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Abstract
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function used to interpret the temporal modalities. Our main results are that
n (‘eventually’), which is definable in terms of U , cannot be defined in terms
of Z and j, and similarly that j (‘henceforth’), definable in terms of R, cannot
be defined in terms of Z and U , even over the smaller class of here-and-there
models.
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1 Introduction

The definition and study of full combinations of modal [5] and intuitionistic [6, 23]
logics can be quite challenging [30], and temporal logics, such as LTL [28], are no
exception. Some intuitionistic analogues of temporal logics have been proposed, in-
cluding logics with ‘past’ and ‘future’ tenses [9], or with ‘next’ [7, 19] and ‘henceforth’
[17]. We proposed an alternative formulation in [4], where we defined the logics ITLe

and ITLp using semantics similar to those of expanding and persistent products of
modal logics, respectively [13], and the tenses Z (‘next’), n (‘eventually’), and j

(‘henceforth’). ITLe in particular differs from previous proposals (e.g. [9, 27]) in that
we consider minimal frame conditions that allow for all formulas to be upward-closed
under the intuitionistic preorder, which we denote l. We then showed that ITLe with
Z (‘next’), n (‘eventually’), and j (‘henceforth’) is decidable, thus obtaining the first
intuitionistic analogue of LTL which contains the three tenses, is conservative over
propositional intuitionistic logic, is interpreted over unbounded time, and is known
to be decidable.

Note that both n and j are taken as primitives, in contrast with the classical
case, where nϕ may be defined by nϕ �  j ϕ, whereas the latter equivalence is not
intuitionistically valid. The same situation holds in the more expressive language
with U (‘until’): while the language with Z and U is equally expressive to classical
monadic first-order logic with B over N [12], U admits a first-order definable intu-
itionistic dual, R (‘release’), which cannot be defined in terms of U using the classical
definition. However, this is not enough to conclude that R cannot be defined in a
different way. Thus, while in [4] we explored the question of decidability, here we
will focus on definability; which of the modal operators can be defined in terms of
the others?

Following Simpson [30] and other authors, we interpret the language of ITLe

using bi-relational structures, with a partial order l to interpret intuitionistic impli-
cation, and a function or relation, which we denote S, representing the passage of
time. Alternatively, one may consider topological interpretations [8], but we will not
discuss those here. Various intuitionistic temporal logics have been considered, using
variants of these semantics and different formal languages. The main contributions
include:

• Davies’ intuitionistic temporal logic with Z [7] was provided Kripke semantics
and a complete deductive system by Kojima and Igarashi [19].

• Logics with Z,j were axiomatized by Kamide and Wansing [17], where j was
interpreted over bounded time.
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• Nishimura [25] provided a sound and complete axiomatization for an intuition-
istic variant of the propositional dynamic logic PDL.

• Balbiani and Diéguez axiomatized the here-and-there variant of LTL with
Z,n,j [2], here denoted ITLht.

• Fernández-Duque [10] proved the decidability of a logic based on topological
semantics with Z,n and a universal modality.

• The authors [4] proved that the logic ITLe with Z,n,j has the strong finite
model property and hence is decidable, yet the logic ITLp, based on a more
restrictive class of frames, does not enjoy the fmp.

In this paper, we extend ITLe to include U (‘until’) and R (‘release’). As is
well-known, nϕ � �U ϕ and jϕ � �Rϕ; these equivalences remain valid in the
intuitionistic setting, but many of the tenses are no longer inter-definable as in the
classical case. To show this, we will introduce different notions of bisimulation which
preserve formulas with Z and each of n, j, U and R. With this, we will show that
R (or even j) may not be defined in terms of U over the class of here-and-there
models, while n can be defined in terms of j, and U can be defined in terms of R
over this class. However, we show that over the wider class of expanding models, n
cannot be defined in terms of j.

2 Syntax and semantics
We will work in sublanguages of the language L given by the following grammar:

ϕ,ψ �� p S � S ϕ , ψ S ϕ - ψ S ϕ� ψ S Z ϕ S nϕ S jϕ S ϕU ψ S ϕRψ

where p is an element of a countable set of propositional variables P. All sublan-
guages we will consider include all Boolean operators and Z, hence we denote them
by displaying the additional connectives as a subscript; for example, Lnj denotes
the U-free, R-free fragment. As an exception to this general convention, LZ denotes
the fragment without n,j,U or R. As in the propositional case,  ϕ def

� ϕ� �.
Given any formula ϕ, we define the length of ϕ (in symbols, SϕS) recursively as

follows:

• SpS � S�S � 0;
• Sφb ψS � 1 � SφS � SψS, with b > �-,,,�,R,U�;
• SbψS � 1 � SψS, with b > � ,Z,j,n�.

Broadly speaking, the length of a formula ϕ corresponds to the number of connectives
appearing in ϕ.
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2.1 Dynamic posets

Formulas of L are interpreted over dynamic posets. A dynamic poset is a tuple
D � �W,l, S�, where W is a non-empty set of states, l is a partial order, and S
is a function from W to W satisfying the forward confluence condition that for all
w, v > W, if w l v then S�w� l S�v�. An intuitionistic dynamic model, or simply
model, is a tuple M � �W,l, S, V � consisting of a dynamic poset equipped with a
valuation function V from W to sets of propositional variables that is l-monotone,
in the sense that for all w, v >W, if w l v then V �w� b V �v�. In the standard way,
we define S0�w� � w and, for all k A 0, Sk�w� � S �Sk�1�w��. Then we define the
satisfaction relation à inductively by:

1. M,w à p iff p > V �w�;

2. M,w à �;

3. M,w à ϕ , ψ iff M,w à ϕ and
M,w à ψ;

4. M,w à ϕ - ψ iff M,w à ϕ or
M,w à ψ;

5. M,w à Zϕ iff M, S�w� à ϕ;

6. M,w à ϕ � ψ iff ¦v m w, if M, v à
ϕ, then M, v à ψ;

7. M,w à nϕ iff there exists
k s.t. M, Sk�w� à ϕ;

8. M,w à jϕ iff for all k,M, Sk�w� à
ϕ;

9. M,w à ϕU ψ iff there exists k C

0 s.t. M, Sk�w� à ψ and ¦i >

�0, k�, M, Si�w� à ϕ;
10. M,w à ϕRψ iff for all k C 0, ei-

ther M, Sk�w� à ψ, or §i > �0, k�
s.t. M, Si�w� à ϕ.

As usual, a formula ϕ is satisfiable over a class of models Ω if there is a model
M > Ω and a world w of M so that M,w à ϕ, and valid over Ω if, for every world
w of every modelM > Ω,M,w à ϕ. Satisfiability (validity) over the class of models
based on an arbitrary dynamic poset will be called satisfiability (validity) for ITLe,
or expanding domain linear temporal logic.1

The relation between dynamic posets and expanding products of modal logics
is detailed in [4], where the following is also shown. Below, we use the notation
JϕK � �w >W SM,w à ϕ�.

Lemma 2.1. Let D � �W,l, S�, where �W,l� is a poset and S�W � W is any
function. Then, D is a dynamic poset if and only if, for every valuation V on W
and every formula ϕ, JϕK is l-monotone, i.e., if w > JϕK and v m w, then v > JϕK.

Proof. The left to right direction is proved by induction on ϕ. The case of ϕ > P is
proved by using the condition on V . The rest of the inductive steps are routine. For

1Note that in [4] we used ‘ITLe’ to denote the fragment of this logic without U ,R.
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instance, let us consider the case of ϕU ψ and suppose that v m w and w > JϕU ψK.
Then, there exists k C 0 such thatM, Sk�w� à ψ and for all 0 B j @ k,M, Sj�w� à ϕ.
Since S is confluent, an easy induction shows that Si�v� m Si�w� for all 0 B i B k.
Therefore, by induction hypothesis, we get M, Sk�v� à ψ and for all 0 B j @ k,
M, Sj�v� à ϕ, hence v > JϕU ψK. For the converse direction we assume that D �

�W,l, S� and w, v > W such that v m w and S�w� ~l S�v�. Take p > P and define
V �u� � �p� if S�w� l u, V �u� � g otherwise. It is easy to see that V is l-monotone,
but p ~> V �S�v�� (because S�w� ~l S�v�) and p > V �S�w�� (because S�w� l S�w�),
from which it follows that �D, V �,w à Zp but �D, V �, v à Zp.

This suggests that dynamic posets provide suitable semantics for intuitionistic
LTL. Moreover, dynamic posets are convenient from a technical point of view:

Theorem 2.2 ([4]). There exists a computable function B such that any formula ϕ >

Lnj satisfiable (resp. falsifiable) on an arbitrary model is satisfiable (resp. falsifiable)
on a model whose size is bounded by B�SϕS�.

It follows that the Lnj-fragment of ITLe is decidable. Moreover, as we will
see below, many of the familiar axioms of classical LTL are valid over the class of
dynamic posets, making them a natural choice of semantics for intuitionistic LTL.

2.2 Persistent posets

Despite the advantages of dynamic posets, in the literature one typically considers
a more restrictive class of frames, as we define them below.

Definition 2.3. Let �W,l� be a poset. If S�W � W is such that, whenever v m

S�w�, there is u m w such that v � S�u�, we say that S is backward confluent.
If S is both forward and backward confluent, we say that it is persistent. A tuple
�W,l, S� where S is persistent is a persistent intuitionistic temporal frame, and the
set of valid formulas over the class of persistent intuitionistic temporal frames is
denoted ITLp, or persistent domain LTL.

As we will see, persistent frames do have some technical advantages over arbitrary
dynamic posets. Nevertheless, they have a crucial disadvantage:

Theorem 2.4 ([4]). The logic ITLp does not have the finite model property, even
for formulas in Lnj.
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2.3 Temporal here-and-there models

An even smaller class of models which, nevertheless, has many applications is that of
temporal here-and-there models [2]. Some of the results we will present here apply
to this class, so it will be instructive to review it. Recall that the logic of here-and-
there is the maximal logic strictly between classical and intuitionistic propositional
logic, given by a frame �0,1� with 0 l 1. The logic of here-and-there is obtained by
adding to intuitionistic propositional logic the axiom p - �p� q� -  q.

A temporal here-and-there frame is a persistent frame that is ‘locally’ based on
this frame. We can define here-and-there models using the following construction.

Definition 2.5. Let T be a set and f �T � T . We define a dynamic poset HT�T, f� �
�W,l, S�, with W � T � �0,1�, �t, i� l �s, j� if and only if t � s and i B j, and
S�t, i� � �f�t�, i�.

The prototypical example is the frame HT�N, f�, where f�n� � n � 1. Note,
however, that our definition allows for other values of T (see Figure 1). In [2], this
logic is axiomatized, and it is shown that j cannot be defined in terms of n, a
result we will strengthen here to show that j cannot be defined even in terms of
U . It is also claimed in [2] that n is not definable in terms of j over the class of
here-and-there models, but as we will see in Proposition 6.3, this claim is incorrect.

3 Some valid and non-valid ITLe-formulas
In this section we explore which axioms of classical LTL are still valid in our setting.
We start by showing that the intuitionistic version of the interaction and induc-
tion axioms used in [2] remain valid in our setting. However, not all Fisher-Servi
axioms [11], which are valid in the here-and-there LTL of [2], are valid in ITLe.

Proposition 3.1. The following formulas:

1. Z�� �

2. Z �ϕ , ψ�� �Zϕ , Zψ�;
3. Z �ϕ - ψ�� �Zϕ - Zψ�;
4. Z �ϕ� ψ�� �Zϕ� Zψ�;
5. j �ϕ� ψ�� �jϕ� jψ�;
6. j �ϕ� ψ�� �nϕ�nψ�;

7. n �ϕ - ψ�� �nϕ -nψ�;

8. jϕ� ϕ , Zjϕ;

9. ϕ - Znϕ�nϕ;

10. j �ϕ� Zϕ�� �ϕ� jϕ�

11. j �Zϕ� ϕ�� �nϕ� ϕ�.

are ITLe-valid.
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Proof. Let us consider (10) and (11). For (10), letM � �W,l, S� be any ITLe model
and w > W be such that M,w à j �ϕ� Zϕ�. Let v m w be arbitrary and assume
that M, v à ϕ. Then, by induction on i we obtain that Si�w� l Si�v� for all i;
since M, Si�w� à ϕ � Zϕ for all i, it follows that M, Si�v� à ϕ � Zϕ for all i as
well. Hence an easy induction shows that M, Si�v� à ϕ for all i, which means that
M, v à jϕ. Since w was arbitrary, we conclude that the formula (10) is valid.

For (11), let M be as above and w > W be such that M,w à j �Zϕ� ϕ�. Let
v m w be such that M, v à nϕ, and let n be least so that M, Sn�v� à ϕ. If n A 0
then from Zϕ � ϕ we obtain M, Sn�1�v� à ϕ, contradicting the minimality of n.
We conclude that n � 0, hence M, v à ϕ.

The proofs for the rest of formulas are standard.

Some of the well-known Fisher Servi axioms [11] are only valid on the class of
persistent frames.

Proposition 3.2. The formulas

1. �Zϕ� Zψ�� Z �ϕ� ψ�, 2. �nϕ� jψ�� j �ϕ� ψ�

are not ITLe-valid. However they are ITLp-valid.

Proof. Let �p, q� be a set of propositional variables and let us consider the ITLe

model M � �W,l, S, V � defined as: 1) W � �w, v, u�; 2) S�w� � v, S�v� � v and
S�u� � u; 3) v l u; 4) V �p� � �u�. Clearly, M, u ~à p � q, so M, v ~à p � q. By
definition,M,w ~à Z �p� q� andM,w ~à j �p� q�; however, it can easily be checked
that M,w à Zp � Zq and M,w à np � jq, so M,w ~à �Zp� Zq� � Z �p� q� and
M,w ~à �np� jq�� j �p� q�.

Let us check their validity over the class of persistent frames. For (1), let M �

�W,l, S, V � be an ITLp model and w a world of M such that M,w à Zϕ � Zψ.
Suppose that v m S�w� satisfies M, v à ϕ. By backward confluence, there exists
u m w such that v � S�u�, so that M, u à Zϕ and thus M, u à Zψ. But this means
that M, v à ψ, and since v m S�w� was arbitrary, M, S�w� à ϕ � ψ, i.e. M,w à
Z�ϕ� ψ�.

Similarly, for (2) let us assume that M � �W,l, S, V � is an ITLp model and w a
world ofM such thatM,w ànϕ� jψ. Consider arbitrary k > N, and suppose that
v m Sk�w� is such that M, v à ϕ. Then, it is readily checked that the composition
of backward confluent functions is backward confluent, so that in particular Sk is
backward confluent. This means that there is u m w such that Sk�u� � v. But then,
M, u à nϕ, hence M, u à jψ, and M, v à ψ. It follows that M, Sk�w� à ϕ � ψ,
and since k was arbitrary, M,w à j�ϕ� ψ�.
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We make a special mention of the schema j �jϕ� ψ�-j �jψ � ϕ�, which char-
acterises the class of weakly connected frames [14] in classical modal logic. We say
that a frame �W,R,V � is weakly connected iff it satisfies the following first-order
property: for every x, y, z >W , if x R y and x R z, then either y R z, y � z, or z R y.

Proposition 3.3. The axiom schema j �jϕ� ψ� - j �jψ � ϕ� is not ITLht-valid.

Proof. Let us consider the set of propositional variables �p, q�, T � �0,1�, f �T � T
be given by f�x� � 1, and let M � �W,l, S, V � be the here-and-there model based
on HT�T, f� with V �p� � ��0,1�, �1,1�� and V �q� � ��1,0�, �1,1��. The reader
can check that M, �0,0� ~à jp � q and M, �0,1� ~à jq � p. Consequently, M,w ~à
j �jp� q� - j �jq � p�.

Finally, we show that nϕ (resp. jϕ) can be defined in terms of U (resp. R) and
the LTL axioms involving U and R are also valid in our setting:

Proposition 3.4. The following formulas are ITLe-valid:

1. ϕU ψ� ψ - �ϕ , Z �ϕU ψ��;
2. ϕRψ� ψ , �ϕ - Z �ϕRψ��;
3. ϕU ψ �nψ;
4. jψ � ϕRψ;

5. nϕ� �U ϕ;
6. jϕ� �Rϕ;
7. Z�ϕU ψ�� ZϕU Zψ;
8. Z�ϕRψ�� ZϕRZψ.

Proof. We consider some cases below. For (1), from left to right, let us assume
that M,w à ϕU ψ. Therefore there exists k C 0 s.t. M, Sk�w� à ψ and for all j
satisfying 0 B j @ k, M, Sj�w� à ϕ. If k � 0 then M,w à ψ while, if k A 0 it follows
that M,w à ϕ and M, S�w� à ϕU ψ. Therefore M,w à ψ - �ϕ , Z�ϕU ψ��. From
right to left, if M,w à ψ then M,w à ϕU ψ by definition. If M,w à ϕ , Z�ϕU ψ�
then M,w à ϕ and M, S�w� à ϕU ψ so, due to the semantics, we conclude that
M,w à ϕU ψ. In any case, M,w à ϕU ψ.

For (2), we work by contrapositive. From right to left, let us assume thatM,w ~à
ϕRψ. Therefore there exists k C 0 s.t. M, Sk�w� ~à ψ and for all j satisfying
0 B j @ k, M, Sj�w� ~à ϕ. If k � 0 then M,w ~à ψ while, if k A 0 it follows that
M,w ~à ϕ andM, S�w� ~à ϕRψ. In any case,M,w ~à ψ, �ϕ - Z�ϕRψ��. From left
to right, ifM,w ~à ψ thenM,w ~à ϕRψ by definition. IfM,w ~à ϕ-Z�ϕRψ� then
M,w ~à ϕ and M, S�w� ~à ϕU ψ so, due to the semantics of R, we conclude that
M,w ~à ϕRψ. In any case, M,w ~à ϕRψ.

For (7), from left to right, let us assume thatM,w à Z �ϕU ψ�. Therefore there
exists k C 0 s.t. M, Sk�1�w� à ψ and for all j satisfying 0 B j @ k, M, Sj�1�w� à ϕ.
It follows from M, Sk�1�w� à ψ that M, Sk�w� à Zψ, and from M, Sj�1�w� à ϕ
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that M, Sj�w� à Zϕ for all j @ k. We conclude that M,w à ZϕU Zψ. Conversely,
if M,w à ZϕU Zψ, then there is k C 0 so that M, Sk�w� à Zψ and, for all i @ k,
M, Si�w� à Zϕ. It follows that M, Sk�1�w� à ψ and, for all i @ k, M, Si�1�w� à ϕ,
witnessing that M, S�w� à ϕU ψ and M,w à Z�ϕU ψ�.

For (8), we proceed similarly, but work by contrapositive. From right to left, let
us assume that M,w ~à Z �ϕRψ�. Therefore there exists k C 0 s.t. M, Sk�1�w� ~à ψ
and for all j satisfying 0 B j @ k,M, Sj�1�w� ~à ϕ. This implies thatM, Sk�w� ~à Zψ
and for all j satisfying 0 B j @ k,M, Sj�w� ~à Zϕ, henceM,w ~à Z�ϕRψ�. Similarly,
if M,w ~à Z�ϕRψ� then any k C 0 so that M, Sk�w� ~à Zψ and, for all i @ k,
M, Si�w� ~à Zϕ yieldsM, Sk�1�w� ~à ψ and, for all i @ k,M, Si�1�w� ~à ϕ, witnessing
that M, S�w� ~à ϕRψ and M,w ~à Z�ϕRψ�.

The proof of the remaining items is routine.

As in the classical case, over the class of persistent models we can ‘push down’
all occurrences of Z to the propositional level. Say that a formula ϕ is in Z-normal
form if all occurrences of Z are of the form Zip, with p a propositional variable.

Theorem 3.5. Given ϕ > L, there exists Çϕ in Z-normal form such that ϕ � Çϕ is
valid over the class of persistent models.

Proof. The claim can be proven by structural induction using the validities in Propo-
sitions 3.1, 3.2 and 3.4.

We remark that the only reason that this argument does not apply to arbi-
trary ITLe models is the fact that �Zϕ � Zψ� � Z�ϕ � ψ� is not valid in general
(Proposition 3.2).

4 Bounded bisimulations for n and j
In this section we adapt the classical definition of bounded bisimulations for modal
logic [3] to our case. To do so we combine the ordinary definition of bounded
bisimulations with the work of [26] on bisimulations for propositional intuitionistic
logic. Such work introduces extra conditions involving the partial order l. In our
setting, we combine both approaches in order to define bisimulation for a language
involvingn, j and Z as modal operators plus an intuitionistic�. Since all languages
we consider contain Booleans and Z, it is convenient to begin with a ‘basic’ notion
of bisimulation for this language.

Definition 4.1. Given n A 0 and two ITLe models M1 and M2, a sequence of
binary relations Znb � bZ0bW1 �W2 is said to be a bounded Z-bisimulation if for
all �w1,w2� >W1 �W2 and for all 0 B i @ n, the following conditions are satisfied:

9
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Atoms. If w1 Zi w2 then for all propositional variables p,M1,w1 à p iffM2,w2 à p.
Forth �. If w1 Zi�1 w2 then for all v1 >W1, if v1 m w1, there exists v2 >W2 such
that v2 m w2 and v1 Zi v2.
Back �. If w1 Zi�1 w2 then for all v2 >W2 if v2 m w2 then there exists v1 >W1 such
that v1 m w1 and v1 Zi v2.
Forth Z. if w1 Zi�1 w2 then S�w1� Zi S�w2�.

Note that there is not ‘back’ clause for Z; this is simply because S is a function,
so its ‘forth’ and ‘back’ clauses are identical. Bounded Z-bisimulations are useful
because they preserve the truth of relatively small LZ-formulas.

Lemma 4.2. Given two ITLe models M1 and M2 and a bounded Z-bisimulation
Znb � bZ0 between them, for all 0 B i B n and �w1,w2� >W1 �W2, if w1 Zi w2 then
for all ϕ > LZ satisfying SϕS B i2, M1,w1 à ϕ iff M2,w2 à ϕ.

Proof. We proceed by induction on i. Let 0 B i B n be such that for all j @ i the
lemma holds. Let w1 > W1 and w2 > W2 be such that w1 Zi w2 and let us consider
ϕ > Ln such that SϕS B i. The cases where ϕ is an atom or of the forms θ , ψ, θ - ψ
are as in the classical case and we omit them. Thus we focus on the following:
Case ϕ � θ � ψ. We proceed by contrapositive to prove the left-to-right implication.
Note that in this case we must have i A 0.

Assume that M2,w2 ~à θ � ψ. Therefore there exists v2 >W2 such that v2 m w2,
M2, v2 à θ, and M2, v2 ~à ψ. By the Back � condition, it follows that there exists
v1 > W1 such that v1 m w1 and v1 Zi�1 v2. Since SθS B i � 1 and SψS B i � 1, by the
induction hypothesis, it follows that M1, v1 à θ and M1, v1 ~à ψ. Consequently,
M1,w1 ~à θ � ψ. The converse direction is proved in a similar way but using Forth
�.
Case ϕ � Zψ. Once again we have that i A 0. Assume that M1,w1 à Zψ, so that
M1, S�w1� à ψ. By Forth Z, S1�w1� Zi�1 S2�w2�. Moreover, SψS B i � 1, so that
by the induction hypothesis, M2, S�w2� à ψ, and M2,w2 à Zψ. The right-to-left
direction is analogous.

Next, we will extend the notion of a bounded Z-bisimulation to include other
tenses. Let us begin with n.

2Although not optimal, we use the length of the formula in this lemma for the sake of simplicity.
More precise measures like counting the number of modalities and implications could be equally
used.
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Definition 4.3. Given n A 0 and two ITLe models M1 and M2, a bounded Z-
bisimulation Znb � bZ0bW1 �W2 is said to be a bounded n-bisimulation if for all
�w1,w2� >W1 �W2 and for all 0 B i @ n, if w1 Zi�1 w2, then the following conditions
are satisfied:
Forth n. For all k1 C 0 there exist k2 C 0 and �v1, v2� > W1 � W2 such that
Sk2�w2� m v2, v1 m S

k1�w1� and v1 Zi v2.
Back n. For all k2 C 0 there exist k1 C 0 and �v1, v2� >W1�W2 such that Sk1�w1� m
v1, v2 m S

k2�w2� and v1 Zi v2.

The reader will notice that the clauses for n involve the intuitionistic partial
order, even though this is not involved in the semantics of n. However, this will
give us more flexibility in designing bisimulations. The reason it works is that if k1
is so that Sk1�w1� witnesses that nϕ is true on w1, then ϕ will also be true on any
v1 m Sk1�w1� by the monotonicity of intuitionistic truth. Similarly, if Sk2�w2� m v2
and ϕ holds on v2, then it will also hold on Sk2�w2�. Thus we do not need Sk1�w1�
and Sk2�w2� to be directly connected by the bisimulation; rather, it is sufficient for
v1, w1 to act as ‘proxies’. As was the case of Lemma 4.2, if two worlds are related by
a bounded n-bisimulation, then they satisfy the same Ln-formulas of small length.

Lemma 4.4. Given two ITLe models M1 and M2 and a bounded n-bisimulation
Zib � bZ0 between them, for all 0 B i B n and �w1,w2� >W1 �W2, if w1 Zi w2, then
for all3 ϕ > Ln satisfying SϕS B i, M1,w1 à ϕ iff M2,w2 à ϕ.

Proof. We proceed by induction on n. Let 0 B i B n be such that for all j @ i the
lemma holds. Let w1 > W1 and w2 > W2 be such that w1 Zi w2 and let us consider
ϕ > Ln such that SϕS B i. We only consider the case where ϕ � nψ, as other cases
are covered by Lemma 4.2.

From left to right, if M1,w1 à nψ then there exists k1 C 0 such that
M1, S

k1�w1� à ψ. By Forth n, there exists k2 C 0 and �v1, v2� >W1�W2 such that
Sk2�w2� m v2, v1 m Sk1�w1� and v1 Zi�1 v2. By l-monotonicity, M1, v1 à ψ. Then,
by the induction hypothesis and the fact that SψS B i � 1, it follows that M2, v2 à ψ,
thus by l-monotonicity once again, M2, S

k2�w2� à ψ, so that M2,w2 à nψ. The
converse direction is proved similarly by using Back n.

We can define bounded j-bisimulations in a similar way.

3We remind the reader that, as per our convention, Ln is the j,U ,R-free fragment. A similar
comment applies to other sublanguages of L mentioned below.

11
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Definition 4.5. A bounded Z-bisimulation Znb � bZ0b W1 �W2 is said to be a
bounded j-bisimulation if for all �w1,w2� > W1 � W2 and for all 0 B i @ n, if
w1 Zi�1 w2, then:
Forth j. For all k2 C 0 there exist k1 C 0 and �v1, v2� >W1 �W2 s.t. Sk2�w2� m v2,
v1 m S

k1�w1� and v1 Zi v2.
Back j. For all k1 C 0 there exist k2 C 0 and �v1, v2� >W1 �W2 s.t. Sk1�w1� m v1,
v2 m S

k2�w2� and v1 Zi v2.

The intuition for the role of v1, v2 in the clauses for j is similar to that of n,
except that now we have to transfer negative information. If jϕ fails at w1, there
will be k1 C 0 so that ϕ fails on Sk1�w1�; but then, ϕ will forcibly fail on any
v1 l Sk1�w1�. Similarly, if ϕ fails on v2 m Sk2�w2�, ϕ will fail on Sk2�w2� as well,
witnessing that jϕ fails on w2.

Lemma 4.6. Given two ITLe models M1 and M2 and a bounded j-bisimulation
Znb � bZ0 between them, for all �w1,w2� >W1 �W2 and 0 B i B n, if w1 Zi w2 then
for all ϕ > Lj such that SϕS B i, then M1,w1 à ϕ iff M2,w2 à ϕ.

Proof. We proceed by induction on i. Let i C 0 be such that for all j @ i the lemma
holds. Let w1 > W1 and w2 > W2 be such that w1 Zi w2 and let us consider ϕ > Lj

such that SϕS B i. Note that the cases for atoms as well as propositional and Z

connectives are proved as in Lemma 4.2, so we only consider ϕ � jψ.
For the left-to-right implication, we work by contrapositive, and assume that

M2,w2 ~à jψ. Then, there exists k2 C 0 such that M2, S
k2�w2� ~à ψ. By Forth j,

there exist k1 C 0 and �v1, v2� >W1 �W2 s.t. Sk2�w2� m v2, v1 m S
i1�w1� and v1 Zi�1

v2. As in the proof of Lemma 4.4, by l-monotonicity, the induction hypothesis and
the fact that SψS B i�1, it follows thatM1, v1 ~à ψ; thusM1, S

k1�w1� ~à ψ, and again
by l-monotonicity M1,w1 ~à jψ. The converse direction follows a similar reasoning
but using Back j.

5 Bounded bisimulations for U and R

In this section we adapt the bisimulations defined for a language with until and
since [18] presented by Kurtonina and de Rijke [20] to our case. As with bisimula-
tions for n and j, we modify the standard clauses so that witnesses for U or R do
not have to be directly connected, and, instead, it suffices for suitable ‘proxy’ worlds
to be connected by the bisimulation. Let us begin with bounded bisimulations for
U .
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Definition 5.1. Given n > N and two ITLe models M1 and M2, a bounded Z-
bisimulation Znb � bZ0bW1 �W2 is said to be a bounded U-bisimulation iff for all
�w1,w2� >W1 �W2, and for all 0 B i @ n if w1 Zi�1 w2 :
Forth U . For all k1 C 0 there exist k2 C 0 and �v1, v2� >W1 �W2 such that

1. Sk2�w2� m v2, v1 m S
k1�w1� and v1 Zi v2, and

2. for all j2 > �0, k2� there exist j1 > �0, k1� and �u1, u2� > W1 �W2 such that
u1 m S

j1�w1�, Sj2�w2� m u2 and u1 Zi u2.

Back U . For all k2 C 0 there exist k1 C 0 and �v1, v2� >W1 �W2 such that

1. Sk1�w1� m v1, v2 m S
k2�w2� and v1 Zi v2, and

2. for all j1 > �0, k1� there exist j2 > �0, k2� and �u1, u2� > W1 �W2 such that
u2 m S

j2�w2�, Sj1�w1� m u1 and u1 Zi u2.

As was the case before, the following lemma states that two bounded U-bisimilar
models agree on small LU formulas.

Lemma 5.2. Given two ITLe models M1 and M2 and a bounded U-bisimulation
Zn` � `Z0 between them, for all 0 B m B n and �w1,w2� > W1 �W2, if w1 Zm w2
then for all ϕ > LU such that SϕS Bm, M1,w1 à ϕ iff M2,w2 à ϕ.

Proof. Once again, proceed by induction on n. Let m B n be such that for all k @m
the lemma holds. Let w1 > W1 and w2 > W2 be such that w1 Zm w2 and let us
consider ϕ > LU such that SϕS Bm. As before, we only consider the ‘new’ case, where
ϕ � θU ψ. From left to right, assume that M1,w1 à θU ψ. Then, there exists i1 C 0
such that M1, S

i1�w1� à ψ and for all j1 satisfying 0 B j1 @ i1, M1, S
j1�w1� à θ.

By Forth U , there exist i2 C 0 and �v1, v2� > W1 �W2 such that 1. Si2�w2� m v2,
v1 m S

i1�w1� and v1 Zm�1 v2; 2. for all j2 satisfying 0 B j2 @ i2 there exist j1 > �0, i1�
and �u1, u2� >W1 �W2 s. t. u1 m S

j1�w1�, Sj2�w2� m u2 and u1 Zm�1 u2.
From the first item, l-monotonicity, the fact that SψS Bm � 1, and the induction

hypothesis, it follows that M2, S
i2�w2� à ψ. Take any j2 satisfying 0 B j2 @ i2. By

the second item, the fact that SθS Bm�1, and the induction hypothesis, we conclude
that M2, S

j2�w2� à θ so M2,w2 à θU ψ. The right-to-left direction is symmetric
(but using Back U).

Finally, we define bounded bisimulations for R.

Definition 5.3. A bounded Z-bisimulation Znb � bZ0b W1 �W2 is said to be a
bounded R-bisimulation if for all �w1,w2� > W1 � W2 and for all 0 B i @ n, if
w1 Zi�1 w2 then :
Forth R. For all k2 C 0 there exist k1 C 0 and �v1, v2� >W1 �W2 such that
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1. Sk2�w2� m v2, v1 m S
k1�w1� and v1 Zi v2, and

2. for all j1 satisfying 0 B j1 @ k1 there exist j2 such that 0 B j2 @ k2 and �u1, u2� >
W1 �W2 s. t. u1 m S

j1�w1�, Sj2�w2� m u2 and u1 Zi u2.

Back R. For all k1 C 0 there exist k2 C 0 and �v1, v2� >W1 �W2 such that

1. Sk1�w1� m v1, v2 m S
k2�w2� and v1 Zi v2, and

2. for all j2 satisfying 0 B j2 @ k2 there exist j1 such that 0 B j1 @ k1 and �u1, u2� >
W1 �W2 s. t. u2 m S

j2�w2�, Sj1�w1� m u1 and u1 Zi u2.

Once again, we obtain a corresponding bisimulation lemma for LR.

Lemma 5.4. Given two ITLe models M1 and M2 and a bounded R-bisimulation
Znb � bZ0 between them, for all 0 B m B n and �w1,w2� > W1 �W2, if w1 Zm w2
then for all ϕ > LU such that SϕS Bm, M1,w1 à ϕ iff M2,w2 à ϕ.

Proof. As before, we proceed by induction on n; the critical case where ϕ � θRψ
follows by a combination of the reasoning for Lemmas 4.6 and Lemma 4.6. Details
are left to the reader.

6 Definability and undefinability of modal operators
In this section, we explore the question of when it is that the basic connectives can
or cannot be defined in terms of each other. It is known that, classically, n and j are
interdefinable, as are U and R; we will see that this is not the case intuitionistically.
On the other hand, U (and hence R) is not definable in terms of n,j in the classical
setting [18], and this result immediately carries over to the intuitionistic setting,
as the class of classical LTL models can be seen as the subclass of that of dynamic
posets where the partial order is the identity.

Interdefinability of modal operators can vary within intermediate logics. For
example, ,, - and � are basic connectives in propositional intuitionistic logic, but
in the intermediate logic of here-and-there [15], , [1, 2] and � [1] are basic operators
while - is definable in terms of � and , [22]. In first-order here-and-there [21], the
quantifier § is definable in terms of ¦ and � [24] while ¦ is not definable in terms
of the other operators. In the modal case, Simpson [30] shows that modal operators
are not interdefinable in the logic IK and Balbiani and Diéguez [2] proved the same
result for the linear time temporal extension of here-and-there. This last proof is
adapted to show that modal operators are not definable in ITLe. Note, however,
that here we correct the claim of [2] stating that n is not here-and-there definable
in terms of j.
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Figure 1: The here-and-there model Hn. Black dots satisfy the atom p, white dots
do not; all other atoms are false everywhere. Dashed lines indicate l and solid lines
indicate S. The �i-equivalence classes are shown as grey regions.

Let us begin by studying the definability of j in terms of Z and U . Below, if
L
�
b L, ϕ > L and Ω is a class of models, we say that ϕ is L�-definable over Ω if there

is ϕ� > L� such that Ω à ϕ� ϕ�.

Theorem 6.1. The connective j is not LU -definable, even over the class of finite
here-and-there models.

Proof. Assume for the sake of contradiction that np can be expressed as a U-free
formula ϕ with SϕS � n A 0. Let T � �0,�, n � 1� and f �T � T be given by y � f�x�
if and only if y � x � 1 �mod n � 2�. Then consider a here-and-there model Hn �

�W,l, S, V � based on HT�T, f� and with V �p� �W � ��n � 1,0��. For k B n, define
�i, j� �k �i�, j�� if �i, j� � �i�, j�� or

max�i�1 � j�, i��1 � j��� B n � k

(see Figure 1). Clearly, �Hn, �0,0�� ~à np, while �Hn, �0,1�� à np. Let us check
now that ��k�kBn is a bounded U-bisimulation. It is easy to check that the sequence
is increasing under inclusion. Moreover, �k is symmetric (indeed, an equivalence
relation) for eack k, so by symmetry, we only check the Forth clauses.
Atoms : Assume that 0 B k B n and x �k y. Since �n� 1��1� 0� A n� k, either x � y
(so the two satisfy the same atoms) or x, y x �n � 1,0�, so the two also satisfy the
same atoms (namely, �p�).
Forth � : Let k satisfy 0 B k @ n and let us assume �i1, j1� �k�1 �i2, j2� and �i1, j1� l
�i�1, j

�
1�. If �i1, j1� � �i2, j2�, then �i�2, j

�
2�

def
� �i�1, j

�
1� witnesses that the clause holds,

so we assume otherwise. Let us define �i�2, j
�
2�

def
� �i2,1�. Then, �i2, j2� l �i�2, j

�
2�

and max�i�1�1� j�1�, i�2�1� j�2�� � max�i�1�1� j�1�,0� � i�1�1� j�1� B n� k, meaning that
�i�1, j

�
1� �k �i�2, j

�
2�, as required.
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Forth Z : Let k satisfy 0 B k @ n and let us consider �i1, j1� �k�1 �i2, j2�. If
�i1, j1� � �i2, j2�, then also S�i1, j1� � S�i2, j2�, so we assume otherwise. We claim
that for ` > �1,2�, f�i`��1 � j`� B n � k. If j` � 1 this is obvious, otherwise from the
definition of �k�1 we obtain i` @ n � k so that f�i`� � i` � 1 B n � k. We conclude
that max��f�i1��1 � j1�, f�i2 � 1��1 � j2�� B n � k, so that S�i1, j1� �k S�i2, j2�, as
required.

Forth U : Let k satisfy 0 B k @ n, and let us suppose that �i1, j1� �k�1 �i2, j2�.
Assume moreover that �i1, j1� x �i2, j2�, as the other case is easy to check. Fix k1 C 0
and define �i�1, j

�
1� � S

k1�i1, j1�. Let us define k2 � 0, v1 � �i1,1�, and v2 � �i2, j2�,
so that Sk2�i2, j2� � �i2, j2�. Since max�i1�1 � 1�, i2�1 � j2�� � i2�1 � j2� @ n � k, we
have that v1 �k v2 and satisfy Condition 1. Note also that the Condition 2 holds
vacuously because of �0, k2� � g.

Consequently, ��m�mBn is a a bounded U-bisimulation. By using Lemma 5.2
and the fact that �0,0� �n �0,1� we get that �0,0� and �0,1� satisfy the same U-
free formulas ψ with SψS B n. However, �Hn, �0,0�� ~à ϕ and �Hn, �0,1�� à ϕ: a
contradiction.

As a consequence:

Corollary 6.2. The connective R is not definable in terms of Z and U , even over
the class of persistent models.

Proof. If we could define qRp, then we could also define jp � �Rp.

Proposition 6.3. Over the class of here-and-there models, n is Lj-definable. To
be precise, np is equivalent to

ϕ � �j�p� j�p -  p�� , j�Zj�p -  p�� p -  p - Zj p��� �j�p -  p� ,  j p�.

Proof. LetM � �T ��0,1�,l, S, V � be a here-and-there model with S�t, i� � �f�t�, i�
(see Section 2.3). Before proving that ϕ is equivalent to np, we give some intuition.
Essentially, ϕ contemplates three different ways that np could hold in �M, x�, where
x � �x1, x2�. It may be that j�p- p� holds, in which case �M, x� behaves essentially
as a classical model, at least for formulas whose only variable is p. In this case, np
holds iff  j p holds, as in the standard classical semantics. If j�p -  p� fails, then
M does not behave classically; for some n, Sn�x� falsifies p -  p. For ϕ to be true,
we then need for either j�p � j�p -  p�� or j�Zj�p -  p� � p -  p - Zj p�� to
fail. The formula j�p � j�p -  p�� will fail exactly when there is m such that
Sm�x� satisfies p (hence x satisfies np), andM does not behave classically after m;
that is, there is n A m so that Sn�x� falsifies p -  p. Meanwhile, j�Zj�p -  p� �
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p- p-Zj p�� will fail exactly when there is m such that Sm�x� satisfies p butM
behaves classically after m; in other words, Sn�x� falsifies p -  p only for n @m. In
this case, Zj�p- p�� p- p-Zj p will be falsified exactly at the greatest such n.

Now for the proof. Assume that x � �x1, x2� is such that �M, x� ànp. To check
that �M, x� à ϕ, let x� m x, so that x� � �x1, x

�
2� with x�2 C x2, and consider the

following cases.
Case �M, x�� à j�p- p�. In this case, it is easy to see that we also have �M, x�� à
 j p given that �M, x� ànp.
Case �M, x�� ~à j�p -  p�. Using the assumption that �M, x� à np, choose k such
that �M, �fk�x1�, x2�� à p and consider two sub-cases.

1. Suppose there is k� A k such that �M, �fk��x1�, x�2�� ~à p -  p. Then, it follows
that �M, �fk�x1�, x�2�� ~à p� jp -  p and hence �M, x�� ~à j�p� j�p -  p��.

2. If there is not such k�, then there must be a maximal k� @ k such that
�M, �fk��x1�, x�2�� ~à p -  p (otherwise, we would be in Case �M, x�� à
j�p -  p�). It is easily verified that

�M, �fk��x1�, x�2�� ~à Zj�p -  p�� p -  p - Zj p,

and hence
�M, x�� ~à j�Zj�p -  p�� p -  p - Zj p�.

Note that the above direction does not use any properties of here-and-there mod-
els, and works over arbitrary expanding models. However, we need these properties
for the other implication. Suppose that �M, x� à ϕ. If �M, x� à j�p -  p� ,  j p,
then it is readily verified that �M, x� ànp. Otherwise,

�M, x� ~à j�p� j�p -  p�� , j�Zj�p -  p�� p -  p - Zj p�.

If �M, x� ~à j�p� j�p -  p��, then there is k such that

�M, �fk�x1�, x2�� ~à p� j�p -  p�.

This is only possible if x2 � 0 and �M, �fk�x1�, x2�� à p, so that �M, x� à np.
Similarly, if

�M, x� ~à j�Zj�p -  p�� p -  p - Zj p�,

then there is k such that �M, �fk�x1�, x2�� ~à Zj�p- p�� p- p-Zj p. This is only
possible if x2 � 0, �M, �fk�x1�, x2�� à Zj�p -  p� and �M, �fk�x1�, x2�� ~à Zj p.
But from this it easily can be seen that there is k� A k with �M, �fk��x1�, x2�� à p,
hence �M, x� ànp.

17



Balbiani et al.

X

�0,0�

X

�0,1�

n

X

�1,0�

X

�1,1�

n � 1
X

�n,0�

X

�n,1�

0
X

�n � 1,0�

Y

�n � 1,1�

Figure 2: The expanding model En. Notation is as in Figure 1.

Corollary 6.4. Over the class of here-and-there models, pU q is LR-definable using
the equivalence pU q � �qR�p - q�� ,nq.

Hence, if we want to prove the undefinability of n in terms of other operators,
we must turn to a wider class of models, as we will do next.

Theorem 6.5. The operator n cannot be defined in terms of j over the class of
finite expanding models.

Proof. Given n A 0, consider a model En � �W,l, S, V � with W � �0,�, n � 1� �
�0,1�, �i, j� l �i�, j�� if i � i� and j B j�, S�i, j� � �i � 1, j� if i B n, S�n � 1, j� �

�0,0�, and V �p� � ��n � 1,1��. For m B n, define �i, j� �m �i�, j�� if either �i, j� �
�i�, j��, or max�i, i�� B n �m. Then, it can easily be checked that �M, �0,0�� ~à np,
�M, �0,1�� ànp, and �0,0� �m �0,1�.

It remains to check that ��m�mBn is a bounded j-bismulation. We focus on the
j clauses, and by symmetry, prove only Back j. Suppose that �i1, j1� �m �i2, j2�
and fix k1 C 0. Let �i�1, j

�
1� � Sk1�i1, j1�. Choose k2 A n � 1 such that i2 � k2 � i�1

�mod n � 1�, and let �i�2, j
�
2� � S

k2�i2, j2�. It is not hard to check that i�1 � i�2 and
j�2 � 0, from which we obtain �i�2, j

�
2� l �i�1, j

�
1�. Hence, setting v1 � v2 � �i�2, j

�
2� gives

us the desired witnesses.
By letting n vary, we see that no Lj-formula can be equivalent to np.

7 Conclusions

In this paper we have investigated on ITLe, an intuitionistic analogue of LTL based
on expanding domain models from modal logic. We have shown that, as happens in
other modal intuitionistic logics or modal intermediate logics, modal operators are
not interdefinable.
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Many open questions remain regarding intuitionistic temporal logics. We know
that ITLe is decidable, but the proposed decision procedure is non-elementary. How-
ever, there seems to be little reason to assume that this is optimal, raising the
following question:

Question 7.1. Are the satisfiability and validity problems for ITLe elementary?

Meanwhile, we saw in Theorems 2.2 and 2.4 that ITLe has the strong finite model
property, while ITLp does not have the finite model property at all. However, it may
yet be that ITLp is decidable despite this.

Question 7.2. Is ITLp decidable?

Regarding expressive completeness, it is known that LTL is expressively com-
plete [18, 29, 12, 16]; there exists a one-to-one correspondence (over N) between the
temporal language and the monadic first-order logic equipped with a linear order
and ‘next’ relation [12]. It is not known whether the same property holds between
ITLe and first-order intuitionistic logic.

Question 7.3. Is L equally expressive to monadic first-order logic over the class of
dynamic or persistent models?

Finally, a sound and complete axiomatization for ITLe remains to be found. The
results we have presented here could be a first step in this direction, and we conclude
with the following:

Question 7.4. Are the ITLe-valid formulas listed in this work, together with the
intuitionistic tautologies and standard inference rules, complete for the class of dy-
namic posets? Is the logic augmented with �Zp � Zq� � Z�p � q� complete for the
class of persistent models?
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