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INTRODUCTION

The aerodynamics of rotorcraft is dominated by the effect of vortical flows. In hover, the flow around the rotor blades is mainly affected by the wake shed below the rotor, modifying the operating conditions of the blade airfoil sections. As a result, this flight configuration presents a maximum of induced power and is a key configuration when sizing the rotorcraft. In forward flight, bladewake interactions create vibrations and noise, especially in low-speed descent during approach and landing. Practically, the so-called blade-vortex interaction (BVI) noise is a severe penalty restricting the use of helicopters in populated areas. The main rotor wake also interacts with the airframe and more especially the tail surfaces, so that properly accounting for wake interactions is crucial when considering the flight dynamics of the helicopter, more particularly at lowspeed. All these phenomena require a good capture of wake vortices and of their convection around the various rotorcraft components during a sufficient period of time to reproduce the physics of these multiple interactions. This explains why rotorcraft aerodynamicists are particularly concerned with the wake capturing properties of numerical methods. Lagrangian methods allow a perfect conservation of the wake sheets. However, their inviscid and incompressible characters are most of the time a limitation in their applicability. Furthermore, they have difficulties to deal with the merging of vortical structures. The Eulerian approach is more general and is now widely used thanks to the outstanding progress of numerical simulation capabilities during the last decades. Nevertheless, the computation of vortices and wakes by CFD is a difficult problem which has not found any fully satisfactory answer yet. Numerical schemes are dissipative for stability, so that wake sheets and vortices are diffused and dissipated by the numerical schemes at a much higher rate than they should actually be. Two main ways of improvement have been

VORTICITY CONFINEMENT Introduction

Vorticity confinement has been proposed by Steinhoff et al about 20 years ago for the simulation of vortex-dominated flows. It consists in the addition of a source term f  into the momentum equation which compensates for the numerical diffusion of vorticity by the discretization:

f p dt U d              1 1 (1)
Understanding the properties of confinement requires a derivation of the transport equation for vorticity, which we obtain by taking the curl of (1):
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Basically, two formulations for the confinement term have been developed, called VC1 [START_REF] Steinhoff | Modification of the Euler equations for vorticity confinement: application to the computation of interacting vortex rings[END_REF] and VC2 [START_REF] Steinhoff | Convection of concentrated vortices and passive scalars as solitary waves[END_REF] . The VC1 term is given by

        n f where U ω      
is the vorticity vector, ε the user-defined confinement parameter and, with

ω    ,          n
is a unit vector pointing from the center of the vortex towards its periphery (Figure 1). The properties of VC1 can easily be derived considering an isolated 2D vortex for which the velocity field only depends on the radial position from the vortex centre. The confinement term is divergence-free:   0

        n
, and its curl, which appears as a source term on the right hand side of the vorticity transport equation (2), is equal to:
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. The VC1 term is thus singular at vortex centers, which is due to the indeterminacy of the n  vector at this location, and thus

r n 1     
tends to infinity. Finally, the VC1 term is not written in conservative form.

Figure 1: Schematic of VC1 term

The VC2 confinement term is equal to

w f       
, where

        N h w ... 1  is a
vector collinear with vorticity, its modulus being equal to the harmonic mean of the vorticity magnitude of the current point and the N-1 surrounding
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. The divergence of the VC2 term is obviously equal to zero and it is conservative. Finally, VC2 is not singular at vortex centers because the confinement vector has at most a magnitude equal to the peak vorticity. Both VC1 and VC2 have been investigated at ONERA [START_REF] Costes | An automatic anti-diffusion method for vortical flows based on Vorticity Confinement[END_REF] [START_REF] Costes | Analysis of the second vorticity confinement scheme[END_REF] . The good numerical properties of VC2 have led us to focus more on this particular confinement term. In order to investigate its properties, it is useful to simplify the vorticity transport equation (2). First, introducing the specific vorticity allows the compressibility term to be removed. Second, for a 2D vortex in inviscid flow, the equation simplifies to:
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A simple model equation for the analysis of VC2 is thus the 1D linear transport equation.

1D linear transport equation

Consider the following linear equation:

0       x u c t u (3)
with the assumption that 0  c . We are looking for pulse solutions which are a 1D equivalent to the vorticity modulus in the fluid-dynamic equations. A discretization of (3) including VC2 is:
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are the forward and backward difference operators defined by
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respectively. Without VC2, the leading term of the truncation error of the above 1 st -order discretization is:

  2 2 2 1 x u x c      With VC2
, this equation is modified as shown in [START_REF] Costes | Analysis and higher-order extension of the VC2 confinement scheme[END_REF] , and, keeping only the higher-order contribution in the truncation error, the "modified" equation actually solved is (introducing x  as the mesh size, assumed to be uniform):
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, the scheme is 1 st -order accurate with negative dissipation, the harmonic mean being a nonlinear mean of 2 dissipative 2 nd differences. Then any initial condition asymptotically converges to one satisfying:
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Since asymptotic solutions cancel the "generalized" truncation error of the scheme with VC2, they are thus "exact" numerical solutions to the equation.

Approximating 2 2 x u j   by 2 2 / 1 x u j        where   n j n j n j u u u     1 2 / 1 2 1 
is the averaging operator, a sufficient condition for being asymptotic solutions to the linear transport equation with confinement is the following:

  n j n j n j u u h u 1 2 / 1 , 1      (5) 
A pulse solution satisfying ( 5) is given by

  j n j kx u cosh 1  , with         2 cosh
x k  and k is a positive real parameter. As shown in [START_REF] Costes | Stability analysis of the VC2 confinement scheme for the linear transport equation[END_REF] , the corresponding analytic solution

is           x x a x u cosh 1
, where

x k a   . Because        2 cosh a  or equivalently          1 2 2   Log a
it is thus clear that, for a prescribed  , confined solutions depend on the mesh size because the signal is concentrated over the same number of cells, whatever the discretization. On the other hand, it is possible to adjust the confinement parameter to keep a pulse solution close to the exact solution. In order to check it, the initial condition

    x x u   09 . 2 cosh
1 was introduced in the numerical simulation (4), corresponding to an asymptotic solution with with the exact one in Figure 2, either using the value of

        2 cosh
x k  corresponding to the mesh cell size of the simulation, or with a constant parameter 6 . 1   whatever the mesh size. In the first case, the good preservation of the initial condition in the computation can be noted. On the contrary, the solution with 6 . 1   is concentrated into finer pulses of larger magnitude as the mesh is refined, and for the finest mesh (

16 / 1  x
), the signal is cut into a set of individual pulses concentrated over approximately the same number of cells as for the pulse with

1  x
, as already noted in [START_REF] Costes | Stability analysis of the VC2 confinement scheme for the linear transport equation[END_REF] .

Figure 2: Pulse profile at ct=6110 with (top) and without (bottom) varying confinement parameter

The different behaviors of the solutions is also clear when considering the timeevolution of the discrete energy, defined by

      m j n j n u x E 1 2 , shown in Figure 3.
With the varying confinement parameter, the energy is almost constant and equal to that of the initial condition, while that obtained with dissymmetry in the results (Figure 2). The VC2 scheme was extended to higher orders in [START_REF] Costes | Analysis and higher-order extension of the VC2 confinement scheme[END_REF] , for combining the negative diffusion of confinement with a higher accuracy. For doing so, we perform a similar non-linear mean between a centered and upwind discretization of the higher-order dissipative term of the discretization, and by multiplying it with the confinement parameter 1   , we endup with a numerical scheme with negative dissipation, of which the accuracy is of the order of the confinement term. For example, at 5 thorder, we get: An interesting property of higher-order confinement is that it asymptotically converges towards the same solution as at 1 st -order, but the rate of convergence is lower as the order is increased, reflecting the higher-accuracy of the scheme [START_REF] Costes | Analysis and higher-order extension of the VC2 confinement scheme[END_REF] . This is easily obtained by deriving an equivalent equation similar to the one obtained at 1 st -order:

                          n j n j n j n j n j n j n j n j n j u u h u u u u u u u , ! 6 3 ... 2 ! 5 2 ... 2 ! 4 2 .... 1 ! 3 1 1 ! 2 1 1 3 2 2 1                                                        
                                  1 1 2 1 1 1 , P j j p P j P P j j x u u h x u x O x u c t u   
Writing the linear derivative of the truncation error with the same difference operator as the one used for the harmonic mean then leads to the same equality (5), and thus to the same asymptotic solution. , where the computed solution matches the exact one almost perfectly, and the dissymmetry of the computed pulse observed at 1 st -order has completely disappeared. The case

1  x
is less satisfactory since an oscillation appears at the base of the pulse. Indeed, the corresponding confinement parameter is above the stability limit derived in [START_REF] Costes | Stability analysis of the VC2 confinement scheme for the linear transport equation[END_REF] , and the solution may thus generate such kind of phenomena. This underlines the necessity to have a minimum number of points inside the signal to describe it properly and avoid such under-or overshoots. In spite of these concerns, the improvement of the solution with respect to that obtained without confinement is clear even for the coarsest mesh

1  x .
As the mesh is refined, the benefits of confinement reduce due to the highaccurate scheme, but they are still noticeable for the finest mesh 16 / 1  x . Again, these benefits appear clearly when considering the time-evolution of the discrete energy, presented in Figure 5, where the solutions with confinement provide an almost constant discrete energy in conformity with the solved equation.

Fluid-dynamic equations Methodology

As discussed in the introduction, linking the application of VC2 to the fluid dynamic equations with its implementation in the linear transport equation is not obvious, although there are similarities. When considering equations (1) or (2), their left hand side describes the flow physics and has to be properly computed. The discretization of the equations introduces dissipation and dispersion through the truncation error. Confinement is designed to balance the effect of the numerical discretization on concentrated vortical structures and thus maintain the solution as close as possible to the exact one. A big difference between (1) and ( 3) is that the confinement term applies directly to the unknown in the linear transport equation, while the fluid-dynamic equations are only solved for the primitive or conservative variables and vorticity is a derived quantity. This is why we have to consider the vorticity transport equation to understand the effect of confinement. Furthermore the linearity of the transport equation provides a linear leading term in the truncation error, which is not the case for the numerical discretization of the fluid-dynamic equations. This is why a linear dissipative term is added to the confinement term, giving:

  w f            
We have 2 confinement parameters, ε and μ which, by analogy with the linear transport equation, are made proportional to the mesh size x  for consistency. When considering the advection of an isolated vortex, the dissipative property of the added term appears clearly:
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It is assumed in the following that the magnitude of this explicit dissipative term is an order of magnitude larger than that of the numerical discretization of the left hand side. It should also be noted that the important factor in the confinement is the ratio   which has to be greater than 1. By analogy with the linear transport equation, an isolated vortex is expected to be convected without diffusion when:
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Again, an asymptotic solution of the form  
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and therefore: 
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The confinement is generally applied on a Cartesian mesh, so that y x    . Furthermore, the cross-section of the vortex has a symmetry of revolution, resulting in l k  . As for the linear convection equation, introducing

y l x k a    
, asymptotic solutions of VC2 can be written:
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In that case:
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Therefore asymptotic solutions of VC2 also depend directly on the mesh size for a given set of confinement parameters. Furthermore, this analysis shows that it is possible, in principle, to adjust the value of   in order to be adapted to a particular vortex size.

Coming back to the general case, when (7) is satisfied, the right hand side of ( 1) and ( 2) vanish so that the fluid-dynamic equations are also satisfied by asymptotic solutions with VC2. Naturally, the truncation error of the numerical scheme used when discretizing the left hand side of (1) still applies, but its effect on vortical structures is overcome by the confinement term. However, it is clear that there is an interest in reducing the magnitude of the confinement term in order to increase the accuracy of the simulation and reduce as much as possible the effect of confinement on the solution. An extension of VC2 to 3 rdorder accuracy was presented in [START_REF] Costes | Development of a 3rd-order Vorticity Confinement scheme for rotor wakes simulations[END_REF] . It follows the same ideas as for the linear transport equation: the order of the confinement is raised by applying higher derivatives to the harmonic mean of the vorticity modulus. In this case, these higher derivatives are applied using the curl operator instead of a simple space derivative. At 3 rd -order, applying twice the curl operator provides the Laplacian operator, and provided the corresponding derivatives are replaced by undivided differences, the accuracy of the confinement term is raised from 1 st -to 3 rd -order. The 3 rd -order VC2 term is thus given by:

  w f                  .
The second-differences above are taken along each grid direction in order to get an "undivided Laplacian" of the original 1 st -order VC2 components. Taking the curl of the confinement term gives its equivalent for the vorticity transport equation where we get a 4 th derivative of   and w  , similarly to what is obtained in the linear transport equation with 3 rdorder confinement.

Higher-order confinement can be obtained similarly. Finally, in order to take full advantage of this higher-order formulation, the numerical discretization of the Euler/RANS equations should also be more accurate. In the case of 3 rd -order confinement, a 4 th -order scheme is sufficient. Practically, the use of VC2 requires a detection of the parts of the flow-field where confinement should be applied. The objective is to avoid that, by applying VC2 everywhere in the field, spurious vorticity coming from numerical errors be confined and could thus modify the flow physics. This detection can be performed via the Q criterion in order to discriminate between vortices and shear layers and thus also avoid artificially confining boundary layers in the simulation.

Rotorcraft applications

All simulations presented below use the same ratio of confinement parameters ε/μ=1.25. Applications of the basic VC2 scheme to the simulation of blade-vortex interactions with the elsA software [START_REF] Cambier | The Onera elsA CFD software: input from research and feedback from industry[END_REF] were presented in [START_REF] Boisard | Assessment of aeromechanics and acoustics methods for BVI prediction using CFD[END_REF] . An example is shown here for the baseline case of the HARTII experiment, corresponding to the following conditions: μ=0.1512, C T /σ=0.0594, α S =4.5°. A Chimera overset grids method is used for the simulation, with a coarse background Cartesian grid of 13 million points (Figure 6). A fine background mesh including 49 million points was also used to get a reference simulation without confinement. The RANS equations are solved with Wilcox's k-ω turbulence model with Zheng limiter and SST correction. The blade mesh has an O-O topology and includes 3 million points. A loose coupling between elsA and HOST [START_REF] Benoit | HOST: a General Helicopter Tool for Germany and France[END_REF] was run with the fine mesh in order to get the rotor trim and blade deformation. The same trim and deformation were then used in the coarse grid simulations, without and with VC2. It should be noted that the blade grid is adapted to Chimera interpolation with the fine background grids only, which may explain the less satisfactory results on the advancing blade side where the interacting vortices have lower intensity.

In any case, it is clear that there is room for improvement as far as advancing blade BVI is concerned. The corresponding noise footprint signatures, obtained using the KIM code [START_REF] Prieur | Comparison of Ffowcs Williams-Hawkings and Kirchhoff rotor noise calculations[END_REF] , are compared to the HARTII experiment in Figure 8. Again, the improvement brought by VC2 is clear, although it does not allow the fine grid . Furthermore, our past experience indicates that a minimum number of points inside the vortex are required for VC2 to provide its full efficiency, which is certainly not the case for a significant number of tip vortices in the present computation. Another example of rotorcraft application of VC2 concerns the comparison of 1 storder and 3 rd -order confinement for the 7A-rotor in hover conditions. A coarse mesh is used, including a total of 3 million cells. The blades are meshed independently in a Chimera approach (Figure 9), and confinement is applied in the Cartesian background grids only. A time-accurate inviscid simulation is presented here, using a dual time stepping approach, with a time step Δψ=0.01° and a maximum of 10 dual-time iterations. The 1 st -order VC2 is used with a second order discretization of the fluid-dynamics equations, and the 3 rdorder VC2 is applied together with a 4 thorder scheme and 3 rd -order dissipation. The wake structure after 7 rotor revolutions is presented at 2 azimuths over a quarter revolution (Figure 10 and Figure 11), comparing the results obtained with VC2 at 1 st -and 3 rd -order of accuracy. Results without confinement are not shown because with this coarse grid, the tip vortex is lost after less than half a blade revolution. Vorticity contours are plotted in a middle plane of the fixed rotor system, and an iso-surface of Q criteria is plotted in space. The details of the wake computed with 1 storder VC2 are poor with this coarse mesh because the tip vortex is completely lost after one blade revolution. The better wake resolution with 3 rd -order confinement is clear, allowing the tip vortices to be clearly tracked over one blade revolution. Further down, the wake is subject to instabilities leading to a complex wake pattern, which is physically plausible. However, the current simulations are too simplified to ensure that the computed wake physics is correct. The inner blade root and hub geometries are not taken into account, so that strong root vorticity is generated which interacts with the rotor wake system. Therefore more realistic simulations would be necessary in order to perform a true validation of the method, provided experimental data of sufficient quality is also available for comparison. The last application considered in this paper concerns the wake shed by the rotor head of the Dauphin powered model, corresponding to a tail-shake configuration tested in the ONERA-S2Ch wind-tunnel during the HELIFLOW EU project [START_REF]Improved Experimental and Theoretical Tools for Helicopter Aeromechanics and Aeroacoustics Interactions -HELIFLOW[END_REF] . The basic 1 st -order VC2 scheme is considered, again applying it on Cartesian background grids only, the whole configuration being computed with the Chimera method. These Cartesian grids are automatically generated with an octree technique given the curvilinear grids around the bodies with the Cassiopée modules. The full simulation is also set-up with Cassiopée tools, as described in [START_REF] Renaud | Computation of GOAHEAD configuration with Chimera assembly[END_REF] . A view of the Cartesian background mesh around the full configuration is shown in Figure 12. In this case, the whole grid includes about 75 million points. The iso contours of Mach number in a vertical and a horizontal cut around the fuselage are plotted in Figure 13 and Figure 14, together with the iso-contours of Q criteria in the field to visualize the vortical structures. The wake of the rotor head is found to merge with that coming from the engine fairings, leading to a complex wake structure. This wake hits the fuselage fin, inducing unsteady loads at the source of the tail shake phenomenon. The wake computed with VC2 is better preserved than that obtained without confinement, leading to finer and more intense vortex structures during the interaction with the vertical fin. This affects the intensity and the frequency content of the unsteady pressure loads on the fin.

CONCLUSIONS

The status of research on vorticity confinement at Onera was presented. The better numerical properties of VC2 over VC1 were outlined. Introducing the vorticity transport equation allowed a simple analysis of VC2 using the linear transport equation of a pulse. VC2 appears as a first-order negative dissipation term obtained by nonlinear averaging centered and upwind 2 nddifferences to correct the truncation error of the numerical discretization. It has asymptotic pulse solutions which are exact numerical solutions to the transport equation. The confinement parameter is dependent on the mesh cell size and can be adjusted to converge to the desired profile. These properties were extended to higher-order, the VC2 term using the same nonlinear averaging of higher-order differences, to combine the benefits of a higher accuracy and of the negative dissipation of confinement. These results were partly transferred to the Euler/RANS equations, although the analysis is more complex because the confinement term is based on vorticity, a derived quantity from the unknowns of the problem. Examples of applications to rotorcraft show the potential benefits of confinement for this type of flows. However, due to the complexity of the problem, the research has to be pursued in order to draw more benefits from this non-conventional technique. A fine validation of the method using detailed experimental data is indeed necessary to gain confidence when complex vortical structures occur in the flow field and have a large impact on the simulated configuration.

  refinement, which is easy to explain. Since the numerical scheme is conservative, the sum time, and for finer grids the signal is concentrated into peaks with higher impulsivity, thus the energy increases and gets further the exact one.
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 3 Figure 3: Evolution of the discrete energy vs. time with (top) and without (bottom) varying confinement parameter Although adjusting the confinement parameter allows solutions of VC2 to be reasonably close to exact solutions of the linear transport equation, the lowaccuracy of the scheme introduces
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 4 Figure 4: Pulse profile at ct=6110 with (top) and without (bottom) confinement -5 th -order scheme
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 5 Figure 5: Evolution of the discrete energy vs. time with (top) and without (bottom) confinement -5 th -order scheme A 5 th -order simulation of the advection of the same pulse considered above is shown in Figure 4, using the same grids corresponding to
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 6 Figure 6: View of the coarse Cartesian background mesh for the Bo105 rotorThe fluctuating component of sectional lift at 87% radius on the advancing and retreating blade side is shown in Figure7. The improved BVI fluctuations captured with VC2 can be noted with respect to the coarse grid simulation without VC, especially on the retreating side where they are in fairly good agreement with the fine grid simulation. It should be noted that the blade grid is adapted to Chimera interpolation with the fine background grids only, which may explain the less satisfactory results on the advancing blade side where the interacting vortices have lower intensity. In any case, it is clear that there is room

Figure 7 :Figure 8 :

 78 Figure 7: Fluctuating lift coefficient at 87% radius -Bo105 BL case -HARTII experiment

Figure 9 :

 9 Figure 9: View of the Chimera grid system for the 7A rotor in hover

Figure 10 :

 10 Figure 10: 7A rotor in hover -view of rotor wake at ψ=3.39° -(top): VC2 at 1 st order, (bottom): VC2 at 3 rd order

Figure 11 :

 11 Figure 11: 7A rotor in hover -view of rotor wake at ψ=45.33° -(top): VC2 at 1 st order, (bottom): VC2 at 3 rd order

Figure 12 :

 12 Figure 12: View of the Cartesian background mesh of the Dauphin powered model A viscous time-accurate simulation is considered, without and with VC2. The time step is Δψ=0.05°, with 25 Newton iterations at each time step to solve the nonlinear Gear equation. The spacediscretization uses a centered scheme with Jameson's artificial viscosity. For

Figure 13 :Figure 14 :

 1314 Figure 13: Iso-Mach contours at Y=0 and contours of iso-Q criteria for Dauphin fuselage model without (top) and with (bottom) VC2
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																				1	6 .	for
	x		1	. The equation (3) is solved over a
	segment of length		L		100	, discretized by
	m points, with periodicity boundary
	conditions in order to represent an
	infinite environment. The CFL number is
	chosen to be constant			0	611 .	. The
	simulation was performed for various
	mesh refinements, and we present those
	with			x		1	,	x		1	/	4		and	x		1	/	16	. For
	the refined grids, the confinement
	parameter corresponding to a proper
	discretization of the initial condition is
			. 1	03	and			1	002 .	respectively. The
	solutions obtained after the signal have
	traveled a distance		ct		6110	are compared
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  The 2 nd Asian/Australian Rotorcraft Forum and The 4 th International Basic Research Conference on Rotorcraft Technology Tianjin, China, September 08-11, 2013results to be fully recovered. As pointed out before, this kind of complex simulation involves many computational parameters, and it is likely that those used in the present simulation are not optimum. They concern more especially the problem of transferring properly vorticity during Chimera interpolation.

	The finer results obtained in a previous
	application of various methodologies,
	including	VC2,	on	the	same
	configuration with better adapted grids in
	a rigid blade assumption is a good
	indication that the present results can be significantly improved [13][14]
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