides with that of classical

combinatorial designs [5]. Later a similar connection was found between designs in

association schemes and designs in lattices [6, 23]. These kinds of generalized designs

are popular now in view of the applications in random network coding [9]. In view of

this deep connection it is natural to seek to extend Sidelnikov’s theorem to designs

in other Q-polynomial association schemes than the Hamming scheme. This is a vast

research program which might take several years to accomplish.

In the present paper our contribution is twofold.

Firstly, we develop a theory of designs in finite metric spaces that replaces the

concept of designs in Q-polynomial association schemes, when the considered met-

ric space does not afford that structure. We observe that, in contrast with Delsarte

definition of a design in a Q-polynomial association scheme, our definition (Defini-

tion 1 below), has an immediate combinatorial meaning in terms of distribution of

distances. To wit, the combinatorial meaning of designs in certain Q-polynomial

association schemes was only derived in [23] in 1986, thirteen years after Delsarte

introduced designs in Q-polynomial association schemes in [5]. In particular, the ex-

ample of permutations with distance the Hamming metric cannot be handled in the

context of Q-polynomial association schemes, but can be treated within our frame-

work. This space had been studied extensively in the context of permutations codes

[3, 25]. The notion of t-design in that space is related to t-transitive permutation

groups (Theorem 8).

Secondly, we use the technique of Chebyshev-Markov-Stieltjes inequalities in con-

junction with orthogonal polynomials to control the difference between the cumulative

distribution function of weights in designs with that of weights in the whole space.

While this technique has been applied by Bannai to the weight distribution of spher-

ical designs [1], it has not appeared in the literature of algebraic combinatorics so

far. The bounding quantity in that setting is the Christoffel function, the inverse
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of the confluent Christoffel-Darboux kernel. While it is easy to make this quantity

explicit in low strength cases, it is difficult to find asymptotic bounds. In the present

paper, we will use the bounds of Krasikov on the Christoffel-Darboux kernel of bi-

nary Krawtchouk polynomials [15, 17] to derive an alternative proof of the Sidelnikov

Theorem. We will give a proof of an analogous result for combinatorial designs by

using the limiting behavior of Hahn polynomials.

The material is organized as follows. The next section contains background mate-

rial on metric spaces, distance-regular graphs and Q-polynomial association schemes.

Section 3 introduces the definitions that are essential to our approach. Section 4 con-

tains the main equivalences of our notion of designs in finite metric spaces. Section

5 develops the bounds on the cumulative distribution functions of designs. Section

6 contains some asymptotic results. Section 7 recapitulates the results obtained and

gives some significant open problems.

2 Background material

2.1 Metric spaces

Throughout the paper we write X for a finite set equipped with a metric d, that

is to say a map X ×X → N verifying the following three axioms

1. ∀x, y ∈ X, d(x, y) = d(y, x)

2. ∀x, y ∈ X, d(x, y) = 0 iff x = y

3. ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

In particular if X is the vertex set of a graph the shortest path distance on X is

a metric.

The diameter of a finite metric space is the largest value the distance may take.

A finite metric space is Distance Degree Regular (DDR) if for every integer i less than

the diameter the number |{y ∈ X | d(x, y) = i}| is a constant vi that does not depend

of the choice of x ∈ X.
Example: Consider the symmetric group on n letters Sn with metric

dS(σ, θ) = n− F (σθ−1),
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where F (ν) denotes the number of fixed points of ν. The space (Sn, dS) is a DDR met-

ric space. If Dm = m!
∑m

j=1
(−1)j

j!
denotes the number of fixed-point-free permutations

of Sm, ( the so-called dérangement number), then

vi =

(
n

i

)
Di.

Note that dS is not a shortest path distance since dS(σ, θ) = 1 is impossible. Codes in

(Sn, dS) were studied in [25] by using the conjugacy scheme of the group Sn. However,

in contrast with the next two subsections, this scheme is neither induced by a graph

nor Q-polynomial.

2.2 Distance-regular graphs

All graphs in this article are finite, undirected, connected, without multiple edges.

The neighborhood Γ(x) is the set of vertices connected to x. The degree of a vertex

x is the size of Γ(x). A graph is regular if every vertex has the same degree. The

i-neighborhood Γi(x) is the set of vertices at geodetic distance i to x. The diameter

of the graph, denoted by d is the maximum i such that for some vertex x the set

Γi(x) is nonempty. A graph is distance degree regular (DDR for short) if all graphs

Γi, for i = 1, . . . , d are regular. A graph is distance regular (DR for short) if for every

two vertices u and v at distance i from each other the values bi = |Γi+1(u) ∩ Γ(v)|,
ci = |Γi−1(u) ∩ Γ(v)| depend only on i and do not depend on the choice of u and

v. In this case, the graphs Γi are regular of degree vi and we will refer to the vis

as the valencies of Γ; the sequence {b0, . . . , bdiam−1; c1, . . . , cdiam} is usually called the

intersection array of Γ. Thus every DR graph is DDR but not conversely.

Examples For background material on the following two examples we refer to

[4, 5, 19].

1. The Hamming graph H(n, q) is a graph on Fnq two vertices being connected if

they differ in exactly one coordinate. This graph is DR with valencies

vi =

(
n

i

)
(q − 1)i.

2. The Johnson graph J(ν, d) is a graph on the subsets of cardinality d of a set of

cardinality ν. (Assume 2d ≤ ν). Two subsets are connected iff they intersect in
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exactly d− 1 elements. This graph is DR with valencies

vi =

(
d

i

)(
ν − d
i

)
.

Note that J(ν, d) can be embedded in H(ν, 2) by identifying subsets and char-

acteristic vectors.

2.3 Q-polynomial association schemes

An association scheme on a set X with s classes is a partition of the cartesian

product X ×X = ∪si=0Ri with the following properties

1. R0 = {(x, x) | x ∈ X}

2. (x, y) ∈ Rk, iff (y, x) ∈ Rk,

3. if (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri, and (z, y) ∈ Rj, is an

integer pkij that depends on i, j, k but not on the special choice of x and y

A consequence of axiom 3 is that each graph Ri is regular of degree vi, say. It can

be shown that the adjacency matrices Dk of the relations Rk span a commutative

algebra over the complex with idempotents Jj [19, Chap. 21]. Let µj =rank(Jj). The

first eigenvalues pk(i) of the scheme are defined by DkJi = pk(i)Ji. Considering the

matrix P = (pk(i)) and writing PQ = |X|I, with I an identity matrix defines the

second eigenvalues qk(i) of the scheme by the relation Qik = qk(i). A scheme is said to

be Q-polynomial if there are numbers z0, z1, . . . , zs such that qk(i) = Φk(zi) for some

polynomials Φk of degree k. In view of the orthogonality relation [19, Chap 21, (17)]

s∑
k=0

vkqi(k)qj(k) = |X|µiδij,

we see that the Φi(z)√
µi

form a system of orthonormal polynomials for the scalar product

〈f, g〉 =
s∑

k=0

vk
|X|

f(zk)g(zk).

Examples: In both Hamming and Johnson schemes we have zk = k.
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1. If Γ = H(n, q) then Φk(z) = Kk(z)√
vk
, where Kk is the Krawtchouk polynomial of

degree k given by the generating function

n∑
k=0

Kk(x)zk = (1 + (q − 1)x)n−x(1− z)x.

2. If Γ = J(ν, n) then Φk(z) = Hk(z)√
vk
, where Hk is the Hahn polynomial of degree

k given, as per [8, (19) p.2481], by the formula

Hk(z) = mk

k∑
j=0

(−1)j

(
k
j

)(
ν+1−k

j

)(
n
j

)(
ν−n
j

) (z
j

)
,

where mk =
(
ν
k

)
−
(
ν
k−1

)
.

3 Preliminaries

For any integer N > 0, denote by [0..N ] the set of integers in the range [0,N ].

A finite metric space (X, d) is distance degree regular (DDR) if its distance degree

sequence is the same for every point. Assume (X, d) to be of diameter n. In that case

(X, d) is DDR iff for each 0 ≤ i ≤ n the graph Γi = (X,Ei) which connects vertices at

distance i in (X, d) is regular of degree vi. Thus E0 = {(x, x) | x ∈ X} is the diagonal

of X2. Note that the Ei’s form a partition of X2.

If D is any non void subset of X we define its frequencies as

∀i ∈ [0..n], fi =
|D2 ∩ Ei|
|D|2

.

Thus f0 = 1
|D| , and

n∑
i=0

fi = 1. Note also that if D = X, then fi = vi
|X| . Consider

the random variable aD defined on D2 with values in [0..n] which affects to an

equiprobably chosen (x, y) ∈ D2 the only i such that (x, y) ∈ Ei. Thus the frequencies

fi = Prob(aD = i). Denote by E() mathematical expectation. Thus

E(aiD) =
n∑
j=0

fjj
i, E(aiX) =

n∑
j=0

vj
|X|

ji.

Definition 1. The set D ⊆ X is a t-design for some integer t if

E(aiD) = E(aiX)
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for i = 1, . . . , t.

(Note that trivially E(1) = 1 so that we do not consider i = 0.) Thus, distances

in t-designs are very regularly distributed. For a 2-design, for instance, the average

and variance of the distance coincide with that of the whole space. We will see in the

next section that in the case of Hamming and Johnson graphs, we obtain classical

combinatorial objects: block designs, orthogonal arrays.

Definition 2. We define a scalar product on R[x] attached to D by the relation

〈f, g〉D =
n∑
i=0

fif(i)g(i).

Thus, in the special case of D = X we have

〈f, g〉X =
1

|X|

n∑
i=0

vif(i)g(i).

We shall say that a sequence Φi(x) of polynomials of degree i is orthonormal of size

N + 1 if it satisfies

∀i, j ∈ [0..N ], 〈Φi,Φj〉X = δij,

where N ≤ n, the letter δ denotes the Kronecker symbol. That sequence is uniquely

defined if we assume the leading coefficient of all Φi(x) for i = 0, 1, . . . , N to be

positive.

For a given DDR metric space (X, d), we shall denote by N(X) the largest possible

such N. For instance if X is an n-class P - and Q-polynomial association scheme, it

is well-known that N(X) = n. This fact is extended to DDR graphs in the next

Proposition.

Proposition 3. If none of the vi’s are zero, then 〈, 〉X admits an orthonormal system

of polynomials of size n + 1. In particular, the metric space of a DDR graph admits

an orthonormal system of polynomials of size n+ 1.

Proof. By Lagrange interpolation we see that the functions 1, x, . . . , xn are linearly

independent on [0..n]. The sequence of the Φi’s for i = 0, 1, . . . , n is then constructed

by the usual Gram-Schmidt orthogonalization process. Note that this is possible

because the bilinear form 〈, 〉X is then nondegenerate: 〈f, f〉X = 0 ⇒ f = 0. By

properties of the shortest path distance, the property of non vanishing of the vi’s

holds in particular for the metric space of a DDR graph.
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Definition 4. For a givenD ⊆ X the dual frequencies are defined for i = 0, 1, . . . , N(X)

as

f̂i =
n∑
k=0

Φi(k)fk.

Definition 5. For a given D ⊆ X the cumulative distribution function (c.d.f.) is

defined as

FD(x) = Prob(aD ≤ x) =
∑
i≤x

fi.

Examples:

1. If D is a linear code of H(n, q), with weight distribution

Ai = |{x ∈ D | wH(x) = i}|,

then FD(x) =
∑
i≤x Ai

|D| .

2. If D is a set of points in J(ν, k), with Hamming distance distribution B2i in

H(ν, 2), then FD(x) =
∑
i≤xB2i

|D| .

4 Structure theorems

First, we give a characterization of t-designs in terms of dual frequencies.

Proposition 6. Let t be an integer ∈ [1..N(X)]. The set D ⊆ X is a t-design iff

f̂i = 0 for i = 1, . . . , t.

Proof. Note first that

E(aiD) = 〈xi, 1〉D, E(aiX) = 〈xi, 1〉X .

Moving the basis of R[x] from the Φi’s to the basis of monomials we see that D is a

t-design if and only if for i = 1, 2, . . . , t, we have

〈Φi, 1〉D = 〈Φi, 1〉X .

Now, by definition, the dual frequency f̂i = 〈Φi, 1〉D. By orthogonality of the Φi’s

for the scalar product 〈., .〉X , we see that 〈Φi, 1〉X = 0 for i = 1, 2 . . . , t. Thus, the

condition f̂i = 0 for i = 1, 2, . . . , t, is equivalent to the fact that D is a t-design.
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Next, we connect the notion of designs in Q-polynomial association schemes with

our notion of designs in metric spaces.

Theorem 7. If (X, d) is the metric space induced by a Q-polynomial DR graph Γ,

with zk = k for k = 0, 1, . . . , n, then a t-design in (X, d) is exactly a t-design in the

underlying association scheme of Γ.

Proof. In that situation the frequencies are proportional to the inner distribution (see

[4, p.54]) of D in the scheme of the graph, and the dual frequencies are proportional

to the dual inner distribution since the second eigenvalues of the scheme, by the Q-

polynomiality condition, are orthogonal polynomials w.r.t. the distribution vi
|X| . The

result follows.

Examples: The following two examples of interpretation of t-designs as classical

combinatorial objects were observed first in [5] and can be read about in [19, chap.

21].

1. If Γ is the Hamming graph H(n, q) then a t-design is an orthogonal array of

strength t. That means that every row induced by a t-uple columns of D sees

the qt possible values a constant number of times.

2. If Γ is the Johnson graph J(ν, n) then a t-design D is a combinatorial design of

strength t. This means the following. Consider D as a collection of subsets of

size n, traditionally called blocks. That means that every t-uple of elements of

the groundset is contained in the same number η of blocks. One says that D is

a t− (ν, n, η) design.

Now, we give an example of t-design in a metric space that is not a DR graph, or

even a DDR graph.

Theorem 8. If D ⊆ Sn is a t-transitive permutation group then it is a t-design in

(Sn, dS).

Proof. The moments of order i ≤ t of the number of fixed points of the permutations

in D coincide with those of a Poisson law of parameter one. This is a result of

Frobenius (1904). A modern exposition is in [14, Chap. 5.5]. The result follows by

the definition of dS.

9



5 Distribution functions

In this section we show that the distribution function of designs are close to that

of the whole space. The proof of the following result follows the philosophy of [1].

Theorem 9. Let D be a t-design in (X, d), with t ≤ N(X). Put κ = b t
2
c. Denote by

λ(x) the Christoffel function given by λ(x) = (
κ∑
i=0

Φi(x)2)−1. Then we have the bound

|FD(x)− FX(x)| ≤ λ(x).

Proof. By Definition 1, we have

〈xi, 1〉X = 〈xi, 1〉D for i = 0, 1, 2, . . . , t.

The orthonormal polynomials for 〈, 〉X exist for degrees ≤ t by the hypothesis t ≤
N(X). A coincidence of moments up to order t entails a coincidence of orthonormal

polynomials up to degree κ by Chebyshev determinant for orthonormal polynomials

[13, Lemma 2.1] (see also [24, (2.2.6), p. 27]). By the same formula, the orthonormal

polynomials for 〈, 〉D are well-defined for degrees ≤ κ, since the orthonormal polyno-

mials up to degree κ attached to X exist. By [13, Th. 4.1] or [21, Th. 7.2] we have

the Markov-Stieltjes inequalities∑
xi<x

λ(xi) ≤ FD(x) ≤
∑
xi<x

λ(xi) + λ(x), (1)

where the xi’s are the κ zeros of Φκ(t). Similarly we have∑
xi<x

λ(xi) ≤ FX(x) ≤
∑
xi<x

λ(xi) + λ(x). (2)

The result follows upon combining equations (1) and (2).

As a bound uniform in x, we have the following result.

Corollary 10. If D is a binary orthogonal array of strength at least five, then its

c.d.f. is close to that of the binomial distribution as

|FD(x)− FX(x)| < 2(n− 1)

3n− 2
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Proof. We compute explicit lower bounds on 1/λ by using the first three Krawtchouk

polynomials [19, Chap. 5 §7] given by

K0 = 1, K1(x) = n− 2x,K2(x) = 2x2 − 2nx+

(
n

2

)
.

We are seeking a lower bound for

1 +
K1(x)2

n
+
K2(x)2(

n
2

) ,

when x ∈ [0, n]. Making the change of variable y = n− 2x ∈ [−n, n], we obtain

K2(x) =
y2 − n

2
,

and, therefore

1/λ = 1 +
y2

n
+

(y2 − n)2

2n(n− 1)
=

3n2 − 2n+ (y2 − 1)2 − 1

2n(n− 1)
,

an increasing function of y2 that takes its minimum over [0, n2] at y = 0.

Example: If D is the extended Hamming code of length n = 16, dual distance

8, the weight distribution is, in Magma notation [18], equal to

[< 0, 1 >,< 4, 140 >,< 6, 448 >,< 8, 870 >,< 10, 448 >,< 12, 140 >,< 16, 1 >].

For x = 8, we get FD(x) = 1+140+448+870
211

≈ 0.712, and FX(x) =

8∑
j=0

(nj)

211
≈ 0.598.

The difference is ≈ 0.112 < 3×15
46
≈ 0.652.

We give three bounds that are not uniform in x. First, for orthogonal arrays.

Corollary 11. If D is a q-ary orthogonal array of strength at least two, then its c.d.f.

is as close to that of the binomial distribution as

|FD(x)− FX(x)| < n

n+ (n(q − 1)− qx)2
.

Proof. Immediate from the data of the first two Krawtchouk polynomials:

K0 = 1, K1(x) = n(q − 1)− qx.
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Example: If D is a binary Simplex code of length n = 2m − 1, there is a unique

nonzero weight, namely n+1
2

that appears |D| − 1 = n times. If we compute the

bound for x = n+1
2

, its right hand side is n
n+1

, which is also the value of FD(x) while

FX(x) > 0.5.

Next, we consider combinatorial designs.

Corollary 12. If D is a 2− (ν, n, λ) design, then its c.d.f. is as close to that of the

hypergeometric distribution as

|FD(x)− FX(x)| < (ν − n)3

(ν − n)3 + n(ν − 1)2
.

Proof. From the data of the first two Hahn polynomials:

H0 = 1, H1(x) = (ν − 1)(1− νx

n(ν − n)
),

we obtain

1/λ = 1 +
H1(x)2

n(ν − n)
= 1 + (ν − 1)2 (n2 − nν + νx)2

n3(ν − n)2
,

a monotonic function of x.

Eventually, we consider permutation groups. Exceptionally, we do not consider

the distance but the codistance n− ds.

Corollary 13. If D is a 2-transitive permutation group on n letters, then the c.d.f.

of its fixed points GD(x) is as close to that of the Poisson law of parameter one

P (x) =
∑

1≤i≤x

1
i!

as

|GD(x)− P (x)| < n

n+ (1− x)2
.

Proof. Immediate from the data of the first two Charlier polynomials C0 = 1, C1(x) =

1− x, obtained from the generating series

et(1− t)x =
∞∑
n=0

Cn(x)
tn

n!

of [20, (1.12.11)].
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6 Asymptotic results

6.1 Orthogonal arrays

In this section we give an alternative proof of a result of Sidelnikov on the weight

enumerator of long codes [21]. We prepare for the proof by a form of the Central

Limit Theorem for the binomial distribution. Denote by Ψ(x) = 1√
2π

∫ x
−∞ exp(− t2

2
)dt

the cumulative distribution function of the centered normal law of variance unity. Let

Bn(x) =
∑

i≤x
(ni)
2n

denote the cumulative distribution function of the binomial law

(sum of n Bernoulli trials).

Theorem 14. For some absolute constant C > 0, we have

|Bn(x)−Ψ(x)| ≤ C√
n
.

Proof. Immediate by Berry-Essen theorem [11].

Recall the binary entropy function [19] defined as

H(x) = −x log2 x− (1− x) log2(1− x).

A tedious but straightforward consequence of Stirling formula is(
N

αN

)
∼ 2NH(α)√

2πα(1− α)
(3)

for N →∞ and 0 < α < 1. See (1) in [12].

Theorem 15. Let n→∞, and let k be an integer such that k ∼ θn, with 0 < θ < 1

a real constant. Assume x = n
2

+ O(
√
n). Then any binary orthogonal array D with

n columns, of strength ≥ 2k + 1, satisfies

|FD(x)−Bn(x)| = O(
1√
n

).

Proof. (sketch) We use [15, Th. 1.1] or [17, Lemma 4] to claim the lower bound

1

λ(x)
= Ω

( (k+1)

2
(
n
k

)Gk(x)
)
,
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where

Gk(x) =
2k(2x+ pk − n)(n− k)2Γ(x)Γ(n− x)

n3(pk + 2)Γ(n
2

+ 1)Γ(n
2
− 1)

(
n/2

k/2

)2

,

where pk = 2
√
k(n− k) (note that µk tends to a constant in n.)

To derive the said bound, divide numerator and denominator by n4 and simplify.

Observe that pk ∼ 2n
√
θ(1− θ). For the term

(
n/2
k/2

)
we use the entropic estimate

mentioned above. We write Γ(x)Γ(n−x) = (n−2)!

(n−2
x−1)

. We use the Moivre-Laplace formula

to get (
n
x

)
2n
∼

exp(− (x−n/2)2

n/2
)√

πn/2
= O(

1√
n

),

where the constant implied by O() is independent of x. The result follows after tedious

but straightforward manipulations.

We are now ready for the main result of this section.

Theorem 16. Let n→∞, and let k be an integer such that k ∼ θn, with 0 < θ < 1

a real constant. Assume x = n
2

+ O(
√
n). Then any binary orthogonal array D with

n columns, of strength ≥ 2k + 1, satisfies

|FD(x)−Ψ(x)| = O(
1√
n

).

Proof. Immediate by combining Theorem 14 with Theorem 15.

6.2 Designs

Note, before doing asymptotics on the strength of designs, that t designs exist

for all t [26]. Let Hk(x) denote the Hahn polynomial of degree k of the variable x,

as defined in [8]. Let vk =
(
n
k

)(
ν−n
k

)
be the valency of order k of the Johnson graph

J(ν, n). We normalize Ĥk(x) = Hk(x)√
vk
.

Theorem 17. Assume both ν and n go to infinity with n/ν → p ∈ (0, 1). Put

q = 1−p. Let z = nx with x ∈ (0, 1). Then, we have for fixed k, and n→∞ the limit

Ĥk(z)→ (1− x/q)k√
pkqk

.
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Proof. First, note thatmk ∼ νk

k!
∼ nk

pkk!
. Next, observe that vk ∼ nk(ν−n)k

k!2
∼ n2k

(k!)2
(q/p)k.

This yields
√
vk ∼ nk

k!
(
√
q/p)k. Combining we obtain mk√

vk
∼ 1/

√
pkqk. Similar calcu-

lations give the term of order j of Hk(xn) to have the limit

(−1)j
(
k

j

)
(νj)njxj

nj(ν − n)j
→ (−1)j

(
k

j

)
(x/q)j,

and, summing on j yield

Hk(xn)→
k∑
j=0

(
k

j

)
(−x/q)j = (1− x/q)k.

The result follows upon writing Ĥk(xn) = mk√
vk
Hk(xn).

We can now derive the main result of this section.

Theorem 18. Let D be a t− (ν, n, η) design with ν, n, t→∞, and t fixed and n ∼ pν

with 0 < p < 1 real constants. Put q = 1−p, and k = bt/2c. Let J(ν, n;x) =
∑

i≤x
vi

(νn)
.

Then

|FD(x)− J(ν, n;x)| ≤ λk(n),

where

lim
n→∞

λk(n) =
1− a(x)

1− a(x)k+1
.

and a(x) = (1−x/q)2√
pq

.

Proof. Immediate by taking the limit of the Christoffel-Darboux kernel of order k

given by
k∑
j=0

Ĥj(xn)
2

=
k∑
j=0

Hj(xn)2

vj

and summing the geometric series of ratio a(x) coming from Theorem 17.

7 Conclusion

In this paper we have used a probabilistic approach to approximate the c.d.f.

of designs in various finite metric spaces. The key tool is the Christoffel-Darboux

kernel attached to the orthonormal polynomials w.r.t. the valencies of the space.

15



We have used some strong analytic bounds on this quantity for binary Krawtchouk

polynomials derived in [15, 17]. It would be desirable to extend these analytical results

to other families of polynomials, beginning with q-ary Krawtchouk polynomials. This

special case would yield an alternative proof of the q-ary version of Sidelnikov theorem

proved by us in [22]. Further, it is a worthwhile project to derive analogous results

for the polynomials relevant to the eight types of designs in [23]. A first step in that

direction would be to extend or adapt Theorem 7 to Q-polynomial schemes where zk

is not always equal to k. Regarding more general DDR metric spaces, it would be nice

to have examples of t-designs in the space of permutations that are not t-transitive

permutation groups.
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[22] M. Shi, O. Rioul, P. Solé, On the asymptotic normality of Q-ary linear codes,

IEEE Communication Letters 23, (11), (2019), 1895–1898.

[23] D. Stanton, t-designs in classical association schemes, Graphs and Combinatorics

2, (1986) 283–286.

17
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