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Interacting Weighted Ensemble Kalman Filter applied to Underwater Terrain Aided Navigation

Terrain Aided Navigation (TAN) provides a driftfree navigation approach for Unmanned Underwater Vehicles. This paper focuses on an improved version of the Weighted Ensemble Kalman Filter (WEnKF) to solve the TAN problem. We analyze some theoretical limitations of the WEnKF and derive an improved version which ensures that the asymptotic variance of weights remains bounded. This improvement results in an enhanced robustness to nonlinearities in practice. Numerical results are presented and the robustness is demonstrated with respect to conventional WEnKF, yielding twice as less nonconvergence cases.

I. INTRODUCTION

Nonlinear state estimation is a challenging issue when measurements yield state multimodality, i.e. to a given measurement may correspond several solutions in the state space. For example, state multimodality occurs in the case of Terrain Aided Navigation (TAN [START_REF] Palmier | Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation[END_REF], [START_REF] Meduna | Terrain relative navigation for sensor-limited systems with application to underwater vehicles[END_REF]). TAN is a commonly employed method in autonomous vehicles navigation which is a broad and extensive field of study. Autonomous/Unmanned underwater vehicle (AUV/UUV) navigation is often based on Inertial Navigation Systems (INS) measurements [START_REF] Melo | Survey on advances on terrain based navigation for autonomous underwater vehicles[END_REF]. Although INS are autonomous and reliable, they provide imperfect measurements (e.g. subject to bias, noise) that result in a drifting error in the navigation solution. To correct the navigation drift, INS can be combined with a TAN method.TAN provides a drift-free navigation tool which is a powerful alternative to current navigation methods that include exogenous measurements (e.g. GPS). Resurfacing for GPS is possible but is often excluded for discretion purposes and also because it can easily be jammed. This is especially true for military-grade UUVs. TAN aims to retrieve the vehicle's current state (e.g. position, velocity) by matching a terrain profile obtained from a sensor with a profile reconstructed from an embedded map of the operation area. This paper addresses the multi-beam telemeter based TAN for UUVs. The multi-beam telemeter provides a series search Center, University of Bordeaux, Talence, France pierre.delmoral@inria.fr of depth measurements along the trajectory. If the terrain contains sufficient information, this kind of sensor is able to retrieve the position.

Performing INS/TAN fusion makes it necessary to resort to nonlinear filtering algorithms. In the presence of strong nonlinearities and multimodality due to terrain map ambiguities, the Extended Kalman Filter (EKF [START_REF] Anderson | Optimal filtering[END_REF]) is known to be unreliable. The linearization of terrain areas where abrupt changes in seabed elevation occur generates numerical instabilities that may result in estimation divergence. In order to avoid linearization, several stochastic filters were proposed such as the Particle Filter (a.k.a. Monte Carlo methods [START_REF] Moral | Nonlinear Filtering: Interacting Particle Resolution[END_REF]) and the Weighted Ensemble Kalman Filter [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF].

Sequential Monte Carlo methods rely on weighted sampling, based on a proposal density. In general, the proposal density is difficult to compute for a given problem. If the proposal density is taken equal to the prior density, the Monte Carlo errors can be significant due to an insufficient recovery between the supports of the prior and the likelihood densities. In this case, the filter may diverge. On the contrary, if the proposal density is close to the posterior density, then the filter remains theoretically stable [START_REF] Morzfeld | What the collapse of the ensemble Kalman filter tells us about particle filters[END_REF]. Thus, an appropriate choice of the proposal density makes it possible to design more stable filters.

This paper focuses on the Weighted Ensemble Kalman Filter (WEnKF), which can be interpreted as a particle filter [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF]. WEnKF consists of determining a Gaussian proposal density using a Kalman Filter on each sample before updating the sample weights. This method helps the proposal density to approach the posterior density. However, in some cases, the obtained proposal density is still not close enough to the posterior density and thus the filter may diverge. To tackle this issue, it is possible to empirically enlarge the support of the proposal density so that it contains the support of the posterior density. In the case of WEnKF, the proposal density is Gaussian. The covariance matrix of the proposal density can be replaced by a sightly larger one (inflation methods, see [START_REF] Morzfeld | What the collapse of the ensemble Kalman filter tells us about particle filters[END_REF]).

In this paper, an analytic approach is introduced to compute an optimized formulation of the proposal density covariance matrix in terms of weight variance. Indeed, the method consists of choosing the proposal covariance matrix so that it guarantees a finite variance of the weights. In particular, we show that:

• The asymptotic variance of the unnormalized weights admits a finite upper bound if and only if the proposal covariance matrix verifies some assumptions;

• A proposal covariance matrix can be computed for the WEnKF so that it satisfies these assumptions. This approach leads to a new version of the WEnKF called Interacting Weighted Ensemble Kalman Filter (IWEnKF).

The paper is organized as follows. Section II recalls the estimation problem formulation and the WEnKF equations. In Section III, the IWEnKF algorithm is introduced and theoretical proofs are provided. Section IV illustrates the performance of the proposed method applied to an underwater TAN example. Section V concludes the paper.

II. PROBLEM STATEMENT

We consider the following discrete-time state-space model with hidden states {x k } k≥0 and observations {y k } k≥1 , taking values in R d and R dm respectively. The state sequence {x k } k≥0 is defined as an inhomogeneous Markov chain with initial probability density p 0 . {x k } k≥0 is defined by the following equation:

x k = f k (x k-1 ) + η k (1)
where f k is the state function and η k the process noise.

The measurements sequence {y k } k≥1 is related to the state sequence by:

y k = h k (x k ) + v k (2) 
where h k is the observation function and v k the measurement noise. η k and v k are independent and identically distributed (i.i.d.), mutually independent and independent of x 0 . We will assume that h k is a nonlinear function.

A. Filtering framework

Bayesian filters aim to estimate the a posteriori density of the state variables at the time k given the past measurements. The posterior density will be denoted p k (x k ) p(x k |y 1:k ) where y i:k = {y i , y i+1 , . . . , y k } is the vector of all the data y accumulated from time i up to k. The prior density will be denoted p k|k-1 (x k ) p(x k |y 1:k-1 ). State estimation consists of two steps: prediction and correction.

• The prediction step determines a prior density p k|k-1 (x k ) with respect to the transition density p(x k |x k-1 ) and the previous posterior density p k-1 (x k-1 ) via the Chapman-Kolmogorov equation:

p k|k-1 (x k ) = p(x k |x k-1 ) p k-1 (x k-1 )dx k-1 (3) 
• The correction step determines the posterior density of the state with respect to the prior density (3) and the likelihood g k (x k ) p(y k |x k ). From Bayes' law, one obtains:

p k (x k ) = g k (x k ) p k|k-1 (x k ) g k (x k ) p k|k-1 (x k )dx k (4) 
If the state and the observation functions are linear, the process and measurements noises are Gaussian, and the initial density p 0 is Gaussian then the Kalman filter provides an optimal analytic iterative formulation of the filtering distribution. The Kalman formulation was extended to nonlinear models, but it is not robust to severe nonlinearities and non-Gaussian densities. For highly nonlinear models, several Monte Carlo methods were proposed to approximate the posterior density.

B. Weighted Ensemble Kalman Filter

The Weighted Ensemble Kalman Filter (WEnKF, [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF]) combines the advantages of the Ensemble Kalman Filter and the Particle Filter. Indeed, WEnKF can be used without linear or Gaussian assumptions on the model and was demonstrated to require less particle samples to converge than conventional Monte Carlo methods. The equations of WEnKF are generally presented when the measurement dynamic is linear [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF]. A more general version is presented here for the nonlinear case. WEnKF can be interpreted as a particle filter [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF] in the meaning that the approximation of the posterior density can be written as a weighted sum of Dirac measures:

p k (x k ) ≈ N i=1 w i k δ x i k (x k ) ( 5 
)
where N is the number of state samples called particles, (x i k ) i=1,...,N are the particles, (w i k ) i=1,...,N are the associated importance weights such that

N i=1 w i k = 1 and δ the Dirac delta function centered at 0 such that δ a (x) = δ x-a .
WEnKF is composed of three steps:

• Prediction: the particles are drawn from the following proposal density:

x i k ∼ q k (x k |x i k-1 , y k ) = N (x k ; μi k , Pk ) (6) 
The mean μi k and covariance matrix Pk are computed as follows:

μi k = f k (x f,i k-1 ) + Kk (y k -h k (f k (x f,i k-1 ))) (7) Pk = Pk -Kk P Y K k (8)
The Ensemble Kalman gain is approximated by:

Kk = P XY P -1 Y (9)
where ∀ i = 1, . . . , N :

x f,i k = f k (x f,i k-1 ) + η i k and xk = N i=1 w i k-1 x f,i k ( 10 
)
y i k = h k (x f,i k ) and ỹk = N i=1 w i k-1 y i k (11) Pk = N i=1 w i k-1 (x f,i k -xk )(x f,i k -xk ) (12) 
P Y = N i=1 w i k-1 (y i k -ỹk )(y i k -ỹk ) + R k (13) 
P XY = N i=1 w i k-1 (x f,i k -xk )(y i k -ỹk ) (14) 
where R k is the covariance matrix of the measurement noise v k .

• Correction: the weights are updated according to the likelihood g k (x k ), the transition density p(x k |x k-1 ) and the proposal density q k (x k |x k-1 , y k ).

w i k ∝ w i k-1 g k (x i k )p(x i k |x i k-1 ) N (x i k ; μi k , Pk ) (15) 
and N i=1 w i k = 1. • Resampling: the particles x i k with high normalized weights w i k are selected and low-weighted particles are discarded. The selected particles are duplicated according to their weights in order to keep a constant total number of particles. The new set of particles is called x i k and the weights are set such that w i k = 1/N . The resampling is used to decrease the weight variance and avoids degeneracy (i.e. when a single weight tends to unity and all the others tend to zero). See [START_REF] Li | Resampling methods for particle filtering: classification, implementation, and strategies[END_REF] or [START_REF] Del Moral | On Adaptive Resampling Procedures for Sequential Monte Carlo Methods[END_REF] for a survey on resampling methods. In practice, resampling is triggered by monitoring a criterion, such as the approximate efficiency [START_REF] Kong | Sequential imputations and Bayesian missing data problems[END_REF], [START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian filtering[END_REF]:

N eff ,k = 1 N i=1 (w i k ) 2 (16) 
Resample is triggered whenever N eff ,k < N th where N th is a given threshold.

C. Monte Carlo filters performance criterion

The performance of Monte Carlo approaches can be evaluated by the asymptotic variance of the unnormalized weights given by [START_REF] Moral | Feynman-Kac formulae: Genealogical and interacting particle systems with applications, Probability and its applications[END_REF], ∀ i = 1, . . . , N :

Var( wi k ) = 1 N   g k (x k ) 2 p k|k-1 (x k ) 2 q k (x k ) dx k g k (x k )p k|k-1 (x k )dx k 2 -1   (17)
where the proposal density q k (x k |x k-1 , y k ) is simplified as q k (x k ). When this variance is small, the Monte Carlo filter estimate is accurate, which reduces degeneracy phenomena.

III. INTERACTING WEIGHTED ENSEMBLE KALMAN FILTER

In this section, we introduce the Interacting Weighted Ensemble Kalman Filter (IWEnKF). We first determine a condition on the proposal covariance matrix so that it guarantees that the asymptotic variance of the unnormalized weights is finite (Section III-A). Guaranteeing a finite variance of the unnormalized weights provides an accurate Monte Carlo estimate. We then derive an analytic formulation of the IWEnKF that satisfies this condition (Section III-B).

A. Upper bound of the asymptotic variance of the unnormalized weights

Thereafter, the prior p k|k-1 (x k ) and the proposal q k (x k ) densities are considered Gaussian. The mean of the prior density is xk and the covariance matrix is Pk , such that:

p k|k-1 (x k ) ∝ exp - 1 2 (x k -xk ) P -1 k (x k -xk ) (18)
The expression of the proposal density is similar to (18), where xk is replaced by xk and Pk by Pk .

Under these Gaussian assumptions, we state in Proposition 1 that the asymptotic variance admits a finite upper bound under a condition on the proposal covariance matrix Pk .

Proposition 1: Assume that the prior p k|k-1 (x k ) and the proposal densities q k (x k ) are Gaussian with covariance matrices Pk and Pk respectively. If Pk -Pk is positive definite then the asymptotic variance of the unnormalized weights is finite:

Pk -Pk > 0 ⇔ Var( wi k ) < +∞ (19) 
Proof: The asymptotic variance of the unnormalized weights (17) is bounded if:

g k (x k ) 2 p k|k-1 (x k ) 2 q k (x k ) dx k < +∞ (20) 
By taking the supremum, it comes:

g k (x k ) 2 p k|k-1 (x k ) 2 q k (x k ) dx k ≤ sup x k ∈R d g k (x k ) sup x k ∈R d p k|k-1 (x k ) q k (x k ) g k (x k )p k|k-1 (x k )dx k (21)
We assume that the likelihood g k (x k ) is bounded. Thus a sufficient condition for the asymptotic variance of the unnormalized weights to be bounded is:

sup x k ∈R d p k|k-1 (x k ) q k (x k ) < +∞ (22) 
Equation ( 22) is equivalent to log

p k|k-1 (x k ) q k (x k )
< +∞. By replacing the densities p k|k-1 (x k ) and q k (x k ) by their expressions (18), it follows:

log p k|k-1 (x k ) q k (x k ) ∝ 1 2 (x k -xk ) P -1 k (x k -xk ) - 1 2 (x k -xk ) P -1 k (x k -xk ) (23 
) By simultaneously adding and subtracting xk and pooling the terms, the logarithm (23) can be written as follows:

log p k|k-1 (x k ) q k (x k ) ∝ - 1 2 X k P -1 k -P -1 k X k + V k X k (24) where V k = P -1 k (x k -xk ) and X k = (x k -xk ). It comes: lim ||X k ||→+∞ log p k|k-1 (x k ) q k (x k ) = -∞ if P -1 k -P -1 k > 0
(25) which is equivalent to:

sup x k ∈R d p k|k-1 (x k ) q k (x k ) < +∞ if Pk -Pk > 0. ( 26 
)
In order to satisfy (19), the proposal covariance matrix Pk must be appropriately chosen. In the following section, we introduce a method to determine Pk in the WEnKF framework which leads to the IWEnKF formulation.

B. Interacting WEnKF

In practice, the proposal density given by the WEnKF is the Gaussian given by [START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF]. The proposal covariance matrix Pk is not guaranteed to satisfy the conditions of Proposition 1 ( Pk -Pk > 0). Thus, Pk can be replaced with a new covariance matrix P * k so that P * k -Pk > 0 by slightly enlarging the proposal covariance matrix Pk . This approach allows a greater overlap between the proposal density and the posterior density as illustrated in Fig 1.

0 0.2 0.4 0.6 μi k q k (x) = N (x k ; μi k , Pk ) q * k (x) = N (x k ; μi k , P * k ) p k (x k )
Fig. 1: Scheme of the overlaps between the posterior density (red curve), the original WEnKF proposal density ((6), blue curve), and the proposal density with a larger covariance matrix ((27), black curve).

Proposition 2: A proposal covariance matrix P * k that satisfies the condition of Proposition 1 i.e. P * k -Pk > 0, is:

P * k = 1 2 ( Pk + Pk + H k ) (27) 
where:

• Pk is the Kalman updated covariance matrix (8);

• Pk is the prior covariance matrix (18);

• H k is obtained from the polar decomposition of Pk -Pk .

Proof: Solving Pk -Pk > 0 is equivalent to finding a symmetrical matrix P k solution of the following constrained optimization problem:

min P k -Pk >0 ||P k -Pk || 2 F (28)
where ||.|| F is the Frobenius norm. In order to keep the information contained in the initial covariance matrix of the proposal density, we want to find P k close to Pk .

By simultaneously adding and subtracting Pk in (28), it comes: min

P k -Pk >0 ||P k -Pk -( Pk -Pk )|| 2 F ( 29 
)
By taking V k = P k -Pk and A k = Pk -Pk , it follows:

min V k >0 ||V k -A k || 2 F ( 30 
)
The solution according to Higham's theorem [START_REF] Higham | Computing a nearest symmetric positive semidefinite matrix[END_REF] is:

V F k = 1 2 (A k + H k ) (31)
where H k is obtained from the polar decomposition of Pk -Pk , i.e. Pk -Pk = U k H k with U k U k = I d where I d is the identity matrix of dimension d. The solution of the optimization problem (28) is thus:

P * k = V F k + Pk = 1 2 ( Pk + Pk + H k ) (32)
Proposition 2 introduces a new proposal covariance matrix for the IWEnKF that satisfies the conditions of Proposition 1. As a result, IWEnKF guarantees that the asymptotic variance of the unnormalized weights is finite. The new proposal covariance matrix is obtained via a polar decomposition which can be polynomially computed [START_REF] Higham | Computing the polar decomposition with applications[END_REF]. In practice, this is likely to bring more robustness to nonlinearities and multimodality.

The algorithm of IWEnKF is described in Algorithm 1.

Algorithm 1 Interacting WEnKF

Initialization: For i = 1, . . . , N , initialize the particles x i 0 ∼ p 0 from a prior distribution and set 

w i 0 = 1/N . for k = 1,
wi k ∝ w i k-1 g k (x i k )p k|k-1 (x i k |x i k-1 ) N (x i k ;μ i k , P * k ) ; w i k = wi k / i wi k . • [Estimation:] compute the filter estimate xk = i w i k x i k and the associated covariance matrix Pk = i w i k (x i k -xk )(x i k -xk ) . • [Resampling:] if N eff ,k < N th then
Apply some resampling procedure as described at the end of Section II-B. end if end for

IV. SIMULATION EXAMPLE

To illustrate the behavior of the proposed IWEnKF filter, it will be compared with the standard WEnKF on an underwater TAN example. Comparisons are done with the metrics described in Section IV-C.

A. Underwater TAN

Underwater TAN provides a drift-free navigation method for UUVs while avoiding resurfacing for a GPS update. The availability of seabed maps as well as the emergence of precise telemeters make the method suitable for underwater navigation. TAN [START_REF] Melo | Survey on advances on terrain based navigation for autonomous underwater vehicles[END_REF] aims to retrieve the vehicle current state (e.g. position, velocity) by matching a terrain profile obtained from a sensor with a profile reconstructed from an embedded map of the operation area.

We consider an UUV equipped with a multi-beam telemeter and an embedded map of the area of operation shown in Fig 2 . The reference trajectory is located in an ambiguous area of the map (see Fig 3). The spatial resolution of the map is about 100 meters. Measurements and predicted measurements of the filters are obtained by bilinear interpolations. 

B. State-space model

Let us consider a simplified navigation model. The vehicle state x is comprised of the position p and the velocity v, where p = [p x , p y , p z ] is expressed in meter and v = [v x , v y , v z ] is expressed in meter per second. The state equation is written in the following discrete way:

x k = p k v k = I 3 ∆ k I 3 0 3 I 3 x k-1 + η k (33) 
where I 3 and 0 3 are respectively the identity matrix and the zeros matrix of dimension 3 by 3, ∆ k is the discretization time-step and η k a Gaussian process noise i.i.d. of covariance matrix Q. η k represents the uncertainty of the model. The measurement is made up of m beams: y = [r 1 , . . . , r m ] . Each measurement r i records the distance between the UUV and the seabed. The measurement equation is constructed via a projection in the Cartesian coordinate system (see Meduna [START_REF] Meduna | Terrain relative navigation for sensor-limited systems with application to underwater vehicles[END_REF] for details). For i = 1, . . . , m,

ri = (p x -p x i ) 2 + (p y -p y i ) 2 + (p z -map mb (p x i , p y i )) 2 + vi (34) 
where map mb is the seabed depth of the operation area and v i the measurement noise with R its covariance matrix. The map is a function of R 2 in R, taking as input the position in axis x and y and giving as output the elevation of the terrain.The range r i is computed by determining p i = [p x i , p y i , p z i ] with p z i = map mb (p x i , p y i ), the intersection point of the inertial beam direction vector with the terrain (see Fig 3.4 in [START_REF] Meduna | Terrain relative navigation for sensor-limited systems with application to underwater vehicles[END_REF]). As the intersection point is unknown in practice, the multi-beam telemeter measurement equation (34) is computed through numerical approximations (here via grid search method). The measurement noise takes these approximations into account in addition to sensor and map errors.

C. Comparison criteria

Comparisons are done by using the following criteria, evaluated for N mc ∈ N * Monte Carlo simulations.

• The Root Mean Square Error (RMSE) of filters:

RMSE x k = Nmc i=1 ||x i k -x k || 2 2 Nmc ( 35 
)
where xi k is the state estimate for the i th Monte Carlo simulation. We will compare the RMSE with an approximation of the Posterior Cramér Rao Bound (PCRB) which is calculated according to the Tichavský recursive formula [START_REF] Tichavsky | Posterior Cramér-Rao bounds for discrete-time nonlinear filtering[END_REF]. PCRB is approximated over 300 state samples at each time-step.

• The number of non-convergences:

The filter is said to not converge if, at the end of the trajectory, during the last 5 consecutive measurement time-steps, the state estimate xk leaves the confidence ellipsoid Γ k given by the PCRB, such that

Γ k = x k |(x k -xk ) T P CRB -1 k (x k -xk ) ≤ α 2 th ( 36 
)
where the threshold α th is such that P(X 2 (d) ≤ α 2 th ) = 0.99 with d the dimension of the state vector and X 2 the Chi-squared distribution.

D. Simulation and results

Scenario parameters Fig 4 shows the RMSEs for both filters using the simulation conditions described above. The RMSE of the horizontal position is calculated as follows:

•
RMSE p h k = RMSE p x k 2 + RMSE p y k 2 (37) 
The horizontal velocity is computed as above by p k by v k , p x by v x and p y by v y . Note that the RMSE curves can be lower than the PCRB curve at some point because PCRB is obtained by recursive approximation [START_REF] Tichavsky | Posterior Cramér-Rao bounds for discrete-time nonlinear filtering[END_REF]. Only convergent Monte Carlo simulations are used to plot the curves on The curves follow the tendency of the PCRB. Position and velocity RMSEs decrease with time and converge to a value close to the PCRB approximation.

Although the accuracy of the filter estimates is similar after 20 min of trajectory, the IWEnKF converges faster than the WEnKF. Before the convergence of the filters (from 90 s, when the IWEnKF curve falls below the WEnKF curve, until 15 min), the average distance between the two curves is about 50 m for the horizontal position. For 50 Monte Carlo simulations, the number of nonconvergences is shown in Fig 5 . The number of nonconvergences of IWEnKF is twice as small as the one of WEnKF. This significant decrease in the number of nonconvergences was expected as the IWEnKF method guarantees a bounded variance of the weights and thus prevents weight degeneracy.

V. CONCLUSION

This paper focuses on the Interacting Weighted Ensemble Kalman Filter (IWEnKF), an improved version of the Weighted Ensemble Kalman Filter. The proposed approach guarantees that the variance of weights remains bounded, which brings more robustness to nonlinearities in practice. IWEnKF was tested on an underwater Terrain Aided Navigation example. We demonstrated that IWEnKF is more robust to nonlinearities and measurement ambiguities than the classic version of the algorithm, as the number of nonconvergences is significantly reduced. The guarantee of nondivergence of the variance of the weights will make it possible to embed this type of algorithm on autonomous systems such as UUVs.
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 2 Fig. 2: Bathymetric map of California coast (35°51 N, 121°27 W). The colorbar represents the depth levels (m).

  Number of Monte Carlo simulations: 50 • Sampling period: ∆ k = 5 s • Number of bathymetric measurements: 420 • Trajectory duration: 35 min • Number of beams: m = 5 • Resampling threshold: N th = 0.75 N • Standard deviation of each beam range: σ R = 10 m The initial uncertainty of the position is set to P p 0 = diag([1000, 1000, 100] 2 ) and that of the velocity is set to P v 0 = diag([0.5, 0.5, 0.5] 2 ). The notation diag([A]) is the matrix with the elements of A in the diagonal and 0 elsewhere. The initial state is x 0 = [110000, 140000, -100, 5, 5, 0.05] . The standard deviation of the process noise is Q = diag([3, 3, 3.10 -1 , 2.10 -2 , 2.10 -2 , 2.10 -3 ]2 ).

Fig. 3 :

 3 Fig. 3: Bathymetric map of the California coast with the true trajectory (black line) and the trajectory estimated by IWEnKF (red line). The number of particles is N = 3000 for both filters. The initial errors and the measurements realizations are also shared. For one Monte Carlo simulation, Fig 3 illustrates the quick convergence of a IWEnKF trajectory towards the true trajectory.Fig4shows the RMSEs for both filters using the simulation conditions described above. The RMSE of the horizontal position is calculated as follows:

Fig 4 .

 4 The nonconvergence percentage is provided inFig 5. 

Fig. 4 :

 4 Fig. 4: Plot of PCRB and RMSEs for the horizontal position (upper plot) and for the horizontal velocity (lower plot).

Fig. 5 :

 5 Fig. 5: Histogram of non-convergence percentage for 50 Monte Carlo simulations.

  2,. . . do • [Prediction:] For all particles, compute the mean and the covariance matrix of the proposal density[START_REF] Papadakis | Data assimilation with the weighted ensemble Kalman filter[END_REF].

	Compute P * k using (27) and sample x i k from the new
	proposal density N (x k ; μi

k , P * k ).

• [Correction:] ∀i, update and normalize the weights: