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SUMMARY

In this paper, the acoustic field with the presence of poro-elastic materials is simulated by the eXtended
Finite Element Method (X-FEM). Problems involving interfaces between different media are our main fo-
cus. The proposed method allows interfaces to be embedded in the finite elements, easing significantly the
discretization, especially when the geometry of the interface is complex. The gradient discontinuity at the
interface is handled through the ridge enrichment function. The strategies of spatial discretization for two
different types of coupling interface are provided. A high-order approximation is used to improve the rate
of convergence for the Biot mixed formulation (u, p) and to eliminate the pollution effect at high frequen-
cies. The verification of the method is performed with two benchmarks. Convergences of the solutions
exhibit the capability and the accuracy of the present method under different conditions: coupling types,
geometric complexity and a wide range of frequency. The applicability and advantage of the method in
practical situations are demonstrated by a car cavity problem where part of the geometry is modified with-
out re-meshing. This paper demonstrates that high-order X-FEM is an efficient computational approach for
analysing sound-absorbing poro-elastic materials involving complex geometries.

key words: X-FEM, High order, Biot theory, mixed coupling interfaces

1 Introduction

This paper proposes a computational approach based on the eXtended Finite Element Method (X-
FEM) to predict the acoustic behaviour of porous structures coupled to other media. Poro-elastic
materials (PEMs) are widely used to build sound absorbers for practical noise control problems
such as panels for room acoustics and sound proofing in aircraft, cars and trains. The absorption5

of PEMs originates from energy dissipation in the material by means of structural, thermal and
viscous effects due to the internal interaction between an elastic solid phase and the pores of a
fluid phase. To describe these dissipation effects, two categories of models were developed and
investigated, which are the equivalent fluids [1, 2] and coupled formulations based on Biot’s theory
[3, 4, 5, 6]. The equivalent fluid model supposes that the solid phase is motionless. It corresponds10

to the case where the frame stiffness is very high and its vibration can be negligible compared to
fluid motion under certain high-frequency excitation. In contrast, formulations based on the Biot
equations provide a complete description of the propagation of coupled waves in the elastic and
fluid phases within the materials. This is valid the most general model and it is used in the present
paper.15
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Numerical methods for solving the Biot equations can be divided into two principal categories.
The first one corresponds to the classical finite-element methods (FEM) based on low-order piece-
wise polynomials bases and the second one is classified as generalized wave-based methods using
exact wave solution as basis functions. The classical FEM suffers from convergence problems with
respect to the number of degrees of freedom. This issue stems partly from the build-up of disper-20

sion error (pollution effects [7]) in wave equations, especially at high frequencies and partly from
the disparity of scales between the different types of waves appearing in porous materials (see [8]).
High-order polynomials elements have been demonstrated to be an efficient way to address these
issues in [9, 10]. Wave-based methods have also been developped to solve problems with highly
oscillatory solutions. Ultra weak formulation [11], Generalized finite element method (GFEM) [12]25

or partition of unity finite element method (PUFEM) [13], wave-based method [14] and Discontin-
uous Galerkin methods [15] were proposed to solve the Helmholtz equation or the Biot equations.
Compared to the classical FEM, wave-based methods show a better ability to capture the oscil-
lation of waves with less computational cost. However, more efforts and physical knowledge for
the implementation are required since local, exact solutions of the governing equations have to be30

obtained beforehand, particularly for complicated formulations such the Biot equations studied in
[16] and [14]. Contrary to wave-based methods, the choice of basis and computation procedure for
the high-order FEM is independent of the physical model.

When modelling interfaces between different materials with the classical FEM, the mesh has to
coincide with the geometry of interface. A significant effort is needed for this purpose, especially35

when the geometry of the interface is complex. In the case where the mesh is not conforming
with the interface, Lagrangian multipliers [17], penalty methods [18] or Nitsche methods [19] are
frequently employed to weakly enforce the continuity across the interface. The eXtended Finite
Element Method is an enriched version of the classical FEM that can tackle such limitations of
the mesh and the geometry. X-FEM was first proposed to solve crack growth problems without40

re-meshing [20] and was also applied to deal with material interfaces [21, 22]. The X-FEM with
high-order approximations has been studied in [23, 24] and [25] to alleviate the geometrical error.
The most relevant prior work to the present paper is probably the use of X-FEM in fluid-structure
interaction analysis such as [26] and [27]. In [27], X-FEM is used to track an interface without re-
meshing and enforce the coupling condition between fluid and structure with Lagrangian multipliers45

and a mortar method. In the present work, the location of the interface and the coupling conditions
are handled simultaneously by the enrichment strategy without extra operators.

The main contribution of this work is to extend the application of X-FEM approach to the
acoustic analysis of porous structures with interfaces. The proposed computational method is able
to handle multiple medium interfaces and to ensure convergence of the Biot mixed formulation50

(u, p) [5] simultaneously. This paper is organised as follows: in the next section, the physical
problem is stated describing the governing equations for different media, and two common coupling
interface conditions are introduced. In section 3, the idea of the X-FEM and level-set technique are
introduced with the construction of a suitable enrichment function. Discretization strategies for
two coupling configurations are then detailed. The verification and application of the method are55

demonstrated by three numerical examples with gradually more complex geometries, considering
different materials and frequencies in the last section.

2 Formulation

2.1 Problem statement and variational formulation

The problem studied in this paper concerns a bounded domain Ω composed of several acoustic60

media which have different physical models and material properties. For the purpose of clarity,
here a two-media configuration is considered to formulate the equations and interface conditions.
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This can be easily extended to more complex problems with multiple interfaces. In this paper, the
problem is studied in the frequency space, focusing on acoustic behaviour of the media in steady
state. A harmonic convention e+jωt is assumed with angular frequency ω.65

The boundary of the domain is denoted Γ . The domain is divided by a material interface Γ ∗

into two subdomains Ω1 and Ω2 as illustrated in Fig. 1. n1 and n2 are the unit outward normal
at the interface of each subdomain with n1 = −n2. In each subdomain we can use a different
model for the porous material: an acoustic fluid or a poro-elastic material. As a consequence,
two common types of interfaces will be discussed in this paper: an interface between an acoustic70

fluid and a poro-elastic region, and an interface between two different poro-elastic materials. These
coupling interfaces are representative of many situations found in practical applications. It should
be noted that the acoustic fluid considered in this paper comprises all types of fluid medium which
are governed by the classical Helmholtz equation. The equivalent fluid model[1, 2] is therefore
included in this class of material.75

In order to apply the X-FEM approach to this problem, the variational formulations of the
governing equations for each media have to be established.

Figure 1: Computational domain with two different media.

2.1.1 Poro-elastic medium

The model for the poro-elastic medium used here is the mixed formulation of the Biot equation
formulated with pressure p in the fluid phase and the displacement us of the solid phase, first
proposed in [5]. The variational formulation from [28] with test function q for pressure and vs for
the displacement is written as follows:∫

Ω
σ̂sij(v

s)εsij(u
s) dΩ− ω2

∫
Ω
ρ̃vsiu

s
i dΩ−

∫
Ω
γ̃vsi

∂p

xi
dΩ−

∫
Γ

vsinj σ̂
s
ij(u

s) dS = 0 , (1a)∫
Ω

[
1

ω2ρ̃eq

∂q

∂xi

∂p

∂xi
− 1

K̃eq

qp

]
dΩ−

∫
Ω
γ̃
∂q

∂xi
usi dΩ +

∫
Γ
qutn dS = 0 , (1b)

where σ̂s represents the in-vacuo stress tensor of the solid phase and εs is the associated strain
tensor. The surface term utn defined on the boundary Γ is the normal total displacement of the80

porous material, which consists of the displacement of elastic solid phase and fluid phase. The
coefficients ρ̃ , ρ̃eq , K̃eq and γ̃ are the effective density of the solid phase, the effective density and
compressibility of the fluid phase and coupling parameter, respectively. These parameters originate
from the Johnson–Champoux model summarised in Appendix A. Note that the coefficients used
in this formulation are slightly different from those used in [5]. This formulation is used because85

the number of degrees of freedoms (dofs in the following) per node is reduced to three instead of
four compared to other displacement-based formulations [6] in two-dimensional problems, one for
pressure and two for the solid displacement. In addition, this formulation leads to a more natural
coupling with acoustic fluids and other PEMs, as explained below.
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Without the terms involving γ̃, Eq.(1a) can be considered as the dynamic behaviour of the solid90

phase in vacuum and Eq.(1b) is the Helmholtz equation for the equivalent fluid.

2.1.2 Acoustic fluid medium

The variational formulation for the acoustic fluid medium is that for the Helmholtz equation with
test function q for the pressure:∫

Ω

(
1

ω2ρ

∂q

∂xi

∂p

∂xi
− 1

K
qp

)
dΩ +

∫
Γ
q

1

ω2ρ

∂p

∂n
dS = 0 (2)

where ρ is the fluid density and K is its compressibility modulus. The surface integral term on95

Γ corresponds to the normal total displacement of the acoustic fluid. While the Biot equations
for the PEM support three distinct waves (two compression waves and a shear wave), only one
compression wave propagates in the acoustic fluid.

2.2 Interface coupling

Two coupling configurations are now discussed. First we consider the interface conditions between
an acoustic fluid (denoted by the subscript 1) and a poro-elastic region (denoted by the subscript
2). The conditions to be imposed on such an interface are

1

ω2ρ1

∂p1

∂n1
= −ut2 · n2 , (3a)

p1 = p2 , (3b)

σ̂s2 · n2 = 0 . (3c)

Eq.(3a) represents the continuity of the total normal displacement ut which is defined as the volume100

average of the displacement including both fluid and solid phases. Eq.(3b) represents the continuity
of pressure. Eq.(3c) corresponds to the free-surface condition on the porous material.

The second type of coupling conditions corresponds to an interface between two different PEMs
(denoted by the subscripts 1 and 2):

us1 · n1 = −us2 · n2 , (4a)

ut1 · n1 = −ut2 · n2 , (4b)

p1 = p2 , (4c)

σ̂s1 · n1 = −σ̂s2 · n2 . (4d)

Eq.(4a) to Eq.(4d) represents, respectively, the continuity of the normal displacement of the solid
phase, the continuity of the total normal displacement, the continuity of pressure in the fluid phase,
and the continuity of the in-vacuo normal stress in the solid phase.105

When applying the above sets of coupling conditions to the variational formulations Eq.(1) and
Eq.(2), the surface terms on the interface Γ ∗ vanish. In addition, since we use a continuous
discretisation of the pressure field, its continuity across the interface is directly enforced. These
types of interface conditions are called natural couplings, resulting in a simple implementation since
no other condition needs to be enforced at the interface.110

3 Spatial discretization with X-FEM

3.1 The eXtended Finite Element Method (X-FEM)

As is customary with the finite element method, the computational domain Ω is divided into non-
overlapping elements Ωe, constituting a mesh. The general vector field u(x) is obtained numerically
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by a polynomial approximation on each element Ωe:115

u(x)|Ωe =

n∑
i=1

Ni(x)ui , (5)

where n is the number of the degree of freedom on the element, ui is the ith nodal contribution of
this approximation, Ni(x) represents the ith shape function associated with ui, which usually is a
piecewise polynomial basis.

When there is an interface between two materials, the classical finite-element method requires a
mesh that conforms to the interface in order to obtain the optimal rate of the convergence [22]. In120

contrast, with the eXtended Finite Element Method (X-FEM) the mesh does not need to coincide
with the interface, different materials can overlap within one element. The presence of a material
discontinuity is naturally handled by adding an enrichment term to the classical finite element
approximation Eq.(5). For every element that intersects with the interface, the displacement field
u(x) is enriched locally by writing [29]125

u(x)|Ωe =
n∑
i=1

Ni(x)ui +

nenr∑
j=1

Nj(x)ϕ(x)aj , (6)

where nenr is the number of enriched nodes, aj is the additional contribution for enriched node
j, Nj(x) is a shape function from a basis satisfying the partition of unity (classical finite element
shape functions are usually considered). The function ϕ(x) represents the enrichment function,
which complements the polynomial approximation to represent some complex behaviour such as a
discontinuity in the element.130

Note that with X-FEM approach, only the nodes belonging to elements containing the interface
are enriched. The domain solved by the X-FEM is therefore formed of standard elements, enriched
elements, and so-called blending elements as shown in Fig. 2. The elements intersecting the interface
are fully enriched (in deep green) while the elements partially enriched are called blending elements
(in light green).135

Figure 2: Typical X-FEM mesh with interface. Red nodes: enriched nodes. Deep green: enriched
elements. Light green: blending elements. White elements: standard finite elements.

When solving material interface problems with X-FEM, enriched elements at the interface contain
different materials (at least two) and the enrichment function is usually continuous at the interface.
The enriched elements are partitioned into sub-elements as shown in Fig. 2 (right) to facilitate the
numerical integration when computing the algebraic system (details of thus integration method can
be found in [21]).140

The next ingredient for X-FEM is to track the position of the interfaces and to construct the
enrichment function within each enriched element. A level-set function φ(x) as Eq.(7) is introduced
to locate the interface. The function is interpolated by the same finite-element shape functions
Ni(x) based on the signed distance φi of node i to the interface. Nodes are located at one side of
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the interface with φi < 0 while they are located at another side of the interface with φi > 0. A 1D145

example is shown in Fig. 3a.

φ(x) =
∑
i

φiNi(x) . (7)

The approximated location of the interface is given by the zero value of the level-set function:
φ(x) = 0.

Furthermore, the enrichment function is constructed from the level-set. Since the material inter-
face is a weak discontinuity, a continuous function with a discontinuous derivative defined over the150

element. It is the so-called “ridge” function proposed in [22]:

R(x) =
∑
i

|φi|Ni(x)−

∣∣∣∣∣∑
i

φiNi(x)

∣∣∣∣∣ (8)

where φi is nodal signed distance to the interface and Ni(x) is the shape function used to ap-
proximate the level-set function. The different terms involved in the definition of the enrichment
function R(x) are illustrated in 1D in Fig. 3a. Fig. 3b is an illustration of the ridge function in 2D.
The ridge enrichment function vanishes on the non-enriched and blending elements, which leads to155

a good conditioning of the matrix system [22], contrary to other enrichment functions proposed in
[21, 30].

(a) (b)

Figure 3: Level set and ridge enrichment function (a) Definition in 1D, (b) Illustration on a 2D
triangular element

If the mesh conforms to the interface profile, the X-FEM recovers the classical FEM since no
node is enriched. Note that the ridge enrichment function constructed by a linear approximation
of the level-set function may suffer from convergence issues when the geometry of the interface is160

curved, as geometrical error becomes more important than the solution approximation. Alternative
methods were proposed in [23, 24] to address this aspect.

3.2 Applications to interfaces between porous materials

The Biot mixed formulation introduced in Section 2 involves two different fields: a scalar pressure
field p and a vector displacement field us. In contrast, the acoustic fluid medium only requires the165

scalar pressure field. For this reason it is easier to couple two regions with poro-elastic media since
the discretization is the same everywhere in the computational domain. The case where a region of
acoustic fluid is coupled to a poro-elastic region requires more care and is addressed subsequently
in Section 3.2.2.
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Figure 4: Discretization strategy and node distribution for coupling configuration: PEM-PEM cou-
pling (left) and acoustic fluid-PEM coupling (right).

3.2.1 Interface between two poro-elastic media170

We first present the interface between two different poro-elastic media modelled with the Biot
formulation. Fig. 4 (left) gives an illustration of the discretization strategy for this situation. The
whole domain is divided into two subdomains by the interface in order to assign the different
material properties in each subdomain. This subdivision is accomplished thanks to the sign of the
level-set function φ(x). The pressure and displacement fields are herein both defined on the whole
discretization domain, each node involves three degrees of freedom. The displacement of the solid
phase us and the pressure p defined on an element ΩI intersecting the interface are both enriched
as follows:

p(x)
∣∣∣
ΩI

=
n∑
i

Ni(x)pi +

nenr∑
j

Nj(x)R(x)aj , (9a)

us(x)
∣∣∣
ΩI

=
n∑
i

Ni(x)usi +
n∑
j

Nj(x)R(x)bj , (9b)

where aj and bj are the additional enrichment dofs for the pressure and displacement fields as-
sociated to the ridge enrichment function R(x) introduced previously. The conventional shape
function Ni(x) and Nj(x) used in this paper are high order Bernstein basis polynomials. The fields
on the elements not containing the interface boundary are expressed by the standard approximation
without enrichment terms.175

Substituting the prescribed approximations into the weak formulation Eq.(1) and the assembly
of element contributions result in a linear system of the form

1
ω2ρ̃eq

[Kp]− 1
K̃eq

[Mp] −γ̃[Cpu] 1
ω2ρ̃eq

[Kpa]− 1
K̃eq

[Mpa] −γ̃[Cpb]

−γ̃[Cup] P̂ [Ku]− ω2ρ̃[Mu] −γ̃[Cua] P̂ [Kub]− ω2ρ̃[Mub]

1
ω2ρ̃eq

[Kap]− 1
K̃eq

[Map] −γ̃[Cau] 1
ω2ρ̃eq

[Ka]− 1
K̃eq

[Ma] −γ̃[Cab]

−γ̃[Cbp] P̂ [Kbu]− ω2ρ̃[Mbu] −γ̃[Cba] P̂ [Kb]− ω2ρ̃[Mb]





p

us

a

b


=



Fp

Fu

Fe

Fe


(10)
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where [Ku] and [Mu] are the standard global stiffness and mass matrices for the solid phase, while
[Kp] and [Mp] are the kinetic and compression energy matrices of the fluid phases. The coupling
terms [C] corresponds to the inner products of shape functions and their derivatives. The matrices180

with subscript a and b are associated to the enriched terms, i.e. those including the ridge function
R(x). Fp is the external excitation on the fluid phase and Fu represents the external forces on
the solid phase. Fe represents the external force applied on the enriched elements. The upper-left
block of above the system represents the classical discretized form of the formulation Eq.(1) in the
standard finite element method as given in [31], the enrichment method is involved in the remaining185

terms of the system.
It is worth reminding that each term in the enriched blocks is integrated using a modified Gauss

quadrature scheme for partitioned sub-elements at the interface as described previously (see Fig. 2).

3.2.2 Interface between an acoustic fluid and a poro-elastic medium

Contrary to the previous configuration, the coupling of an acoustic fluid with a poro-elastic medium190

involves two different constitutive models: the acoustic fluid is described by Eq.(2) for the pressure
field while Eq.(1) with both pressure and displacement describes the poro-elastic medium. The
discretization strategy in this situation has to include the following features:

• Assignment of different materials properties as in section 3.2.1.

• Selection of the PEM sub-domain to define the displacement field associated to polynomial195

spaces;

• Render different governing formulations for acoustic fluid part and porous material part re-
spectively.

The assignment of material properties is handled in the same way as with the PEM-PEM interface,
through the subdivision of the whole computational domain. Thanks to the interface defined by200

the level-set function, the displacement field is defined only on the elements on which the level-set
function φ(x) > 0. The third feature is realized by decomposing the variational formulation into
different computational domains. As the pressure field is continuous between the two media, the
Helmholtz bilinear forms in Eq.(2) and Eq.(1b) for the pressure terms are defined on the whole
domain. The coupling terms with γ̃ and the solid dynamic terms in Eq.(1a) are defined on the205

poro-elastic sub-domain only.
The pressure and the displacement fields are both defined on the elements intersecting the in-

terface to ensure dofs consistency as shown in Fig. 4 (right). However, the displacement is not
taken into account on the acoustic fluid side at the numerical integration step. The pressure field
approximation on the elements crossed by the interface is enriched, whereas the displacement does
not need to be enriched and is approximated with the standard interpolation:

p(x)
∣∣∣
ΩI

=
n∑
i

Ni(x)pi +

nenr∑
j

Nj(x)R(x)aj , (11a)

us(x)
∣∣∣
ΩI

=
n∑
i

Ni(x)ui . (11b)

As before, the fields on the other elements are interpolated by the standard approximation without
any enrichment. With these approximations, coupling the Eq.(2) and Eq.(1) leads to the following
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linear system for acoustic fluid-PEM interface problem:

1
ω2ρ

[Kp]− 1
K [Mp] 0 0 1

ω2ρ
[Kpa]− 1

K [Mpa]

0 1
ω2ρ

[Kp]− 1
K [Mp] −γ̃[Cpu] 1

ω2ρ
[Kpa]− 1

K [Mpa]

0 −γ̃[Cup] Â[Ku]− ω2ρ[Mu] −γ̃[Cua]

1
ω2ρ

[Kap]− 1
K [Map]

1
ω2ρ

[Kpa]− 1
K [Mpa] −γ̃[Cau] 1

ω2ρ
[Ka]− 1

K [Ma]





pa

p

us

a


=



Fa

Fp

Fu

Fe


(12)

where the unknown pa represents the pressure field in the acoustic fluid and Fa represents the210

external excitation in this sub-domain. As for the matrix in Eq.(10), the upper-left block represents
the classical FEM system, the same matrix can be found in [32]. The last row and column in the
system correspond to the contribution of the enrichment terms associated to the additional degrees
of the freedom a to maintain the continuity of pressure. Again, the numerical quadrature on each
enriched term in the matrix is conducted on the sub-elements associated to the corresponding215

material type.
It is worth emphasizing that the additional degrees of freedom a and b are added locally on the

elements containing the interface but not for all the elements. As a consequence, the linear system
to be solved does not become much larger than the system obtained from the classical finite element
method. The above discretization strategies based on the X-FEM allow to represent the interface220

in the elements for different coupling types, but the computation procedure is still based on the
idea of the classical FEM. Therefore, some typical characteristics of the solution shall be conserved
in the present method when the problem is solved with the classical FEM.

4 Numerical examples

In this section, the proposed method is assessed using several numerical examples with increasing225

geometric complexity of the interface and involving various materials. For the examples with exact
solutions, an analysis of convergence is performed.

In this paper, the convergence is measured through the relative error in the L2 norm defined for
complex-valued fields as follows

εL2 =
‖fex − fFE‖L2

‖fex‖L2

× 100%, with ‖f‖L2 =

(∫
Ω
|f |2dΩ

)1/2

. (13)

The errors on the solid phase displacement us and on the fluid phase pressure p are calculated230

separately in order to distinguish the different convergence behaviour for each field. In acoustic
problems, the dispersion error or the pollution effect plays an important role on the convergence
behaviour. Dispersion error comes from the difference between the theoretical wave number and
numerical wave number represented by the computational scheme. A sufficient amount of dofs per
wavelength is needed to control this error. The number of dofs per wavelength Dλ is defined:235

Dλ =
2πP

kh
(14)

where P is the interpolation degree of the shape function and h represents the element size. The Biot
equations for the PEM in 2D supports three distinct complex-valued wave numbers. To emphasize
the upper limit of the convergence condition, the largest absolute value of the three wave numbers
is used:

k∗ = {|ki|}max, with i = 1, 2, 3 (15)
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and for two-dimensional problems it is customary to use the total number of degrees of freedom240

Ndof and the area of the computational domain area(Ω) instead of P and h to define an average
number of dofs per element as in [33]. Hence the Dλ is rewritten as:

Dλ =
2π

k∗

√
Ndof

area(Ω)
, (16)

The mesh resolution for the following convergence analysis is measured by Dλ instead of mesh size
h as in classical FEM, which allows to compare the quality of the h-extension, polynomial order
P-refinement and enriched FEM with the same metric.245

Three different porous materials are considered in this paper. These materials are already used
in earlier studies[15, 9, 16]. The properties of the PEM are listed in Appendix A Table A.1: the
first material is a well-characterized foam, the second one represents a polyurethane foam with
open-cell structure and whose thermal characteristic length is much higher than common foams
while the XFM is a frequently used material in the automotive industry.250

The variation of wave numbers as a function of frequency is illustrated in Fig. 5. Three types of
waves are present in a PEM: a compression and a shear wave for the vibration of the solid phase,
and the compression wave in the fluid phase. For the three materials, there is a frequency where
an intersection of two wave numbers is observed. When this occurs, there is a strong coupling
between the fluid and solid phases. As frequency increases, the wavenumbers of the solid-borne255

waves increase faster than that of the fluid wave. The waves then reach a decoupling region where
the gap between the wave numbers is large. The solution and the behaviour of the convergence is
directly related to these variations of the wave numbers, which will be discussed in the following
numerical tests.

10



0 1000 2000 3000 4000 5000

0

50

100

150

200

250

300

350

400
k1 (solid)

k2( fliud)

k3 (shear)

(a)

0 1000 2000 3000 4000 5000

0

200

400

600

800

k1 (solid)

k2 (fluid)

k3 (shear)

(b)

0 1000 2000 3000 4000 5000

0

100

200

300

400

500

600
k1 (solid)

k2 (fluid)

k3 (shear)

(c)

Figure 5: Wave numbers of the three PEM waves as functions of frequency for (a) a classical foam,
(b) polyurethane and (c) XFM (obtained from Appendix A).

4.1 Plane wave propagating in a double-layered square260

A standard benchmark is first considered, where an oblique plane wave propagates in a semi-infinite
plane filled with an acoustic fluid. This example can be regarded as a simplification of a multi-
layer problem (where number of layer is greater than 2) in practical applications. To test the
two coupling conditions (acoustic fluid-PEM and PEM-PEM), two independent configurations are
analysed, as shown in Fig. 6. In the first type of coupling, air is considered as the acoustic fluid,265

the polyurethane is used as the material for the poro-elastic region. The chosen foam is attached
on the polyurethane as the second layer in the PEM-PEM coupling.

The exact solutions associated to these configurations are obtained by calculating the reflection
Ri and transmission Ti coefficients with coupling conditions at the interface as shown in Fig. 6.
This involves solving 4 × 4 or 6 × 6 linear systems depending on the type of coupling conditions.270

The detailed procedure can be found in [28].
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(a) (b)

Figure 6: Test configurations (a) Air-PEM coupling, (b) PEM-PEM coupling.

The computational domain is a square of side L (0.2 m for air-PEM and 0.1 m for the PEM-
PEM case) discretized by structured triangular elements. The arbitrary medium interface defined
by a level-set function is placed at x = 0 in order to ease the formulation of the exact solution.
Exact Neumann boundary conditions are imposed on the four outer boundaries: For the Air-PEM275

coupling, fluid velocity in air va are imposed on boundaries of the acoustic fluid media (green line),
total displacement ut and in-vacuo stress σ̂s are imposed on the boundaries of the poro-elastic
media part (blue line) as shown in Fig. 7a; for the two PEMs coupling, total displacement ut and
in-vacuo stress σ̂s are imposed on all outer boundaries (blue line) as in Fig. 7b. The simulations
are performed from low frequencies in the coupling region to relatively high frequencies in the280

decoupling region, which allows us to identify different behaviours of solutions and convergence
curves depending on the frequency.

X

Y

Z

(a)

X

Y

Z

(b)

Figure 7: Example of X-FEM meshes and imposed boundary conditions for (a) Air-PEM cou-
pling,(b) PEM-PEM coupling.

It is recognized firstly from Fig. 8 that the interface (x = 0) is embedded in elements instead
of aligning with the boundaries of the elements. A change of propagation angle is observed at
x = 0 (illustrating the change of material properties) is successfully handled in the elements by the285

proposed method. Such a complex oscillation of the waves is well captured using such a relatively
coarse mesh thanks to the high polynomial orders of the finite-element basis (Forth order in the
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example presented in Fig. 8).
Figs. 8a and 8b show the real part of the solution for pressure and the x component of the solid

displacement at 5, 000 Hz with incident angle of π/4 in air-PEM coupling configuration. A dissipa-290

tion of the pressure wave is observed in the sub-domain x > 0. The solution for the displacement
is only computed for x > 0 as shown in Fig. 8b since it only exists in the porous material. Figs. 8c
and 8d illustrate the solution of the PEM-PEM coupling configuration at 2, 000 Hz with incident
angle π/18. A rapid attenuation for both pressure and displacement on the whole computational
domain and the changes of the wave angle at x = 0 are observed. Note that a great disparity of295

the scale (> 107) between displacement and pressure is visible at these frequencies, which is one of
the reasons that restricts the convergence of the Biot coupled formulation as discussed in [8].
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Figure 8: Example of solution (real part) of Air-PEM coupling (top) with incident angle π/4 at
5, 000 Hz and of PEM-PEM coupling (bottom) with incident angle π/18 at 2, 000 Hz for
fluid pressure (in Pa) (a,c) and solid displacement (in m) (b,d) under fourth interpolation
order.
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Figure 9: Relative error L2 in percentage on p (left) and us (right) as function of Dλ at 70 Hz (top)
and 5, 000 Hz (bottom) for Air-PEM coupling.

Figs. 9 and 10 shows the convergence in L2 norm when refining the element size h and inter-
polation order P versus Dλ carried out for two coupling types and for two frequencies (70 Hz and
5, 000 Hz). Again, pressure and displacement errors are calculated separately. The number of ele-300

ments N×N in each h-refinement varies from N = 5 to N = 81, and the P-refinement is performed
with the mesh N = 5.
h-refinement curves in each interpolation degree are close to the so-called ’optimal’ rate of conver-

gence (O(hp+1)) using the present method for both configurations (Air-PEM Fig. 9 and PEM-PEM
Fig. 10). P-refinement (in red) shows an exponential rate of convergence compared to h-refinement:305

(i) keeping the same Dλ, it gives a more accurate solution; (ii) achieving the same magnitude of
error, it requires less dofs, meaning less computational effort. These rates of convergence are similar
to those reported in [9] and [10], in which the Biot equations are solved using the classical FEM
with hierarchical polynomials.

At 70 Hz, pressure and displacement present a synchronous monotonic convergence, reaching310

the same error magnitude with the same Dλ as shown in Figs. 9a and 9b. This synchronization
corresponds to the fact that we are in a strong coupling frequency range between the fluid and
solid phases of the PEM (the wave numbers are close to each other). Differences in the convergence
behaviour are obvious at 5, 000 Hz for the Air-PEM configuration in Figs. 9c and 9d. Firstly, the
dispersion error for both solutions is observed with linear element and there exists a stage of pre-315

asymptotic convergence before achieving the ’optimal’ rate as Dλ is not sufficiently large (inferiors
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to ten dofs per wavelength, which agrees to the conclusion in [8]). Secondly, the pressure field
converges more quickly than displacement in h-refienement (for the same Dλ, pressure is three
orders of magnitude higher than the displacement), which stems from the large difference of wave
number at this frequency: the shear solid-borne wave is ten times larger than the compression320

air-borne wave, as shown in Fig. 5b.
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Figure 10: Relative error L2 in percentage on p (left) and us (right) as function of Dλ at 70 Hz
(top) and 5, 000 Hz (bottom) for PEM-PEM coupling

Contrary to the Air-PEM coupling, the convergence of the PEM-PEM coupling with chosen
materials shows a better concordance between pressure and displacement in Fig. 10. The error
magnitudes are of the same order even in the decoupling region (here 5, 000 Hz). This is because
the solutions are close to zero in most region of the computational domain with the double-layer325

absorbing materials at these frequencies. This configuration is much easier to converge for both
pressure and displacement.

Note that in Figs. 9a–9c and Figs. 10a–10b, a stagnation or even an increase of the error at the
end of convergence curves is observed. This is due to the fact that the conditioning of the global
linear system is poor for these high refinements. This is also reported when using other numerical330

methods to solve the Biot mixed formulation [15]. This ill-conditioning could be improved with
a suitable pre-conditioner [34] or condensation as advocated in [33]. Nevertheless, a desirable
accuracy is obtained with the present method for this problem.
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4.2 Sound scattering by a poro-elastic cylinder

The second test case involves a 2D PEM cylindrical scatterer surrounded by air, thus introducing335

an acoustic fluid-PEM coupling interface. This case provides an assessment of the proposed method
for a more complicated case in both physic and computational aspects. Sound radiation problems
in free field involving poro-elastic media result in more complex distributions of the acoustic fields.
In addition, the presence of a curved interface may introduce geometrical error in the numerical
approximation. An exact solution is also available. It is recalled in Appendix B or can be found in340

[35].
The computational domain is a square of length of 0.5 m meshed using structured triangular

elements. The exact velocity of the fluid in air va obtained from the analytical solution is imposed
on the outer boundaries (green line) of the domain, as illustrated in Fig. 11a. Within the proposed
method, the circular interface with radius R = 0.1 m is described implicitly by a level-set function345

using a linear approximation. The porous subd-omain governed by the Biot equations (1) is defined
for r < R. For higher-order approximations (P ≥ 2), the NURBS enhanced X-FEM strategy [25]
is considered to avoid the geometrical error caused by the linear interpolation of the level-set. The
circular boundary of the interface is better described using a coarse mesh as shown in Fig. 11b (the
global enrichment strategy is detailed in[25]). It is clear that the mesh used in the present method350

is independent of the circular interface.

1

(a) (b)

Figure 11: Cylinder scattering problem with an example of X-FEM mesh (a); Linear Level-set
interface and NURBS enhanced interface using same mesh (b).

Results in Fig. 12a give a good illustration of the pressure distribution for the porous scattering
problem. The combination of the incident pinc and the partly reflected waves psct is observed in
outer sub-domain r > R. The waves are partly absorbed by the porous material in the region
r < R. As seen in the Fig. 12b, the displacement of the solid phase is defined and computed in355

the absorbing region, whose oscillation and dissipation are also well captured. Again, the accuracy
of the present method is measured with the relative error compared to the exact solution in L2

norm. The convergences of h-refinements are conducted using regular triangular N × N meshes:
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N = 4, 8, 16, 32, 64 and P-convergence is performed with the mesh N = 4 with an interpolation
order varying between one and fourteen. The convergences at 70 Hz and 2, 000 Hz are shown in360

Fig. 13.
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Figure 12: Example of solution (real part) for (a) pressure (in Pa) and (b) displacement (in m) of
cylinder scatter problem in 2, 000 Hz with the fourth order polynomials.
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Figure 13: Relative error L2 in percentage on p (left) and us (right) as function of Dλ at 70 Hz
(top) and 2, 000 Hz (bottom).

The h-refinement results are similar to those presented in the first test case: rates close toO(hP+1)
are observed for each approximation order when Dλ is sufficient. The convergence of linear element
for the displacement field in Figs. 13b and 13d do not have sufficiently large Dλ. The cut-on
phenomenon (explained in [9]) and a pre-asymptotic regime are more apparent in this problem365

at 2, 000 Hz. These high-order convergence rates are in accordance with previous studies reported
in [10]. This agreement confirms that the X-FEM with the proposed discretization strategies is
capable of providing an accurate solution for this more complex problem. The P-refinement curves
in Fig. 13 are less efficient than the one in the previous test case. It is due to the fact that with
the interface described by NURBS, the enrichment function is defined with Lagrange polynomials370

instead of the Bernstein basis. It is well-known that the Lagrange polynomials lead to worse
conditioning as the interpolation order increases. Even so, a high accuracy of the solutions for this
more complex problem is still achieved.

The convergence of the numerical models for the two test cases described so far has been assessed
with various porous materials at different frequencies. For brevity, not all these results are shown375

here, but the same conclusions apply. The convergence behaviour is strictly linked to the materials
and frequencies since each term in the finite element matrix is associated to material properties,
which are frequency dependent. These differences result in different conditioning of the matrix,
leading to different convergence curves and magnitude of error.

The above numerical tests demonstrate that the proposed method is able to recover an optimal380
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rate of convergence regardless of frequency, material, coupling interface, geometry and solution.
Concerning the Biot formulations, a higher order of approximation or larger Dλ are recommended
for the displacement field in order to achieve a more accurate convergence for the whole solution.

4.3 Car cavity with poro-elastic seat

In this last example, the proposed X-FEM approach is applied to a more industrial test case385

which corresponds to the interior of a car cavity with a driver seat filled with the porous material
XFM and modeled with the Biot (u, p) formulation. The dimensions of the car are approximately
2.67 m × 1.1 m. An arbitrary normal velocity (∂p/∂n = 1) is imposed on the front windscreen to
generate a sound field at 2, 000 Hz. A common situation where the driver’s seat is switched from
one position to another position is considered here and the sound pressure distribution (in dB)390

inside the car is computed.
The geometry and the mesh for X-FEM are shown in Fig. 14. The profile of the driver seat

within the present method is defined implicitly by level-set functions (in blue and red) and the
displacement field is only defined within this sub-domain. With this mesh, the definition of the
seat profile is almost independent of the seat position (in order to locate this complex interface395

accurately by linear level-set, the mesh should not be too coarse). With X-FEM, changing the
position of the seat can be realised very easily by simply translating the level-set functions instead
of generating a new mesh. This is in stark contrast with the classical finite element method which
requires two different meshes for two different seat positions.

A standard finite element resolution is performed as a comparison, whose meshes are shown in400

Fig. 15. It can be seen that the mesh for the classical FEM needs to conform to the interface
between the seat and the air in the cavity. In addition, the mesh is refined at the top of the seat
where it has multiple small geometrical features. A polynomial order P = 4 is used to obtain a
converged sound pressure field with these meshes.

30cm

X

Y

Z

Figure 14: X-FEM mesh for two configurations with the seat defined by level-set functions.

19



X

Y

Z

(a)

X

Y

Z

(b)

Figure 15: Standard FEM models with conforming meshes: (a) position A, (b) position B.
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Figure 16: Solution of the sound pressure (in dB): with classical FEM (top) and X-FEM (bottom)
for position A (left) and B (right)

The X-FEM results shown in Figs. 16c and 16d clearly capture the variation of the pressure405

field as the seat position is changed. The absorption of the sound wave within the seat is also
well described. It also shows very good agreement with the classical finite element results shown
in Figs. 16a and 16b. Small differences can be observed between the two methods because the
meshes used to post-process the results are not strictly identical. This introduces differences in
the graphical interpolation. Also, the linear level-set function used to describe the contours of the410

seat results in minute geometrical errors. This case provides a representative application of the
proposed method where transformations such as translation, rotation or symmetry of an internal
complex geometry (a porous seat in this case) can be handled without re-meshing. It demonstrates
that the method can be a efficient numerical tool for the topological design of absorbing materials
in the vibro-acoustics community.415
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5 Conclusion

This paper investigates the application of the eXtended Finite Element Method (X-FEM) to analyse
poro-elastic materials in vibro-acoustics, focusing on modelling an interface between different media.
Poro-elastic materials are modelled by a mixed Biot formulation which involves two fields: the
pressure p in the fluid phase and the displacement us of solid phase.420

The discretization strategies based on the X-FEM framework, and on the nature of the Biot
formulation, are provided for two types of coupling conditions: acoustic fluid-PEM and PEM-
PEM. The material interface is defined implicitly by a level-set function, and the field at the
interface is enriched with a ridge function to introduce the gradient discontinuity. The accuracy
and convergence of the numerical solution are improved by employing a high-order Bernstein basis.425

The performance of the method was assessed with different test cases. The solutions for us and
p are intentionally calculated separately to identify the different convergence behaviours. The two
coupling interface conditions are tested for the propagation of a plane waves in a semi-infinite plane.
The optimal rates of convergence in the L2 norm (O(hp+1)) are recovered for both fields (us, p) at
different frequencies. P-refinement presents a more efficient rate than h-refinement under fixed Dλ430

in this case. A cylindrical scattering problem is also studied. Close-to-optimal convergence rates
are recovered, demonstrating that the present method is able to deal with curved interfaces with
high approximation order. Finally, a car cavity problem is considered to show the applicability of
the present method in an engineering context. The advantages of the proposed method are clearly
illustrated, compared to the classical finite element method. Changing the position of the porous435

material can be easily achieved without re-meshing, and the meshes are relatively independent of
the interface geometry. These benefits provide a significant computational benefit in engineering
situations.

The present work is the first application of a high-order X-FEM framework for solving the Biot
equation in the presence of interfaces between different materials. Such problems can now be440

solved accurately in a wide range of frequencies using a relatively simple mesh that is independent
of the geometry. Future work will include the modelling of “imperfect” material interfaces (this will
introduce strong discontinuities), as well as more realistic three-dimensional poro-elastic material
problems.
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Appendix A. Coefficient in Johnson-Champoux and Biot Allard model

This appendix gives analytical expressions of the coefficients for the Johnson-Champoux model[2][1]
for the equivalent fluid and Biot based mixed formulation[5] used in this paper. The used materials455

and their associated parameters are listed in Table A.1.
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Table A.1: Material parameters

Parameters Foam Polyurethane XFM

Porosity φ 0.98 0.98 0.98
static flow resistivity σ (N.m−4) 15.5× 103 3.75× 103 13.5× 103

Tortuosity α 1.01 1.17 1.7
thermal characteristic length Λ′ (m) 250× 10−6 742× 10−6 160× 10−6

Viscous characteristic length Λ (m) 100× 10−6 110× 10−6 80× 10−6

frame density ρ1 (kg.m−3) 11 22.1 30
Young’s modulus E (Pa) 200× 103 70× 103 200× 103

Poisson ratio ν 0.35 0.39 0.35
Loss factor ηs 0.1 0.265 0.05

Effective parameters of equivalent fluid in PEM takes both viscous and thermal effect into con-
sideration. The fluid density ρ̃eq is written as:

ρ̃eq =
ρaα

φ

(
1 +

ω0

jω

√
1 +

jω

ω∞

)
(A.1)

with ω0 and ω∞ expressed as:

ω0 =
σφ

ρaα
(A.2a)

ω∞ =
(σφΛ)2

4ηaρaα2
(A.2b)

where α is the geometrical tortuosity, φ is the porosity, ρa is the interstitial fluid density, σ is the
flow resistivity, ηa is the dynamic viscosity of the fluid and Λ is the viscous characteristic length.460

The coupling coefficient γ̃ and solid equivalent density are expressed as:

γ̃ = φ

(
ρ̃12

ρ̃22
− 1− φ

φ

)
(A.3)

ρ̃ = ρ̃11 −
(
ρ̃2

12

ρ̃22

)
(A.4)

where ρ̃11, ρ̃12 and ρ̃22 are the coefficients related to the geometry of the frame, the detailed
relationship between ρa and density of solid phase ρ1 are given:

ρ̃22 = φ2ρ̃eq, ρ̃12 = φρa − ρ̃22, ρ̃11 = ρ1 − ρ̃12 (A.5)

The thermal properties are given by the effective compressibility K̃eq:465

K̃eq = γp0/

[
γ − (γ − 1)/

(
1 +

8ηa
jωρaPrΛ′

√
1 +

jωρaPrΛ′2

16ηa

)]
(A.6)

where γ is the ratio of specific heats of air, p0 is the referred ambient pressure, Pr is the Prandtl
number and Λ′ is the thermal characteristic length.

The constitutive relationship between stress in vacuum and strain in solid frame of the porous
material is:

σsij = 2Neij + Â(ekk)δij (A.7)
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where strain eij is function of the solid displacement:470

eij =
1

2

(
∂usi
∂xj

+
∂usj
∂xi

)
(A.8)

and the structural lamé coefficient N and shear coefficient are written as:

N =
E(1 + jηs)

2(1 + ν)
, Â =

Eν(1 + jηs)

(1 + ν)(1− 2ν)
(A.9)

and we define:
P̂ = Â+ 2N (A.10)

where E and ν are the Young’s modulus and Poisson coefficient of the elastic solid in vacuum, ηs
is the loss factor of the elastic solid phase with unit imaginary number j.

There exists three waves in materials described by Biot theory. The wave numbers of the two475

compressional waves are given by solving the eigen-problem of wave equations:

k2
i =

(k2
s2 + k2

eq)±
√

(k2
s2 + k2

eq)
2 − 4k2

eqk
2
s1

2
, i = 1, 2 (A.11)

with

keq = ω

√
ρ̃eq

K̃eq

, ks1 = ω

√
ρ̃

P̂
, ks2 = ω

√
ρ̃s

P̂
(A.12)

The ratio µ of the total velocity and frame velocity is:

µiγ̃
k2
eq

δ2
i − k2

eq

, i = 1, 2 (A.13)

The wave equation for the rotational wave is obtained by using a vector potential as well and the
corresponding wave number reads:480

k3 = ω

√
ρ̃

N
(A.14)

with its ratio between total velocity and frame velocity:

µ3 = −γ̃ (A.15)

Appendix B. Analytical solution for cylinder porous scattering problem

Plane waves of scattering problem in this paper are written in potential form. Potential of wave
field in acoustic domain with amplitude Ainc is represented in polar coordinate (r, θ) as:485

ϕ = ϕinc +

∞∑
m=0

Â0,mHm(kar) cos(mθ) (B.1)

where ϕinc is incident wave potential which is propagating along horizontal direction x:

ϕinc = Ainc exp(−jkax) = Ainc

[
J0(k0r) + 2

∞∑
m=1

(−j)mJm(kar) cos(mθ)

]
(B.2)
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where Hm(x) is the Hankel function of the second kind, Jm(x) is the Bessel function of the first
kind. ka represents wave number of air fluid. j is unit imaginary number with j2 = −1.

Potentials of the two compressional waves with amplitude Ai in porous material are given:

ϕi =

∞∑
m=0

Âi,mJm(kir) cos(mθ), with i = 1, 2 (B.3)

and the one of shear wave in solid phase:490

ϕ3 =
∞∑
m=0

Â3,mJm(k3r) sin(mθ) (B.4)

where k1, k2 and k3 are compressional and shear wave numbers in fluid and solid phase respectively
in Biot modeled porous material. Pressure in acoustic domain is p = ρω2ϕ, while solid displacement
in porous material is cast with Helmholtz decomposition as:

us = ∇ϕ+∇∧ ϕ3 (B.5)

where ϕ = ϕ1 +ϕ2. The other fields such as total displacement ut and fluid pressure p are obtained
by polarization relationship:

ut = µiu
s, with i = 1, 2 (B.6a)

p = −K̃eq∇.ut (B.6b)

where µi is the wave amplitude ratios between solid and total displacement. Once the expressions
of all the field are known, the analytical solution is available by solving a 4× 4 linear system with
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the interface conditions Eq.(3) at r = a. Each term in the left-hand side matrix is provided:

M1,1 =
mHm(kaa)

a
− kaHm+1(kaa) (B.7a)

M1,2 =
µ1(−mJm(k1a)) + k1µ1aJm+1(k1a)

a
(B.7b)

M1,3 =
µ2(−mJm(k2a)) + k2µ2aJm+1(k2a)

a
(B.7c)

M1,4 =
−µ3mJm(k3a)

a
(B.7d)

M2,1 = ρaω
2Hm(kaa) (B.7e)

M2,2 = −K̃eqµ1k
2
1Jm(k1a) (B.7f)

M2,3 = −K̃eqµ2k
2
2Jm(k2a) (B.7g)

M2,4 = 0 (B.7h)

M3,1 = 0 (B.7i)

M3,2 =
2N

a2
(m(m− 1)Jm(k1a)− k2

1a
2Jm(k1a) + k1aJm+1(k1a))− Âk2

1Jm(k1a) (B.7j)

M3,3 =
2N

a2
(m(m− 1)Jm(k2a)− k2

2a
2Jm(k2a) + k2aJm+1(k2a))− Âk2

2Jm(k2a) (B.7k)

M3,4 =
2N(m(m− 1)Jm(k3a)− k3amJm+1(k3a))

a2
(B.7l)

M4,1 = 0 (B.7m)

M4,2 =
2Nk1amJm+1(k1a)−Nm(2m− 2)Jm(k1a)

a2
(B.7n)

M4,3 =
2Nk2amJm+1(k2a)−Nm(2m− 2)Jm(k2a)

a2
(B.7o)

M4,4 =
N((−2m2 + 2m+ k2

3a
2)Jm(k3a)− 2k3Jm+1(k3a)a)

a2
(B.7p)

the right-hand side vector comes from the contribution of the incident plane wave

F1 = 2Aincka(−j)mJm+1(kaa)− 2Ainc
a(−j)mmJm(kaa)

(B.8a)

F2 = −2Aincρaω
2(−j)mJm(kaa) (B.8b)

F3 = 0 (B.8c)

F4 = 0 (B.8d)

These expressions can be found in [35] but with different coefficients.
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